blob: 977f57ee79c74033f45c925da6a4220db244d112 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Micah Villmow3574eca2012-10-08 16:38:25 +000076#include "llvm/DataLayout.h"
Chad Rosier618c1db2011-12-01 03:08:23 +000077#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner95255282006-06-28 23:17:24 +000078#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000080#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000081#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000083#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000084#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000085#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000086#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000087#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000088#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner3b27d682006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000106 cl::init(100));
107
Benjamin Kramerff183102012-10-26 17:31:32 +0000108// FIXME: Enable this with XDEBUG when the test suite is clean.
109static cl::opt<bool>
110VerifySCEV("verify-scev",
111 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
112
Owen Anderson2ab36d32010-10-12 19:48:12 +0000113INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
114 "Scalar Evolution Analysis", false, true)
115INITIALIZE_PASS_DEPENDENCY(LoopInfo)
116INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000117INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000118INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000119 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000120char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000121
122//===----------------------------------------------------------------------===//
123// SCEV class definitions
124//===----------------------------------------------------------------------===//
125
126//===----------------------------------------------------------------------===//
127// Implementation of the SCEV class.
128//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000129
Manman Ren286c4dc2012-09-12 05:06:18 +0000130#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattner53e677a2004-04-02 20:23:17 +0000131void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000132 print(dbgs());
133 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000134}
Manman Rencc77eec2012-09-06 19:55:56 +0000135#endif
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000136
Dan Gohman4ce32db2010-11-17 22:27:42 +0000137void SCEV::print(raw_ostream &OS) const {
138 switch (getSCEVType()) {
139 case scConstant:
140 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
141 return;
142 case scTruncate: {
143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144 const SCEV *Op = Trunc->getOperand();
145 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146 << *Trunc->getType() << ")";
147 return;
148 }
149 case scZeroExtend: {
150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151 const SCEV *Op = ZExt->getOperand();
152 OS << "(zext " << *Op->getType() << " " << *Op << " to "
153 << *ZExt->getType() << ")";
154 return;
155 }
156 case scSignExtend: {
157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158 const SCEV *Op = SExt->getOperand();
159 OS << "(sext " << *Op->getType() << " " << *Op << " to "
160 << *SExt->getType() << ")";
161 return;
162 }
163 case scAddRecExpr: {
164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165 OS << "{" << *AR->getOperand(0);
166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167 OS << ",+," << *AR->getOperand(i);
168 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000170 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000171 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000172 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000173 if (AR->getNoWrapFlags(FlagNW) &&
174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000176 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
177 OS << ">";
178 return;
179 }
180 case scAddExpr:
181 case scMulExpr:
182 case scUMaxExpr:
183 case scSMaxExpr: {
184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000185 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000186 switch (NAry->getSCEVType()) {
187 case scAddExpr: OpStr = " + "; break;
188 case scMulExpr: OpStr = " * "; break;
189 case scUMaxExpr: OpStr = " umax "; break;
190 case scSMaxExpr: OpStr = " smax "; break;
191 }
192 OS << "(";
193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194 I != E; ++I) {
195 OS << **I;
196 if (llvm::next(I) != E)
197 OS << OpStr;
198 }
199 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000200 switch (NAry->getSCEVType()) {
201 case scAddExpr:
202 case scMulExpr:
203 if (NAry->getNoWrapFlags(FlagNUW))
204 OS << "<nuw>";
205 if (NAry->getNoWrapFlags(FlagNSW))
206 OS << "<nsw>";
207 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000208 return;
209 }
210 case scUDivExpr: {
211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213 return;
214 }
215 case scUnknown: {
216 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000217 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000218 if (U->isSizeOf(AllocTy)) {
219 OS << "sizeof(" << *AllocTy << ")";
220 return;
221 }
222 if (U->isAlignOf(AllocTy)) {
223 OS << "alignof(" << *AllocTy << ")";
224 return;
225 }
Andrew Trick635f7182011-03-09 17:23:39 +0000226
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000227 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000228 Constant *FieldNo;
229 if (U->isOffsetOf(CTy, FieldNo)) {
230 OS << "offsetof(" << *CTy << ", ";
231 WriteAsOperand(OS, FieldNo, false);
232 OS << ")";
233 return;
234 }
Andrew Trick635f7182011-03-09 17:23:39 +0000235
Dan Gohman4ce32db2010-11-17 22:27:42 +0000236 // Otherwise just print it normally.
237 WriteAsOperand(OS, U->getValue(), false);
238 return;
239 }
240 case scCouldNotCompute:
241 OS << "***COULDNOTCOMPUTE***";
242 return;
243 default: break;
244 }
245 llvm_unreachable("Unknown SCEV kind!");
246}
247
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000248Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000249 switch (getSCEVType()) {
250 case scConstant:
251 return cast<SCEVConstant>(this)->getType();
252 case scTruncate:
253 case scZeroExtend:
254 case scSignExtend:
255 return cast<SCEVCastExpr>(this)->getType();
256 case scAddRecExpr:
257 case scMulExpr:
258 case scUMaxExpr:
259 case scSMaxExpr:
260 return cast<SCEVNAryExpr>(this)->getType();
261 case scAddExpr:
262 return cast<SCEVAddExpr>(this)->getType();
263 case scUDivExpr:
264 return cast<SCEVUDivExpr>(this)->getType();
265 case scUnknown:
266 return cast<SCEVUnknown>(this)->getType();
267 case scCouldNotCompute:
268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000269 default:
270 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000271 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000272}
273
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000274bool SCEV::isZero() const {
275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276 return SC->getValue()->isZero();
277 return false;
278}
279
Dan Gohman70a1fe72009-05-18 15:22:39 +0000280bool SCEV::isOne() const {
281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282 return SC->getValue()->isOne();
283 return false;
284}
Chris Lattner53e677a2004-04-02 20:23:17 +0000285
Dan Gohman4d289bf2009-06-24 00:30:26 +0000286bool SCEV::isAllOnesValue() const {
287 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
288 return SC->getValue()->isAllOnesValue();
289 return false;
290}
291
Andrew Trickf8fd8412012-01-07 00:27:31 +0000292/// isNonConstantNegative - Return true if the specified scev is negated, but
293/// not a constant.
294bool SCEV::isNonConstantNegative() const {
295 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
296 if (!Mul) return false;
297
298 // If there is a constant factor, it will be first.
299 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
300 if (!SC) return false;
301
302 // Return true if the value is negative, this matches things like (-42 * V).
303 return SC->getValue()->getValue().isNegative();
304}
305
Owen Anderson753ad612009-06-22 21:57:23 +0000306SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000307 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000308
Chris Lattner53e677a2004-04-02 20:23:17 +0000309bool SCEVCouldNotCompute::classof(const SCEV *S) {
310 return S->getSCEVType() == scCouldNotCompute;
311}
312
Dan Gohman0bba49c2009-07-07 17:06:11 +0000313const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000314 FoldingSetNodeID ID;
315 ID.AddInteger(scConstant);
316 ID.AddPointer(V);
317 void *IP = 0;
318 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000319 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000320 UniqueSCEVs.InsertNode(S, IP);
321 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000322}
Chris Lattner53e677a2004-04-02 20:23:17 +0000323
Dan Gohman0bba49c2009-07-07 17:06:11 +0000324const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000325 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000326}
327
Dan Gohman0bba49c2009-07-07 17:06:11 +0000328const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000329ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
330 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000331 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000332}
333
Dan Gohman3bf63762010-06-18 19:54:20 +0000334SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000335 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000336 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000337
Dan Gohman3bf63762010-06-18 19:54:20 +0000338SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000339 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000340 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000341 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
342 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000343 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344}
Chris Lattner53e677a2004-04-02 20:23:17 +0000345
Dan Gohman3bf63762010-06-18 19:54:20 +0000346SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000347 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000348 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000349 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
350 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000351 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000352}
353
Dan Gohman3bf63762010-06-18 19:54:20 +0000354SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000355 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000356 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000357 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
358 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000359 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000360}
361
Dan Gohmanab37f502010-08-02 23:49:30 +0000362void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000363 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000364 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000365
366 // Remove this SCEVUnknown from the uniquing map.
367 SE->UniqueSCEVs.RemoveNode(this);
368
369 // Release the value.
370 setValPtr(0);
371}
372
373void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000374 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000375 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000376
377 // Remove this SCEVUnknown from the uniquing map.
378 SE->UniqueSCEVs.RemoveNode(this);
379
380 // Update this SCEVUnknown to point to the new value. This is needed
381 // because there may still be outstanding SCEVs which still point to
382 // this SCEVUnknown.
383 setValPtr(New);
384}
385
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000386bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000387 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000388 if (VCE->getOpcode() == Instruction::PtrToInt)
389 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000390 if (CE->getOpcode() == Instruction::GetElementPtr &&
391 CE->getOperand(0)->isNullValue() &&
392 CE->getNumOperands() == 2)
393 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
394 if (CI->isOne()) {
395 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
396 ->getElementType();
397 return true;
398 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000399
400 return false;
401}
402
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000403bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000404 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000405 if (VCE->getOpcode() == Instruction::PtrToInt)
406 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000407 if (CE->getOpcode() == Instruction::GetElementPtr &&
408 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000409 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000410 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000411 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000412 if (!STy->isPacked() &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(1)->isNullValue()) {
415 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
416 if (CI->isOne() &&
417 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000418 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000419 AllocTy = STy->getElementType(1);
420 return true;
421 }
422 }
423 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000424
425 return false;
426}
427
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000428bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000429 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000430 if (VCE->getOpcode() == Instruction::PtrToInt)
431 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
432 if (CE->getOpcode() == Instruction::GetElementPtr &&
433 CE->getNumOperands() == 3 &&
434 CE->getOperand(0)->isNullValue() &&
435 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000436 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000437 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
438 // Ignore vector types here so that ScalarEvolutionExpander doesn't
439 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000440 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 CTy = Ty;
442 FieldNo = CE->getOperand(2);
443 return true;
444 }
445 }
446
447 return false;
448}
449
Chris Lattner8d741b82004-06-20 06:23:15 +0000450//===----------------------------------------------------------------------===//
451// SCEV Utilities
452//===----------------------------------------------------------------------===//
453
454namespace {
455 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
456 /// than the complexity of the RHS. This comparator is used to canonicalize
457 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000458 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000459 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000460 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000461 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000462
Dan Gohman67ef74e2010-08-27 15:26:01 +0000463 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000464 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000465 return compare(LHS, RHS) < 0;
466 }
467
468 // Return negative, zero, or positive, if LHS is less than, equal to, or
469 // greater than RHS, respectively. A three-way result allows recursive
470 // comparisons to be more efficient.
471 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000472 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
473 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000474 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000475
Dan Gohman72861302009-05-07 14:39:04 +0000476 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000477 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
478 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000479 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000480
Dan Gohman3bf63762010-06-18 19:54:20 +0000481 // Aside from the getSCEVType() ordering, the particular ordering
482 // isn't very important except that it's beneficial to be consistent,
483 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000484 switch (LType) {
485 case scUnknown: {
486 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000487 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000488
489 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
490 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000491 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000492
493 // Order pointer values after integer values. This helps SCEVExpander
494 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000495 bool LIsPointer = LV->getType()->isPointerTy(),
496 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000497 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000498 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000499
500 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000501 unsigned LID = LV->getValueID(),
502 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000503 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000504 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000505
506 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000507 if (const Argument *LA = dyn_cast<Argument>(LV)) {
508 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000509 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
510 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000511 }
512
Dan Gohman67ef74e2010-08-27 15:26:01 +0000513 // For instructions, compare their loop depth, and their operand
514 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000515 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
516 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000517
518 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000519 const BasicBlock *LParent = LInst->getParent(),
520 *RParent = RInst->getParent();
521 if (LParent != RParent) {
522 unsigned LDepth = LI->getLoopDepth(LParent),
523 RDepth = LI->getLoopDepth(RParent);
524 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000525 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000526 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000527
528 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000529 unsigned LNumOps = LInst->getNumOperands(),
530 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000531 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000532 }
533
Dan Gohman67ef74e2010-08-27 15:26:01 +0000534 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000535 }
536
Dan Gohman67ef74e2010-08-27 15:26:01 +0000537 case scConstant: {
538 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000539 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000540
541 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000542 const APInt &LA = LC->getValue()->getValue();
543 const APInt &RA = RC->getValue()->getValue();
544 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000545 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 return (int)LBitWidth - (int)RBitWidth;
547 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000548 }
549
Dan Gohman67ef74e2010-08-27 15:26:01 +0000550 case scAddRecExpr: {
551 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000552 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000553
554 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000555 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
556 if (LLoop != RLoop) {
557 unsigned LDepth = LLoop->getLoopDepth(),
558 RDepth = RLoop->getLoopDepth();
559 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000560 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000561 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000562
563 // Addrec complexity grows with operand count.
564 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
565 if (LNumOps != RNumOps)
566 return (int)LNumOps - (int)RNumOps;
567
568 // Lexicographically compare.
569 for (unsigned i = 0; i != LNumOps; ++i) {
570 long X = compare(LA->getOperand(i), RA->getOperand(i));
571 if (X != 0)
572 return X;
573 }
574
575 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000576 }
577
Dan Gohman67ef74e2010-08-27 15:26:01 +0000578 case scAddExpr:
579 case scMulExpr:
580 case scSMaxExpr:
581 case scUMaxExpr: {
582 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000583 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000584
585 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000586 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
587 for (unsigned i = 0; i != LNumOps; ++i) {
588 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000589 return 1;
590 long X = compare(LC->getOperand(i), RC->getOperand(i));
591 if (X != 0)
592 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000593 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000595 }
596
Dan Gohman67ef74e2010-08-27 15:26:01 +0000597 case scUDivExpr: {
598 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000600
601 // Lexicographically compare udiv expressions.
602 long X = compare(LC->getLHS(), RC->getLHS());
603 if (X != 0)
604 return X;
605 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000606 }
607
Dan Gohman67ef74e2010-08-27 15:26:01 +0000608 case scTruncate:
609 case scZeroExtend:
610 case scSignExtend: {
611 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000612 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000613
614 // Compare cast expressions by operand.
615 return compare(LC->getOperand(), RC->getOperand());
616 }
617
618 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000619 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000620 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000621 }
622 };
623}
624
625/// GroupByComplexity - Given a list of SCEV objects, order them by their
626/// complexity, and group objects of the same complexity together by value.
627/// When this routine is finished, we know that any duplicates in the vector are
628/// consecutive and that complexity is monotonically increasing.
629///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000630/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000631/// results from this routine. In other words, we don't want the results of
632/// this to depend on where the addresses of various SCEV objects happened to
633/// land in memory.
634///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000635static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000636 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000637 if (Ops.size() < 2) return; // Noop
638 if (Ops.size() == 2) {
639 // This is the common case, which also happens to be trivially simple.
640 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000641 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
642 if (SCEVComplexityCompare(LI)(RHS, LHS))
643 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000644 return;
645 }
646
Dan Gohman3bf63762010-06-18 19:54:20 +0000647 // Do the rough sort by complexity.
648 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
649
650 // Now that we are sorted by complexity, group elements of the same
651 // complexity. Note that this is, at worst, N^2, but the vector is likely to
652 // be extremely short in practice. Note that we take this approach because we
653 // do not want to depend on the addresses of the objects we are grouping.
654 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
655 const SCEV *S = Ops[i];
656 unsigned Complexity = S->getSCEVType();
657
658 // If there are any objects of the same complexity and same value as this
659 // one, group them.
660 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
661 if (Ops[j] == S) { // Found a duplicate.
662 // Move it to immediately after i'th element.
663 std::swap(Ops[i+1], Ops[j]);
664 ++i; // no need to rescan it.
665 if (i == e-2) return; // Done!
666 }
667 }
668 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000669}
670
Chris Lattner53e677a2004-04-02 20:23:17 +0000671
Chris Lattner53e677a2004-04-02 20:23:17 +0000672
673//===----------------------------------------------------------------------===//
674// Simple SCEV method implementations
675//===----------------------------------------------------------------------===//
676
Eli Friedmanb42a6262008-08-04 23:49:06 +0000677/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000678/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000679static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000680 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000681 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000682 // Handle the simplest case efficiently.
683 if (K == 1)
684 return SE.getTruncateOrZeroExtend(It, ResultTy);
685
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000686 // We are using the following formula for BC(It, K):
687 //
688 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
689 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000690 // Suppose, W is the bitwidth of the return value. We must be prepared for
691 // overflow. Hence, we must assure that the result of our computation is
692 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
693 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000694 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000695 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000696 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000697 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
698 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000699 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000700 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000701 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000702 // This formula is trivially equivalent to the previous formula. However,
703 // this formula can be implemented much more efficiently. The trick is that
704 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
705 // arithmetic. To do exact division in modular arithmetic, all we have
706 // to do is multiply by the inverse. Therefore, this step can be done at
707 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000708 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000709 // The next issue is how to safely do the division by 2^T. The way this
710 // is done is by doing the multiplication step at a width of at least W + T
711 // bits. This way, the bottom W+T bits of the product are accurate. Then,
712 // when we perform the division by 2^T (which is equivalent to a right shift
713 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
714 // truncated out after the division by 2^T.
715 //
716 // In comparison to just directly using the first formula, this technique
717 // is much more efficient; using the first formula requires W * K bits,
718 // but this formula less than W + K bits. Also, the first formula requires
719 // a division step, whereas this formula only requires multiplies and shifts.
720 //
721 // It doesn't matter whether the subtraction step is done in the calculation
722 // width or the input iteration count's width; if the subtraction overflows,
723 // the result must be zero anyway. We prefer here to do it in the width of
724 // the induction variable because it helps a lot for certain cases; CodeGen
725 // isn't smart enough to ignore the overflow, which leads to much less
726 // efficient code if the width of the subtraction is wider than the native
727 // register width.
728 //
729 // (It's possible to not widen at all by pulling out factors of 2 before
730 // the multiplication; for example, K=2 can be calculated as
731 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
732 // extra arithmetic, so it's not an obvious win, and it gets
733 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000734
Eli Friedmanb42a6262008-08-04 23:49:06 +0000735 // Protection from insane SCEVs; this bound is conservative,
736 // but it probably doesn't matter.
737 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000738 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000739
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000740 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000741
Eli Friedmanb42a6262008-08-04 23:49:06 +0000742 // Calculate K! / 2^T and T; we divide out the factors of two before
743 // multiplying for calculating K! / 2^T to avoid overflow.
744 // Other overflow doesn't matter because we only care about the bottom
745 // W bits of the result.
746 APInt OddFactorial(W, 1);
747 unsigned T = 1;
748 for (unsigned i = 3; i <= K; ++i) {
749 APInt Mult(W, i);
750 unsigned TwoFactors = Mult.countTrailingZeros();
751 T += TwoFactors;
752 Mult = Mult.lshr(TwoFactors);
753 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000754 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000755
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000757 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000758
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000759 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000760 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
761
762 // Calculate the multiplicative inverse of K! / 2^T;
763 // this multiplication factor will perform the exact division by
764 // K! / 2^T.
765 APInt Mod = APInt::getSignedMinValue(W+1);
766 APInt MultiplyFactor = OddFactorial.zext(W+1);
767 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
768 MultiplyFactor = MultiplyFactor.trunc(W);
769
770 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000771 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000772 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000773 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000774 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000775 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000776 Dividend = SE.getMulExpr(Dividend,
777 SE.getTruncateOrZeroExtend(S, CalculationTy));
778 }
779
780 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000781 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000782
783 // Truncate the result, and divide by K! / 2^T.
784
785 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
786 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000787}
788
Chris Lattner53e677a2004-04-02 20:23:17 +0000789/// evaluateAtIteration - Return the value of this chain of recurrences at
790/// the specified iteration number. We can evaluate this recurrence by
791/// multiplying each element in the chain by the binomial coefficient
792/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
793///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000794/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000795///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000796/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000797///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000798const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000799 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000800 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000801 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000802 // The computation is correct in the face of overflow provided that the
803 // multiplication is performed _after_ the evaluation of the binomial
804 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000805 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000806 if (isa<SCEVCouldNotCompute>(Coeff))
807 return Coeff;
808
809 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000810 }
811 return Result;
812}
813
Chris Lattner53e677a2004-04-02 20:23:17 +0000814//===----------------------------------------------------------------------===//
815// SCEV Expression folder implementations
816//===----------------------------------------------------------------------===//
817
Dan Gohman0bba49c2009-07-07 17:06:11 +0000818const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000819 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000820 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000821 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000822 assert(isSCEVable(Ty) &&
823 "This is not a conversion to a SCEVable type!");
824 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000825
Dan Gohmanc050fd92009-07-13 20:50:19 +0000826 FoldingSetNodeID ID;
827 ID.AddInteger(scTruncate);
828 ID.AddPointer(Op);
829 ID.AddPointer(Ty);
830 void *IP = 0;
831 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
832
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000833 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000834 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000835 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000836 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000837
Dan Gohman20900ca2009-04-22 16:20:48 +0000838 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000839 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000840 return getTruncateExpr(ST->getOperand(), Ty);
841
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000842 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000843 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000844 return getTruncateOrSignExtend(SS->getOperand(), Ty);
845
846 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000847 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000848 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
849
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000850 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
851 // eliminate all the truncates.
852 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
853 SmallVector<const SCEV *, 4> Operands;
854 bool hasTrunc = false;
855 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
856 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
857 hasTrunc = isa<SCEVTruncateExpr>(S);
858 Operands.push_back(S);
859 }
860 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000861 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000862 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000863 }
864
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000865 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
866 // eliminate all the truncates.
867 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
868 SmallVector<const SCEV *, 4> Operands;
869 bool hasTrunc = false;
870 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
871 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
872 hasTrunc = isa<SCEVTruncateExpr>(S);
873 Operands.push_back(S);
874 }
875 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000876 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000877 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000878 }
879
Dan Gohman6864db62009-06-18 16:24:47 +0000880 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000881 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000882 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000883 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000884 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000885 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000886 }
887
Dan Gohman420ab912010-06-25 18:47:08 +0000888 // The cast wasn't folded; create an explicit cast node. We can reuse
889 // the existing insert position since if we get here, we won't have
890 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000891 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
892 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000893 UniqueSCEVs.InsertNode(S, IP);
894 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000895}
896
Dan Gohman0bba49c2009-07-07 17:06:11 +0000897const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000898 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000900 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000901 assert(isSCEVable(Ty) &&
902 "This is not a conversion to a SCEVable type!");
903 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000904
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000905 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000906 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
907 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000908 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000909
Dan Gohman20900ca2009-04-22 16:20:48 +0000910 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000911 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000912 return getZeroExtendExpr(SZ->getOperand(), Ty);
913
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000914 // Before doing any expensive analysis, check to see if we've already
915 // computed a SCEV for this Op and Ty.
916 FoldingSetNodeID ID;
917 ID.AddInteger(scZeroExtend);
918 ID.AddPointer(Op);
919 ID.AddPointer(Ty);
920 void *IP = 0;
921 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
922
Nick Lewycky630d85a2011-01-23 06:20:19 +0000923 // zext(trunc(x)) --> zext(x) or x or trunc(x)
924 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
925 // It's possible the bits taken off by the truncate were all zero bits. If
926 // so, we should be able to simplify this further.
927 const SCEV *X = ST->getOperand();
928 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000929 unsigned TruncBits = getTypeSizeInBits(ST->getType());
930 unsigned NewBits = getTypeSizeInBits(Ty);
931 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000932 CR.zextOrTrunc(NewBits)))
933 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000934 }
935
Dan Gohman01ecca22009-04-27 20:16:15 +0000936 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000937 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000938 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000939 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000940 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000941 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000942 const SCEV *Start = AR->getStart();
943 const SCEV *Step = AR->getStepRecurrence(*this);
944 unsigned BitWidth = getTypeSizeInBits(AR->getType());
945 const Loop *L = AR->getLoop();
946
Dan Gohmaneb490a72009-07-25 01:22:26 +0000947 // If we have special knowledge that this addrec won't overflow,
948 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000949 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000950 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
951 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000952 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000953
Dan Gohman01ecca22009-04-27 20:16:15 +0000954 // Check whether the backedge-taken count is SCEVCouldNotCompute.
