blob: 88d8abdeb73ca52905f77c508ec1eecf48c3839d [file] [log] [blame]
Chris Lattner753a2b42010-01-05 07:32:13 +00001//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19using namespace llvm;
20
21/// getPromotedType - Return the specified type promoted as it would be to pass
22/// though a va_arg area.
23static const Type *getPromotedType(const Type *Ty) {
24 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
25 if (ITy->getBitWidth() < 32)
26 return Type::getInt32Ty(Ty->getContext());
27 }
28 return Ty;
29}
30
31/// EnforceKnownAlignment - If the specified pointer points to an object that
32/// we control, modify the object's alignment to PrefAlign. This isn't
33/// often possible though. If alignment is important, a more reliable approach
34/// is to simply align all global variables and allocation instructions to
35/// their preferred alignment from the beginning.
36///
37static unsigned EnforceKnownAlignment(Value *V,
38 unsigned Align, unsigned PrefAlign) {
39
40 User *U = dyn_cast<User>(V);
41 if (!U) return Align;
42
43 switch (Operator::getOpcode(U)) {
44 default: break;
45 case Instruction::BitCast:
46 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
47 case Instruction::GetElementPtr: {
48 // If all indexes are zero, it is just the alignment of the base pointer.
49 bool AllZeroOperands = true;
50 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
51 if (!isa<Constant>(*i) ||
52 !cast<Constant>(*i)->isNullValue()) {
53 AllZeroOperands = false;
54 break;
55 }
56
57 if (AllZeroOperands) {
58 // Treat this like a bitcast.
59 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
60 }
61 break;
62 }
63 }
64
65 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
66 // If there is a large requested alignment and we can, bump up the alignment
67 // of the global.
68 if (!GV->isDeclaration()) {
69 if (GV->getAlignment() >= PrefAlign)
70 Align = GV->getAlignment();
71 else {
72 GV->setAlignment(PrefAlign);
73 Align = PrefAlign;
74 }
75 }
76 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
77 // If there is a requested alignment and if this is an alloca, round up.
78 if (AI->getAlignment() >= PrefAlign)
79 Align = AI->getAlignment();
80 else {
81 AI->setAlignment(PrefAlign);
82 Align = PrefAlign;
83 }
84 }
85
86 return Align;
87}
88
89/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
90/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
91/// and it is more than the alignment of the ultimate object, see if we can
92/// increase the alignment of the ultimate object, making this check succeed.
93unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
94 unsigned PrefAlign) {
95 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
96 sizeof(PrefAlign) * CHAR_BIT;
97 APInt Mask = APInt::getAllOnesValue(BitWidth);
98 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
99 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
100 unsigned TrailZ = KnownZero.countTrailingOnes();
101 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
102
103 if (PrefAlign > Align)
104 Align = EnforceKnownAlignment(V, Align, PrefAlign);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000105
Chris Lattner753a2b42010-01-05 07:32:13 +0000106 // We don't need to make any adjustment.
107 return Align;
108}
109
110Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
111 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
112 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
113 unsigned MinAlign = std::min(DstAlign, SrcAlign);
114 unsigned CopyAlign = MI->getAlignment();
115
116 if (CopyAlign < MinAlign) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000117 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
Chris Lattner753a2b42010-01-05 07:32:13 +0000118 MinAlign, false));
119 return MI;
120 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000121
Chris Lattner753a2b42010-01-05 07:32:13 +0000122 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
123 // load/store.
124 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
125 if (MemOpLength == 0) return 0;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000126
Chris Lattner753a2b42010-01-05 07:32:13 +0000127 // Source and destination pointer types are always "i8*" for intrinsic. See
128 // if the size is something we can handle with a single primitive load/store.
129 // A single load+store correctly handles overlapping memory in the memmove
130 // case.
131 unsigned Size = MemOpLength->getZExtValue();
132 if (Size == 0) return MI; // Delete this mem transfer.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000133
Chris Lattner753a2b42010-01-05 07:32:13 +0000134 if (Size > 8 || (Size&(Size-1)))
135 return 0; // If not 1/2/4/8 bytes, exit.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000136
Chris Lattner753a2b42010-01-05 07:32:13 +0000137 // Use an integer load+store unless we can find something better.
138 Type *NewPtrTy =
139 PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000140
Chris Lattner753a2b42010-01-05 07:32:13 +0000141 // Memcpy forces the use of i8* for the source and destination. That means
142 // that if you're using memcpy to move one double around, you'll get a cast
143 // from double* to i8*. We'd much rather use a double load+store rather than
144 // an i64 load+store, here because this improves the odds that the source or
145 // dest address will be promotable. See if we can find a better type than the
146 // integer datatype.
147 Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
148 if (StrippedDest != MI->getOperand(1)) {
149 const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
150 ->getElementType();
151 if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
152 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
153 // down through these levels if so.
154 while (!SrcETy->isSingleValueType()) {
155 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
156 if (STy->getNumElements() == 1)
157 SrcETy = STy->getElementType(0);
158 else
159 break;
160 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
161 if (ATy->getNumElements() == 1)
162 SrcETy = ATy->getElementType();
163 else
164 break;
165 } else
166 break;
167 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000168
Chris Lattner753a2b42010-01-05 07:32:13 +0000169 if (SrcETy->isSingleValueType())
170 NewPtrTy = PointerType::getUnqual(SrcETy);
171 }
172 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000173
174
Chris Lattner753a2b42010-01-05 07:32:13 +0000175 // If the memcpy/memmove provides better alignment info than we can
176 // infer, use it.
