blob: 45dcc5e37ecfb8517d58e22ff8ede7b0acc97b25 [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000016#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman24371272010-12-15 20:10:26 +000017#include "llvm/Analysis/InstructionSimplify.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000018#include "llvm/IR/Constants.h"
19#include "llvm/IR/DataLayout.h"
20#include "llvm/IR/GlobalAlias.h"
21#include "llvm/IR/GlobalVariable.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/LLVMContext.h"
25#include "llvm/IR/Metadata.h"
26#include "llvm/IR/Operator.h"
Rafael Espindola7c7121e2012-03-30 15:52:11 +000027#include "llvm/Support/ConstantRange.h"
Chris Lattner173234a2008-06-02 01:18:21 +000028#include "llvm/Support/GetElementPtrTypeIterator.h"
29#include "llvm/Support/MathExtras.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000030#include "llvm/Support/PatternMatch.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000031#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000032using namespace llvm;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000033using namespace llvm::PatternMatch;
34
35const unsigned MaxDepth = 6;
36
37/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38/// unknown returns 0). For vector types, returns the element type's bitwidth.
Micah Villmow3574eca2012-10-08 16:38:25 +000039static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +000040 if (unsigned BitWidth = Ty->getScalarSizeInBits())
41 return BitWidth;
42 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
Chandler Carruth426c2bf2012-11-01 09:14:31 +000043 return TD ? TD->getPointerSizeInBits() : 0;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000044}
Chris Lattner173234a2008-06-02 01:18:21 +000045
Nick Lewycky00cbccc2012-03-09 09:23:50 +000046static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
Nick Lewycky00cbccc2012-03-09 09:23:50 +000047 APInt &KnownZero, APInt &KnownOne,
48 APInt &KnownZero2, APInt &KnownOne2,
Micah Villmow3574eca2012-10-08 16:38:25 +000049 const DataLayout *TD, unsigned Depth) {
Nick Lewycky00cbccc2012-03-09 09:23:50 +000050 if (!Add) {
51 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
52 // We know that the top bits of C-X are clear if X contains less bits
53 // than C (i.e. no wrap-around can happen). For example, 20-X is
54 // positive if we can prove that X is >= 0 and < 16.
55 if (!CLHS->getValue().isNegative()) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000056 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewycky00cbccc2012-03-09 09:23:50 +000057 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
58 // NLZ can't be BitWidth with no sign bit
59 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000060 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +000061
Nick Lewycky00cbccc2012-03-09 09:23:50 +000062 // If all of the MaskV bits are known to be zero, then we know the
63 // output top bits are zero, because we now know that the output is
64 // from [0-C].
65 if ((KnownZero2 & MaskV) == MaskV) {
66 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
67 // Top bits known zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000068 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000069 }
70 }
71 }
72 }
73
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000074 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewycky00cbccc2012-03-09 09:23:50 +000075
76 // If one of the operands has trailing zeros, then the bits that the
77 // other operand has in those bit positions will be preserved in the
78 // result. For an add, this works with either operand. For a subtract,
79 // this only works if the known zeros are in the right operand.
80 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000081 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000082 assert((LHSKnownZero & LHSKnownOne) == 0 &&
83 "Bits known to be one AND zero?");
84 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000086 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +000087 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Nick Lewycky00cbccc2012-03-09 09:23:50 +000088 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
89
90 // Determine which operand has more trailing zeros, and use that
91 // many bits from the other operand.
92 if (LHSKnownZeroOut > RHSKnownZeroOut) {
93 if (Add) {
94 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
95 KnownZero |= KnownZero2 & Mask;
96 KnownOne |= KnownOne2 & Mask;
97 } else {
98 // If the known zeros are in the left operand for a subtract,
99 // fall back to the minimum known zeros in both operands.
100 KnownZero |= APInt::getLowBitsSet(BitWidth,
101 std::min(LHSKnownZeroOut,
102 RHSKnownZeroOut));
103 }
104 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
105 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
106 KnownZero |= LHSKnownZero & Mask;
107 KnownOne |= LHSKnownOne & Mask;
108 }
109
110 // Are we still trying to solve for the sign bit?
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000111 if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000112 if (NSW) {
113 if (Add) {
114 // Adding two positive numbers can't wrap into negative
115 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
116 KnownZero |= APInt::getSignBit(BitWidth);
117 // and adding two negative numbers can't wrap into positive.
118 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
119 KnownOne |= APInt::getSignBit(BitWidth);
120 } else {
121 // Subtracting a negative number from a positive one can't wrap
122 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
123 KnownZero |= APInt::getSignBit(BitWidth);
124 // neither can subtracting a positive number from a negative one.
125 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
126 KnownOne |= APInt::getSignBit(BitWidth);
127 }
128 }
129 }
130}
131
Nick Lewyckyf201a062012-03-18 23:28:48 +0000132static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
Nick Lewyckyf201a062012-03-18 23:28:48 +0000133 APInt &KnownZero, APInt &KnownOne,
134 APInt &KnownZero2, APInt &KnownOne2,
Micah Villmow3574eca2012-10-08 16:38:25 +0000135 const DataLayout *TD, unsigned Depth) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000136 unsigned BitWidth = KnownZero.getBitWidth();
137 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
138 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000139 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141
142 bool isKnownNegative = false;
143 bool isKnownNonNegative = false;
144 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000145 if (NSW) {
Nick Lewyckyf201a062012-03-18 23:28:48 +0000146 if (Op0 == Op1) {
147 // The product of a number with itself is non-negative.