955 // Note that this serves two purposes: It filters out loops that are
956 // simply not analyzable, and it covers the case where this code is
957 // being called from within backedge-taken count analysis, such that
958 // attempting to ask for the backedge-taken count would likely result
959 // in infinite recursion. In the later case, the analysis code will
960 // cope with a conservative value, and it will take care to purge
961 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000962 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000963 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000964 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000965 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000966
967 // Check whether the backedge-taken count can be losslessly casted to
968 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000969 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000970 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000971 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000972 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
973 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000974 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000975 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000976 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000977 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
978 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
979 const SCEV *WideMaxBECount =
980 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000981 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000982 getAddExpr(WideStart,
983 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000984 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000985 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000986 // Cache knowledge of AR NUW, which is propagated to this AddRec.
987 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000988 // Return the expression with the addrec on the outside.
989 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
990 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000991 L, AR->getNoWrapFlags());
992 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000993 // Similar to above, only this time treat the step value as signed.
994 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000995 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000996 getAddExpr(WideStart,
997 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000998 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000999 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001000 // Cache knowledge of AR NW, which is propagated to this AddRec.
1001 // Negative step causes unsigned wrap, but it still can't self-wrap.
1002 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001003 // Return the expression with the addrec on the outside.
1004 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1005 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001006 L, AR->getNoWrapFlags());
1007 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001008 }
1009
1010 // If the backedge is guarded by a comparison with the pre-inc value
1011 // the addrec is safe. Also, if the entry is guarded by a comparison
1012 // with the start value and the backedge is guarded by a comparison
1013 // with the post-inc value, the addrec is safe.
1014 if (isKnownPositive(Step)) {
1015 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1016 getUnsignedRange(Step).getUnsignedMax());
1017 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001018 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001019 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001020 AR->getPostIncExpr(*this), N))) {
1021 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1022 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 // Return the expression with the addrec on the outside.
1024 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1025 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001026 L, AR->getNoWrapFlags());
1027 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001028 } else if (isKnownNegative(Step)) {
1029 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1030 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001031 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1032 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001033 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001034 AR->getPostIncExpr(*this), N))) {
1035 // Cache knowledge of AR NW, which is propagated to this AddRec.
1036 // Negative step causes unsigned wrap, but it still can't self-wrap.
1037 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1038 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001039 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1040 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001041 L, AR->getNoWrapFlags());
1042 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001043 }
1044 }
1045 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001046
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001047 // The cast wasn't folded; create an explicit cast node.
1048 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001049 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001050 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1051 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001052 UniqueSCEVs.InsertNode(S, IP);
1053 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001054}
1055
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001056// Get the limit of a recurrence such that incrementing by Step cannot cause
1057// signed overflow as long as the value of the recurrence within the loop does
1058// not exceed this limit before incrementing.
1059static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1060 ICmpInst::Predicate *Pred,
1061 ScalarEvolution *SE) {
1062 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1063 if (SE->isKnownPositive(Step)) {
1064 *Pred = ICmpInst::ICMP_SLT;
1065 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1066 SE->getSignedRange(Step).getSignedMax());
1067 }
1068 if (SE->isKnownNegative(Step)) {
1069 *Pred = ICmpInst::ICMP_SGT;
1070 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1071 SE->getSignedRange(Step).getSignedMin());
1072 }
1073 return 0;
1074}
1075
1076// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1077// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1078// or postincrement sibling. This allows normalizing a sign extended AddRec as
1079// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1080// result, the expression "Step + sext(PreIncAR)" is congruent with
1081// "sext(PostIncAR)"
1082static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001083 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001084 ScalarEvolution *SE) {
1085 const Loop *L = AR->getLoop();
1086 const SCEV *Start = AR->getStart();
1087 const SCEV *Step = AR->getStepRecurrence(*SE);
1088
1089 // Check for a simple looking step prior to loop entry.
1090 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001091 if (!SA)
1092 return 0;
1093
1094 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1095 // subtraction is expensive. For this purpose, perform a quick and dirty
1096 // difference, by checking for Step in the operand list.
1097 SmallVector<const SCEV *, 4> DiffOps;
1098 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1099 I != E; ++I) {
1100 if (*I != Step)
1101 DiffOps.push_back(*I);
1102 }
1103 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001104 return 0;
1105
1106 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1107 // same three conditions that getSignExtendedExpr checks.
1108
1109 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001110 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001111 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1112 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1113
Andrew Trickcf31f912011-06-01 19:14:56 +00001114 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001115 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001116
1117 // 2. Direct overflow check on the step operation's expression.
1118 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001119 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001120 const SCEV *OperandExtendedStart =
1121 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1122 SE->getSignExtendExpr(Step, WideTy));
1123 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1124 // Cache knowledge of PreAR NSW.
1125 if (PreAR)
1126 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1127 // FIXME: this optimization needs a unit test
1128 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1129 return PreStart;
1130 }
1131
1132 // 3. Loop precondition.
1133 ICmpInst::Predicate Pred;
1134 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1135
Andrew Trickcf31f912011-06-01 19:14:56 +00001136 if (OverflowLimit &&
1137 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001138 return PreStart;
1139 }
1140 return 0;
1141}
1142
1143// Get the normalized sign-extended expression for this AddRec's Start.
1144static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001145 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001146 ScalarEvolution *SE) {
1147 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1148 if (!PreStart)
1149 return SE->getSignExtendExpr(AR->getStart(), Ty);
1150
1151 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1152 SE->getSignExtendExpr(PreStart, Ty));
1153}
1154
Dan Gohman0bba49c2009-07-07 17:06:11 +00001155const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001156 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001157 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001158 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001159 assert(isSCEVable(Ty) &&
1160 "This is not a conversion to a SCEVable type!");
1161 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001162
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001163 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001164 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1165 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001166 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001167
Dan Gohman20900ca2009-04-22 16:20:48 +00001168 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001169 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001170 return getSignExtendExpr(SS->getOperand(), Ty);
1171
Nick Lewycky73f565e2011-01-19 15:56:12 +00001172 // sext(zext(x)) --> zext(x)
1173 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1174 return getZeroExtendExpr(SZ->getOperand(), Ty);
1175
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001176 // Before doing any expensive analysis, check to see if we've already
1177 // computed a SCEV for this Op and Ty.
1178 FoldingSetNodeID ID;
1179 ID.AddInteger(scSignExtend);
1180 ID.AddPointer(Op);
1181 ID.AddPointer(Ty);
1182 void *IP = 0;
1183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1184
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001185 // If the input value is provably positive, build a zext instead.
1186 if (isKnownNonNegative(Op))
1187 return getZeroExtendExpr(Op, Ty);
1188
Nick Lewycky630d85a2011-01-23 06:20:19 +00001189 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1190 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1191 // It's possible the bits taken off by the truncate were all sign bits. If
1192 // so, we should be able to simplify this further.
1193 const SCEV *X = ST->getOperand();
1194 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001195 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1196 unsigned NewBits = getTypeSizeInBits(Ty);
1197 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001198 CR.sextOrTrunc(NewBits)))
1199 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001200 }
1201
Dan Gohman01ecca22009-04-27 20:16:15 +00001202 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001203 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001204 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001205 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001206 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001207 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001208 const SCEV *Start = AR->getStart();
1209 const SCEV *Step = AR->getStepRecurrence(*this);
1210 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1211 const Loop *L = AR->getLoop();
1212
Dan Gohmaneb490a72009-07-25 01:22:26 +00001213 // If we have special knowledge that this addrec won't overflow,
1214 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001215 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001216 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001217 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001218 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001219
Dan Gohman01ecca22009-04-27 20:16:15 +00001220 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1221 // Note that this serves two purposes: It filters out loops that are
1222 // simply not analyzable, and it covers the case where this code is
1223 // being called from within backedge-taken count analysis, such that
1224 // attempting to ask for the backedge-taken count would likely result
1225 // in infinite recursion. In the later case, the analysis code will
1226 // cope with a conservative value, and it will take care to purge
1227 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001228 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001229 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001230 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001231 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001232
1233 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001234 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001235 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001236 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001237 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001238 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1239 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001240 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001241 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001242 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001243 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1244 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1245 const SCEV *WideMaxBECount =
1246 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001247 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001248 getAddExpr(WideStart,
1249 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001250 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001251 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001252 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1253 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001254 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001255 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001256 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001257 L, AR->getNoWrapFlags());
1258 }
Dan Gohman850f7912009-07-16 17:34:36 +00001259 // Similar to above, only this time treat the step value as unsigned.
1260 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001261 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001262 getAddExpr(WideStart,
1263 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001264 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001265 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001266 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1267 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001268 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001269 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001270 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001271 L, AR->getNoWrapFlags());
1272 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001273 }
1274
1275 // If the backedge is guarded by a comparison with the pre-inc value
1276 // the addrec is safe. Also, if the entry is guarded by a comparison
1277 // with the start value and the backedge is guarded by a comparison
1278 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001279 ICmpInst::Predicate Pred;
1280 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1281 if (OverflowLimit &&
1282 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1283 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1284 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1285 OverflowLimit)))) {
1286 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1287 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1288 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1289 getSignExtendExpr(Step, Ty),
1290 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001291 }
1292 }
1293 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001294
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001295 // The cast wasn't folded; create an explicit cast node.
1296 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001297 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001298 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1299 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001300 UniqueSCEVs.InsertNode(S, IP);
1301 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001302}
1303
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001304/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1305/// unspecified bits out to the given type.
1306///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001307const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001308 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001309 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1310 "This is not an extending conversion!");
1311 assert(isSCEVable(Ty) &&
1312 "This is not a conversion to a SCEVable type!");
1313 Ty = getEffectiveSCEVType(Ty);
1314
1315 // Sign-extend negative constants.
1316 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1317 if (SC->getValue()->getValue().isNegative())
1318 return getSignExtendExpr(Op, Ty);
1319
1320 // Peel off a truncate cast.
1321 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001322 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001323 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1324 return getAnyExtendExpr(NewOp, Ty);
1325 return getTruncateOrNoop(NewOp, Ty);
1326 }
1327
1328 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001329 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001330 if (!isa<SCEVZeroExtendExpr>(ZExt))
1331 return ZExt;
1332
1333 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001334 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001335 if (!isa<SCEVSignExtendExpr>(SExt))
1336 return SExt;
1337
Dan Gohmana10756e2010-01-21 02:09:26 +00001338 // Force the cast to be folded into the operands of an addrec.
1339 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1340 SmallVector<const SCEV *, 4> Ops;
1341 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1342 I != E; ++I)
1343 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001344 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001345 }
1346
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001347 // If the expression is obviously signed, use the sext cast value.
1348 if (isa<SCEVSMaxExpr>(Op))
1349 return SExt;
1350
1351 // Absent any other information, use the zext cast value.
1352 return ZExt;
1353}
1354
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001355/// CollectAddOperandsWithScales - Process the given Ops list, which is
1356/// a list of operands to be added under the given scale, update the given
1357/// map. This is a helper function for getAddRecExpr. As an example of
1358/// what it does, given a sequence of operands that would form an add
1359/// expression like this:
1360///
1361/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1362///
1363/// where A and B are constants, update the map with these values:
1364///
1365/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1366///
1367/// and add 13 + A*B*29 to AccumulatedConstant.
1368/// This will allow getAddRecExpr to produce this:
1369///
1370/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1371///
1372/// This form often exposes folding opportunities that are hidden in
1373/// the original operand list.
1374///
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001375/// Return true iff it appears that any interesting folding opportunities
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001376/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1377/// the common case where no interesting opportunities are present, and
1378/// is also used as a check to avoid infinite recursion.
1379///
1380static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001381CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1382 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001383 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001384 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001385 const APInt &Scale,
1386 ScalarEvolution &SE) {
1387 bool Interesting = false;
1388
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001389 // Iterate over the add operands. They are sorted, with constants first.
1390 unsigned i = 0;
1391 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1392 ++i;
1393 // Pull a buried constant out to the outside.
1394 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1395 Interesting = true;
1396 AccumulatedConstant += Scale * C->getValue()->getValue();
1397 }
1398
1399 // Next comes everything else. We're especially interested in multiplies
1400 // here, but they're in the middle, so just visit the rest with one loop.
1401 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001402 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1403 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1404 APInt NewScale =
1405 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1406 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1407 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001408 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001409 Interesting |=
1410 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001411 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001412 NewScale, SE);
1413 } else {
1414 // A multiplication of a constant with some other value. Update
1415 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001416 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1417 const SCEV *Key = SE.getMulExpr(MulOps);
1418 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001419 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001420 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001421 NewOps.push_back(Pair.first->first);
1422 } else {
1423 Pair.first->second += NewScale;
1424 // The map already had an entry for this value, which may indicate
1425 // a folding opportunity.
1426 Interesting = true;
1427 }
1428 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001429 } else {
1430 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001431 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001432 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001433 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001434 NewOps.push_back(Pair.first->first);
1435 } else {
1436 Pair.first->second += Scale;
1437 // The map already had an entry for this value, which may indicate
1438 // a folding opportunity.
1439 Interesting = true;
1440 }
1441 }
1442 }
1443
1444 return Interesting;
1445}
1446
1447namespace {
1448 struct APIntCompare {
1449 bool operator()(const APInt &LHS, const APInt &RHS) const {
1450 return LHS.ult(RHS);
1451 }
1452 };
1453}
1454
Dan Gohman6c0866c2009-05-24 23:45:28 +00001455/// getAddExpr - Get a canonical add expression, or something simpler if
1456/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001457const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001458 SCEV::NoWrapFlags Flags) {
1459 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1460 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001461 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001462 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001463#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001464 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001465 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001466 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001467 "SCEVAddExpr operand types don't match!");
1468#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001469
Andrew Trick3228cc22011-03-14 16:50:06 +00001470 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001471 // And vice-versa.
1472 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1473 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1474 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001475 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001476 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1477 E = Ops.end(); I != E; ++I)
1478 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001479 All = false;
1480 break;
1481 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001482 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001483 }
1484
Chris Lattner53e677a2004-04-02 20:23:17 +00001485 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001486 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001487
1488 // If there are any constants, fold them together.
1489 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001490 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001492 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001493 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001495 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1496 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001497 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001498 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001499 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001500 }
1501
1502 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001503 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 Ops.erase(Ops.begin());
1505 --Idx;
1506 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001507
Dan Gohmanbca091d2010-04-12 23:08:18 +00001508 if (Ops.size() == 1) return Ops[0];
1509 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001510
Dan Gohman68ff7762010-08-27 21:39:59 +00001511 // Okay, check to see if the same value occurs in the operand list more than
1512 // once. If so, merge them together into an multiply expression. Since we
1513 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001514 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001515 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001516 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001517 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001518 // Scan ahead to count how many equal operands there are.
1519 unsigned Count = 2;
1520 while (i+Count != e && Ops[i+Count] == Ops[i])
1521 ++Count;
1522 // Merge the values into a multiply.
1523 const SCEV *Scale = getConstant(Ty, Count);
1524 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1525 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001526 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001527 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001528 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001529 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001530 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001531 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001532 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001533 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001534
Dan Gohman728c7f32009-05-08 21:03:19 +00001535 // Check for truncates. If all the operands are truncated from the same
1536 // type, see if factoring out the truncate would permit the result to be
1537 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1538 // if the contents of the resulting outer trunc fold to something simple.
1539 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1540 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001541 Type *DstType = Trunc->getType();
1542 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001543 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001544 bool Ok = true;
1545 // Check all the operands to see if they can be represented in the
1546 // source type of the truncate.
1547 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1548 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1549 if (T->getOperand()->getType() != SrcType) {
1550 Ok = false;
1551 break;
1552 }
1553 LargeOps.push_back(T->getOperand());
1554 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001555 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001556 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001557 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001558 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1559 if (const SCEVTruncateExpr *T =
1560 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1561 if (T->getOperand()->getType() != SrcType) {
1562 Ok = false;
1563 break;
1564 }
1565 LargeMulOps.push_back(T->getOperand());
1566 } else if (const SCEVConstant *C =
1567 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001568 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001569 } else {
1570 Ok = false;
1571 break;
1572 }
1573 }
1574 if (Ok)
1575 LargeOps.push_back(getMulExpr(LargeMulOps));
1576 } else {
1577 Ok = false;
1578 break;
1579 }
1580 }
1581 if (Ok) {
1582 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001583 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001584 // If it folds to something simple, use it. Otherwise, don't.
1585 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1586 return getTruncateExpr(Fold, DstType);
1587 }
1588 }
1589
1590 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001591 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1592 ++Idx;
1593
1594 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 if (Idx < Ops.size()) {
1596 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001597 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001598 // If we have an add, expand the add operands onto the end of the operands
1599 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001600 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001601 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001602 DeletedAdd = true;
1603 }
1604
1605 // If we deleted at least one add, we added operands to the end of the list,
1606 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001607 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001608 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001609 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 }
1611
1612 // Skip over the add expression until we get to a multiply.
1613 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1614 ++Idx;
1615
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001616 // Check to see if there are any folding opportunities present with
1617 // operands multiplied by constant values.
1618 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1619 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001620 DenseMap<const SCEV *, APInt> M;
1621 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001622 APInt AccumulatedConstant(BitWidth, 0);
1623 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001624 Ops.data(), Ops.size(),
1625 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001626 // Some interesting folding opportunity is present, so its worthwhile to
1627 // re-generate the operands list. Group the operands by constant scale,
1628 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001629 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001630 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001631 E = NewOps.end(); I != E; ++I)
1632 MulOpLists[M.find(*I)->second].push_back(*I);
1633 // Re-generate the operands list.
1634 Ops.clear();
1635 if (AccumulatedConstant != 0)
1636 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001637 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1638 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001639 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001640 Ops.push_back(getMulExpr(getConstant(I->first),
1641 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001642 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001643 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001644 if (Ops.size() == 1)
1645 return Ops[0];
1646 return getAddExpr(Ops);
1647 }
1648 }
1649
Chris Lattner53e677a2004-04-02 20:23:17 +00001650 // If we are adding something to a multiply expression, make sure the
1651 // something is not already an operand of the multiply. If so, merge it into
1652 // the multiply.
1653 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001654 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001655 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001656 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001657 if (isa<SCEVConstant>(MulOpSCEV))
1658 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001659 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001660 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001661 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001662 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 if (Mul->getNumOperands() != 2) {
1664 // If the multiply has more than two operands, we must get the
1665 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001666 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1667 Mul->op_begin()+MulOp);
1668 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001669 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001670 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001671 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001672 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001673 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001674 if (Ops.size() == 2) return OuterMul;
1675 if (AddOp < Idx) {
1676 Ops.erase(Ops.begin()+AddOp);
1677 Ops.erase(Ops.begin()+Idx-1);
1678 } else {
1679 Ops.erase(Ops.begin()+Idx);
1680 Ops.erase(Ops.begin()+AddOp-1);
1681 }
1682 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001683 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001684 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001685
Chris Lattner53e677a2004-04-02 20:23:17 +00001686 // Check this multiply against other multiplies being added together.
1687 for (unsigned OtherMulIdx = Idx+1;
1688 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1689 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001690 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001691 // If MulOp occurs in OtherMul, we can fold the two multiplies
1692 // together.
1693 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1694 OMulOp != e; ++OMulOp)
1695 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1696 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001697 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001699 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001700 Mul->op_begin()+MulOp);
1701 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001702 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001703 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001704 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001705 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001706 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001707 OtherMul->op_begin()+OMulOp);
1708 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001709 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001710 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001711 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1712 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001714 Ops.erase(Ops.begin()+Idx);
1715 Ops.erase(Ops.begin()+OtherMulIdx-1);
1716 Ops.push_back(OuterMul);
1717 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001718 }
1719 }
1720 }
1721 }
1722
1723 // If there are any add recurrences in the operands list, see if any other
1724 // added values are loop invariant. If so, we can fold them into the
1725 // recurrence.
1726 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1727 ++Idx;
1728
1729 // Scan over all recurrences, trying to fold loop invariants into them.
1730 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1731 // Scan all of the other operands to this add and add them to the vector if
1732 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001733 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001734 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001735 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001736 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001737 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001738 LIOps.push_back(Ops[i]);
1739 Ops.erase(Ops.begin()+i);
1740 --i; --e;
1741 }
1742
1743 // If we found some loop invariants, fold them into the recurrence.
1744 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001745 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001746 LIOps.push_back(AddRec->getStart());
1747
Dan Gohman0bba49c2009-07-07 17:06:11 +00001748 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001749 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001750 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001751
Dan Gohmanb9f96512010-06-30 07:16:37 +00001752 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001753 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001754 // Always propagate NW.
1755 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001756 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001757
Chris Lattner53e677a2004-04-02 20:23:17 +00001758 // If all of the other operands were loop invariant, we are done.
1759 if (Ops.size() == 1) return NewRec;
1760
Nick Lewycky980e9f32011-09-06 05:08:09 +00001761 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001762 for (unsigned i = 0;; ++i)
1763 if (Ops[i] == AddRec) {
1764 Ops[i] = NewRec;
1765 break;
1766 }
Dan Gohman246b2562007-10-22 18:31:58 +00001767 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001768 }
1769
1770 // Okay, if there weren't any loop invariants to be folded, check to see if
1771 // there are multiple AddRec's with the same loop induction variable being
1772 // added together. If so, we can fold them.
1773 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001774 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1775 ++OtherIdx)
1776 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1777 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1778 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1779 AddRec->op_end());
1780 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1781 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001782 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001783 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001784 if (OtherAddRec->getLoop() == AddRecLoop) {
1785 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1786 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001787 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001788 AddRecOps.append(OtherAddRec->op_begin()+i,
1789 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001790 break;
1791 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001792 AddRecOps[i] = getAddExpr(AddRecOps[i],
1793 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001794 }
1795 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001796 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001797 // Step size has changed, so we cannot guarantee no self-wraparound.
1798 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001799 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001800 }
1801
1802 // Otherwise couldn't fold anything into this recurrence. Move onto the
1803 // next one.
1804 }
1805
1806 // Okay, it looks like we really DO need an add expr. Check to see if we
1807 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001808 FoldingSetNodeID ID;
1809 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001810 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1811 ID.AddPointer(Ops[i]);
1812 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001813 SCEVAddExpr *S =
1814 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1815 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001816 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1817 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001818 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1819 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001820 UniqueSCEVs.InsertNode(S, IP);
1821 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001822 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001823 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001824}
1825
Nick Lewyckye97728e2011-10-04 06:51:26 +00001826static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1827 uint64_t k = i*j;
1828 if (j > 1 && k / j != i) Overflow = true;
1829 return k;
1830}
1831
1832/// Compute the result of "n choose k", the binomial coefficient. If an
1833/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001834/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewyckye97728e2011-10-04 06:51:26 +00001835static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1836 // We use the multiplicative formula:
1837 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1838 // At each iteration, we take the n-th term of the numeral and divide by the
1839 // (k-n)th term of the denominator. This division will always produce an
1840 // integral result, and helps reduce the chance of overflow in the
1841 // intermediate computations. However, we can still overflow even when the
1842 // final result would fit.