177 SrcAlign = std::max(SrcAlign, CopyAlign);
178 DstAlign = std::max(DstAlign, CopyAlign);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000179
Chris Lattner753a2b42010-01-05 07:32:13 +0000180 Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
181 Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
182 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
183 InsertNewInstBefore(L, *MI);
184 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
185
186 // Set the size of the copy to 0, it will be deleted on the next iteration.
187 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
188 return MI;
189}
190
191Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
192 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
193 if (MI->getAlignment() < Alignment) {
194 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
195 Alignment, false));
196 return MI;
197 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000198
Chris Lattner753a2b42010-01-05 07:32:13 +0000199 // Extract the length and alignment and fill if they are constant.
200 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
201 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000202 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
Chris Lattner753a2b42010-01-05 07:32:13 +0000203 return 0;
204 uint64_t Len = LenC->getZExtValue();
205 Alignment = MI->getAlignment();
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000206
Chris Lattner753a2b42010-01-05 07:32:13 +0000207 // If the length is zero, this is a no-op
208 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000209
Chris Lattner753a2b42010-01-05 07:32:13 +0000210 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
211 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
212 const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000213
Chris Lattner753a2b42010-01-05 07:32:13 +0000214 Value *Dest = MI->getDest();
215 Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
216
217 // Alignment 0 is identity for alignment 1 for memset, but not store.
218 if (Alignment == 0) Alignment = 1;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000219
Chris Lattner753a2b42010-01-05 07:32:13 +0000220 // Extract the fill value and store.
221 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
222 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
223 Dest, false, Alignment), *MI);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000224
Chris Lattner753a2b42010-01-05 07:32:13 +0000225 // Set the size of the copy to 0, it will be deleted on the next iteration.
226 MI->setLength(Constant::getNullValue(LenC->getType()));
227 return MI;
228 }
229
230 return 0;
231}
232
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000233/// visitCallInst - CallInst simplification. This mostly only handles folding
Chris Lattner753a2b42010-01-05 07:32:13 +0000234/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
235/// the heavy lifting.
236///
237Instruction *InstCombiner::visitCallInst(CallInst &CI) {
238 if (isFreeCall(&CI))
239 return visitFree(CI);
240
241 // If the caller function is nounwind, mark the call as nounwind, even if the
242 // callee isn't.
243 if (CI.getParent()->getParent()->doesNotThrow() &&
244 !CI.doesNotThrow()) {
245 CI.setDoesNotThrow();
246 return &CI;
247 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000248
Chris Lattner753a2b42010-01-05 07:32:13 +0000249 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
250 if (!II) return visitCallSite(&CI);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000251
Chris Lattner753a2b42010-01-05 07:32:13 +0000252 // Intrinsics cannot occur in an invoke, so handle them here instead of in
253 // visitCallSite.
254 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
255 bool Changed = false;
256
257 // memmove/cpy/set of zero bytes is a noop.
258 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
259 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
260
261 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
262 if (CI->getZExtValue() == 1) {
263 // Replace the instruction with just byte operations. We would
264 // transform other cases to loads/stores, but we don't know if
265 // alignment is sufficient.
266 }
267 }
268
269 // If we have a memmove and the source operation is a constant global,
270 // then the source and dest pointers can't alias, so we can change this
271 // into a call to memcpy.
272 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
273 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
274 if (GVSrc->isConstant()) {
275 Module *M = CI.getParent()->getParent()->getParent();
276 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
277 const Type *Tys[1];
278 Tys[0] = CI.getOperand(3)->getType();
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000279 CI.setOperand(0,
Chris Lattner753a2b42010-01-05 07:32:13 +0000280 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
281 Changed = true;
282 }
283 }
284
285 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
286 // memmove(x,x,size) -> noop.
287 if (MTI->getSource() == MTI->getDest())
288 return EraseInstFromFunction(CI);
289 }
290
291 // If we can determine a pointer alignment that is bigger than currently
292 // set, update the alignment.
293 if (isa<MemTransferInst>(MI)) {
294 if (Instruction *I = SimplifyMemTransfer(MI))
295 return I;
296 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
297 if (Instruction *I = SimplifyMemSet(MSI))
298 return I;
299 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000300
Chris Lattner753a2b42010-01-05 07:32:13 +0000301 if (Changed) return II;
302 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000303
Chris Lattner753a2b42010-01-05 07:32:13 +0000304 switch (II->getIntrinsicID()) {
305 default: break;
Eric Christopher415326b2010-02-09 21:24:27 +0000306 case Intrinsic::objectsize: {
307 const Type *ReturnTy = CI.getType();
308 Value *Op1 = II->getOperand(1);
309 bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
310
Eric Christopher26d0e892010-02-11 01:48:54 +0000311 // We need target data for just about everything so depend on it.
Eric Christopher415326b2010-02-09 21:24:27 +0000312 if (!TD) break;
Eric Christopher26d0e892010-02-11 01:48:54 +0000313
314 // Get to the real allocated thing and offset as fast as possible.
Eric Christopher415326b2010-02-09 21:24:27 +0000315 Op1 = Op1->stripPointerCasts();
316
Eric Christopher26d0e892010-02-11 01:48:54 +0000317 // If we've stripped down to a single global variable that we
318 // can know the size of then just return that.