1843
1844 if (n == 0 || n == k) return 1;
1845 if (k > n) return 0;
1846
1847 if (k > n/2)
1848 k = n-k;
1849
1850 uint64_t r = 1;
1851 for (uint64_t i = 1; i <= k; ++i) {
1852 r = umul_ov(r, n-(i-1), Overflow);
1853 r /= i;
1854 }
1855 return r;
1856}
1857
Dan Gohman6c0866c2009-05-24 23:45:28 +00001858/// getMulExpr - Get a canonical multiply expression, or something simpler if
1859/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001860const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001861 SCEV::NoWrapFlags Flags) {
1862 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1863 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001864 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001865 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001866#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001867 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001868 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001869 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001870 "SCEVMulExpr operand types don't match!");
1871#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001872
Andrew Trick3228cc22011-03-14 16:50:06 +00001873 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001874 // And vice-versa.
1875 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1876 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1877 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001878 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001879 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1880 E = Ops.end(); I != E; ++I)
1881 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001882 All = false;
1883 break;
1884 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001885 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001886 }
1887
Chris Lattner53e677a2004-04-02 20:23:17 +00001888 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001889 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001890
1891 // If there are any constants, fold them together.
1892 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001893 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001894
1895 // C1*(C2+V) -> C1*C2 + C1*V
1896 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001897 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001898 if (Add->getNumOperands() == 2 &&
1899 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001900 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1901 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001902
Chris Lattner53e677a2004-04-02 20:23:17 +00001903 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001904 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001905 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001906 ConstantInt *Fold = ConstantInt::get(getContext(),
1907 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001908 RHSC->getValue()->getValue());
1909 Ops[0] = getConstant(Fold);
1910 Ops.erase(Ops.begin()+1); // Erase the folded element
1911 if (Ops.size() == 1) return Ops[0];
1912 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 }
1914
1915 // If we are left with a constant one being multiplied, strip it off.
1916 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1917 Ops.erase(Ops.begin());
1918 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001919 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001920 // If we have a multiply of zero, it will always be zero.
1921 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001922 } else if (Ops[0]->isAllOnesValue()) {
1923 // If we have a mul by -1 of an add, try distributing the -1 among the
1924 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001925 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001926 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1927 SmallVector<const SCEV *, 4> NewOps;
1928 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001929 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1930 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001931 const SCEV *Mul = getMulExpr(Ops[0], *I);
1932 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1933 NewOps.push_back(Mul);
1934 }
1935 if (AnyFolded)
1936 return getAddExpr(NewOps);
1937 }
Andrew Tricka053b212011-03-14 17:38:54 +00001938 else if (const SCEVAddRecExpr *
1939 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1940 // Negation preserves a recurrence's no self-wrap property.
1941 SmallVector<const SCEV *, 4> Operands;
1942 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1943 E = AddRec->op_end(); I != E; ++I) {
1944 Operands.push_back(getMulExpr(Ops[0], *I));
1945 }
1946 return getAddRecExpr(Operands, AddRec->getLoop(),
1947 AddRec->getNoWrapFlags(SCEV::FlagNW));
1948 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001949 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001950 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001951
1952 if (Ops.size() == 1)
1953 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001954 }
1955
1956 // Skip over the add expression until we get to a multiply.
1957 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1958 ++Idx;
1959
Chris Lattner53e677a2004-04-02 20:23:17 +00001960 // If there are mul operands inline them all into this expression.
1961 if (Idx < Ops.size()) {
1962 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001963 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001964 // If we have an mul, expand the mul operands onto the end of the operands
1965 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001966 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001967 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001968 DeletedMul = true;
1969 }
1970
1971 // If we deleted at least one mul, we added operands to the end of the list,
1972 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001973 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001974 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001975 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001976 }
1977
1978 // If there are any add recurrences in the operands list, see if any other
1979 // added values are loop invariant. If so, we can fold them into the
1980 // recurrence.
1981 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1982 ++Idx;
1983
1984 // Scan over all recurrences, trying to fold loop invariants into them.
1985 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1986 // Scan all of the other operands to this mul and add them to the vector if
1987 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001988 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001989 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001990 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001991 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001992 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001993 LIOps.push_back(Ops[i]);
1994 Ops.erase(Ops.begin()+i);
1995 --i; --e;
1996 }
1997
1998 // If we found some loop invariants, fold them into the recurrence.
1999 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002000 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002001 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002002 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002003 const SCEV *Scale = getMulExpr(LIOps);
2004 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2005 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002006
Dan Gohmanb9f96512010-06-30 07:16:37 +00002007 // Build the new addrec. Propagate the NUW and NSW flags if both the
2008 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002009 //
2010 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002011 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002012 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2013 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002014
2015 // If all of the other operands were loop invariant, we are done.
2016 if (Ops.size() == 1) return NewRec;
2017
Nick Lewycky980e9f32011-09-06 05:08:09 +00002018 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002019 for (unsigned i = 0;; ++i)
2020 if (Ops[i] == AddRec) {
2021 Ops[i] = NewRec;
2022 break;
2023 }
Dan Gohman246b2562007-10-22 18:31:58 +00002024 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002025 }
2026
2027 // Okay, if there weren't any loop invariants to be folded, check to see if
2028 // there are multiple AddRec's with the same loop induction variable being
2029 // multiplied together. If so, we can fold them.
2030 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002031 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002032 ++OtherIdx) {
Andrew Trick97178ae2012-05-30 03:35:17 +00002033 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2034 continue;
2035
2036 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2037 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2038 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2039 // ]]],+,...up to x=2n}.
2040 // Note that the arguments to choose() are always integers with values
2041 // known at compile time, never SCEV objects.
2042 //
2043 // The implementation avoids pointless extra computations when the two
2044 // addrec's are of different length (mathematically, it's equivalent to
2045 // an infinite stream of zeros on the right).
2046 bool OpsModified = false;
2047 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2048 ++OtherIdx) {
2049 const SCEVAddRecExpr *OtherAddRec =
2050 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2051 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2052 continue;
2053
2054 bool Overflow = false;
2055 Type *Ty = AddRec->getType();
2056 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2057 SmallVector<const SCEV*, 7> AddRecOps;
2058 for (int x = 0, xe = AddRec->getNumOperands() +
2059 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2060 const SCEV *Term = getConstant(Ty, 0);
2061 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2062 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2063 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2064 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2065 z < ze && !Overflow; ++z) {
2066 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2067 uint64_t Coeff;
2068 if (LargerThan64Bits)
2069 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2070 else
2071 Coeff = Coeff1*Coeff2;
2072 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2073 const SCEV *Term1 = AddRec->getOperand(y-z);
2074 const SCEV *Term2 = OtherAddRec->getOperand(z);
2075 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohman6a0c1252010-08-31 22:52:12 +00002076 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002077 }
2078 AddRecOps.push_back(Term);
2079 }
2080 if (!Overflow) {
2081 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2082 SCEV::FlagAnyWrap);
2083 if (Ops.size() == 2) return NewAddRec;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002084 Ops[Idx] = NewAddRec;
Andrew Trick97178ae2012-05-30 03:35:17 +00002085 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2086 OpsModified = true;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002087 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2088 if (!AddRec)
2089 break;
Andrew Trick97178ae2012-05-30 03:35:17 +00002090 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002091 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002092 if (OpsModified)
2093 return getMulExpr(Ops);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002094 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002095
2096 // Otherwise couldn't fold anything into this recurrence. Move onto the
2097 // next one.
2098 }
2099
2100 // Okay, it looks like we really DO need an mul expr. Check to see if we
2101 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002102 FoldingSetNodeID ID;
2103 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002104 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2105 ID.AddPointer(Ops[i]);
2106 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002107 SCEVMulExpr *S =
2108 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2109 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002110 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2111 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002112 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2113 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002114 UniqueSCEVs.InsertNode(S, IP);
2115 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002116 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002117 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002118}
2119
Andreas Bolka8a11c982009-08-07 22:55:26 +00002120/// getUDivExpr - Get a canonical unsigned division expression, or something
2121/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002122const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2123 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002124 assert(getEffectiveSCEVType(LHS->getType()) ==
2125 getEffectiveSCEVType(RHS->getType()) &&
2126 "SCEVUDivExpr operand types don't match!");
2127
Dan Gohman622ed672009-05-04 22:02:23 +00002128 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002129 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002130 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002131 // If the denominator is zero, the result of the udiv is undefined. Don't
2132 // try to analyze it, because the resolution chosen here may differ from
2133 // the resolution chosen in other parts of the compiler.
2134 if (!RHSC->getValue()->isZero()) {
2135 // Determine if the division can be folded into the operands of
2136 // its operands.
2137 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002138 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002139 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002140 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002141 // For non-power-of-two values, effectively round the value up to the
2142 // nearest power of two.
2143 if (!RHSC->getValue()->getValue().isPowerOf2())
2144 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002145 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002146 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002147 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2148 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002149 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2150 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2151 const APInt &StepInt = Step->getValue()->getValue();
2152 const APInt &DivInt = RHSC->getValue()->getValue();
2153 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002154 getZeroExtendExpr(AR, ExtTy) ==
2155 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2156 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002157 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002158 SmallVector<const SCEV *, 4> Operands;
2159 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2160 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002161 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002162 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002163 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002164 /// Get a canonical UDivExpr for a recurrence.
2165 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2166 // We can currently only fold X%N if X is constant.
2167 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2168 if (StartC && !DivInt.urem(StepInt) &&
2169 getZeroExtendExpr(AR, ExtTy) ==
2170 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2171 getZeroExtendExpr(Step, ExtTy),
2172 AR->getLoop(), SCEV::FlagAnyWrap)) {
2173 const APInt &StartInt = StartC->getValue()->getValue();
2174 const APInt &StartRem = StartInt.urem(StepInt);
2175 if (StartRem != 0)
2176 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2177 AR->getLoop(), SCEV::FlagNW);
2178 }
2179 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002180 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2181 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2182 SmallVector<const SCEV *, 4> Operands;
2183 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2184 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2185 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2186 // Find an operand that's safely divisible.
2187 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2188 const SCEV *Op = M->getOperand(i);
2189 const SCEV *Div = getUDivExpr(Op, RHSC);
2190 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2191 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2192 M->op_end());
2193 Operands[i] = Div;
2194 return getMulExpr(Operands);
2195 }
2196 }
Dan Gohman185cf032009-05-08 20:18:49 +00002197 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002198 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002199 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002200 SmallVector<const SCEV *, 4> Operands;
2201 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2202 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2203 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2204 Operands.clear();
2205 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2206 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2207 if (isa<SCEVUDivExpr>(Op) ||
2208 getMulExpr(Op, RHS) != A->getOperand(i))
2209 break;
2210 Operands.push_back(Op);
2211 }
2212 if (Operands.size() == A->getNumOperands())
2213 return getAddExpr(Operands);
2214 }
2215 }
Dan Gohman185cf032009-05-08 20:18:49 +00002216
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002217 // Fold if both operands are constant.
2218 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2219 Constant *LHSCV = LHSC->getValue();
2220 Constant *RHSCV = RHSC->getValue();
2221 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2222 RHSCV)));
2223 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002224 }
2225 }
2226
Dan Gohman1c343752009-06-27 21:21:31 +00002227 FoldingSetNodeID ID;
2228 ID.AddInteger(scUDivExpr);
2229 ID.AddPointer(LHS);
2230 ID.AddPointer(RHS);
2231 void *IP = 0;
2232 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002233 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2234 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002235 UniqueSCEVs.InsertNode(S, IP);
2236 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002237}
2238
2239
Dan Gohman6c0866c2009-05-24 23:45:28 +00002240/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2241/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002242const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2243 const Loop *L,
2244 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002245 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002246 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002247 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002248 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002249 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002250 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002251 }
2252
2253 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002254 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002255}
2256
Dan Gohman6c0866c2009-05-24 23:45:28 +00002257/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2258/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002259const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002260ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002261 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002262 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002263#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002264 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002265 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002266 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002267 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002268 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002269 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002270 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002271#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002272
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002273 if (Operands.back()->isZero()) {
2274 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002275 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002276 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002277
Dan Gohmanbc028532010-02-19 18:49:22 +00002278 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2279 // use that information to infer NUW and NSW flags. However, computing a
2280 // BE count requires calling getAddRecExpr, so we may not yet have a
2281 // meaningful BE count at this point (and if we don't, we'd be stuck
2282 // with a SCEVCouldNotCompute as the cached BE count).
2283
Andrew Trick3228cc22011-03-14 16:50:06 +00002284 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002285 // And vice-versa.
2286 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2287 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2288 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002289 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002290 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2291 E = Operands.end(); I != E; ++I)
2292 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002293 All = false;
2294 break;
2295 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002296 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002297 }
2298
Dan Gohmand9cc7492008-08-08 18:33:12 +00002299 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002300 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002301 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002302 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002303 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002304 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002305 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002306 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002307 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002308 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002309 // AddRecs require their operands be loop-invariant with respect to their
2310 // loops. Don't perform this transformation if it would break this
2311 // requirement.
2312 bool AllInvariant = true;
2313 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002314 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002315 AllInvariant = false;
2316 break;
2317 }
2318 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002319 // Create a recurrence for the outer loop with the same step size.
2320 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002321 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2322 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002323 SCEV::NoWrapFlags OuterFlags =
2324 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002325
2326 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002327 AllInvariant = true;
2328 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002329 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002330 AllInvariant = false;
2331 break;
2332 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002333 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002334 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002335 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002336 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2337 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002338 SCEV::NoWrapFlags InnerFlags =
2339 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002340 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2341 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002342 }
2343 // Reset Operands to its original state.
2344 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002345 }
2346 }
2347
Dan Gohman67847532010-01-19 22:27:22 +00002348 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2349 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002350 FoldingSetNodeID ID;
2351 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002352 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2353 ID.AddPointer(Operands[i]);
2354 ID.AddPointer(L);
2355 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002356 SCEVAddRecExpr *S =
2357 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2358 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002359 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2360 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002361 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2362 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002363 UniqueSCEVs.InsertNode(S, IP);
2364 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002365 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002366 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002367}
2368
Dan Gohman9311ef62009-06-24 14:49:00 +00002369const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2370 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002371 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002372 Ops.push_back(LHS);
2373 Ops.push_back(RHS);
2374 return getSMaxExpr(Ops);
2375}
2376
Dan Gohman0bba49c2009-07-07 17:06:11 +00002377const SCEV *
2378ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002379 assert(!Ops.empty() && "Cannot get empty smax!");
2380 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002381#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002382 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002383 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002384 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002385 "SCEVSMaxExpr operand types don't match!");
2386#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002387
2388 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002389 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002390
2391 // If there are any constants, fold them together.
2392 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002393 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394 ++Idx;
2395 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002396 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002397 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002398 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002399 APIntOps::smax(LHSC->getValue()->getValue(),
2400 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002401 Ops[0] = getConstant(Fold);
2402 Ops.erase(Ops.begin()+1); // Erase the folded element
2403 if (Ops.size() == 1) return Ops[0];
2404 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002405 }
2406
Dan Gohmane5aceed2009-06-24 14:46:22 +00002407 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002408 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2409 Ops.erase(Ops.begin());
2410 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002411 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2412 // If we have an smax with a constant maximum-int, it will always be
2413 // maximum-int.
2414 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002415 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002416
Dan Gohman3ab13122010-04-13 16:49:23 +00002417 if (Ops.size() == 1) return Ops[0];
2418 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002419
2420 // Find the first SMax
2421 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2422 ++Idx;
2423
2424 // Check to see if one of the operands is an SMax. If so, expand its operands
2425 // onto our operand list, and recurse to simplify.
2426 if (Idx < Ops.size()) {
2427 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002428 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002429 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002430 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002431 DeletedSMax = true;
2432 }
2433
2434 if (DeletedSMax)
2435 return getSMaxExpr(Ops);
2436 }
2437
2438 // Okay, check to see if the same value occurs in the operand list twice. If
2439 // so, delete one. Since we sorted the list, these values are required to
2440 // be adjacent.
2441 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002442 // X smax Y smax Y --> X smax Y
2443 // X smax Y --> X, if X is always greater than Y
2444 if (Ops[i] == Ops[i+1] ||
2445 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2446 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2447 --i; --e;
2448 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002449 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2450 --i; --e;
2451 }
2452
2453 if (Ops.size() == 1) return Ops[0];
2454
2455 assert(!Ops.empty() && "Reduced smax down to nothing!");
2456
Nick Lewycky3e630762008-02-20 06:48:22 +00002457 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002458 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002459 FoldingSetNodeID ID;
2460 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002461 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2462 ID.AddPointer(Ops[i]);
2463 void *IP = 0;
2464 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002465 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2466 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002467 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2468 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002469 UniqueSCEVs.InsertNode(S, IP);
2470 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002471}
2472
Dan Gohman9311ef62009-06-24 14:49:00 +00002473const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2474 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002475 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002476 Ops.push_back(LHS);
2477 Ops.push_back(RHS);
2478 return getUMaxExpr(Ops);
2479}
2480
Dan Gohman0bba49c2009-07-07 17:06:11 +00002481const SCEV *
2482ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002483 assert(!Ops.empty() && "Cannot get empty umax!");
2484 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002485#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002486 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002487 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002488 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002489 "SCEVUMaxExpr operand types don't match!");
2490#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002491
2492 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002493 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002494
2495 // If there are any constants, fold them together.
2496 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002497 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002498 ++Idx;
2499 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002500 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002501 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002502 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002503 APIntOps::umax(LHSC->getValue()->getValue(),
2504 RHSC->getValue()->getValue()));
2505 Ops[0] = getConstant(Fold);
2506 Ops.erase(Ops.begin()+1); // Erase the folded element
2507 if (Ops.size() == 1) return Ops[0];
2508 LHSC = cast<SCEVConstant>(Ops[0]);
2509 }
2510
Dan Gohmane5aceed2009-06-24 14:46:22 +00002511 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002512 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2513 Ops.erase(Ops.begin());
2514 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002515 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2516 // If we have an umax with a constant maximum-int, it will always be
2517 // maximum-int.
2518 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002519 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002520
Dan Gohman3ab13122010-04-13 16:49:23 +00002521 if (Ops.size() == 1) return Ops[0];
2522 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002523
2524 // Find the first UMax
2525 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2526 ++Idx;
2527
2528 // Check to see if one of the operands is a UMax. If so, expand its operands
2529 // onto our operand list, and recurse to simplify.
2530 if (Idx < Ops.size()) {
2531 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002532 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002533 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002534 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002535 DeletedUMax = true;
2536 }
2537
2538 if (DeletedUMax)
2539 return getUMaxExpr(Ops);
2540 }
2541
2542 // Okay, check to see if the same value occurs in the operand list twice. If
2543 // so, delete one. Since we sorted the list, these values are required to
2544 // be adjacent.
2545 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002546 // X umax Y umax Y --> X umax Y
2547 // X umax Y --> X, if X is always greater than Y
2548 if (Ops[i] == Ops[i+1] ||
2549 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2550 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2551 --i; --e;
2552 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002553 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2554 --i; --e;
2555 }
2556
2557 if (Ops.size() == 1) return Ops[0];
2558
2559 assert(!Ops.empty() && "Reduced umax down to nothing!");
2560
2561 // Okay, it looks like we really DO need a umax expr. Check to see if we
2562 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002563 FoldingSetNodeID ID;
2564 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002565 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2566 ID.AddPointer(Ops[i]);
2567 void *IP = 0;
2568 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002569 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2570 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002571 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2572 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002573 UniqueSCEVs.InsertNode(S, IP);
2574 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002575}
2576
Dan Gohman9311ef62009-06-24 14:49:00 +00002577const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2578 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002579 // ~smax(~x, ~y) == smin(x, y).
2580 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2581}
2582
Dan Gohman9311ef62009-06-24 14:49:00 +00002583const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2584 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002585 // ~umax(~x, ~y) == umin(x, y)
2586 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2587}
2588
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002589const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002590 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002591 // constant expression and then folding it back into a ConstantInt.
2592 // This is just a compile-time optimization.
2593 if (TD)
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002594 return getConstant(TD->getIntPtrType(getContext()),
2595 TD->getTypeAllocSize(AllocTy));
Dan Gohman6ab10f62010-04-12 23:03:26 +00002596
Dan Gohman4f8eea82010-02-01 18:27:38 +00002597 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2598 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002599 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002600 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002601 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002602 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2603}
2604
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002605const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002606 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2607 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002608 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002609 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002610 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002611 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2612}
2613
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002614const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002615 unsigned FieldNo) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002616 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002617 // constant expression and then folding it back into a ConstantInt.
2618 // This is just a compile-time optimization.
2619 if (TD)
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002620 return getConstant(TD->getIntPtrType(getContext()),
Dan Gohman6ab10f62010-04-12 23:03:26 +00002621 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2622
Dan Gohman0f5efe52010-01-28 02:15:55 +00002623 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2624 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002625 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002626 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002627 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002628 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002629}
2630
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002631const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002632 Constant *FieldNo) {
2633 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002634 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002635 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002636 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002637 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002638 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002639}
2640
Dan Gohman0bba49c2009-07-07 17:06:11 +00002641const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002642 // Don't attempt to do anything other than create a SCEVUnknown object
2643 // here. createSCEV only calls getUnknown after checking for all other
2644 // interesting possibilities, and any other code that calls getUnknown
2645 // is doing so in order to hide a value from SCEV canonicalization.
2646
Dan Gohman1c343752009-06-27 21:21:31 +00002647 FoldingSetNodeID ID;
2648 ID.AddInteger(scUnknown);
2649 ID.AddPointer(V);
2650 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002651 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2652 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2653 "Stale SCEVUnknown in uniquing map!");
2654 return S;
2655 }
2656 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2657 FirstUnknown);
2658 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002659 UniqueSCEVs.InsertNode(S, IP);
2660 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002661}
2662
Chris Lattner53e677a2004-04-02 20:23:17 +00002663//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002664// Basic SCEV Analysis and PHI Idiom Recognition Code
2665//
2666
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002667/// isSCEVable - Test if values of the given type are analyzable within
2668/// the SCEV framework. This primarily includes integer types, and it
2669/// can optionally include pointer types if the ScalarEvolution class
2670/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002671bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002672 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002673 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002674}
2675
2676/// getTypeSizeInBits - Return the size in bits of the specified type,
2677/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002678uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002679 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2680
Micah Villmow3574eca2012-10-08 16:38:25 +00002681 // If we have a DataLayout, use it!
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002682 if (TD)
2683 return TD->getTypeSizeInBits(Ty);
2684
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002685 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002686 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002687 return Ty->getPrimitiveSizeInBits();
2688
Micah Villmow3574eca2012-10-08 16:38:25 +00002689 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002690 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002691 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002692 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002693}
2694
2695/// getEffectiveSCEVType - Return a type with the same bitwidth as
2696/// the given type and which represents how SCEV will treat the given
2697/// type, for which isSCEVable must return true. For pointer types,
2698/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002699Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002700 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2701
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002702 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002703 return Ty;
2704
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002705 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002706 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002707 if (TD) return TD->getIntPtrType(getContext());
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002708
Micah Villmow3574eca2012-10-08 16:38:25 +00002709 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002710 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002711}
Chris Lattner53e677a2004-04-02 20:23:17 +00002712
Dan Gohman0bba49c2009-07-07 17:06:11 +00002713const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002714 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002715}
2716
Chris Lattner53e677a2004-04-02 20:23:17 +00002717/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2718/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002719const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002720 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002721
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002722 ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002723 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002724 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002725
2726 // The process of creating a SCEV for V may have caused other SCEVs
2727 // to have been created, so it's necessary to insert the new entry
2728 // from scratch, rather than trying to remember the insert position
2729 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002730 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002731 return S;
2732}
2733
Dan Gohman2d1be872009-04-16 03:18:22 +00002734/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2735///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002736const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002737 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002738 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002739 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002740
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002741 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002742 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002743 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002744 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002745}
2746
2747/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002748const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002749 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002750 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002751 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002752
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002753 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002754 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002755 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002756 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002757 return getMinusSCEV(AllOnes, V);
2758}
2759
Andrew Trick3228cc22011-03-14 16:50:06 +00002760/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002761const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002762 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002763 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2764
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002765 // Fast path: X - X --> 0.
2766 if (LHS == RHS)
2767 return getConstant(LHS->getType(), 0);
2768
Dan Gohman2d1be872009-04-16 03:18:22 +00002769 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002770 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002771}
2772
2773/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2774/// input value to the specified type. If the type must be extended, it is zero
2775/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002776const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002777ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2778 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002779 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2780 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002781 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002782 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002783 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002784 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002785 return getTruncateExpr(V, Ty);
2786 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002787}
2788
2789/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2790/// input value to the specified type. If the type must be extended, it is sign
2791/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002792const SCEV *
2793ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002794 Type *Ty) {
2795 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002796 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2797 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002798 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002799 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002800 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002801 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002802 return getTruncateExpr(V, Ty);
2803 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002804}
2805
Dan Gohman467c4302009-05-13 03:46:30 +00002806/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2807/// input value to the specified type. If the type must be extended, it is zero
2808/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002809const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002810ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2811 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002812 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2813 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002814 "Cannot noop or zero extend with non-integer arguments!");
2815 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2816 "getNoopOrZeroExtend cannot truncate!");
2817 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2818 return V; // No conversion
2819 return getZeroExtendExpr(V, Ty);
2820}
2821
2822/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2823/// input value to the specified type. If the type must be extended, it is sign
2824/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002825const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002826ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2827 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002828 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2829 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002830 "Cannot noop or sign extend with non-integer arguments!");
2831 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2832 "getNoopOrSignExtend cannot truncate!");
2833 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2834 return V; // No conversion
2835 return getSignExtendExpr(V, Ty);
2836}
2837
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002838/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2839/// the input value to the specified type. If the type must be extended,
2840/// it is extended with unspecified bits. The conversion must not be
2841/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002842const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002843ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2844 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002845 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2846 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002847 "Cannot noop or any extend with non-integer arguments!");
2848 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2849 "getNoopOrAnyExtend cannot truncate!");
2850 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2851 return V; // No conversion
2852 return getAnyExtendExpr(V, Ty);
2853}
2854
Dan Gohman467c4302009-05-13 03:46:30 +00002855/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2856/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002857const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002858ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2859 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002860 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2861 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002862 "Cannot truncate or noop with non-integer arguments!");
2863 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2864 "getTruncateOrNoop cannot extend!");
2865 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2866 return V; // No conversion
2867 return getTruncateExpr(V, Ty);
2868}
2869
Dan Gohmana334aa72009-06-22 00:31:57 +00002870/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2871/// the types using zero-extension, and then perform a umax operation
2872/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002873const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2874 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002875 const SCEV *PromotedLHS = LHS;
2876 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002877
2878 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2879 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2880 else
2881 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2882
2883 return getUMaxExpr(PromotedLHS, PromotedRHS);
2884}
2885
Dan Gohmanc9759e82009-06-22 15:03:27 +00002886/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2887/// the types using zero-extension, and then perform a umin operation
2888/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002889const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2890 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002891 const SCEV *PromotedLHS = LHS;
2892 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002893
2894 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2895 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2896 else
2897 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2898
2899 return getUMinExpr(PromotedLHS, PromotedRHS);
2900}
2901
Andrew Trickb12a7542011-03-17 23:51:11 +00002902/// getPointerBase - Transitively follow the chain of pointer-type operands
2903/// until reaching a SCEV that does not have a single pointer operand. This
2904/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2905/// but corner cases do exist.
2906const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2907 // A pointer operand may evaluate to a nonpointer expression, such as null.
2908 if (!V->getType()->isPointerTy())
2909 return V;
2910
2911 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2912 return getPointerBase(Cast->getOperand());
2913 }
2914 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2915 const SCEV *PtrOp = 0;
2916 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2917 I != E; ++I) {
2918 if ((*I)->getType()->isPointerTy()) {
2919 // Cannot find the base of an expression with multiple pointer operands.
2920 if (PtrOp)
2921 return V;
2922 PtrOp = *I;
2923 }
2924 }
2925 if (!PtrOp)
2926 return V;
2927 return getPointerBase(PtrOp);
2928 }
2929 return V;
2930}
2931
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002932/// PushDefUseChildren - Push users of the given Instruction
2933/// onto the given Worklist.
2934static void
2935PushDefUseChildren(Instruction *I,
2936 SmallVectorImpl<Instruction *> &Worklist) {
2937 // Push the def-use children onto the Worklist stack.
2938 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2939 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002940 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002941}
2942
2943/// ForgetSymbolicValue - This looks up computed SCEV values for all
2944/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002945/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002946/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002947void
Dan Gohman85669632010-02-25 06:57:05 +00002948ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002949 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002950 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002951
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002952 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002953 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002954 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002955 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002956 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002957
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002958 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002959 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002960 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002961 const SCEV *Old = It->second;
2962
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002963 // Short-circuit the def-use traversal if the symbolic name
2964 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002965 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002966 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002967
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002968 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002969 // structure, it's a PHI that's in the progress of being computed
2970 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2971 // additional loop trip count information isn't going to change anything.
2972 // In the second case, createNodeForPHI will perform the necessary
2973 // updates on its own when it gets to that point. In the third, we do
2974 // want to forget the SCEVUnknown.
2975 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002976 !isa<SCEVUnknown>(Old) ||
2977 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002978 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002979 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002980 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002981 }
2982
2983 PushDefUseChildren(I, Worklist);
2984 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002985}
Chris Lattner53e677a2004-04-02 20:23:17 +00002986
2987/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2988/// a loop header, making it a potential recurrence, or it doesn't.
2989///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002990const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002991 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2992 if (L->getHeader() == PN->getParent()) {
2993 // The loop may have multiple entrances or multiple exits; we can analyze
2994 // this phi as an addrec if it has a unique entry value and a unique
2995 // backedge value.
2996 Value *BEValueV = 0, *StartValueV = 0;
2997 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2998 Value *V = PN->getIncomingValue(i);
2999 if (L->contains(PN->getIncomingBlock(i))) {
3000 if (!BEValueV) {
3001 BEValueV = V;
3002 } else if (BEValueV != V) {
3003 BEValueV = 0;
3004 break;
3005 }
3006 } else if (!StartValueV) {
3007 StartValueV = V;
3008 } else if (StartValueV != V) {
3009 StartValueV = 0;
3010 break;
3011 }
3012 }
3013 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003014 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003015 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003016 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003017 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003018 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003019
3020 // Using this symbolic name for the PHI, analyze the value coming around
3021 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003022 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003023
3024 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3025 // has a special value for the first iteration of the loop.
3026
3027 // If the value coming around the backedge is an add with the symbolic
3028 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003029 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003030 // If there is a single occurrence of the symbolic value, replace it
3031 // with a recurrence.
3032 unsigned FoundIndex = Add->getNumOperands();
3033 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3034 if (Add->getOperand(i) == SymbolicName)
3035 if (FoundIndex == e) {
3036 FoundIndex = i;
3037 break;
3038 }
3039
3040 if (FoundIndex != Add->getNumOperands()) {
3041 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003042 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003043 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3044 if (i != FoundIndex)
3045 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003046 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003047
3048 // This is not a valid addrec if the step amount is varying each
3049 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003050 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003051 (isa<SCEVAddRecExpr>(Accum) &&
3052 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003053 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003054
3055 // If the increment doesn't overflow, then neither the addrec nor
3056 // the post-increment will overflow.
3057 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3058 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003059 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003060 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003061 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003062 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003063 dyn_cast<GEPOperator>(BEValueV)) {
3064 // If the increment is an inbounds GEP, then we know the address
3065 // space cannot be wrapped around. We cannot make any guarantee
3066 // about signed or unsigned overflow because pointers are
3067 // unsigned but we may have a negative index from the base
3068 // pointer.
3069 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003070 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003071 }
3072
Dan Gohman27dead42010-04-12 07:49:36 +00003073 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003074 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003075
Dan Gohmana10756e2010-01-21 02:09:26 +00003076 // Since the no-wrap flags are on the increment, they apply to the
3077 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003078 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003079 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003080 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003081
3082 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003083 // to be symbolic. We now need to go back and purge all of the
3084 // entries for the scalars that use the symbolic expression.
3085 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003086 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003087 return PHISCEV;
3088 }
3089 }
Dan Gohman622ed672009-05-04 22:02:23 +00003090 } else if (const SCEVAddRecExpr *AddRec =
3091 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003092 // Otherwise, this could be a loop like this:
3093 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3094 // In this case, j = {1,+,1} and BEValue is j.
3095 // Because the other in-value of i (0) fits the evolution of BEValue
3096 // i really is an addrec evolution.
3097 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003098 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003099
3100 // If StartVal = j.start - j.stride, we can use StartVal as the
3101 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003102 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003103 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003104 // FIXME: For constant StartVal, we should be able to infer
3105 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003106 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003107 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3108 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003109
3110 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003111 // to be symbolic. We now need to go back and purge all of the
3112 // entries for the scalars that use the symbolic expression.
3113 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003114 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003115 return PHISCEV;
3116 }
3117 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003118 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003119 }
Dan Gohman27dead42010-04-12 07:49:36 +00003120 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003121
Dan Gohman85669632010-02-25 06:57:05 +00003122 // If the PHI has a single incoming value, follow that value, unless the
3123 // PHI's incoming blocks are in a different loop, in which case doing so
3124 // risks breaking LCSSA form. Instcombine would normally zap these, but
3125 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003126 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003127 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003128 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003129
Chris Lattner53e677a2004-04-02 20:23:17 +00003130 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003131 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003132}
3133
Dan Gohman26466c02009-05-08 20:26:55 +00003134/// createNodeForGEP - Expand GEP instructions into add and multiply
3135/// operations. This allows them to be analyzed by regular SCEV code.
3136///
Dan Gohmand281ed22009-12-18 02:09:29 +00003137const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003138
Dan Gohmanb9f96512010-06-30 07:16:37 +00003139 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3140 // Add expression, because the Instruction may be guarded by control flow
3141 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003142 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003143 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003144
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003145 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003146 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003147 // Don't attempt to analyze GEPs over unsized objects.
3148 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3149 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003150 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003151 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003152 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003153 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003154 I != E; ++I) {
3155 Value *Index = *I;
3156 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003157 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003158 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003159 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Chandler Carruthece6c6b2012-11-01 08:07:29 +00003160 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003161
Dan Gohmanb9f96512010-06-30 07:16:37 +00003162 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003163 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003164 } else {
3165 // For an array, add the element offset, explicitly scaled.
Chandler Carruthece6c6b2012-11-01 08:07:29 +00003166 const SCEV *ElementSize = getSizeOfExpr(*GTI);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003167 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003168 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003169 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3170
Dan Gohmanb9f96512010-06-30 07:16:37 +00003171 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003172 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3173 isInBounds ? SCEV::FlagNSW :
3174 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003175
3176 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003177 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003178 }
3179 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003180
3181 // Get the SCEV for the GEP base.
3182 const SCEV *BaseS = getSCEV(Base);
3183
Dan Gohmanb9f96512010-06-30 07:16:37 +00003184 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003185 return getAddExpr(BaseS, TotalOffset,
Benjamin Kramer86df0622012-04-17 06:33:57 +00003186 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003187}
3188
Nick Lewycky83bb0052007-11-22 07:59:40 +00003189/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3190/// guaranteed to end in (at every loop iteration). It is, at the same time,
3191/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3192/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003193uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003194ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003195 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003196 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003197
Dan Gohman622ed672009-05-04 22:02:23 +00003198 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003199 return std::min(GetMinTrailingZeros(T->getOperand()),
3200 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003201
Dan Gohman622ed672009-05-04 22:02:23 +00003202 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003203 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3204 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3205 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003206 }
3207
Dan Gohman622ed672009-05-04 22:02:23 +00003208 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003209 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3210 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3211 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003212 }
3213
Dan Gohman622ed672009-05-04 22:02:23 +00003214 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003215 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003216 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003217 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003218 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003219 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003220 }
3221
Dan Gohman622ed672009-05-04 22:02:23 +00003222 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003223 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003224 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3225 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003226 for (unsigned i = 1, e = M->getNumOperands();
3227 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003228 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003229 BitWidth);
3230 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003231 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003232
Dan Gohman622ed672009-05-04 22:02:23 +00003233 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003234 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003235 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003236 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003237 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003238 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003239 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003240
Dan Gohman622ed672009-05-04 22:02:23 +00003241 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003242 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003243 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003244 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003245 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003246 return MinOpRes;
3247 }
3248
Dan Gohman622ed672009-05-04 22:02:23 +00003249 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003250 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003251 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003252 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003253 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003254 return MinOpRes;
3255 }
3256
Dan Gohman2c364ad2009-06-19 23:29:04 +00003257 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3258 // For a SCEVUnknown, ask ValueTracking.
3259 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003260 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003261 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003262 return Zeros.countTrailingOnes();
3263 }
3264
3265 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003266 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003267}
Chris Lattner53e677a2004-04-02 20:23:17 +00003268
Dan Gohman85b05a22009-07-13 21:35:55 +00003269/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3270///
3271ConstantRange
3272ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003273 // See if we've computed this range already.
3274 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3275 if (I != UnsignedRanges.end())
3276 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003277
3278 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003279 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003280
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003281 unsigned BitWidth = getTypeSizeInBits(S->getType());
3282 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3283
3284 // If the value has known zeros, the maximum unsigned value will have those
3285 // known zeros as well.
3286 uint32_t TZ = GetMinTrailingZeros(S);
3287 if (TZ != 0)
3288 ConservativeResult =
3289 ConstantRange(APInt::getMinValue(BitWidth),
3290 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3291
Dan Gohman85b05a22009-07-13 21:35:55 +00003292 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3293 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3294 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3295 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003296 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003297 }
3298
3299 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3300 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3301 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3302 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003303 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003304 }
3305
3306 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3307 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3308 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3309 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003310 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003311 }
3312
3313 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3314 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3315 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3316 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003317 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003318 }
3319
3320 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3321 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3322 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003323 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003324 }
3325
3326 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3327 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003328 return setUnsignedRange(ZExt,
3329 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003330 }
3331
3332 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3333 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003334 return setUnsignedRange(SExt,
3335 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003336 }
3337
3338 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3339 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003340 return setUnsignedRange(Trunc,
3341 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003342 }
3343
Dan Gohman85b05a22009-07-13 21:35:55 +00003344 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003345 // If there's no unsigned wrap, the value will never be less than its
3346 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003347 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003348 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003349 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003350 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003351 ConservativeResult.intersectWith(
3352 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003353
3354 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003355 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003356 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003357 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003358 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3359 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003360 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3361
3362 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003363 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003364
3365 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003366 ConstantRange StepRange = getSignedRange(Step);
3367 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3368 ConstantRange EndRange =
3369 StartRange.add(MaxBECountRange.multiply(StepRange));
3370
3371 // Check for overflow. This must be done with ConstantRange arithmetic
3372 // because we could be called from within the ScalarEvolution overflow
3373 // checking code.
3374 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3375 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3376 ConstantRange ExtMaxBECountRange =
3377 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3378 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3379 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3380 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003381 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003382
Dan Gohman85b05a22009-07-13 21:35:55 +00003383 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3384 EndRange.getUnsignedMin());
3385 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3386 EndRange.getUnsignedMax());
3387 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003388 return setUnsignedRange(AddRec, ConservativeResult);
3389 return setUnsignedRange(AddRec,
3390 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003391 }
3392 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003393
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003394 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003395 }
3396
3397 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3398 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003399 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003400 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003401 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003402 return setUnsignedRange(U, ConservativeResult);
3403 return setUnsignedRange(U,
3404 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003405 }
3406
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003407 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003408}
3409
Dan Gohman85b05a22009-07-13 21:35:55 +00003410/// getSignedRange - Determine the signed range for a particular SCEV.
3411///
3412ConstantRange
3413ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003414 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003415 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3416 if (I != SignedRanges.end())
3417 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003418
Dan Gohman85b05a22009-07-13 21:35:55 +00003419 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003420 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003421
Dan Gohman52fddd32010-01-26 04:40:18 +00003422 unsigned BitWidth = getTypeSizeInBits(S->getType());
3423 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3424
3425 // If the value has known zeros, the maximum signed value will have those
3426 // known zeros as well.
3427 uint32_t TZ = GetMinTrailingZeros(S);
3428 if (TZ != 0)
3429 ConservativeResult =
3430 ConstantRange(APInt::getSignedMinValue(BitWidth),
3431 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3432
Dan Gohman85b05a22009-07-13 21:35:55 +00003433 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3434 ConstantRange X = getSignedRange(Add->getOperand(0));
3435 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3436 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003437 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003438 }
3439
Dan Gohman85b05a22009-07-13 21:35:55 +00003440 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3441 ConstantRange X = getSignedRange(Mul->getOperand(0));
3442 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3443 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003444 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003445 }
3446
Dan Gohman85b05a22009-07-13 21:35:55 +00003447 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3448 ConstantRange X = getSignedRange(SMax->getOperand(0));
3449 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3450 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003451 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003452 }
Dan Gohman62849c02009-06-24 01:05:09 +00003453
Dan Gohman85b05a22009-07-13 21:35:55 +00003454 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3455 ConstantRange X = getSignedRange(UMax->getOperand(0));
3456 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3457 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003458 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003459 }
Dan Gohman62849c02009-06-24 01:05:09 +00003460
Dan Gohman85b05a22009-07-13 21:35:55 +00003461 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3462 ConstantRange X = getSignedRange(UDiv->getLHS());
3463 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003464 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003465 }
Dan Gohman62849c02009-06-24 01:05:09 +00003466
Dan Gohman85b05a22009-07-13 21:35:55 +00003467 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3468 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003469 return setSignedRange(ZExt,
3470 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003471 }
3472
3473 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3474 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003475 return setSignedRange(SExt,
3476 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003477 }
3478
3479 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3480 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003481 return setSignedRange(Trunc,
3482 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003483 }
3484
Dan Gohman85b05a22009-07-13 21:35:55 +00003485 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003486 // If there's no signed wrap, and all the operands have the same sign or
3487 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003488 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003489 bool AllNonNeg = true;
3490 bool AllNonPos = true;
3491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3492 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3493 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3494 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003495 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003496 ConservativeResult = ConservativeResult.intersectWith(
3497 ConstantRange(APInt(BitWidth, 0),
3498 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003499 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003500 ConservativeResult = ConservativeResult.intersectWith(
3501 ConstantRange(APInt::getSignedMinValue(BitWidth),
3502 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003503 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003504
3505 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003506 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003507 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003508 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003509 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3510 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003511 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3512
3513 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003514 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003515
3516 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003517 ConstantRange StepRange = getSignedRange(Step);
3518 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3519 ConstantRange EndRange =
3520 StartRange.add(MaxBECountRange.multiply(StepRange));
3521
3522 // Check for overflow. This must be done with ConstantRange arithmetic
3523 // because we could be called from within the ScalarEvolution overflow
3524 // checking code.
3525 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3526 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3527 ConstantRange ExtMaxBECountRange =
3528 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3529 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3530 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3531 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003532 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003533
Dan Gohman85b05a22009-07-13 21:35:55 +00003534 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3535 EndRange.getSignedMin());
3536 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3537 EndRange.getSignedMax());
3538 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003539 return setSignedRange(AddRec, ConservativeResult);
3540 return setSignedRange(AddRec,
3541 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003542 }
Dan Gohman62849c02009-06-24 01:05:09 +00003543 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003544
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003545 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003546 }
3547
Dan Gohman2c364ad2009-06-19 23:29:04 +00003548 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3549 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003550 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003551 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003552 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3553 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003554 return setSignedRange(U, ConservativeResult);
3555 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003556 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003557 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003558 }
3559
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003560 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003561}
3562
Chris Lattner53e677a2004-04-02 20:23:17 +00003563/// createSCEV - We know that there is no SCEV for the specified value.
3564/// Analyze the expression.
3565///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003566const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003567 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003568 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003569
Dan Gohman6c459a22008-06-22 19:56:46 +00003570 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003571 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003572 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003573
3574 // Don't attempt to analyze instructions in blocks that aren't
3575 // reachable. Such instructions don't matter, and they aren't required
3576 // to obey basic rules for definitions dominating uses which this
3577 // analysis depends on.
3578 if (!DT->isReachableFromEntry(I->getParent()))
3579 return getUnknown(V);
3580 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003581 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003582 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3583 return getConstant(CI);
3584 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003585 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003586 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3587 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003588 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003589 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003590
Dan Gohmanca178902009-07-17 20:47:02 +00003591 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003592 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003593 case Instruction::Add: {
3594 // The simple thing to do would be to just call getSCEV on both operands
3595 // and call getAddExpr with the result. However if we're looking at a
3596 // bunch of things all added together, this can be quite inefficient,
3597 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3598 // Instead, gather up all the operands and make a single getAddExpr call.
3599 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003600 //
3601 // Don't apply this instruction's NSW or NUW flags to the new
3602 // expression. The instruction may be guarded by control flow that the
3603 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3604 // mapped to the same SCEV expression, and it would be incorrect to transfer
3605 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003606 SmallVector<const SCEV *, 4> AddOps;
3607 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003608 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3609 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3610 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3611 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003612 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003613 const SCEV *Op1 = getSCEV(U->getOperand(1));
3614 if (Opcode == Instruction::Sub)
3615 AddOps.push_back(getNegativeSCEV(Op1));
3616 else
3617 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003618 }
3619 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003620 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003621 }
3622 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003623 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003624 SmallVector<const SCEV *, 4> MulOps;
3625 MulOps.push_back(getSCEV(U->getOperand(1)));
3626 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003627 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003628 Op = U->getOperand(0)) {
3629 U = cast<Operator>(Op);
3630 MulOps.push_back(getSCEV(U->getOperand(1)));
3631 }
3632 MulOps.push_back(getSCEV(U->getOperand(0)));
3633 return getMulExpr(MulOps);
3634 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003635 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003636 return getUDivExpr(getSCEV(U->getOperand(0)),
3637 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003638 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003639 return getMinusSCEV(getSCEV(U->getOperand(0)),
3640 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003641 case Instruction::And:
3642 // For an expression like x&255 that merely masks off the high bits,
3643 // use zext(trunc(x)) as the SCEV expression.
3644 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003645 if (CI->isNullValue())
3646 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003647 if (CI->isAllOnesValue())
3648 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003649 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003650
3651 // Instcombine's ShrinkDemandedConstant may strip bits out of
3652 // constants, obscuring what would otherwise be a low-bits mask.
3653 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3654 // knew about to reconstruct a low-bits mask value.
3655 unsigned LZ = A.countLeadingZeros();
3656 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003657 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003658 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003659
3660 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3661
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003662 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003663 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003664 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003665 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003666 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003667 }
3668 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003669
Dan Gohman6c459a22008-06-22 19:56:46 +00003670 case Instruction::Or:
3671 // If the RHS of the Or is a constant, we may have something like:
3672 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3673 // optimizations will transparently handle this case.
3674 //
3675 // In order for this transformation to be safe, the LHS must be of the
3676 // form X*(2^n) and the Or constant must be less than 2^n.
3677 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003678 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003679 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003680 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003681 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3682 // Build a plain add SCEV.
3683 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3684 // If the LHS of the add was an addrec and it has no-wrap flags,
3685 // transfer the no-wrap flags, since an or won't introduce a wrap.
3686 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3687 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003688 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3689 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003690 }
3691 return S;
3692 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003693 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003694 break;
3695 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003696 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003697 // If the RHS of the xor is a signbit, then this is just an add.
3698 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003699 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003700 return getAddExpr(getSCEV(U->getOperand(0)),
3701 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003702
3703 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003704 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003705 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003706
3707 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3708 // This is a variant of the check for xor with -1, and it handles
3709 // the case where instcombine has trimmed non-demanded bits out
3710 // of an xor with -1.