Eric Christopher415326b2010-02-09 21:24:27 +0000319 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
320 if (GV->hasDefinitiveInitializer()) {
321 Constant *C = GV->getInitializer();
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000322 uint64_t globalSize = TD->getTypeAllocSize(C->getType());
Eric Christopher415326b2010-02-09 21:24:27 +0000323 return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, globalSize));
324 } else {
325 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
326 return ReplaceInstUsesWith(CI, RetVal);
327 }
Eric Christopher26d0e892010-02-11 01:48:54 +0000328 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
329
330 // Only handle constant GEPs here.
331 if (CE->getOpcode() != Instruction::GetElementPtr) break;
332 GEPOperator *GEP = cast<GEPOperator>(CE);
333
Eric Christopherdfdddd82010-02-11 17:44:04 +0000334 // Make sure we're not a constant offset from an external
335 // global.
336 Value *Operand = GEP->getPointerOperand();
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000337 Operand = Operand->stripPointerCasts();
Eric Christopherdfdddd82010-02-11 17:44:04 +0000338 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
339 if (!GV->hasDefinitiveInitializer()) break;
340
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000341 // Get what we're pointing to and its size.
342 const PointerType *BaseType =
Eric Christopherdfdddd82010-02-11 17:44:04 +0000343 cast<PointerType>(Operand->getType());
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000344 uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
Eric Christopher26d0e892010-02-11 01:48:54 +0000345
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000346 // Get the current byte offset into the thing. Use the original
347 // operand in case we're looking through a bitcast.
Eric Christopher26d0e892010-02-11 01:48:54 +0000348 SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000349 const PointerType *OffsetType =
350 cast<PointerType>(GEP->getPointerOperand()->getType());
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000351 uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
Eric Christopher26d0e892010-02-11 01:48:54 +0000352
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000353 if (Size < Offset) {
354 // Out of bound reference? Negative index normalized to large
355 // index? Just return "I don't know".
356 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
357 return ReplaceInstUsesWith(CI, RetVal);
358 }
Eric Christopher26d0e892010-02-11 01:48:54 +0000359
360 Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
361 return ReplaceInstUsesWith(CI, RetVal);
362
Eric Christopherdfdddd82010-02-11 17:44:04 +0000363 }
Evan Chengf79d6242010-03-05 01:22:47 +0000364 break;
Eric Christopher415326b2010-02-09 21:24:27 +0000365 }
Chris Lattner753a2b42010-01-05 07:32:13 +0000366 case Intrinsic::bswap:
367 // bswap(bswap(x)) -> x
368 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
369 if (Operand->getIntrinsicID() == Intrinsic::bswap)
370 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000371
Chris Lattner753a2b42010-01-05 07:32:13 +0000372 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
373 if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
374 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
375 if (Operand->getIntrinsicID() == Intrinsic::bswap) {
376 unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
377 TI->getType()->getPrimitiveSizeInBits();
378 Value *CV = ConstantInt::get(Operand->getType(), C);
379 Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
380 return new TruncInst(V, TI->getType());
381 }
382 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000383
Chris Lattner753a2b42010-01-05 07:32:13 +0000384 break;
385 case Intrinsic::powi:
386 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
387 // powi(x, 0) -> 1.0
388 if (Power->isZero())
389 return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
390 // powi(x, 1) -> x
391 if (Power->isOne())
392 return ReplaceInstUsesWith(CI, II->getOperand(1));
393 // powi(x, -1) -> 1/x
394 if (Power->isAllOnesValue())
395 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
396 II->getOperand(1));
397 }
398 break;
399 case Intrinsic::cttz: {
400 // If all bits below the first known one are known zero,
401 // this value is constant.
402 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
403 uint32_t BitWidth = IT->getBitWidth();
404 APInt KnownZero(BitWidth, 0);
405 APInt KnownOne(BitWidth, 0);
406 ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
407 KnownZero, KnownOne);
408 unsigned TrailingZeros = KnownOne.countTrailingZeros();
409 APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
410 if ((Mask & KnownZero) == Mask)
411 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
412 APInt(BitWidth, TrailingZeros)));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000413
Chris Lattner753a2b42010-01-05 07:32:13 +0000414 }
415 break;
416 case Intrinsic::ctlz: {
417 // If all bits above the first known one are known zero,
418 // this value is constant.
419 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
420 uint32_t BitWidth = IT->getBitWidth();
421 APInt KnownZero(BitWidth, 0);
422 APInt KnownOne(BitWidth, 0);
423 ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
424 KnownZero, KnownOne);
425 unsigned LeadingZeros = KnownOne.countLeadingZeros();
426 APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
427 if ((Mask & KnownZero) == Mask)
428 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
429 APInt(BitWidth, LeadingZeros)));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000430
Chris Lattner753a2b42010-01-05 07:32:13 +0000431 }
432 break;
433 case Intrinsic::uadd_with_overflow: {
434 Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
435 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
436 uint32_t BitWidth = IT->getBitWidth();
437 APInt Mask = APInt::getSignBit(BitWidth);
438 APInt LHSKnownZero(BitWidth, 0);
439 APInt LHSKnownOne(BitWidth, 0);
440 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
441 bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
442 bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
443
444 if (LHSKnownNegative || LHSKnownPositive) {
445 APInt RHSKnownZero(BitWidth, 0);
446 APInt RHSKnownOne(BitWidth, 0);
447 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
448 bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
449 bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
450 if (LHSKnownNegative && RHSKnownNegative) {
451 // The sign bit is set in both cases: this MUST overflow.