3711 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3712 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3713 if (BO->getOpcode() == Instruction::And &&
3714 LCI->getValue() == CI->getValue())
3715 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003716 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003717 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003718 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003719 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003720 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3721
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003722 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003723 // mask off the high bits. Complement the operand and
3724 // re-apply the zext.
3725 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3726 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3727
3728 // If C is a single bit, it may be in the sign-bit position
3729 // before the zero-extend. In this case, represent the xor
3730 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003731 APInt Trunc = CI->getValue().trunc(Z0TySize);
3732 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003733 Trunc.isSignBit())
3734 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3735 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003736 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003737 }
3738 break;
3739
3740 case Instruction::Shl:
3741 // Turn shift left of a constant amount into a multiply.
3742 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003743 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003744
3745 // If the shift count is not less than the bitwidth, the result of
3746 // the shift is undefined. Don't try to analyze it, because the
3747 // resolution chosen here may differ from the resolution chosen in
3748 // other parts of the compiler.
3749 if (SA->getValue().uge(BitWidth))
3750 break;
3751
Owen Andersoneed707b2009-07-24 23:12:02 +00003752 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003753 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003754 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003755 }
3756 break;
3757
Nick Lewycky01eaf802008-07-07 06:15:49 +00003758 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003759 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003760 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003761 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003762
3763 // If the shift count is not less than the bitwidth, the result of
3764 // the shift is undefined. Don't try to analyze it, because the
3765 // resolution chosen here may differ from the resolution chosen in
3766 // other parts of the compiler.
3767 if (SA->getValue().uge(BitWidth))
3768 break;
3769
Owen Andersoneed707b2009-07-24 23:12:02 +00003770 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003771 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003772 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003773 }
3774 break;
3775
Dan Gohman4ee29af2009-04-21 02:26:00 +00003776 case Instruction::AShr:
3777 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3778 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003779 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003780 if (L->getOpcode() == Instruction::Shl &&
3781 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003782 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3783
3784 // If the shift count is not less than the bitwidth, the result of
3785 // the shift is undefined. Don't try to analyze it, because the
3786 // resolution chosen here may differ from the resolution chosen in
3787 // other parts of the compiler.
3788 if (CI->getValue().uge(BitWidth))
3789 break;
3790
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003791 uint64_t Amt = BitWidth - CI->getZExtValue();
3792 if (Amt == BitWidth)
3793 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003794 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003795 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003796 IntegerType::get(getContext(),
3797 Amt)),
3798 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003799 }
3800 break;
3801
Dan Gohman6c459a22008-06-22 19:56:46 +00003802 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003803 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003804
3805 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003806 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003807
3808 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003809 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003810
3811 case Instruction::BitCast:
3812 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003813 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003814 return getSCEV(U->getOperand(0));
3815 break;
3816
Dan Gohman4f8eea82010-02-01 18:27:38 +00003817 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3818 // lead to pointer expressions which cannot safely be expanded to GEPs,
3819 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3820 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003821
Dan Gohman26466c02009-05-08 20:26:55 +00003822 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003823 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003824
Dan Gohman6c459a22008-06-22 19:56:46 +00003825 case Instruction::PHI:
3826 return createNodeForPHI(cast<PHINode>(U));
3827
3828 case Instruction::Select:
3829 // This could be a smax or umax that was lowered earlier.
3830 // Try to recover it.
3831 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3832 Value *LHS = ICI->getOperand(0);
3833 Value *RHS = ICI->getOperand(1);
3834 switch (ICI->getPredicate()) {
3835 case ICmpInst::ICMP_SLT:
3836 case ICmpInst::ICMP_SLE:
3837 std::swap(LHS, RHS);
3838 // fall through
3839 case ICmpInst::ICMP_SGT:
3840 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003841 // a >s b ? a+x : b+x -> smax(a, b)+x
3842 // a >s b ? b+x : a+x -> smin(a, b)+x
3843 if (LHS->getType() == U->getType()) {
3844 const SCEV *LS = getSCEV(LHS);
3845 const SCEV *RS = getSCEV(RHS);
3846 const SCEV *LA = getSCEV(U->getOperand(1));
3847 const SCEV *RA = getSCEV(U->getOperand(2));
3848 const SCEV *LDiff = getMinusSCEV(LA, LS);
3849 const SCEV *RDiff = getMinusSCEV(RA, RS);
3850 if (LDiff == RDiff)
3851 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3852 LDiff = getMinusSCEV(LA, RS);
3853 RDiff = getMinusSCEV(RA, LS);
3854 if (LDiff == RDiff)
3855 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3856 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003857 break;
3858 case ICmpInst::ICMP_ULT:
3859 case ICmpInst::ICMP_ULE:
3860 std::swap(LHS, RHS);
3861 // fall through
3862 case ICmpInst::ICMP_UGT:
3863 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003864 // a >u b ? a+x : b+x -> umax(a, b)+x
3865 // a >u b ? b+x : a+x -> umin(a, b)+x
3866 if (LHS->getType() == U->getType()) {
3867 const SCEV *LS = getSCEV(LHS);
3868 const SCEV *RS = getSCEV(RHS);
3869 const SCEV *LA = getSCEV(U->getOperand(1));
3870 const SCEV *RA = getSCEV(U->getOperand(2));
3871 const SCEV *LDiff = getMinusSCEV(LA, LS);
3872 const SCEV *RDiff = getMinusSCEV(RA, RS);
3873 if (LDiff == RDiff)
3874 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3875 LDiff = getMinusSCEV(LA, RS);
3876 RDiff = getMinusSCEV(RA, LS);
3877 if (LDiff == RDiff)
3878 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3879 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003880 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003881 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003882 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3883 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003884 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003885 cast<ConstantInt>(RHS)->isZero()) {
3886 const SCEV *One = getConstant(LHS->getType(), 1);
3887 const SCEV *LS = getSCEV(LHS);
3888 const SCEV *LA = getSCEV(U->getOperand(1));
3889 const SCEV *RA = getSCEV(U->getOperand(2));
3890 const SCEV *LDiff = getMinusSCEV(LA, LS);
3891 const SCEV *RDiff = getMinusSCEV(RA, One);
3892 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003893 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003894 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003895 break;
3896 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003897 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3898 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003899 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003900 cast<ConstantInt>(RHS)->isZero()) {
3901 const SCEV *One = getConstant(LHS->getType(), 1);
3902 const SCEV *LS = getSCEV(LHS);
3903 const SCEV *LA = getSCEV(U->getOperand(1));
3904 const SCEV *RA = getSCEV(U->getOperand(2));
3905 const SCEV *LDiff = getMinusSCEV(LA, One);
3906 const SCEV *RDiff = getMinusSCEV(RA, LS);
3907 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003908 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003909 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003910 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003911 default:
3912 break;
3913 }
3914 }
3915
3916 default: // We cannot analyze this expression.
3917 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003918 }
3919
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003920 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003921}
3922
3923
3924
3925//===----------------------------------------------------------------------===//
3926// Iteration Count Computation Code
3927//
3928
Andrew Trickb1831c62011-08-11 23:36:16 +00003929/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003930/// normal unsigned value. Returns 0 if the trip count is unknown or not
3931/// constant. Will also return 0 if the maximum trip count is very large (>=
3932/// 2^32).
3933///
3934/// This "trip count" assumes that control exits via ExitingBlock. More
3935/// precisely, it is the number of times that control may reach ExitingBlock
3936/// before taking the branch. For loops with multiple exits, it may not be the
3937/// number times that the loop header executes because the loop may exit
3938/// prematurely via another branch.
3939unsigned ScalarEvolution::
3940getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003941 const SCEVConstant *ExitCount =
Andrew Trick3eada312012-01-11 06:52:55 +00003942 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trickb1831c62011-08-11 23:36:16 +00003943 if (!ExitCount)
3944 return 0;
3945
3946 ConstantInt *ExitConst = ExitCount->getValue();
3947
3948 // Guard against huge trip counts.
3949 if (ExitConst->getValue().getActiveBits() > 32)
3950 return 0;
3951
3952 // In case of integer overflow, this returns 0, which is correct.
3953 return ((unsigned)ExitConst->getZExtValue()) + 1;
3954}
3955
3956/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3957/// trip count of this loop as a normal unsigned value, if possible. This
3958/// means that the actual trip count is always a multiple of the returned
3959/// value (don't forget the trip count could very well be zero as well!).
3960///
3961/// Returns 1 if the trip count is unknown or not guaranteed to be the
3962/// multiple of a constant (which is also the case if the trip count is simply
3963/// constant, use getSmallConstantTripCount for that case), Will also return 1
3964/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00003965///
3966/// As explained in the comments for getSmallConstantTripCount, this assumes
3967/// that control exits the loop via ExitingBlock.
3968unsigned ScalarEvolution::
3969getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3970 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trickb1831c62011-08-11 23:36:16 +00003971 if (ExitCount == getCouldNotCompute())
3972 return 1;
3973
3974 // Get the trip count from the BE count by adding 1.
3975 const SCEV *TCMul = getAddExpr(ExitCount,
3976 getConstant(ExitCount->getType(), 1));
3977 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3978 // to factor simple cases.
3979 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3980 TCMul = Mul->getOperand(0);
3981
3982 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3983 if (!MulC)
3984 return 1;
3985
3986 ConstantInt *Result = MulC->getValue();
3987
Hal Finkel8c655492012-10-24 19:46:44 +00003988 // Guard against huge trip counts (this requires checking
3989 // for zero to handle the case where the trip count == -1 and the
3990 // addition wraps).
3991 if (!Result || Result->getValue().getActiveBits() > 32 ||
3992 Result->getValue().getActiveBits() == 0)
Andrew Trickb1831c62011-08-11 23:36:16 +00003993 return 1;
3994
3995 return (unsigned)Result->getZExtValue();
3996}
3997
Andrew Trick5116ff62011-07-26 17:19:55 +00003998// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003999// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00004000// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00004001const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4002 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004003}
4004
Dan Gohman46bdfb02009-02-24 18:55:53 +00004005/// getBackedgeTakenCount - If the specified loop has a predictable
4006/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4007/// object. The backedge-taken count is the number of times the loop header
4008/// will be branched to from within the loop. This is one less than the
4009/// trip count of the loop, since it doesn't count the first iteration,
4010/// when the header is branched to from outside the loop.
4011///
4012/// Note that it is not valid to call this method on a loop without a
4013/// loop-invariant backedge-taken count (see
4014/// hasLoopInvariantBackedgeTakenCount).
4015///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004016const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004017 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004018}
4019
4020/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4021/// return the least SCEV value that is known never to be less than the
4022/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004023const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004024 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004025}
4026
Dan Gohman59ae6b92009-07-08 19:23:34 +00004027/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4028/// onto the given Worklist.
4029static void
4030PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4031 BasicBlock *Header = L->getHeader();
4032
4033 // Push all Loop-header PHIs onto the Worklist stack.
4034 for (BasicBlock::iterator I = Header->begin();
4035 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4036 Worklist.push_back(PN);
4037}
4038
Dan Gohmana1af7572009-04-30 20:47:05 +00004039const ScalarEvolution::BackedgeTakenInfo &
4040ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004041 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004042 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004043 // update the value. The temporary CouldNotCompute value tells SCEV
4044 // code elsewhere that it shouldn't attempt to request a new
4045 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004046 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004047 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004048 if (!Pair.second)
4049 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004050
Andrew Trick5116ff62011-07-26 17:19:55 +00004051 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4052 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4053 // must be cleared in this scope.
4054 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4055
4056 if (Result.getExact(this) != getCouldNotCompute()) {
4057 assert(isLoopInvariant(Result.getExact(this), L) &&
4058 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004059 "Computed backedge-taken count isn't loop invariant for loop!");
4060 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004061 }
4062 else if (Result.getMax(this) == getCouldNotCompute() &&
4063 isa<PHINode>(L->getHeader()->begin())) {
4064 // Only count loops that have phi nodes as not being computable.
4065 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004066 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004067
Chris Lattnerf1859892011-01-09 02:16:18 +00004068 // Now that we know more about the trip count for this loop, forget any
4069 // existing SCEV values for PHI nodes in this loop since they are only
4070 // conservative estimates made without the benefit of trip count
4071 // information. This is similar to the code in forgetLoop, except that
4072 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004073 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004074 SmallVector<Instruction *, 16> Worklist;
4075 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004076
Chris Lattnerf1859892011-01-09 02:16:18 +00004077 SmallPtrSet<Instruction *, 8> Visited;
4078 while (!Worklist.empty()) {
4079 Instruction *I = Worklist.pop_back_val();
4080 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004081
Chris Lattnerf1859892011-01-09 02:16:18 +00004082 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004083 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnerf1859892011-01-09 02:16:18 +00004084 if (It != ValueExprMap.end()) {
4085 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004086
Chris Lattnerf1859892011-01-09 02:16:18 +00004087 // SCEVUnknown for a PHI either means that it has an unrecognized
4088 // structure, or it's a PHI that's in the progress of being computed
4089 // by createNodeForPHI. In the former case, additional loop trip
4090 // count information isn't going to change anything. In the later
4091 // case, createNodeForPHI will perform the necessary updates on its
4092 // own when it gets to that point.
4093 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4094 forgetMemoizedResults(Old);
4095 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004096 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004097 if (PHINode *PN = dyn_cast<PHINode>(I))
4098 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004099 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004100
4101 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004102 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004103 }
Dan Gohman308bec32011-04-25 22:48:29 +00004104
4105 // Re-lookup the insert position, since the call to
4106 // ComputeBackedgeTakenCount above could result in a
4107 // recusive call to getBackedgeTakenInfo (on a different
4108 // loop), which would invalidate the iterator computed
4109 // earlier.
4110 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004111}
4112
Dan Gohman4c7279a2009-10-31 15:04:55 +00004113/// forgetLoop - This method should be called by the client when it has
4114/// changed a loop in a way that may effect ScalarEvolution's ability to
4115/// compute a trip count, or if the loop is deleted.
4116void ScalarEvolution::forgetLoop(const Loop *L) {
4117 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004118 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4119 BackedgeTakenCounts.find(L);
4120 if (BTCPos != BackedgeTakenCounts.end()) {
4121 BTCPos->second.clear();
4122 BackedgeTakenCounts.erase(BTCPos);
4123 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004124
Dan Gohman4c7279a2009-10-31 15:04:55 +00004125 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004126 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004127 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004128
Dan Gohman59ae6b92009-07-08 19:23:34 +00004129 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004130 while (!Worklist.empty()) {
4131 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004132 if (!Visited.insert(I)) continue;
4133
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004134 ValueExprMapType::iterator It =
4135 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004136 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004137 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004138 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004139 if (PHINode *PN = dyn_cast<PHINode>(I))
4140 ConstantEvolutionLoopExitValue.erase(PN);
4141 }
4142
4143 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004144 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004145
4146 // Forget all contained loops too, to avoid dangling entries in the
4147 // ValuesAtScopes map.
4148 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4149 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004150}
4151
Eric Christophere6cbfa62010-07-29 01:25:38 +00004152/// forgetValue - This method should be called by the client when it has
4153/// changed a value in a way that may effect its value, or which may
4154/// disconnect it from a def-use chain linking it to a loop.
4155void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004156 Instruction *I = dyn_cast<Instruction>(V);
4157 if (!I) return;
4158
4159 // Drop information about expressions based on loop-header PHIs.
4160 SmallVector<Instruction *, 16> Worklist;
4161 Worklist.push_back(I);
4162
4163 SmallPtrSet<Instruction *, 8> Visited;
4164 while (!Worklist.empty()) {
4165 I = Worklist.pop_back_val();
4166 if (!Visited.insert(I)) continue;
4167
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004168 ValueExprMapType::iterator It =
4169 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004170 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004171 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004172 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004173 if (PHINode *PN = dyn_cast<PHINode>(I))
4174 ConstantEvolutionLoopExitValue.erase(PN);
4175 }
4176
4177 PushDefUseChildren(I, Worklist);
4178 }
4179}
4180
Andrew Trick5116ff62011-07-26 17:19:55 +00004181/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004182/// exits. A computable result can only be return for loops with a single exit.
4183/// Returning the minimum taken count among all exits is incorrect because one
4184/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4185/// the limit of each loop test is never skipped. This is a valid assumption as
4186/// long as the loop exits via that test. For precise results, it is the
4187/// caller's responsibility to specify the relevant loop exit using
4188/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004189const SCEV *
4190ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4191 // If any exits were not computable, the loop is not computable.
4192 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4193
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004194 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004195 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004196 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4197
4198 const SCEV *BECount = 0;
4199 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4200 ENT != 0; ENT = ENT->getNextExit()) {
4201
4202 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4203
4204 if (!BECount)
4205 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004206 else if (BECount != ENT->ExactNotTaken)
4207 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004208 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004209 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004210 return BECount;
4211}
4212
4213/// getExact - Get the exact not taken count for this loop exit.
4214const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004215ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004216 ScalarEvolution *SE) const {
4217 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4218 ENT != 0; ENT = ENT->getNextExit()) {
4219
Andrew Trickfcb43562011-08-02 04:23:35 +00004220 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004221 return ENT->ExactNotTaken;
4222 }
4223 return SE->getCouldNotCompute();
4224}
4225
4226/// getMax - Get the max backedge taken count for the loop.
4227const SCEV *
4228ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4229 return Max ? Max : SE->getCouldNotCompute();
4230}
4231
4232/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4233/// computable exit into a persistent ExitNotTakenInfo array.
4234ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4235 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4236 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4237
4238 if (!Complete)
4239 ExitNotTaken.setIncomplete();
4240
4241 unsigned NumExits = ExitCounts.size();
4242 if (NumExits == 0) return;
4243
Andrew Trickfcb43562011-08-02 04:23:35 +00004244 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004245 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4246 if (NumExits == 1) return;
4247
4248 // Handle the rare case of multiple computable exits.
4249 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4250
4251 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4252 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4253 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004254 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004255 ENT->ExactNotTaken = ExitCounts[i].second;
4256 }
4257}
4258
4259/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4260void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004261 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004262 ExitNotTaken.ExactNotTaken = 0;
4263 delete[] ExitNotTaken.getNextExit();
4264}
4265
Dan Gohman46bdfb02009-02-24 18:55:53 +00004266/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4267/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004268ScalarEvolution::BackedgeTakenInfo
4269ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004270 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004271 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004272
Dan Gohmana334aa72009-06-22 00:31:57 +00004273 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004274 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004275 bool CouldComputeBECount = true;
4276 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004277 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004278 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4279 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004280 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004281 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004282 CouldComputeBECount = false;
4283 else
4284 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4285
Dan Gohman1c343752009-06-27 21:21:31 +00004286 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004287 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004288 else if (EL.Max != getCouldNotCompute()) {
4289 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4290 // skip some loop tests. Taking the max over the exits is sufficiently
4291 // conservative. TODO: We could do better taking into consideration
4292 // that (1) the loop has unit stride (2) the last loop test is
4293 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4294 // falls-through some constant times less then the other tests.
4295 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4296 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004297 }
4298
Andrew Trick5116ff62011-07-26 17:19:55 +00004299 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004300}
4301
Andrew Trick5116ff62011-07-26 17:19:55 +00004302/// ComputeExitLimit - Compute the number of times the backedge of the specified
4303/// loop will execute if it exits via the specified block.
4304ScalarEvolution::ExitLimit
4305ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004306
4307 // Okay, we've chosen an exiting block. See what condition causes us to
4308 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004309 //
4310 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004311 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004312 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004313 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004314
Chris Lattner8b0e3602007-01-07 02:24:26 +00004315 // At this point, we know we have a conditional branch that determines whether
4316 // the loop is exited. However, we don't know if the branch is executed each
4317 // time through the loop. If not, then the execution count of the branch will
4318 // not be equal to the trip count of the loop.
4319 //
4320 // Currently we check for this by checking to see if the Exit branch goes to
4321 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004322 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004323 // loop header. This is common for un-rotated loops.
4324 //
4325 // If both of those tests fail, walk up the unique predecessor chain to the
4326 // header, stopping if there is an edge that doesn't exit the loop. If the
4327 // header is reached, the execution count of the branch will be equal to the
4328 // trip count of the loop.
4329 //
4330 // More extensive analysis could be done to handle more cases here.
4331 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004332 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004333 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004334 ExitBr->getParent() != L->getHeader()) {
4335 // The simple checks failed, try climbing the unique predecessor chain
4336 // up to the header.
4337 bool Ok = false;
4338 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4339 BasicBlock *Pred = BB->getUniquePredecessor();
4340 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004341 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004342 TerminatorInst *PredTerm = Pred->getTerminator();
4343 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4344 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4345 if (PredSucc == BB)
4346 continue;
4347 // If the predecessor has a successor that isn't BB and isn't
4348 // outside the loop, assume the worst.
4349 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004350 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004351 }
4352 if (Pred == L->getHeader()) {
4353 Ok = true;
4354 break;
4355 }
4356 BB = Pred;
4357 }
4358 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004359 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004360 }
4361
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004362 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004363 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4364 ExitBr->getSuccessor(0),
4365 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004366}
4367
Andrew Trick5116ff62011-07-26 17:19:55 +00004368/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004369/// backedge of the specified loop will execute if its exit condition
4370/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004371ScalarEvolution::ExitLimit
4372ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4373 Value *ExitCond,
4374 BasicBlock *TBB,
4375 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004376 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004377 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4378 if (BO->getOpcode() == Instruction::And) {
4379 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004380 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4381 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004382 const SCEV *BECount = getCouldNotCompute();
4383 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004384 if (L->contains(TBB)) {
4385 // Both conditions must be true for the loop to continue executing.
4386 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004387 if (EL0.Exact == getCouldNotCompute() ||
4388 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004389 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004390 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004391 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4392 if (EL0.Max == getCouldNotCompute())
4393 MaxBECount = EL1.Max;
4394 else if (EL1.Max == getCouldNotCompute())
4395 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004396 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004397 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004398 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004399 // Both conditions must be true at the same time for the loop to exit.
4400 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004401 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004402 if (EL0.Max == EL1.Max)
4403 MaxBECount = EL0.Max;
4404 if (EL0.Exact == EL1.Exact)
4405 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004406 }
4407
Andrew Trick5116ff62011-07-26 17:19:55 +00004408 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004409 }
4410 if (BO->getOpcode() == Instruction::Or) {
4411 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004412 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4413 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004414 const SCEV *BECount = getCouldNotCompute();
4415 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004416 if (L->contains(FBB)) {
4417 // Both conditions must be false for the loop to continue executing.
4418 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004419 if (EL0.Exact == getCouldNotCompute() ||
4420 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004421 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004422 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004423 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4424 if (EL0.Max == getCouldNotCompute())
4425 MaxBECount = EL1.Max;
4426 else if (EL1.Max == getCouldNotCompute())
4427 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004428 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004429 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004430 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004431 // Both conditions must be false at the same time for the loop to exit.
4432 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004433 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004434 if (EL0.Max == EL1.Max)
4435 MaxBECount = EL0.Max;
4436 if (EL0.Exact == EL1.Exact)
4437 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004438 }
4439
Andrew Trick5116ff62011-07-26 17:19:55 +00004440 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004441 }
4442 }
4443
4444 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004445 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004446 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004447 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004448
Dan Gohman00cb5b72010-02-19 18:12:07 +00004449 // Check for a constant condition. These are normally stripped out by
4450 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4451 // preserve the CFG and is temporarily leaving constant conditions
4452 // in place.
4453 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4454 if (L->contains(FBB) == !CI->getZExtValue())
4455 // The backedge is always taken.
4456 return getCouldNotCompute();
4457 else
4458 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004459 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004460 }
4461
Eli Friedman361e54d2009-05-09 12:32:42 +00004462 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004463 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004464}
4465
Andrew Trick5116ff62011-07-26 17:19:55 +00004466/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004467/// backedge of the specified loop will execute if its exit condition
4468/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004469ScalarEvolution::ExitLimit
4470ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4471 ICmpInst *ExitCond,
4472 BasicBlock *TBB,
4473 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004474
Reid Spencere4d87aa2006-12-23 06:05:41 +00004475 // If the condition was exit on true, convert the condition to exit on false
4476 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004477 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004478 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004479 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004480 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004481
4482 // Handle common loops like: for (X = "string"; *X; ++X)
4483 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4484 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004485 ExitLimit ItCnt =
4486 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004487 if (ItCnt.hasAnyInfo())
4488 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004489 }
4490
Dan Gohman0bba49c2009-07-07 17:06:11 +00004491 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4492 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004493
4494 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004495 LHS = getSCEVAtScope(LHS, L);
4496 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004497
Dan Gohman64a845e2009-06-24 04:48:43 +00004498 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004499 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004500 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004501 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004502 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004503 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004504 }
4505
Dan Gohman03557dc2010-05-03 16:35:17 +00004506 // Simplify the operands before analyzing them.
4507 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4508
Chris Lattner53e677a2004-04-02 20:23:17 +00004509 // If we have a comparison of a chrec against a constant, try to use value
4510 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004511 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4512 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004513 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004514 // Form the constant range.
4515 ConstantRange CompRange(
4516 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004517
Dan Gohman0bba49c2009-07-07 17:06:11 +00004518 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004519 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004520 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004521
Chris Lattner53e677a2004-04-02 20:23:17 +00004522 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004523 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004524 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004525 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4526 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004527 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004528 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004529 case ICmpInst::ICMP_EQ: { // while (X == Y)
4530 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004531 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4532 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004533 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004534 }
4535 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004536 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4537 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004538 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004539 }
4540 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004541 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004542 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004543 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004544 break;
4545 }
4546 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004547 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4548 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004549 break;
4550 }
4551 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004552 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004553 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004554 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004555 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004556 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004557 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004558#if 0
David Greene25e0e872009-12-23 22:18:14 +00004559 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004560 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004561 dbgs() << "[unsigned] ";
4562 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004563 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004564 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004565#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004566 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004567 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004568 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004569}
4570
Chris Lattner673e02b2004-10-12 01:49:27 +00004571static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004572EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4573 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004574 const SCEV *InVal = SE.getConstant(C);
4575 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004576 assert(isa<SCEVConstant>(Val) &&
4577 "Evaluation of SCEV at constant didn't fold correctly?");
4578 return cast<SCEVConstant>(Val)->getValue();
4579}
4580
Andrew Trick5116ff62011-07-26 17:19:55 +00004581/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004582/// 'icmp op load X, cst', try to see if we can compute the backedge
4583/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004584ScalarEvolution::ExitLimit
4585ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4586 LoadInst *LI,
4587 Constant *RHS,
4588 const Loop *L,
4589 ICmpInst::Predicate predicate) {
4590
Dan Gohman1c343752009-06-27 21:21:31 +00004591 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004592
4593 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004594 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004595 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004596 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004597
4598 // Make sure that it is really a constant global we are gepping, with an
4599 // initializer, and make sure the first IDX is really 0.
4600 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004601 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004602 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4603 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004604 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004605
4606 // Okay, we allow one non-constant index into the GEP instruction.
4607 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004608 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004609 unsigned VarIdxNum = 0;
4610 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4611 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4612 Indexes.push_back(CI);
4613 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004614 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004615 VarIdx = GEP->getOperand(i);
4616 VarIdxNum = i-2;
4617 Indexes.push_back(0);
4618 }
4619
Andrew Trickeb6dd232012-03-26 22:33:59 +00004620 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4621 if (!VarIdx)
4622 return getCouldNotCompute();
4623
Chris Lattner673e02b2004-10-12 01:49:27 +00004624 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4625 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004626 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004627 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004628
4629 // We can only recognize very limited forms of loop index expressions, in
4630 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004631 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004632 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004633 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4634 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004635 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004636
4637 unsigned MaxSteps = MaxBruteForceIterations;
4638 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004639 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004640 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004641 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004642
4643 // Form the GEP offset.
4644 Indexes[VarIdxNum] = Val;
4645
Chris Lattnerdada5862012-01-24 05:49:24 +00004646 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4647 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004648 if (Result == 0) break; // Cannot compute!
4649
4650 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004651 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004652 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004653 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004654#if 0
David Greene25e0e872009-12-23 22:18:14 +00004655 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004656 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4657 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004658#endif
4659 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004660 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004661 }
4662 }
Dan Gohman1c343752009-06-27 21:21:31 +00004663 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004664}
4665
4666
Chris Lattner3221ad02004-04-17 22:58:41 +00004667/// CanConstantFold - Return true if we can constant fold an instruction of the
4668/// specified type, assuming that all operands were constants.
4669static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004670 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004671 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4672 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004673 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004674
Chris Lattner3221ad02004-04-17 22:58:41 +00004675 if (const CallInst *CI = dyn_cast<CallInst>(I))
4676 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004677 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004678 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004679}
4680
Andrew Trick13d31e02011-10-05 03:25:31 +00004681/// Determine whether this instruction can constant evolve within this loop
4682/// assuming its operands can all constant evolve.
4683static bool canConstantEvolve(Instruction *I, const Loop *L) {
4684 // An instruction outside of the loop can't be derived from a loop PHI.
4685 if (!L->contains(I)) return false;
4686
4687 if (isa<PHINode>(I)) {
4688 if (L->getHeader() == I->getParent())
4689 return true;
4690 else
4691 // We don't currently keep track of the control flow needed to evaluate
4692 // PHIs, so we cannot handle PHIs inside of loops.
4693 return false;
4694 }
4695
4696 // If we won't be able to constant fold this expression even if the operands
4697 // are constants, bail early.
4698 return CanConstantFold(I);
4699}
4700
4701/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4702/// recursing through each instruction operand until reaching a loop header phi.
4703static PHINode *
4704getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004705 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004706
4707 // Otherwise, we can evaluate this instruction if all of its operands are
4708 // constant or derived from a PHI node themselves.
4709 PHINode *PHI = 0;
4710 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4711 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4712
4713 if (isa<Constant>(*OpI)) continue;
4714
4715 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4716 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4717
4718 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004719 if (!P)
4720 // If this operand is already visited, reuse the prior result.
4721 // We may have P != PHI if this is the deepest point at which the
4722 // inconsistent paths meet.
4723 P = PHIMap.lookup(OpInst);
4724 if (!P) {
4725 // Recurse and memoize the results, whether a phi is found or not.
4726 // This recursive call invalidates pointers into PHIMap.
4727 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4728 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004729 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004730 if (P == 0) return 0; // Not evolving from PHI
4731 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4732 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004733 }
4734 // This is a expression evolving from a constant PHI!
4735 return PHI;
4736}
4737
Chris Lattner3221ad02004-04-17 22:58:41 +00004738/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4739/// in the loop that V is derived from. We allow arbitrary operations along the
4740/// way, but the operands of an operation must either be constants or a value
4741/// derived from a constant PHI. If this expression does not fit with these
4742/// constraints, return null.
4743static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004744 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004745 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004746
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004747 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004748 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004749 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004750
Andrew Trick13d31e02011-10-05 03:25:31 +00004751 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004752 DenseMap<Instruction *, PHINode *> PHIMap;
4753 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004754}
4755
4756/// EvaluateExpression - Given an expression that passes the
4757/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4758/// in the loop has the value PHIVal. If we can't fold this expression for some
4759/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004760static Constant *EvaluateExpression(Value *V, const Loop *L,
4761 DenseMap<Instruction *, Constant *> &Vals,
Micah Villmow3574eca2012-10-08 16:38:25 +00004762 const DataLayout *TD,
Chad Rosier00737bd2011-12-01 21:29:16 +00004763 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004764 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004765 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004766 Instruction *I = dyn_cast<Instruction>(V);
4767 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004768
Andrew Trick13d31e02011-10-05 03:25:31 +00004769 if (Constant *C = Vals.lookup(I)) return C;
4770
Nick Lewycky614fef62011-10-22 19:58:20 +00004771 // An instruction inside the loop depends on a value outside the loop that we
4772 // weren't given a mapping for, or a value such as a call inside the loop.
4773 if (!canConstantEvolve(I, L)) return 0;
4774
4775 // An unmapped PHI can be due to a branch or another loop inside this loop,
4776 // or due to this not being the initial iteration through a loop where we
4777 // couldn't compute the evolution of this particular PHI last time.
4778 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004779
Dan Gohman9d4588f2010-06-22 13:15:46 +00004780 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004781
4782 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004783 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4784 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004785 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4786 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004787 continue;
4788 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004789 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004790 Vals[Operand] = C;
4791 if (!C) return 0;
4792 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004793 }
4794
Nick Lewycky614fef62011-10-22 19:58:20 +00004795 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004796 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004797 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004798 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4799 if (!LI->isVolatile())
4800 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4801 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004802 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4803 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004804}
4805
4806/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4807/// in the header of its containing loop, we know the loop executes a
4808/// constant number of times, and the PHI node is just a recurrence
4809/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004810Constant *
4811ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004812 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004813 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004814 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004815 ConstantEvolutionLoopExitValue.find(PN);
4816 if (I != ConstantEvolutionLoopExitValue.end())
4817 return I->second;
4818
Dan Gohmane0567812010-04-08 23:03:40 +00004819 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004820 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4821
4822 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4823
Andrew Trick13d31e02011-10-05 03:25:31 +00004824 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004825 BasicBlock *Header = L->getHeader();
4826 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004827
Chris Lattner3221ad02004-04-17 22:58:41 +00004828 // Since the loop is canonicalized, the PHI node must have two entries. One
4829 // entry must be a constant (coming in from outside of the loop), and the
4830 // second must be derived from the same PHI.
4831 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004832 PHINode *PHI = 0;
4833 for (BasicBlock::iterator I = Header->begin();
4834 (PHI = dyn_cast<PHINode>(I)); ++I) {
4835 Constant *StartCST =
4836 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4837 if (StartCST == 0) continue;
4838 CurrentIterVals[PHI] = StartCST;
4839 }
4840 if (!CurrentIterVals.count(PN))
4841 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004842
4843 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004844
4845 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004846 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004847 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004848
Dan Gohman46bdfb02009-02-24 18:55:53 +00004849 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004850 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004851 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004852 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004853 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004854
Nick Lewycky614fef62011-10-22 19:58:20 +00004855 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004856 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004857 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004858 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4859 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004860 if (NextPHI == 0)
4861 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004862 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004863
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004864 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4865
Nick Lewycky614fef62011-10-22 19:58:20 +00004866 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4867 // cease to be able to evaluate one of them or if they stop evolving,
4868 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004869 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004870 for (DenseMap<Instruction *, Constant *>::const_iterator
4871 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4872 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004873 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004874 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4875 }
4876 // We use two distinct loops because EvaluateExpression may invalidate any
4877 // iterators into CurrentIterVals.
4878 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4879 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4880 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004881 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004882 if (!NextPHI) { // Not already computed.
4883 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004884 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004885 }
4886 if (NextPHI != I->second)
4887 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004888 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004889
4890 // If all entries in CurrentIterVals == NextIterVals then we can stop
4891 // iterating, the loop can't continue to change.
4892 if (StoppedEvolving)
4893 return RetVal = CurrentIterVals[PN];
4894
Andrew Trick13d31e02011-10-05 03:25:31 +00004895 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004896 }
4897}
4898
Andrew Trick5116ff62011-07-26 17:19:55 +00004899/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004900/// constant number of times (the condition evolves only from constants),
4901/// try to evaluate a few iterations of the loop until we get the exit
4902/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004903/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004904const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4905 Value *Cond,
4906 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004907 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004908 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004909
Dan Gohmanb92654d2010-06-19 14:17:24 +00004910 // If the loop is canonicalized, the PHI will have exactly two entries.
4911 // That's the only form we support here.
4912 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4913
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004914 DenseMap<Instruction *, Constant *> CurrentIterVals;
4915 BasicBlock *Header = L->getHeader();
4916 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4917
Dan Gohmanb92654d2010-06-19 14:17:24 +00004918 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004919 // second must be derived from the same PHI.
4920 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004921 PHINode *PHI = 0;
4922 for (BasicBlock::iterator I = Header->begin();
4923 (PHI = dyn_cast<PHINode>(I)); ++I) {
4924 Constant *StartCST =
4925 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4926 if (StartCST == 0) continue;
4927 CurrentIterVals[PHI] = StartCST;
4928 }
4929 if (!CurrentIterVals.count(PN))
4930 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004931
4932 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4933 // the loop symbolically to determine when the condition gets a value of
4934 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004935
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004936 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004937 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004938 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00004939 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4940 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00004941
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004942 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004943 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004944
Reid Spencere8019bb2007-03-01 07:25:48 +00004945 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004946 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004947 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004948 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004949
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004950 // Update all the PHI nodes for the next iteration.
4951 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004952
4953 // Create a list of which PHIs we need to compute. We want to do this before
4954 // calling EvaluateExpression on them because that may invalidate iterators
4955 // into CurrentIterVals.
4956 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004957 for (DenseMap<Instruction *, Constant *>::const_iterator
4958 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4959 PHINode *PHI = dyn_cast<PHINode>(I->first);
4960 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004961 PHIsToCompute.push_back(PHI);
4962 }
4963 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4964 E = PHIsToCompute.end(); I != E; ++I) {
4965 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004966 Constant *&NextPHI = NextIterVals[PHI];
4967 if (NextPHI) continue; // Already computed!
4968
4969 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004970 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004971 }
4972 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00004973 }
4974
4975 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004976 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004977}
4978
Dan Gohmane7125f42009-09-03 15:00:26 +00004979/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004980/// at the specified scope in the program. The L value specifies a loop
4981/// nest to evaluate the expression at, where null is the top-level or a
4982/// specified loop is immediately inside of the loop.
4983///
4984/// This method can be used to compute the exit value for a variable defined
4985/// in a loop by querying what the value will hold in the parent loop.
4986///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004987/// In the case that a relevant loop exit value cannot be computed, the
4988/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004989const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004990 // Check to see if we've folded this expression at this loop before.
4991 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4992 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4993 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4994 if (!Pair.second)
4995 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004996
Dan Gohman42214892009-08-31 21:15:23 +00004997 // Otherwise compute it.
4998 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004999 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005000 return C;
5001}
5002
Nick Lewycky614fef62011-10-22 19:58:20 +00005003/// This builds up a Constant using the ConstantExpr interface. That way, we
5004/// will return Constants for objects which aren't represented by a
5005/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5006/// Returns NULL if the SCEV isn't representable as a Constant.
5007static Constant *BuildConstantFromSCEV(const SCEV *V) {
5008 switch (V->getSCEVType()) {
5009 default: // TODO: smax, umax.
5010 case scCouldNotCompute:
5011 case scAddRecExpr:
5012 break;
5013 case scConstant:
5014 return cast<SCEVConstant>(V)->getValue();
5015 case scUnknown:
5016 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5017 case scSignExtend: {
5018 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5019 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5020 return ConstantExpr::getSExt(CastOp, SS->getType());
5021 break;
5022 }
5023 case scZeroExtend: {
5024 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5025 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5026 return ConstantExpr::getZExt(CastOp, SZ->getType());
5027 break;
5028 }
5029 case scTruncate: {
5030 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5031 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5032 return ConstantExpr::getTrunc(CastOp, ST->getType());
5033 break;
5034 }
5035 case scAddExpr: {
5036 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5037 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5038 if (C->getType()->isPointerTy())
5039 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5040 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5041 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5042 if (!C2) return 0;
5043
5044 // First pointer!
5045 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5046 std::swap(C, C2);
5047 // The offsets have been converted to bytes. We can add bytes to an
5048 // i8* by GEP with the byte count in the first index.
5049 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5050 }
5051
5052 // Don't bother trying to sum two pointers. We probably can't
5053 // statically compute a load that results from it anyway.
5054 if (C2->getType()->isPointerTy())
5055 return 0;
5056
5057 if (C->getType()->isPointerTy()) {
5058 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5059 C2 = ConstantExpr::getIntegerCast(
5060 C2, Type::getInt32Ty(C->getContext()), true);
5061 C = ConstantExpr::getGetElementPtr(C, C2);
5062 } else
5063 C = ConstantExpr::getAdd(C, C2);
5064 }
5065 return C;
5066 }
5067 break;
5068 }
5069 case scMulExpr: {
5070 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5071 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5072 // Don't bother with pointers at all.
5073 if (C->getType()->isPointerTy()) return 0;
5074 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5075 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5076 if (!C2 || C2->getType()->isPointerTy()) return 0;
5077 C = ConstantExpr::getMul(C, C2);
5078 }
5079 return C;
5080 }
5081 break;
5082 }
5083 case scUDivExpr: {
5084 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5085 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5086 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5087 if (LHS->getType() == RHS->getType())
5088 return ConstantExpr::getUDiv(LHS, RHS);
5089 break;
5090 }
5091 }
5092 return 0;
5093}
5094
Dan Gohman42214892009-08-31 21:15:23 +00005095const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005096 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005097
Nick Lewycky3e630762008-02-20 06:48:22 +00005098 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005099 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005100 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005101 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005102 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005103 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5104 if (PHINode *PN = dyn_cast<PHINode>(I))
5105 if (PN->getParent() == LI->getHeader()) {
5106 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005107 // to see if the loop that contains it has a known backedge-taken
5108 // count. If so, we may be able to force computation of the exit
5109 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005110 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005111 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005112 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005113 // Okay, we know how many times the containing loop executes. If
5114 // this is a constant evolving PHI node, get the final value at
5115 // the specified iteration number.
5116 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005117 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005118 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005119 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005120 }
5121 }
5122
Reid Spencer09906f32006-12-04 21:33:23 +00005123 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005124 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005125 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005126 // result. This is particularly useful for computing loop exit values.
5127 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005128 SmallVector<Constant *, 4> Operands;
5129 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005130 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5131 Value *Op = I->getOperand(i);
5132 if (Constant *C = dyn_cast<Constant>(Op)) {
5133 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005134 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005135 }
Dan Gohman11046452010-06-29 23:43:06 +00005136
5137 // If any of the operands is non-constant and if they are
5138 // non-integer and non-pointer, don't even try to analyze them
5139 // with scev techniques.
5140 if (!isSCEVable(Op->getType()))
5141 return V;
5142
5143 const SCEV *OrigV = getSCEV(Op);
5144 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5145 MadeImprovement |= OrigV != OpV;
5146
Nick Lewycky614fef62011-10-22 19:58:20 +00005147 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005148 if (!C) return V;
5149 if (C->getType() != Op->getType())
5150 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5151 Op->getType(),
5152 false),
5153 C, Op->getType());
5154 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005155 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005156
Dan Gohman11046452010-06-29 23:43:06 +00005157 // Check to see if getSCEVAtScope actually made an improvement.
5158 if (MadeImprovement) {
5159 Constant *C = 0;
5160 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5161 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005162 Operands[0], Operands[1], TD,
5163 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005164 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5165 if (!LI->isVolatile())
5166 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5167 } else
Dan Gohman11046452010-06-29 23:43:06 +00005168 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005169 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005170 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005171 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005172 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005173 }
5174 }
5175
5176 // This is some other type of SCEVUnknown, just return it.
5177 return V;
5178 }
5179
Dan Gohman622ed672009-05-04 22:02:23 +00005180 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005181 // Avoid performing the look-up in the common case where the specified
5182 // expression has no loop-variant portions.
5183 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005184 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005185 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005186 // Okay, at least one of these operands is loop variant but might be
5187 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005188 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5189 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005190 NewOps.push_back(OpAtScope);
5191
5192 for (++i; i != e; ++i) {
5193 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005194 NewOps.push_back(OpAtScope);
5195 }
5196 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005197 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005198 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005199 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005200 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005201 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005202 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005203 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005204 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005205 }
5206 }
5207 // If we got here, all operands are loop invariant.
5208 return Comm;
5209 }
5210
Dan Gohman622ed672009-05-04 22:02:23 +00005211 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005212 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5213 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005214 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5215 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005216 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005217 }
5218
5219 // If this is a loop recurrence for a loop that does not contain L, then we
5220 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005221 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005222 // First, attempt to evaluate each operand.
5223 // Avoid performing the look-up in the common case where the specified
5224 // expression has no loop-variant portions.
5225 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5226 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5227 if (OpAtScope == AddRec->getOperand(i))
5228 continue;
5229
5230 // Okay, at least one of these operands is loop variant but might be
5231 // foldable. Build a new instance of the folded commutative expression.
5232 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5233 AddRec->op_begin()+i);
5234 NewOps.push_back(OpAtScope);
5235 for (++i; i != e; ++i)
5236 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5237
Andrew Trick3f95c882011-04-27 01:21:25 +00005238 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005239 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005240 AddRec->getNoWrapFlags(SCEV::FlagNW));
5241 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005242 // The addrec may be folded to a nonrecurrence, for example, if the
5243 // induction variable is multiplied by zero after constant folding. Go
5244 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005245 if (!AddRec)
5246 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005247 break;
5248 }
5249
5250 // If the scope is outside the addrec's loop, evaluate it by using the
5251 // loop exit value of the addrec.
5252 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005253 // To evaluate this recurrence, we need to know how many times the AddRec
5254 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005255 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005256 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005257
Eli Friedmanb42a6262008-08-04 23:49:06 +00005258 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005259 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005260 }
Dan Gohman11046452010-06-29 23:43:06 +00005261
Dan Gohmand594e6f2009-05-24 23:25:42 +00005262 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005263 }
5264
Dan Gohman622ed672009-05-04 22:02:23 +00005265 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005266 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005267 if (Op == Cast->getOperand())
5268 return Cast; // must be loop invariant
5269 return getZeroExtendExpr(Op, Cast->getType());
5270 }
5271
Dan Gohman622ed672009-05-04 22:02:23 +00005272 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005273 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005274 if (Op == Cast->getOperand())
5275 return Cast; // must be loop invariant
5276 return getSignExtendExpr(Op, Cast->getType());
5277 }
5278
Dan Gohman622ed672009-05-04 22:02:23 +00005279 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005280 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005281 if (Op == Cast->getOperand())
5282 return Cast; // must be loop invariant
5283 return getTruncateExpr(Op, Cast->getType());
5284 }
5285
Torok Edwinc23197a2009-07-14 16:55:14 +00005286 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005287}
5288
Dan Gohman66a7e852009-05-08 20:38:54 +00005289/// getSCEVAtScope - This is a convenience function which does
5290/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005291const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005292 return getSCEVAtScope(getSCEV(V), L);
5293}
5294
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005295/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5296/// following equation:
5297///
5298/// A * X = B (mod N)
5299///
5300/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5301/// A and B isn't important.
5302///
5303/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005304static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005305 ScalarEvolution &SE) {
5306 uint32_t BW = A.getBitWidth();
5307 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5308 assert(A != 0 && "A must be non-zero.");
5309
5310 // 1. D = gcd(A, N)
5311 //
5312 // The gcd of A and N may have only one prime factor: 2. The number of
5313 // trailing zeros in A is its multiplicity
5314 uint32_t Mult2 = A.countTrailingZeros();
5315 // D = 2^Mult2
5316
5317 // 2. Check if B is divisible by D.
5318 //
5319 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5320 // is not less than multiplicity of this prime factor for D.
5321 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005322 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005323
5324 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5325 // modulo (N / D).
5326 //
5327 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5328 // bit width during computations.
5329 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5330 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005331 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005332 APInt I = AD.multiplicativeInverse(Mod);
5333
5334 // 4. Compute the minimum unsigned root of the equation:
5335 // I * (B / D) mod (N / D)
5336 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5337
5338 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5339 // bits.