452 // Create a simple add instruction, and insert it into the struct.
453 Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
454 Worklist.Add(Add);
455 Constant *V[] = {
456 UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
457 };
458 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
459 return InsertValueInst::Create(Struct, Add, 0);
460 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000461
Chris Lattner753a2b42010-01-05 07:32:13 +0000462 if (LHSKnownPositive && RHSKnownPositive) {
463 // The sign bit is clear in both cases: this CANNOT overflow.
464 // Create a simple add instruction, and insert it into the struct.
465 Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
466 Worklist.Add(Add);
467 Constant *V[] = {
468 UndefValue::get(LHS->getType()),
469 ConstantInt::getFalse(II->getContext())
470 };
471 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
472 return InsertValueInst::Create(Struct, Add, 0);
473 }
474 }
475 }
476 // FALL THROUGH uadd into sadd
477 case Intrinsic::sadd_with_overflow:
478 // Canonicalize constants into the RHS.
479 if (isa<Constant>(II->getOperand(1)) &&
480 !isa<Constant>(II->getOperand(2))) {
481 Value *LHS = II->getOperand(1);
482 II->setOperand(1, II->getOperand(2));
483 II->setOperand(2, LHS);
484 return II;
485 }
486
487 // X + undef -> undef
488 if (isa<UndefValue>(II->getOperand(2)))
489 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000490
Chris Lattner753a2b42010-01-05 07:32:13 +0000491 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
492 // X + 0 -> {X, false}
493 if (RHS->isZero()) {
494 Constant *V[] = {
495 UndefValue::get(II->getOperand(0)->getType()),
496 ConstantInt::getFalse(II->getContext())
497 };
498 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
499 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
500 }
501 }
502 break;
503 case Intrinsic::usub_with_overflow:
504 case Intrinsic::ssub_with_overflow:
505 // undef - X -> undef
506 // X - undef -> undef
507 if (isa<UndefValue>(II->getOperand(1)) ||
508 isa<UndefValue>(II->getOperand(2)))
509 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000510
Chris Lattner753a2b42010-01-05 07:32:13 +0000511 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
512 // X - 0 -> {X, false}
513 if (RHS->isZero()) {
514 Constant *V[] = {
515 UndefValue::get(II->getOperand(1)->getType()),
516 ConstantInt::getFalse(II->getContext())
517 };
518 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
519 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
520 }
521 }
522 break;
523 case Intrinsic::umul_with_overflow:
524 case Intrinsic::smul_with_overflow:
525 // Canonicalize constants into the RHS.
526 if (isa<Constant>(II->getOperand(1)) &&
527 !isa<Constant>(II->getOperand(2))) {
528 Value *LHS = II->getOperand(1);
529 II->setOperand(1, II->getOperand(2));
530 II->setOperand(2, LHS);
531 return II;
532 }
533
534 // X * undef -> undef
535 if (isa<UndefValue>(II->getOperand(2)))
536 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000537
Chris Lattner753a2b42010-01-05 07:32:13 +0000538 if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
539 // X*0 -> {0, false}
540 if (RHSI->isZero())
541 return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000542
Chris Lattner753a2b42010-01-05 07:32:13 +0000543 // X * 1 -> {X, false}
544 if (RHSI->equalsInt(1)) {
545 Constant *V[] = {
546 UndefValue::get(II->getOperand(1)->getType()),
547 ConstantInt::getFalse(II->getContext())
548 };
549 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
550 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
551 }
552 }
553 break;
554 case Intrinsic::ppc_altivec_lvx:
555 case Intrinsic::ppc_altivec_lvxl:
556 case Intrinsic::x86_sse_loadu_ps:
557 case Intrinsic::x86_sse2_loadu_pd:
558 case Intrinsic::x86_sse2_loadu_dq:
559 // Turn PPC lvx -> load if the pointer is known aligned.
560 // Turn X86 loadups -> load if the pointer is known aligned.
561 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
562 Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
563 PointerType::getUnqual(II->getType()));
564 return new LoadInst(Ptr);
565 }
566 break;
567 case Intrinsic::ppc_altivec_stvx:
568 case Intrinsic::ppc_altivec_stvxl:
569 // Turn stvx -> store if the pointer is known aligned.
570 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000571 const Type *OpPtrTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000572 PointerType::getUnqual(II->getOperand(1)->getType());
573 Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
574 return new StoreInst(II->getOperand(1), Ptr);
575 }
576 break;
577 case Intrinsic::x86_sse_storeu_ps:
578 case Intrinsic::x86_sse2_storeu_pd:
579 case Intrinsic::x86_sse2_storeu_dq:
580 // Turn X86 storeu -> store if the pointer is known aligned.
581 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000582 const Type *OpPtrTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000583 PointerType::getUnqual(II->getOperand(2)->getType());
584 Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
585 return new StoreInst(II->getOperand(2), Ptr);
586 }
587 break;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000588
Chris Lattner753a2b42010-01-05 07:32:13 +0000589 case Intrinsic::x86_sse_cvttss2si: {
590 // These intrinsics only demands the 0th element of its input vector. If
591 // we can simplify the input based on that, do so now.
592 unsigned VWidth =
593 cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
594 APInt DemandedElts(VWidth, 1);
595 APInt UndefElts(VWidth, 0);
596 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
597 UndefElts)) {
598 II->setOperand(1, V);
599 return II;
600 }
601 break;
602 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000603
Chris Lattner753a2b42010-01-05 07:32:13 +0000604 case Intrinsic::ppc_altivec_vperm:
605 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
606 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
607 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000608
Chris Lattner753a2b42010-01-05 07:32:13 +0000609 // Check that all of the elements are integer constants or undefs.
610 bool AllEltsOk = true;
611 for (unsigned i = 0; i != 16; ++i) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000612 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
Chris Lattner753a2b42010-01-05 07:32:13 +0000613 !isa<UndefValue>(Mask->getOperand(i))) {
614 AllEltsOk = false;
615 break;
616 }
617 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000618
Chris Lattner753a2b42010-01-05 07:32:13 +0000619 if (AllEltsOk) {
620 // Cast the input vectors to byte vectors.
621 Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
622 Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
623 Value *Result = UndefValue::get(Op0->getType());
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000624
Chris Lattner753a2b42010-01-05 07:32:13 +0000625 // Only extract each element once.
626 Value *ExtractedElts[32];
627 memset(ExtractedElts, 0, sizeof(ExtractedElts));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000628
Chris Lattner753a2b42010-01-05 07:32:13 +0000629 for (unsigned i = 0; i != 16; ++i) {
630 if (isa<UndefValue>(Mask->getOperand(i)))
631 continue;
632 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
633 Idx &= 31; // Match the hardware behavior.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000634
Chris Lattner753a2b42010-01-05 07:32:13 +0000635 if (ExtractedElts[Idx] == 0) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000636 ExtractedElts[Idx] =
637 Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
Chris Lattner753a2b42010-01-05 07:32:13 +0000638 ConstantInt::get(Type::getInt32Ty(II->getContext()),
639 Idx&15, false), "tmp");
640 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000641
Chris Lattner753a2b42010-01-05 07:32:13 +0000642 // Insert this value into the result vector.
643 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
644 ConstantInt::get(Type::getInt32Ty(II->getContext()),
645 i, false), "tmp");
646 }
647 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
648 }
649 }
650 break;
651
652 case Intrinsic::stackrestore: {
653 // If the save is right next to the restore, remove the restore. This can
654 // happen when variable allocas are DCE'd.
655 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
656 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
657 BasicBlock::iterator BI = SS;
658 if (&*++BI == II)
659 return EraseInstFromFunction(CI);
660 }
661 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000662
Chris Lattner753a2b42010-01-05 07:32:13 +0000663 // Scan down this block to see if there is another stack restore in the
664 // same block without an intervening call/alloca.
665 BasicBlock::iterator BI = II;
666 TerminatorInst *TI = II->getParent()->getTerminator();
667 bool CannotRemove = false;
668 for (++BI; &*BI != TI; ++BI) {
669 if (isa<AllocaInst>(BI) || isMalloc(BI)) {
670 CannotRemove = true;
671 break;
672 }
673 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
674 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
675 // If there is a stackrestore below this one, remove this one.
676 if (II->getIntrinsicID() == Intrinsic::stackrestore)
677 return EraseInstFromFunction(CI);
678 // Otherwise, ignore the intrinsic.
679 } else {
680 // If we found a non-intrinsic call, we can't remove the stack
681 // restore.
682 CannotRemove = true;
683 break;
684 }
685 }
686 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000687
Chris Lattner753a2b42010-01-05 07:32:13 +0000688 // If the stack restore is in a return/unwind block and if there are no
689 // allocas or calls between the restore and the return, nuke the restore.
690 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
691 return EraseInstFromFunction(CI);
692 break;
693 }
Chris Lattner753a2b42010-01-05 07:32:13 +0000694 }
695
696 return visitCallSite(II);
697}
698
699// InvokeInst simplification
700//
701Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
702 return visitCallSite(&II);
703}
704
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000705/// isSafeToEliminateVarargsCast - If this cast does not affect the value
Chris Lattner753a2b42010-01-05 07:32:13 +0000706/// passed through the varargs area, we can eliminate the use of the cast.
707static bool isSafeToEliminateVarargsCast(const CallSite CS,
708 const CastInst * const CI,
709 const TargetData * const TD,
710 const int ix) {
711 if (!CI->isLosslessCast())
712 return false;
713
714 // The size of ByVal arguments is derived from the type, so we
715 // can't change to a type with a different size. If the size were
716 // passed explicitly we could avoid this check.
717 if (!CS.paramHasAttr(ix, Attribute::ByVal))
718 return true;
719
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000720 const Type* SrcTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000721 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
722 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
723 if (!SrcTy->isSized() || !DstTy->isSized())
724 return false;
725 if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
726 return false;
727 return true;
728}
729
730// visitCallSite - Improvements for call and invoke instructions.
731//
732Instruction *InstCombiner::visitCallSite(CallSite CS) {
733 bool Changed = false;
734
735 // If the callee is a constexpr cast of a function, attempt to move the cast
736 // to the arguments of the call/invoke.
737 if (transformConstExprCastCall(CS)) return 0;
738
739 Value *Callee = CS.getCalledValue();
740
741 if (Function *CalleeF = dyn_cast<Function>(Callee))
Chris Lattnerd5695612010-02-01 18:11:34 +0000742 // If the call and callee calling conventions don't match, this call must
743 // be unreachable, as the call is undefined.