5340 return SE.getConstant(Result.trunc(BW));
5341}
Chris Lattner53e677a2004-04-02 20:23:17 +00005342
5343/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5344/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5345/// might be the same) or two SCEVCouldNotCompute objects.
5346///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005347static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005348SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005349 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005350 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5351 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5352 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005353
Chris Lattner53e677a2004-04-02 20:23:17 +00005354 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005355 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005356 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005357 return std::make_pair(CNC, CNC);
5358 }
5359
Reid Spencere8019bb2007-03-01 07:25:48 +00005360 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005361 const APInt &L = LC->getValue()->getValue();
5362 const APInt &M = MC->getValue()->getValue();
5363 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005364 APInt Two(BitWidth, 2);
5365 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005366
Dan Gohman64a845e2009-06-24 04:48:43 +00005367 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005368 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005369 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005370 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5371 // The B coefficient is M-N/2
5372 APInt B(M);
5373 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005374
Reid Spencere8019bb2007-03-01 07:25:48 +00005375 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005376 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005377
Reid Spencere8019bb2007-03-01 07:25:48 +00005378 // Compute the B^2-4ac term.
5379 APInt SqrtTerm(B);
5380 SqrtTerm *= B;
5381 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005382
Nick Lewycky6ce24712012-08-01 09:14:36 +00005383 if (SqrtTerm.isNegative()) {
5384 // The loop is provably infinite.
5385 const SCEV *CNC = SE.getCouldNotCompute();
5386 return std::make_pair(CNC, CNC);
5387 }
5388
Reid Spencere8019bb2007-03-01 07:25:48 +00005389 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5390 // integer value or else APInt::sqrt() will assert.
5391 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005392
Dan Gohman64a845e2009-06-24 04:48:43 +00005393 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005394 // The divisions must be performed as signed divisions.
5395 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005396 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005397 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005398 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005399 return std::make_pair(CNC, CNC);
5400 }
5401
Owen Andersone922c022009-07-22 00:24:57 +00005402 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005403
5404 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005405 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005406 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005407 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005408
Dan Gohman64a845e2009-06-24 04:48:43 +00005409 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005410 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005411 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005412}
5413
5414/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005415/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005416///
5417/// This is only used for loops with a "x != y" exit test. The exit condition is
5418/// now expressed as a single expression, V = x-y. So the exit test is
5419/// effectively V != 0. We know and take advantage of the fact that this
5420/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005421ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005422ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005423 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005424 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005425 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005426 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005427 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005428 }
5429
Dan Gohman35738ac2009-05-04 22:30:44 +00005430 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005431 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005432 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005433
Chris Lattner7975e3e2011-01-09 22:39:48 +00005434 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5435 // the quadratic equation to solve it.
5436 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5437 std::pair<const SCEV *,const SCEV *> Roots =
5438 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005439 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5440 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005441 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005442#if 0
David Greene25e0e872009-12-23 22:18:14 +00005443 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005444 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005445#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005446 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005447 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005448 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5449 R1->getValue(),
5450 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005451 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005452 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005453
Chris Lattner53e677a2004-04-02 20:23:17 +00005454 // We can only use this value if the chrec ends up with an exact zero
5455 // value at this index. When solving for "X*X != 5", for example, we
5456 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005457 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005458 if (Val->isZero())
5459 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005460 }
5461 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005462 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005463 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005464
Chris Lattner7975e3e2011-01-09 22:39:48 +00005465 // Otherwise we can only handle this if it is affine.
5466 if (!AddRec->isAffine())
5467 return getCouldNotCompute();
5468
5469 // If this is an affine expression, the execution count of this branch is
5470 // the minimum unsigned root of the following equation:
5471 //
5472 // Start + Step*N = 0 (mod 2^BW)
5473 //
5474 // equivalent to:
5475 //
5476 // Step*N = -Start (mod 2^BW)
5477 //
5478 // where BW is the common bit width of Start and Step.
5479
5480 // Get the initial value for the loop.
5481 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5482 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5483
5484 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005485 //
5486 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5487 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5488 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5489 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005490 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky4d3bba52012-06-28 23:44:57 +00005491 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattner7975e3e2011-01-09 22:39:48 +00005492 return getCouldNotCompute();
5493
Andrew Trick3228cc22011-03-14 16:50:06 +00005494 // For positive steps (counting up until unsigned overflow):
5495 // N = -Start/Step (as unsigned)
5496 // For negative steps (counting down to zero):
5497 // N = Start/-Step
5498 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005499 bool CountDown = StepC->getValue()->getValue().isNegative();
5500 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005501
5502 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005503 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5504 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005505 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5506 ConstantRange CR = getUnsignedRange(Start);
5507 const SCEV *MaxBECount;
5508 if (!CountDown && CR.getUnsignedMin().isMinValue())
5509 // When counting up, the worst starting value is 1, not 0.
5510 MaxBECount = CR.getUnsignedMax().isMinValue()
5511 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5512 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5513 else
5514 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5515 : -CR.getUnsignedMin());
5516 return ExitLimit(Distance, MaxBECount);
5517 }
Andrew Trick635f7182011-03-09 17:23:39 +00005518
Andrew Trickdcfd4042011-03-14 17:28:02 +00005519 // If the recurrence is known not to wraparound, unsigned divide computes the
5520 // back edge count. We know that the value will either become zero (and thus
5521 // the loop terminates), that the loop will terminate through some other exit
5522 // condition first, or that the loop has undefined behavior. This means
5523 // we can't "miss" the exit value, even with nonunit stride.
5524 //
5525 // FIXME: Prove that loops always exhibits *acceptable* undefined
5526 // behavior. Loops must exhibit defined behavior until a wrapped value is
5527 // actually used. So the trip count computed by udiv could be smaller than the
5528 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005529 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005530 // FIXME: We really want an "isexact" bit for udiv.
5531 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005532 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005533 // Then, try to solve the above equation provided that Start is constant.
5534 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5535 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5536 -StartC->getValue()->getValue(),
5537 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005538 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005539}
5540
5541/// HowFarToNonZero - Return the number of times a backedge checking the
5542/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005543/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005544ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005545ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005546 // Loops that look like: while (X == 0) are very strange indeed. We don't
5547 // handle them yet except for the trivial case. This could be expanded in the
5548 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005549
Chris Lattner53e677a2004-04-02 20:23:17 +00005550 // If the value is a constant, check to see if it is known to be non-zero
5551 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005552 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005553 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005554 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005555 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005556 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005557
Chris Lattner53e677a2004-04-02 20:23:17 +00005558 // We could implement others, but I really doubt anyone writes loops like
5559 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005560 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005561}
5562
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005563/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5564/// (which may not be an immediate predecessor) which has exactly one
5565/// successor from which BB is reachable, or null if no such block is
5566/// found.
5567///
Dan Gohman005752b2010-04-15 16:19:08 +00005568std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005569ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005570 // If the block has a unique predecessor, then there is no path from the
5571 // predecessor to the block that does not go through the direct edge
5572 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005573 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005574 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005575
5576 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005577 // If the header has a unique predecessor outside the loop, it must be
5578 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005579 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005580 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005581
Dan Gohman005752b2010-04-15 16:19:08 +00005582 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005583}
5584
Dan Gohman763bad12009-06-20 00:35:32 +00005585/// HasSameValue - SCEV structural equivalence is usually sufficient for
5586/// testing whether two expressions are equal, however for the purposes of
5587/// looking for a condition guarding a loop, it can be useful to be a little
5588/// more general, since a front-end may have replicated the controlling
5589/// expression.
5590///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005591static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005592 // Quick check to see if they are the same SCEV.
5593 if (A == B) return true;
5594
5595 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5596 // two different instructions with the same value. Check for this case.
5597 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5598 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5599 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5600 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005601 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005602 return true;
5603
5604 // Otherwise assume they may have a different value.
5605 return false;
5606}
5607
Dan Gohmane9796502010-04-24 01:28:42 +00005608/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru94c22712012-09-27 10:14:43 +00005609/// predicate Pred. Return true iff any changes were made.
Dan Gohmane9796502010-04-24 01:28:42 +00005610///
5611bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005612 const SCEV *&LHS, const SCEV *&RHS,
5613 unsigned Depth) {
Dan Gohmane9796502010-04-24 01:28:42 +00005614 bool Changed = false;
5615
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005616 // If we hit the max recursion limit bail out.
5617 if (Depth >= 3)
5618 return false;
5619
Dan Gohmane9796502010-04-24 01:28:42 +00005620 // Canonicalize a constant to the right side.
5621 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5622 // Check for both operands constant.
5623 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5624 if (ConstantExpr::getICmp(Pred,
5625 LHSC->getValue(),
5626 RHSC->getValue())->isNullValue())
5627 goto trivially_false;
5628 else
5629 goto trivially_true;
5630 }
5631 // Otherwise swap the operands to put the constant on the right.
5632 std::swap(LHS, RHS);
5633 Pred = ICmpInst::getSwappedPredicate(Pred);
5634 Changed = true;
5635 }
5636
5637 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005638 // addrec's loop, put the addrec on the left. Also make a dominance check,
5639 // as both operands could be addrecs loop-invariant in each other's loop.
5640 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5641 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005642 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005643 std::swap(LHS, RHS);
5644 Pred = ICmpInst::getSwappedPredicate(Pred);
5645 Changed = true;
5646 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005647 }
Dan Gohmane9796502010-04-24 01:28:42 +00005648
5649 // If there's a constant operand, canonicalize comparisons with boundary
5650 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5651 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5652 const APInt &RA = RC->getValue()->getValue();
5653 switch (Pred) {
5654 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5655 case ICmpInst::ICMP_EQ:
5656 case ICmpInst::ICMP_NE:
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005657 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5658 if (!RA)
5659 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5660 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer127563b2012-05-30 18:42:43 +00005661 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5662 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005663 RHS = AE->getOperand(1);
5664 LHS = ME->getOperand(1);
5665 Changed = true;
5666 }
Dan Gohmane9796502010-04-24 01:28:42 +00005667 break;
5668 case ICmpInst::ICMP_UGE:
5669 if ((RA - 1).isMinValue()) {
5670 Pred = ICmpInst::ICMP_NE;
5671 RHS = getConstant(RA - 1);
5672 Changed = true;
5673 break;
5674 }
5675 if (RA.isMaxValue()) {
5676 Pred = ICmpInst::ICMP_EQ;
5677 Changed = true;
5678 break;
5679 }
5680 if (RA.isMinValue()) goto trivially_true;
5681
5682 Pred = ICmpInst::ICMP_UGT;
5683 RHS = getConstant(RA - 1);
5684 Changed = true;
5685 break;
5686 case ICmpInst::ICMP_ULE:
5687 if ((RA + 1).isMaxValue()) {
5688 Pred = ICmpInst::ICMP_NE;
5689 RHS = getConstant(RA + 1);
5690 Changed = true;
5691 break;
5692 }
5693 if (RA.isMinValue()) {
5694 Pred = ICmpInst::ICMP_EQ;
5695 Changed = true;
5696 break;
5697 }
5698 if (RA.isMaxValue()) goto trivially_true;
5699
5700 Pred = ICmpInst::ICMP_ULT;
5701 RHS = getConstant(RA + 1);
5702 Changed = true;
5703 break;
5704 case ICmpInst::ICMP_SGE:
5705 if ((RA - 1).isMinSignedValue()) {
5706 Pred = ICmpInst::ICMP_NE;
5707 RHS = getConstant(RA - 1);
5708 Changed = true;
5709 break;
5710 }
5711 if (RA.isMaxSignedValue()) {
5712 Pred = ICmpInst::ICMP_EQ;
5713 Changed = true;
5714 break;
5715 }
5716 if (RA.isMinSignedValue()) goto trivially_true;
5717
5718 Pred = ICmpInst::ICMP_SGT;
5719 RHS = getConstant(RA - 1);
5720 Changed = true;
5721 break;
5722 case ICmpInst::ICMP_SLE:
5723 if ((RA + 1).isMaxSignedValue()) {
5724 Pred = ICmpInst::ICMP_NE;
5725 RHS = getConstant(RA + 1);
5726 Changed = true;
5727 break;
5728 }
5729 if (RA.isMinSignedValue()) {
5730 Pred = ICmpInst::ICMP_EQ;
5731 Changed = true;
5732 break;
5733 }
5734 if (RA.isMaxSignedValue()) goto trivially_true;
5735
5736 Pred = ICmpInst::ICMP_SLT;
5737 RHS = getConstant(RA + 1);
5738 Changed = true;
5739 break;
5740 case ICmpInst::ICMP_UGT:
5741 if (RA.isMinValue()) {
5742 Pred = ICmpInst::ICMP_NE;
5743 Changed = true;
5744 break;
5745 }
5746 if ((RA + 1).isMaxValue()) {
5747 Pred = ICmpInst::ICMP_EQ;
5748 RHS = getConstant(RA + 1);
5749 Changed = true;
5750 break;
5751 }
5752 if (RA.isMaxValue()) goto trivially_false;
5753 break;
5754 case ICmpInst::ICMP_ULT:
5755 if (RA.isMaxValue()) {
5756 Pred = ICmpInst::ICMP_NE;
5757 Changed = true;
5758 break;
5759 }
5760 if ((RA - 1).isMinValue()) {
5761 Pred = ICmpInst::ICMP_EQ;
5762 RHS = getConstant(RA - 1);
5763 Changed = true;
5764 break;
5765 }
5766 if (RA.isMinValue()) goto trivially_false;
5767 break;
5768 case ICmpInst::ICMP_SGT:
5769 if (RA.isMinSignedValue()) {
5770 Pred = ICmpInst::ICMP_NE;
5771 Changed = true;
5772 break;
5773 }
5774 if ((RA + 1).isMaxSignedValue()) {
5775 Pred = ICmpInst::ICMP_EQ;
5776 RHS = getConstant(RA + 1);
5777 Changed = true;
5778 break;
5779 }
5780 if (RA.isMaxSignedValue()) goto trivially_false;
5781 break;
5782 case ICmpInst::ICMP_SLT:
5783 if (RA.isMaxSignedValue()) {
5784 Pred = ICmpInst::ICMP_NE;
5785 Changed = true;
5786 break;
5787 }
5788 if ((RA - 1).isMinSignedValue()) {
5789 Pred = ICmpInst::ICMP_EQ;
5790 RHS = getConstant(RA - 1);
5791 Changed = true;
5792 break;
5793 }
5794 if (RA.isMinSignedValue()) goto trivially_false;
5795 break;
5796 }
5797 }
5798
5799 // Check for obvious equality.
5800 if (HasSameValue(LHS, RHS)) {
5801 if (ICmpInst::isTrueWhenEqual(Pred))
5802 goto trivially_true;
5803 if (ICmpInst::isFalseWhenEqual(Pred))
5804 goto trivially_false;
5805 }
5806
Dan Gohman03557dc2010-05-03 16:35:17 +00005807 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5808 // adding or subtracting 1 from one of the operands.
5809 switch (Pred) {
5810 case ICmpInst::ICMP_SLE:
5811 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5812 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005813 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005814 Pred = ICmpInst::ICMP_SLT;
5815 Changed = true;
5816 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005817 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005818 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005819 Pred = ICmpInst::ICMP_SLT;
5820 Changed = true;
5821 }
5822 break;
5823 case ICmpInst::ICMP_SGE:
5824 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005825 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005826 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005827 Pred = ICmpInst::ICMP_SGT;
5828 Changed = true;
5829 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5830 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005831 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005832 Pred = ICmpInst::ICMP_SGT;
5833 Changed = true;
5834 }
5835 break;
5836 case ICmpInst::ICMP_ULE:
5837 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005838 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005839 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005840 Pred = ICmpInst::ICMP_ULT;
5841 Changed = true;
5842 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005843 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005844 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005845 Pred = ICmpInst::ICMP_ULT;
5846 Changed = true;
5847 }
5848 break;
5849 case ICmpInst::ICMP_UGE:
5850 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005851 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005852 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005853 Pred = ICmpInst::ICMP_UGT;
5854 Changed = true;
5855 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005856 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005857 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005858 Pred = ICmpInst::ICMP_UGT;
5859 Changed = true;
5860 }
5861 break;
5862 default:
5863 break;
5864 }
5865
Dan Gohmane9796502010-04-24 01:28:42 +00005866 // TODO: More simplifications are possible here.
5867
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005868 // Recursively simplify until we either hit a recursion limit or nothing
5869 // changes.
5870 if (Changed)
5871 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5872
Dan Gohmane9796502010-04-24 01:28:42 +00005873 return Changed;
5874
5875trivially_true:
5876 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005877 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005878 Pred = ICmpInst::ICMP_EQ;
5879 return true;
5880
5881trivially_false:
5882 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005883 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005884 Pred = ICmpInst::ICMP_NE;
5885 return true;
5886}
5887
Dan Gohman85b05a22009-07-13 21:35:55 +00005888bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5889 return getSignedRange(S).getSignedMax().isNegative();
5890}
5891
5892bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5893 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5894}
5895
5896bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5897 return !getSignedRange(S).getSignedMin().isNegative();
5898}
5899
5900bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5901 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5902}
5903
5904bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5905 return isKnownNegative(S) || isKnownPositive(S);
5906}
5907
5908bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5909 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005910 // Canonicalize the inputs first.
5911 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5912
Dan Gohman53c66ea2010-04-11 22:16:48 +00005913 // If LHS or RHS is an addrec, check to see if the condition is true in
5914 // every iteration of the loop.
5915 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5916 if (isLoopEntryGuardedByCond(
5917 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5918 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005919 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005920 return true;
5921 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5922 if (isLoopEntryGuardedByCond(
5923 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5924 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005925 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005926 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005927
Dan Gohman53c66ea2010-04-11 22:16:48 +00005928 // Otherwise see what can be done with known constant ranges.
5929 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5930}
5931
5932bool
5933ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5934 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005935 if (HasSameValue(LHS, RHS))
5936 return ICmpInst::isTrueWhenEqual(Pred);
5937
Dan Gohman53c66ea2010-04-11 22:16:48 +00005938 // This code is split out from isKnownPredicate because it is called from
5939 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005940 switch (Pred) {
5941 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005942 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005943 case ICmpInst::ICMP_SGT:
5944 Pred = ICmpInst::ICMP_SLT;
5945 std::swap(LHS, RHS);
5946 case ICmpInst::ICMP_SLT: {
5947 ConstantRange LHSRange = getSignedRange(LHS);
5948 ConstantRange RHSRange = getSignedRange(RHS);
5949 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5950 return true;
5951 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5952 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005953 break;
5954 }
5955 case ICmpInst::ICMP_SGE:
5956 Pred = ICmpInst::ICMP_SLE;
5957 std::swap(LHS, RHS);
5958 case ICmpInst::ICMP_SLE: {
5959 ConstantRange LHSRange = getSignedRange(LHS);
5960 ConstantRange RHSRange = getSignedRange(RHS);
5961 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5962 return true;
5963 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5964 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005965 break;
5966 }
5967 case ICmpInst::ICMP_UGT:
5968 Pred = ICmpInst::ICMP_ULT;
5969 std::swap(LHS, RHS);
5970 case ICmpInst::ICMP_ULT: {
5971 ConstantRange LHSRange = getUnsignedRange(LHS);
5972 ConstantRange RHSRange = getUnsignedRange(RHS);
5973 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5974 return true;
5975 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5976 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005977 break;
5978 }
5979 case ICmpInst::ICMP_UGE:
5980 Pred = ICmpInst::ICMP_ULE;
5981 std::swap(LHS, RHS);
5982 case ICmpInst::ICMP_ULE: {
5983 ConstantRange LHSRange = getUnsignedRange(LHS);
5984 ConstantRange RHSRange = getUnsignedRange(RHS);
5985 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5986 return true;
5987 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5988 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005989 break;
5990 }
5991 case ICmpInst::ICMP_NE: {
5992 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5993 return true;
5994 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5995 return true;
5996
5997 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5998 if (isKnownNonZero(Diff))
5999 return true;
6000 break;
6001 }
6002 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00006003 // The check at the top of the function catches the case where
6004 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00006005 break;
6006 }
6007 return false;
6008}
6009
6010/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6011/// protected by a conditional between LHS and RHS. This is used to
6012/// to eliminate casts.
6013bool
6014ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6015 ICmpInst::Predicate Pred,
6016 const SCEV *LHS, const SCEV *RHS) {
6017 // Interpret a null as meaning no loop, where there is obviously no guard
6018 // (interprocedural conditions notwithstanding).
6019 if (!L) return true;
6020
6021 BasicBlock *Latch = L->getLoopLatch();
6022 if (!Latch)
6023 return false;
6024
6025 BranchInst *LoopContinuePredicate =
6026 dyn_cast<BranchInst>(Latch->getTerminator());
6027 if (!LoopContinuePredicate ||
6028 LoopContinuePredicate->isUnconditional())
6029 return false;
6030
Dan Gohmanaf08a362010-08-10 23:46:30 +00006031 return isImpliedCond(Pred, LHS, RHS,
6032 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006033 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006034}
6035
Dan Gohman3948d0b2010-04-11 19:27:13 +00006036/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006037/// by a conditional between LHS and RHS. This is used to help avoid max
6038/// expressions in loop trip counts, and to eliminate casts.
6039bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006040ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6041 ICmpInst::Predicate Pred,
6042 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006043 // Interpret a null as meaning no loop, where there is obviously no guard
6044 // (interprocedural conditions notwithstanding).
6045 if (!L) return false;
6046
Dan Gohman859b4822009-05-18 15:36:09 +00006047 // Starting at the loop predecessor, climb up the predecessor chain, as long
6048 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006049 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006050 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006051 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006052 Pair.first;
6053 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006054
6055 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006056 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006057 if (!LoopEntryPredicate ||
6058 LoopEntryPredicate->isUnconditional())
6059 continue;
6060
Dan Gohmanaf08a362010-08-10 23:46:30 +00006061 if (isImpliedCond(Pred, LHS, RHS,
6062 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006063 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006064 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006065 }
6066
Dan Gohman38372182008-08-12 20:17:31 +00006067 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006068}
6069
Andrew Trick8aa22012012-05-19 00:48:25 +00006070/// RAII wrapper to prevent recursive application of isImpliedCond.
6071/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6072/// currently evaluating isImpliedCond.
6073struct MarkPendingLoopPredicate {
6074 Value *Cond;
6075 DenseSet<Value*> &LoopPreds;
6076 bool Pending;
6077
6078 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6079 : Cond(C), LoopPreds(LP) {
6080 Pending = !LoopPreds.insert(Cond).second;
6081 }
6082 ~MarkPendingLoopPredicate() {
6083 if (!Pending)
6084 LoopPreds.erase(Cond);
6085 }
6086};
6087
Dan Gohman0f4b2852009-07-21 23:03:19 +00006088/// isImpliedCond - Test whether the condition described by Pred, LHS,
6089/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006090bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006091 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006092 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006093 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006094 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6095 if (Mark.Pending)
6096 return false;
6097
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006098 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006099 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006100 if (BO->getOpcode() == Instruction::And) {
6101 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006102 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6103 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006104 } else if (BO->getOpcode() == Instruction::Or) {
6105 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006106 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6107 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006108 }
6109 }
6110
Dan Gohmanaf08a362010-08-10 23:46:30 +00006111 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006112 if (!ICI) return false;
6113
Dan Gohman85b05a22009-07-13 21:35:55 +00006114 // Bail if the ICmp's operands' types are wider than the needed type
6115 // before attempting to call getSCEV on them. This avoids infinite
6116 // recursion, since the analysis of widening casts can require loop
6117 // exit condition information for overflow checking, which would
6118 // lead back here.
6119 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006120 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006121 return false;
6122
Andrew Trickffc9ee42012-11-29 18:35:13 +00006123 // Now that we found a conditional branch that dominates the loop or controls
6124 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman0f4b2852009-07-21 23:03:19 +00006125 ICmpInst::Predicate FoundPred;
6126 if (Inverse)
6127 FoundPred = ICI->getInversePredicate();
6128 else
6129 FoundPred = ICI->getPredicate();
6130
6131 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6132 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006133
6134 // Balance the types. The case where FoundLHS' type is wider than
6135 // LHS' type is checked for above.