744 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
745 // Only do this for calls to a function with a body. A prototype may
746 // not actually end up matching the implementation's calling conv for a
747 // variety of reasons (e.g. it may be written in assembly).
748 !CalleeF->isDeclaration()) {
Chris Lattner753a2b42010-01-05 07:32:13 +0000749 Instruction *OldCall = CS.getInstruction();
Chris Lattner753a2b42010-01-05 07:32:13 +0000750 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000751 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
Chris Lattner753a2b42010-01-05 07:32:13 +0000752 OldCall);
753 // If OldCall dues not return void then replaceAllUsesWith undef.
754 // This allows ValueHandlers and custom metadata to adjust itself.
755 if (!OldCall->getType()->isVoidTy())
756 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
Chris Lattner830f3f22010-02-01 18:04:58 +0000757 if (isa<CallInst>(OldCall))
Chris Lattner753a2b42010-01-05 07:32:13 +0000758 return EraseInstFromFunction(*OldCall);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000759
Chris Lattner830f3f22010-02-01 18:04:58 +0000760 // We cannot remove an invoke, because it would change the CFG, just
761 // change the callee to a null pointer.
762 cast<InvokeInst>(OldCall)->setOperand(0,
763 Constant::getNullValue(CalleeF->getType()));
Chris Lattner753a2b42010-01-05 07:32:13 +0000764 return 0;
765 }
766
767 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
768 // This instruction is not reachable, just remove it. We insert a store to
769 // undef so that we know that this code is not reachable, despite the fact
770 // that we can't modify the CFG here.
771 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
772 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
773 CS.getInstruction());
774
775 // If CS dues not return void then replaceAllUsesWith undef.
776 // This allows ValueHandlers and custom metadata to adjust itself.
777 if (!CS.getInstruction()->getType()->isVoidTy())
778 CS.getInstruction()->
779 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
780
781 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
782 // Don't break the CFG, insert a dummy cond branch.
783 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
784 ConstantInt::getTrue(Callee->getContext()), II);
785 }
786 return EraseInstFromFunction(*CS.getInstruction());
787 }
788
789 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
790 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
791 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
792 return transformCallThroughTrampoline(CS);
793
794 const PointerType *PTy = cast<PointerType>(Callee->getType());
795 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
796 if (FTy->isVarArg()) {
797 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
798 // See if we can optimize any arguments passed through the varargs area of
799 // the call.
800 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
801 E = CS.arg_end(); I != E; ++I, ++ix) {
802 CastInst *CI = dyn_cast<CastInst>(*I);
803 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
804 *I = CI->getOperand(0);
805 Changed = true;
806 }
807 }
808 }
809
810 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
811 // Inline asm calls cannot throw - mark them 'nounwind'.
812 CS.setDoesNotThrow();
813 Changed = true;
814 }
815
816 return Changed ? CS.getInstruction() : 0;
817}
818
819// transformConstExprCastCall - If the callee is a constexpr cast of a function,
820// attempt to move the cast to the arguments of the call/invoke.
821//
822bool InstCombiner::transformConstExprCastCall(CallSite CS) {
823 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
824 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000825 if (CE->getOpcode() != Instruction::BitCast ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000826 !isa<Function>(CE->getOperand(0)))
827 return false;
828 Function *Callee = cast<Function>(CE->getOperand(0));
829 Instruction *Caller = CS.getInstruction();
830 const AttrListPtr &CallerPAL = CS.getAttributes();
831
832 // Okay, this is a cast from a function to a different type. Unless doing so
833 // would cause a type conversion of one of our arguments, change this call to
834 // be a direct call with arguments casted to the appropriate types.
835 //
836 const FunctionType *FT = Callee->getFunctionType();
837 const Type *OldRetTy = Caller->getType();
838 const Type *NewRetTy = FT->getReturnType();
839
Duncan Sands1df98592010-02-16 11:11:14 +0000840 if (NewRetTy->isStructTy())
Chris Lattner753a2b42010-01-05 07:32:13 +0000841 return false; // TODO: Handle multiple return values.
842
843 // Check to see if we are changing the return type...
844 if (OldRetTy != NewRetTy) {
845 if (Callee->isDeclaration() &&
846 // Conversion is ok if changing from one pointer type to another or from
847 // a pointer to an integer of the same size.
Duncan Sands1df98592010-02-16 11:11:14 +0000848 !((OldRetTy->isPointerTy() || !TD ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000849 OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
Duncan Sands1df98592010-02-16 11:11:14 +0000850 (NewRetTy->isPointerTy() || !TD ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000851 NewRetTy == TD->getIntPtrType(Caller->getContext()))))
852 return false; // Cannot transform this return value.
853
854 if (!Caller->use_empty() &&
855 // void -> non-void is handled specially
856 !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
857 return false; // Cannot transform this return value.
858
859 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
860 Attributes RAttrs = CallerPAL.getRetAttributes();
861 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
862 return false; // Attribute not compatible with transformed value.
863 }
864
865 // If the callsite is an invoke instruction, and the return value is used by
866 // a PHI node in a successor, we cannot change the return type of the call
867 // because there is no place to put the cast instruction (without breaking
868 // the critical edge). Bail out in this case.
869 if (!Caller->use_empty())
870 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
871 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
872 UI != E; ++UI)
873 if (PHINode *PN = dyn_cast<PHINode>(*UI))
874 if (PN->getParent() == II->getNormalDest() ||
875 PN->getParent() == II->getUnwindDest())
876 return false;
877 }
878
879 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
880 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
881
882 CallSite::arg_iterator AI = CS.arg_begin();
883 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
884 const Type *ParamTy = FT->getParamType(i);
885 const Type *ActTy = (*AI)->getType();
886
887 if (!CastInst::isCastable(ActTy, ParamTy))
888 return false; // Cannot transform this parameter value.
889
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000890 if (CallerPAL.getParamAttributes(i + 1)
Chris Lattner753a2b42010-01-05 07:32:13 +0000891 & Attribute::typeIncompatible(ParamTy))
892 return false; // Attribute not compatible with transformed value.
893
894 // Converting from one pointer type to another or between a pointer and an
895 // integer of the same size is safe even if we do not have a body.
896 bool isConvertible = ActTy == ParamTy ||
Duncan Sands1df98592010-02-16 11:11:14 +0000897 (TD && ((ParamTy->isPointerTy() ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000898 ParamTy == TD->getIntPtrType(Caller->getContext())) &&
Duncan Sands1df98592010-02-16 11:11:14 +0000899 (ActTy->isPointerTy() ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000900 ActTy == TD->getIntPtrType(Caller->getContext()))));
901 if (Callee->isDeclaration() && !isConvertible) return false;
902 }
903
904 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
905 Callee->isDeclaration())
906 return false; // Do not delete arguments unless we have a function body.
907
908 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
909 !CallerPAL.isEmpty())
910 // In this case we have more arguments than the new function type, but we
911 // won't be dropping them. Check that these extra arguments have attributes
912 // that are compatible with being a vararg call argument.
913 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
914 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
915 break;
916 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
917 if (PAttrs & Attribute::VarArgsIncompatible)
918 return false;
919 }
920
921 // Okay, we decided that this is a safe thing to do: go ahead and start
922 // inserting cast instructions as necessary...
923 std::vector<Value*> Args;
924 Args.reserve(NumActualArgs);
925 SmallVector<AttributeWithIndex, 8> attrVec;
926 attrVec.reserve(NumCommonArgs);
927
928 // Get any return attributes.
929 Attributes RAttrs = CallerPAL.getRetAttributes();
930
931 // If the return value is not being used, the type may not be compatible
932 // with the existing attributes. Wipe out any problematic attributes.
933 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
934
935 // Add the new return attributes.
936 if (RAttrs)
937 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
938
939 AI = CS.arg_begin();
940 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
941 const Type *ParamTy = FT->getParamType(i);
942 if ((*AI)->getType() == ParamTy) {
943 Args.push_back(*AI);
944 } else {
945 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
946 false, ParamTy, false);
947 Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
948 }
949
950 // Add any parameter attributes.
951 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
952 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
953 }
954
955 // If the function takes more arguments than the call was taking, add them
956 // now.
957 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
958 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
959
960 // If we are removing arguments to the function, emit an obnoxious warning.
961 if (FT->getNumParams() < NumActualArgs) {
962 if (!FT->isVarArg()) {
963 errs() << "WARNING: While resolving call to function '"
964 << Callee->getName() << "' arguments were dropped!\n";
965 } else {
966 // Add all of the arguments in their promoted form to the arg list.
967 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
968 const Type *PTy = getPromotedType((*AI)->getType());
969 if (PTy != (*AI)->getType()) {
970 // Must promote to pass through va_arg area!
971 Instruction::CastOps opcode =
972 CastInst::getCastOpcode(*AI, false, PTy, false);
973 Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
974 } else {
975 Args.push_back(*AI);
976 }
977
978 // Add any parameter attributes.
979 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
980 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
981 }
982 }
983 }
984
985 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
986 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
987
988 if (NewRetTy->isVoidTy())
989 Caller->setName(""); // Void type should not have a name.
990
991 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
992 attrVec.end());
993
994 Instruction *NC;
995 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
996 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
997 Args.begin(), Args.end(),
998 Caller->getName(), Caller);
999 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1000 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1001 } else {
1002 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1003 Caller->getName(), Caller);
1004 CallInst *CI = cast<CallInst>(Caller);
1005 if (CI->isTailCall())
1006 cast<CallInst>(NC)->setTailCall();
1007 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1008 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1009 }
1010
1011 // Insert a cast of the return type as necessary.
1012 Value *NV = NC;
1013 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1014 if (!NV->getType()->isVoidTy()) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001015 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Chris Lattner753a2b42010-01-05 07:32:13 +00001016 OldRetTy, false);
1017 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1018
1019 // If this is an invoke instruction, we should insert it after the first
1020 // non-phi, instruction in the normal successor block.
1021 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1022 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1023 InsertNewInstBefore(NC, *I);
1024 } else {
1025 // Otherwise, it's a call, just insert cast right after the call instr
1026 InsertNewInstBefore(NC, *Caller);
1027 }
1028 Worklist.AddUsersToWorkList(*Caller);
1029 } else {
1030 NV = UndefValue::get(Caller->getType());
1031 }
1032 }
1033
1034
1035 if (!Caller->use_empty())
1036 Caller->replaceAllUsesWith(NV);
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001037
Chris Lattner753a2b42010-01-05 07:32:13 +00001038 EraseInstFromFunction(*Caller);
1039 return true;
1040}
1041
1042// transformCallThroughTrampoline - Turn a call to a function created by the
1043// init_trampoline intrinsic into a direct call to the underlying function.