6136 if (getTypeSizeInBits(LHS->getType()) >
6137 getTypeSizeInBits(FoundLHS->getType())) {
6138 if (CmpInst::isSigned(Pred)) {
6139 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6140 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6141 } else {
6142 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6143 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6144 }
6145 }
6146
Dan Gohman0f4b2852009-07-21 23:03:19 +00006147 // Canonicalize the query to match the way instcombine will have
6148 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006149 if (SimplifyICmpOperands(Pred, LHS, RHS))
6150 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006151 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramer7d4253a2012-11-29 19:07:57 +00006152 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6153 if (FoundLHS == FoundRHS)
6154 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006155
6156 // Check to see if we can make the LHS or RHS match.
6157 if (LHS == FoundRHS || RHS == FoundLHS) {
6158 if (isa<SCEVConstant>(RHS)) {
6159 std::swap(FoundLHS, FoundRHS);
6160 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6161 } else {
6162 std::swap(LHS, RHS);
6163 Pred = ICmpInst::getSwappedPredicate(Pred);
6164 }
6165 }
6166
6167 // Check whether the found predicate is the same as the desired predicate.
6168 if (FoundPred == Pred)
6169 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6170
6171 // Check whether swapping the found predicate makes it the same as the
6172 // desired predicate.
6173 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6174 if (isa<SCEVConstant>(RHS))
6175 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6176 else
6177 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6178 RHS, LHS, FoundLHS, FoundRHS);
6179 }
6180
6181 // Check whether the actual condition is beyond sufficient.
6182 if (FoundPred == ICmpInst::ICMP_EQ)
6183 if (ICmpInst::isTrueWhenEqual(Pred))
6184 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6185 return true;
6186 if (Pred == ICmpInst::ICMP_NE)
6187 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6188 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6189 return true;
6190
6191 // Otherwise assume the worst.
6192 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006193}
6194
Dan Gohman0f4b2852009-07-21 23:03:19 +00006195/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006196/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006197/// and FoundRHS is true.
6198bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6199 const SCEV *LHS, const SCEV *RHS,
6200 const SCEV *FoundLHS,
6201 const SCEV *FoundRHS) {
6202 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6203 FoundLHS, FoundRHS) ||
6204 // ~x < ~y --> x > y
6205 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6206 getNotSCEV(FoundRHS),
6207 getNotSCEV(FoundLHS));
6208}
6209
6210/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006211/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006212/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006213bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006214ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6215 const SCEV *LHS, const SCEV *RHS,
6216 const SCEV *FoundLHS,
6217 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006218 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006219 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6220 case ICmpInst::ICMP_EQ:
6221 case ICmpInst::ICMP_NE:
6222 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6223 return true;
6224 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006225 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006226 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006227 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6228 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006229 return true;
6230 break;
6231 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006232 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006233 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6234 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006235 return true;
6236 break;
6237 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006238 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006239 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6240 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006241 return true;
6242 break;
6243 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006244 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006245 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6246 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006247 return true;
6248 break;
6249 }
6250
6251 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006252}
6253
Dan Gohman51f53b72009-06-21 23:46:38 +00006254/// getBECount - Subtract the end and start values and divide by the step,
6255/// rounding up, to get the number of times the backedge is executed. Return
6256/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006257const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006258 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006259 const SCEV *Step,
6260 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006261 assert(!isKnownNegative(Step) &&
6262 "This code doesn't handle negative strides yet!");
6263
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006264 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006265
6266 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6267 // here because SCEV may not be able to determine that the unsigned division
6268 // after rounding is zero.
6269 if (Start == End)
6270 return getConstant(Ty, 0);
6271
Dan Gohmandeff6212010-05-03 22:09:21 +00006272 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006273 const SCEV *Diff = getMinusSCEV(End, Start);
6274 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006275
6276 // Add an adjustment to the difference between End and Start so that
6277 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006278 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006279
Dan Gohman1f96e672009-09-17 18:05:20 +00006280 if (!NoWrap) {
6281 // Check Add for unsigned overflow.
6282 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006283 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006284 getTypeSizeInBits(Ty) + 1);
6285 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6286 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6287 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6288 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6289 return getCouldNotCompute();
6290 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006291
6292 return getUDivExpr(Add, Step);
6293}
6294
Chris Lattnerdb25de42005-08-15 23:33:51 +00006295/// HowManyLessThans - Return the number of times a backedge containing the
6296/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006297/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006298ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006299ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6300 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006301 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006302 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006303
Dan Gohman35738ac2009-05-04 22:30:44 +00006304 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006305 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006306 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006307
Dan Gohman1f96e672009-09-17 18:05:20 +00006308 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006309 bool NoWrap = isSigned ?
6310 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6311 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006312
Chris Lattnerdb25de42005-08-15 23:33:51 +00006313 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006314 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006315 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006316
Dan Gohman52fddd32010-01-26 04:40:18 +00006317 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006318 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006319 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006320 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006321 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006322 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006323 // value and past the maximum value for its type in a single step.
6324 // Note that it's not sufficient to check NoWrap here, because even
6325 // though the value after a wrap is undefined, it's not undefined
6326 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006327 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006328 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006329 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006330 if (isSigned) {
6331 APInt Max = APInt::getSignedMaxValue(BitWidth);
6332 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6333 .slt(getSignedRange(RHS).getSignedMax()))
6334 return getCouldNotCompute();
6335 } else {
6336 APInt Max = APInt::getMaxValue(BitWidth);
6337 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6338 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6339 return getCouldNotCompute();
6340 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006341 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006342 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006343 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006344
Dan Gohmana1af7572009-04-30 20:47:05 +00006345 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6346 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6347 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006348 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006349
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006350 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006351 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006352
Dan Gohmana1af7572009-04-30 20:47:05 +00006353 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006354 const SCEV *MinStart = getConstant(isSigned ?
6355 getSignedRange(Start).getSignedMin() :
6356 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006357
Dan Gohmana1af7572009-04-30 20:47:05 +00006358 // If we know that the condition is true in order to enter the loop,
6359 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006360 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6361 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006362 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006363 if (!isLoopEntryGuardedByCond(L,
6364 isSigned ? ICmpInst::ICMP_SLT :
6365 ICmpInst::ICMP_ULT,
6366 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006367 End = isSigned ? getSMaxExpr(RHS, Start)
6368 : getUMaxExpr(RHS, Start);
6369
6370 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006371 const SCEV *MaxEnd = getConstant(isSigned ?
6372 getSignedRange(End).getSignedMax() :
6373 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006374
Dan Gohman52fddd32010-01-26 04:40:18 +00006375 // If MaxEnd is within a step of the maximum integer value in its type,
6376 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006377 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006378 // compute the correct value.
6379 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006380 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006381 MaxEnd = isSigned ?
6382 getSMinExpr(MaxEnd,
6383 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6384 StepMinusOne)) :
6385 getUMinExpr(MaxEnd,
6386 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6387 StepMinusOne));
6388
Dan Gohmana1af7572009-04-30 20:47:05 +00006389 // Finally, we subtract these two values and divide, rounding up, to get
6390 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006391 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006392
6393 // The maximum backedge count is similar, except using the minimum start
6394 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006395 // If we already have an exact constant BECount, use it instead.
6396 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6397 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6398
6399 // If the stride is nonconstant, and NoWrap == true, then
6400 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6401 // exact BECount and invalid MaxBECount, which should be avoided to catch
6402 // more optimization opportunities.
6403 if (isa<SCEVCouldNotCompute>(MaxBECount))
6404 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006405
Andrew Trick5116ff62011-07-26 17:19:55 +00006406 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006407 }
6408
Dan Gohman1c343752009-06-27 21:21:31 +00006409 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006410}
6411
Chris Lattner53e677a2004-04-02 20:23:17 +00006412/// getNumIterationsInRange - Return the number of iterations of this loop that
6413/// produce values in the specified constant range. Another way of looking at
6414/// this is that it returns the first iteration number where the value is not in
6415/// the condition, thus computing the exit count. If the iteration count can't
6416/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006417const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006418 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006419 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006420 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006421
6422 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006423 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006424 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006425 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006426 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006427 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006428 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006429 if (const SCEVAddRecExpr *ShiftedAddRec =
6430 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006431 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006432 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006433 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006434 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006435 }
6436
6437 // The only time we can solve this is when we have all constant indices.
6438 // Otherwise, we cannot determine the overflow conditions.
6439 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6440 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006441 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006442
6443
6444 // Okay at this point we know that all elements of the chrec are constants and
6445 // that the start element is zero.
6446
6447 // First check to see if the range contains zero. If not, the first
6448 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006449 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006450 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006451 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006452
Chris Lattner53e677a2004-04-02 20:23:17 +00006453 if (isAffine()) {
6454 // If this is an affine expression then we have this situation:
6455 // Solve {0,+,A} in Range === Ax in Range
6456
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006457 // We know that zero is in the range. If A is positive then we know that
6458 // the upper value of the range must be the first possible exit value.
6459 // If A is negative then the lower of the range is the last possible loop
6460 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006461 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006462 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6463 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006464
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006465 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006466 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006467 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006468
6469 // Evaluate at the exit value. If we really did fall out of the valid
6470 // range, then we computed our trip count, otherwise wrap around or other
6471 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006472 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006473 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006474 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006475
6476 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006477 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006478 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006479 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006480 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006481 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006482 } else if (isQuadratic()) {
6483 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6484 // quadratic equation to solve it. To do this, we must frame our problem in
6485 // terms of figuring out when zero is crossed, instead of when
6486 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006487 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006488 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006489 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6490 // getNoWrapFlags(FlagNW)
6491 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006492
6493 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006494 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006495 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006496 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6497 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006498 if (R1) {
6499 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006500 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006501 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006502 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006503 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006504 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006505
Chris Lattner53e677a2004-04-02 20:23:17 +00006506 // Make sure the root is not off by one. The returned iteration should
6507 // not be in the range, but the previous one should be. When solving
6508 // for "X*X < 5", for example, we should not return a root of 2.
6509 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006510 R1->getValue(),
6511 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006512 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006513 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006514 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006515 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006516
Dan Gohman246b2562007-10-22 18:31:58 +00006517 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006518 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006519 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006520 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006521 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006522
Chris Lattner53e677a2004-04-02 20:23:17 +00006523 // If R1 was not in the range, then it is a good return value. Make
6524 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006525 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006526 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006527 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006528 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006529 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006530 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006531 }
6532 }
6533 }
6534
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006535 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006536}
6537
6538
6539
6540//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006541// SCEVCallbackVH Class Implementation
6542//===----------------------------------------------------------------------===//
6543
Dan Gohman1959b752009-05-19 19:22:47 +00006544void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006545 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006546 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6547 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006548 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006549 // this now dangles!
6550}
6551
Dan Gohman81f91212010-07-28 01:09:07 +00006552void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006553 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006554
Dan Gohman35738ac2009-05-04 22:30:44 +00006555 // Forget all the expressions associated with users of the old value,
6556 // so that future queries will recompute the expressions using the new
6557 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006558 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006559 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006560 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006561 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6562 UI != UE; ++UI)
6563 Worklist.push_back(*UI);
6564 while (!Worklist.empty()) {
6565 User *U = Worklist.pop_back_val();
6566 // Deleting the Old value will cause this to dangle. Postpone
6567 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006568 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006569 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006570 if (!Visited.insert(U))
6571 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006572 if (PHINode *PN = dyn_cast<PHINode>(U))
6573 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006574 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006575 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6576 UI != UE; ++UI)
6577 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006578 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006579 // Delete the Old value.
6580 if (PHINode *PN = dyn_cast<PHINode>(Old))
6581 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006582 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006583 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006584}
6585
Dan Gohman1959b752009-05-19 19:22:47 +00006586ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006587 : CallbackVH(V), SE(se) {}
6588
6589//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006590// ScalarEvolution Class Implementation
6591//===----------------------------------------------------------------------===//
6592
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006593ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006594 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006595 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006596}
6597
Chris Lattner53e677a2004-04-02 20:23:17 +00006598bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006599 this->F = &F;
6600 LI = &getAnalysis<LoopInfo>();
Micah Villmow3574eca2012-10-08 16:38:25 +00006601 TD = getAnalysisIfAvailable<DataLayout>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006602 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006603 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006604 return false;
6605}
6606
6607void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006608 // Iterate through all the SCEVUnknown instances and call their
6609 // destructors, so that they release their references to their values.
6610 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6611 U->~SCEVUnknown();
6612 FirstUnknown = 0;
6613
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006614 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006615
6616 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6617 // that a loop had multiple computable exits.
6618 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6619 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6620 I != E; ++I) {
6621 I->second.clear();
6622 }
6623
Andrew Trick8aa22012012-05-19 00:48:25 +00006624 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6625
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006626 BackedgeTakenCounts.clear();
6627 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006628 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006629 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006630 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006631 UnsignedRanges.clear();
6632 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006633 UniqueSCEVs.clear();
6634 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006635}
6636
6637void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6638 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006639 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006640 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006641 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006642}
6643
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006644bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006645 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006646}
6647
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006648static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006649 const Loop *L) {
6650 // Print all inner loops first
6651 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6652 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006653
Dan Gohman30733292010-01-09 18:17:45 +00006654 OS << "Loop ";
6655 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6656 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006657
Dan Gohman5d984912009-12-18 01:14:11 +00006658 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006659 L->getExitBlocks(ExitBlocks);
6660 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006661 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006662
Dan Gohman46bdfb02009-02-24 18:55:53 +00006663 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6664 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006665 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006666 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006667 }
6668
Dan Gohman30733292010-01-09 18:17:45 +00006669 OS << "\n"
6670 "Loop ";
6671 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6672 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006673
6674 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6675 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6676 } else {
6677 OS << "Unpredictable max backedge-taken count. ";
6678 }
6679
6680 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006681}
6682
Dan Gohman5d984912009-12-18 01:14:11 +00006683void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006684 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006685 // out SCEV values of all instructions that are interesting. Doing
6686 // this potentially causes it to create new SCEV objects though,
6687 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006688 // observable from outside the class though, so casting away the
6689 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006690 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006691
Dan Gohman30733292010-01-09 18:17:45 +00006692 OS << "Classifying expressions for: ";
6693 WriteAsOperand(OS, F, /*PrintType=*/false);
6694 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006695 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006696 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006697 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006698 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006699 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006700 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006701
Dan Gohman0c689c52009-06-19 17:49:54 +00006702 const Loop *L = LI->getLoopFor((*I).getParent());
6703
Dan Gohman0bba49c2009-07-07 17:06:11 +00006704 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006705 if (AtUse != SV) {
6706 OS << " --> ";
6707 AtUse->print(OS);
6708 }
6709
6710 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006711 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006712 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006713 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006714 OS << "<<Unknown>>";
6715 } else {
6716 OS << *ExitValue;
6717 }
6718 }
6719
Chris Lattner53e677a2004-04-02 20:23:17 +00006720 OS << "\n";
6721 }
6722
Dan Gohman30733292010-01-09 18:17:45 +00006723 OS << "Determining loop execution counts for: ";
6724 WriteAsOperand(OS, F, /*PrintType=*/false);
6725 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006726 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6727 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006728}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006729
Dan Gohman714b5292010-11-17 23:21:44 +00006730ScalarEvolution::LoopDisposition
6731ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6732 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6733 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6734 Values.insert(std::make_pair(L, LoopVariant));
6735 if (!Pair.second)
6736 return Pair.first->second;
6737
6738 LoopDisposition D = computeLoopDisposition(S, L);
6739 return LoopDispositions[S][L] = D;
6740}
6741
6742ScalarEvolution::LoopDisposition
6743ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006744 switch (S->getSCEVType()) {
6745 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006746 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006747 case scTruncate:
6748 case scZeroExtend:
6749 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006750 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006751 case scAddRecExpr: {
6752 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6753
Dan Gohman714b5292010-11-17 23:21:44 +00006754 // If L is the addrec's loop, it's computable.
6755 if (AR->getLoop() == L)
6756 return LoopComputable;
6757
Dan Gohman17ead4f2010-11-17 21:23:15 +00006758 // Add recurrences are never invariant in the function-body (null loop).
6759 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006760 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006761
6762 // This recurrence is variant w.r.t. L if L contains AR's loop.
6763 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006764 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006765
6766 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6767 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006768 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006769
6770 // This recurrence is variant w.r.t. L if any of its operands
6771 // are variant.
6772 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6773 I != E; ++I)
6774 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006775 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006776
6777 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006778 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006779 }
6780 case scAddExpr:
6781 case scMulExpr:
6782 case scUMaxExpr:
6783 case scSMaxExpr: {
6784 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006785 bool HasVarying = false;
6786 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6787 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006788 LoopDisposition D = getLoopDisposition(*I, L);
6789 if (D == LoopVariant)
6790 return LoopVariant;
6791 if (D == LoopComputable)
6792 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006793 }
Dan Gohman714b5292010-11-17 23:21:44 +00006794 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006795 }
6796 case scUDivExpr: {
6797 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006798 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6799 if (LD == LoopVariant)
6800 return LoopVariant;
6801 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6802 if (RD == LoopVariant)
6803 return LoopVariant;
6804 return (LD == LoopInvariant && RD == LoopInvariant) ?
6805 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006806 }
6807 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006808 // All non-instruction values are loop invariant. All instructions are loop
6809 // invariant if they are not contained in the specified loop.
6810 // Instructions are never considered invariant in the function body
6811 // (null loop) because they are defined within the "loop".
6812 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6813 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6814 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006815 case scCouldNotCompute:
6816 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006817 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006818 }
Dan Gohman714b5292010-11-17 23:21:44 +00006819}
6820
6821bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6822 return getLoopDisposition(S, L) == LoopInvariant;
6823}
6824
6825bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6826 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006827}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006828
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006829ScalarEvolution::BlockDisposition
6830ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6831 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6832 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6833 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6834 if (!Pair.second)
6835 return Pair.first->second;
6836
6837 BlockDisposition D = computeBlockDisposition(S, BB);
6838 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006839}
6840
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006841ScalarEvolution::BlockDisposition
6842ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006843 switch (S->getSCEVType()) {
6844 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006845 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006846 case scTruncate:
6847 case scZeroExtend:
6848 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006849 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006850 case scAddRecExpr: {
6851 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006852 // to test for proper dominance too, because the instruction which
6853 // produces the addrec's value is a PHI, and a PHI effectively properly
6854 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006855 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6856 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006857 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006858 }
6859 // FALL THROUGH into SCEVNAryExpr handling.
6860 case scAddExpr:
6861 case scMulExpr:
6862 case scUMaxExpr:
6863 case scSMaxExpr: {
6864 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006865 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006866 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006867 I != E; ++I) {
6868 BlockDisposition D = getBlockDisposition(*I, BB);
6869 if (D == DoesNotDominateBlock)
6870 return DoesNotDominateBlock;
6871 if (D == DominatesBlock)
6872 Proper = false;
6873 }
6874 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006875 }
6876 case scUDivExpr: {
6877 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006878 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6879 BlockDisposition LD = getBlockDisposition(LHS, BB);
6880 if (LD == DoesNotDominateBlock)
6881 return DoesNotDominateBlock;
6882 BlockDisposition RD = getBlockDisposition(RHS, BB);
6883 if (RD == DoesNotDominateBlock)
6884 return DoesNotDominateBlock;
6885 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6886 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006887 }
6888 case scUnknown:
6889 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006890 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6891 if (I->getParent() == BB)
6892 return DominatesBlock;
6893 if (DT->properlyDominates(I->getParent(), BB))
6894 return ProperlyDominatesBlock;
6895 return DoesNotDominateBlock;
6896 }
6897 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006898 case scCouldNotCompute:
6899 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006900 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006901 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006902 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006903}
6904
6905bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6906 return getBlockDisposition(S, BB) >= DominatesBlock;
6907}
6908
6909bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6910 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006911}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006912
Andrew Trick8b7036b2012-07-13 23:33:03 +00006913namespace {
6914// Search for a SCEV expression node within an expression tree.
6915// Implements SCEVTraversal::Visitor.
6916struct SCEVSearch {
6917 const SCEV *Node;
6918 bool IsFound;
6919
6920 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
6921
6922 bool follow(const SCEV *S) {
6923 IsFound |= (S == Node);
6924 return !IsFound;
6925 }
6926 bool isDone() const { return IsFound; }
6927};
6928}
6929
Dan Gohman4ce32db2010-11-17 22:27:42 +00006930bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick8b7036b2012-07-13 23:33:03 +00006931 SCEVSearch Search(Op);
6932 visitAll(S, Search);
6933 return Search.IsFound;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006934}
Dan Gohman56a75682010-11-17 23:28:48 +00006935
6936void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6937 ValuesAtScopes.erase(S);
6938 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006939 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006940 UnsignedRanges.erase(S);
6941 SignedRanges.erase(S);
6942}
Benjamin Kramerff183102012-10-26 17:31:32 +00006943
6944typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00006945
6946/// replaceSubString - Replaces all occurences of From in Str with To.
6947static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
6948 size_t Pos = 0;
6949 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
6950 Str.replace(Pos, From.size(), To.data(), To.size());
6951 Pos += To.size();
6952 }
6953}
6954
Benjamin Kramerff183102012-10-26 17:31:32 +00006955/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
6956static void
6957getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
6958 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
6959 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
6960
6961 std::string &S = Map[L];
6962 if (S.empty()) {
6963 raw_string_ostream OS(S);
6964 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00006965
6966 // false and 0 are semantically equivalent. This can happen in dead loops.
6967 replaceSubString(OS.str(), "false", "0");
6968 // Remove wrap flags, their use in SCEV is highly fragile.
6969 // FIXME: Remove this when SCEV gets smarter about them.
6970 replaceSubString(OS.str(), "<nw>", "");
6971 replaceSubString(OS.str(), "<nsw>", "");
6972 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramerff183102012-10-26 17:31:32 +00006973 }
6974 }
6975}
6976
6977void ScalarEvolution::verifyAnalysis() const {
6978 if (!VerifySCEV)
6979 return;
6980
6981 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6982
6983 // Gather stringified backedge taken counts for all loops using SCEV's caches.
6984 // FIXME: It would be much better to store actual values instead of strings,
6985 // but SCEV pointers will change if we drop the caches.
6986 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
6987 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
6988 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
6989
6990 // Gather stringified backedge taken counts for all loops without using
6991 // SCEV's caches.
6992 SE.releaseMemory();
6993 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
6994 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
6995
6996 // Now compare whether they're the same with and without caches. This allows
6997 // verifying that no pass changed the cache.
6998 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
6999 "New loops suddenly appeared!");
7000
7001 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7002 OldE = BackedgeDumpsOld.end(),
7003 NewI = BackedgeDumpsNew.begin();
7004 OldI != OldE; ++OldI, ++NewI) {
7005 assert(OldI->first == NewI->first && "Loop order changed!");
7006
7007 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7008 // changes.
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007009 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramerff183102012-10-26 17:31:32 +00007010 // means that a pass is buggy or SCEV has to learn a new pattern but is
7011 // usually not harmful.
7012 if (OldI->second != NewI->second &&
7013 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007014 NewI->second.find("undef") == std::string::npos &&
7015 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramerff183102012-10-26 17:31:32 +00007016 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007017 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramerff183102012-10-26 17:31:32 +00007018 << OldI->first->getHeader()->getName()
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007019 << "' changed from '" << OldI->second
7020 << "' to '" << NewI->second << "'!\n";
Benjamin Kramerff183102012-10-26 17:31:32 +00007021 std::abort();
7022 }
7023 }
7024
7025 // TODO: Verify more things.
7026}