1044//
1045Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1046 Value *Callee = CS.getCalledValue();
1047 const PointerType *PTy = cast<PointerType>(Callee->getType());
1048 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1049 const AttrListPtr &Attrs = CS.getAttributes();
1050
1051 // If the call already has the 'nest' attribute somewhere then give up -
1052 // otherwise 'nest' would occur twice after splicing in the chain.
1053 if (Attrs.hasAttrSomewhere(Attribute::Nest))
1054 return 0;
1055
1056 IntrinsicInst *Tramp =
1057 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1058
1059 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
1060 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1061 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1062
1063 const AttrListPtr &NestAttrs = NestF->getAttributes();
1064 if (!NestAttrs.isEmpty()) {
1065 unsigned NestIdx = 1;
1066 const Type *NestTy = 0;
1067 Attributes NestAttr = Attribute::None;
1068
1069 // Look for a parameter marked with the 'nest' attribute.
1070 for (FunctionType::param_iterator I = NestFTy->param_begin(),
1071 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1072 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1073 // Record the parameter type and any other attributes.
1074 NestTy = *I;
1075 NestAttr = NestAttrs.getParamAttributes(NestIdx);
1076 break;
1077 }
1078
1079 if (NestTy) {
1080 Instruction *Caller = CS.getInstruction();
1081 std::vector<Value*> NewArgs;
1082 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1083
1084 SmallVector<AttributeWithIndex, 8> NewAttrs;
1085 NewAttrs.reserve(Attrs.getNumSlots() + 1);
1086
1087 // Insert the nest argument into the call argument list, which may
1088 // mean appending it. Likewise for attributes.
1089
1090 // Add any result attributes.
1091 if (Attributes Attr = Attrs.getRetAttributes())
1092 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1093
1094 {
1095 unsigned Idx = 1;
1096 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1097 do {
1098 if (Idx == NestIdx) {
1099 // Add the chain argument and attributes.
1100 Value *NestVal = Tramp->getOperand(3);
1101 if (NestVal->getType() != NestTy)
1102 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1103 NewArgs.push_back(NestVal);
1104 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1105 }
1106
1107 if (I == E)
1108 break;
1109
1110 // Add the original argument and attributes.
1111 NewArgs.push_back(*I);
1112 if (Attributes Attr = Attrs.getParamAttributes(Idx))
1113 NewAttrs.push_back
1114 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1115
1116 ++Idx, ++I;
1117 } while (1);
1118 }
1119
1120 // Add any function attributes.
1121 if (Attributes Attr = Attrs.getFnAttributes())
1122 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1123
1124 // The trampoline may have been bitcast to a bogus type (FTy).
1125 // Handle this by synthesizing a new function type, equal to FTy
1126 // with the chain parameter inserted.
1127
1128 std::vector<const Type*> NewTypes;
1129 NewTypes.reserve(FTy->getNumParams()+1);
1130
1131 // Insert the chain's type into the list of parameter types, which may
1132 // mean appending it.
1133 {
1134 unsigned Idx = 1;
1135 FunctionType::param_iterator I = FTy->param_begin(),
1136 E = FTy->param_end();
1137
1138 do {
1139 if (Idx == NestIdx)
1140 // Add the chain's type.
1141 NewTypes.push_back(NestTy);
1142
1143 if (I == E)
1144 break;
1145
1146 // Add the original type.
1147 NewTypes.push_back(*I);
1148
1149 ++Idx, ++I;
1150 } while (1);
1151 }
1152
1153 // Replace the trampoline call with a direct call. Let the generic
1154 // code sort out any function type mismatches.
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001155 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
Chris Lattner753a2b42010-01-05 07:32:13 +00001156 FTy->isVarArg());
1157 Constant *NewCallee =
1158 NestF->getType() == PointerType::getUnqual(NewFTy) ?
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001159 NestF : ConstantExpr::getBitCast(NestF,
Chris Lattner753a2b42010-01-05 07:32:13 +00001160 PointerType::getUnqual(NewFTy));
1161 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1162 NewAttrs.end());
1163
1164 Instruction *NewCaller;
1165 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1166 NewCaller = InvokeInst::Create(NewCallee,
1167 II->getNormalDest(), II->getUnwindDest(),
1168 NewArgs.begin(), NewArgs.end(),
1169 Caller->getName(), Caller);
1170 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1171 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1172 } else {
1173 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1174 Caller->getName(), Caller);
1175 if (cast<CallInst>(Caller)->isTailCall())
1176 cast<CallInst>(NewCaller)->setTailCall();
1177 cast<CallInst>(NewCaller)->
1178 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1179 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1180 }
1181 if (!Caller->getType()->isVoidTy())
1182 Caller->replaceAllUsesWith(NewCaller);
1183 Caller->eraseFromParent();
1184 Worklist.Remove(Caller);
1185 return 0;
1186 }
1187 }
1188
1189 // Replace the trampoline call with a direct call. Since there is no 'nest'
1190 // parameter, there is no need to adjust the argument list. Let the generic
1191 // code sort out any function type mismatches.
1192 Constant *NewCallee =
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001193 NestF->getType() == PTy ? NestF :
Chris Lattner753a2b42010-01-05 07:32:13 +00001194 ConstantExpr::getBitCast(NestF, PTy);
1195 CS.setCalledFunction(NewCallee);
1196 return CS.getInstruction();
1197}
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001198