148 isKnownNonNegative = true;
149 } else {
150 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
151 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
152 bool isKnownNegativeOp1 = KnownOne.isNegative();
153 bool isKnownNegativeOp0 = KnownOne2.isNegative();
154 // The product of two numbers with the same sign is non-negative.
155 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
156 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
157 // The product of a negative number and a non-negative number is either
158 // negative or zero.
159 if (!isKnownNonNegative)
160 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
161 isKnownNonZero(Op0, TD, Depth)) ||
162 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
163 isKnownNonZero(Op1, TD, Depth));
164 }
165 }
166
167 // If low bits are zero in either operand, output low known-0 bits.
168 // Also compute a conserative estimate for high known-0 bits.
169 // More trickiness is possible, but this is sufficient for the
170 // interesting case of alignment computation.
171 KnownOne.clearAllBits();
172 unsigned TrailZ = KnownZero.countTrailingOnes() +
173 KnownZero2.countTrailingOnes();
174 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
175 KnownZero2.countLeadingOnes(),
176 BitWidth) - BitWidth;
177
178 TrailZ = std::min(TrailZ, BitWidth);
179 LeadZ = std::min(LeadZ, BitWidth);
180 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000182
183 // Only make use of no-wrap flags if we failed to compute the sign bit
184 // directly. This matters if the multiplication always overflows, in
185 // which case we prefer to follow the result of the direct computation,
186 // though as the program is invoking undefined behaviour we can choose
187 // whatever we like here.
188 if (isKnownNonNegative && !KnownOne.isNegative())
189 KnownZero.setBit(BitWidth - 1);
190 else if (isKnownNegative && !KnownZero.isNegative())
191 KnownOne.setBit(BitWidth - 1);
192}
193
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000194void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
195 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000196 unsigned NumRanges = Ranges.getNumOperands() / 2;
197 assert(NumRanges >= 1);
198
199 // Use the high end of the ranges to find leading zeros.
200 unsigned MinLeadingZeros = BitWidth;
201 for (unsigned i = 0; i < NumRanges; ++i) {
202 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
203 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
204 ConstantRange Range(Lower->getValue(), Upper->getValue());
205 if (Range.isWrappedSet())
206 MinLeadingZeros = 0; // -1 has no zeros
207 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
208 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
209 }
210
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000211 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000212}
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000213/// ComputeMaskedBits - Determine which of the bits are known to be either zero
214/// or one and return them in the KnownZero/KnownOne bit sets.
215///
Chris Lattner173234a2008-06-02 01:18:21 +0000216/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
217/// we cannot optimize based on the assumption that it is zero without changing
218/// it to be an explicit zero. If we don't change it to zero, other code could
219/// optimized based on the contradictory assumption that it is non-zero.
220/// Because instcombine aggressively folds operations with undef args anyway,
221/// this won't lose us code quality.
Chris Lattnercf5128e2009-09-08 00:06:16 +0000222///
223/// This function is defined on values with integer type, values with pointer
224/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000225/// where V is a vector, known zero, and known one values are the
Chris Lattnercf5128e2009-09-08 00:06:16 +0000226/// same width as the vector element, and the bit is set only if it is true
227/// for all of the elements in the vector.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000228void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Micah Villmow3574eca2012-10-08 16:38:25 +0000229 const DataLayout *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +0000230 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +0000231 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000232 unsigned BitWidth = KnownZero.getBitWidth();
233
Nadav Rotem16087692011-12-05 06:29:09 +0000234 assert((V->getType()->isIntOrIntVectorTy() ||
235 V->getType()->getScalarType()->isPointerTy()) &&
236 "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +0000237 assert((!TD ||
238 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000239 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman6de29f82009-06-15 22:12:54 +0000240 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem16087692011-12-05 06:29:09 +0000241 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner173234a2008-06-02 01:18:21 +0000242 KnownOne.getBitWidth() == BitWidth &&
243 "V, Mask, KnownOne and KnownZero should have same BitWidth");
244
245 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246 // We know all of the bits for a constant!
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000247 KnownOne = CI->getValue();
248 KnownZero = ~KnownOne;
Chris Lattner173234a2008-06-02 01:18:21 +0000249 return;
250 }
Dan Gohman6de29f82009-06-15 22:12:54 +0000251 // Null and aggregate-zero are all-zeros.
252 if (isa<ConstantPointerNull>(V) ||
253 isa<ConstantAggregateZero>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000254 KnownOne.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000255 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000256 return;
257 }
Dan Gohman6de29f82009-06-15 22:12:54 +0000258 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner7302d802012-02-06 21:56:39 +0000259 // each element. There is no real need to handle ConstantVector here, because
260 // we don't handle undef in any particularly useful way.
Chris Lattnerdf390282012-01-24 07:54:10 +0000261 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262 // We know that CDS must be a vector of integers. Take the intersection of
263 // each element.
264 KnownZero.setAllBits(); KnownOne.setAllBits();
265 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner0f193b82012-01-25 01:27:20 +0000266 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerdf390282012-01-24 07:54:10 +0000267 Elt = CDS->getElementAsInteger(i);
268 KnownZero &= ~Elt;
Craig Topperc4265e12012-12-22 19:15:35 +0000269 KnownOne &= Elt;
Chris Lattnerdf390282012-01-24 07:54:10 +0000270 }
271 return;
272 }
Craig Topperc4265e12012-12-22 19:15:35 +0000273
Chris Lattner173234a2008-06-02 01:18:21 +0000274 // The address of an aligned GlobalValue has trailing zeros.
275 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276 unsigned Align = GV->getAlignment();
Nick Lewycky891495e2012-03-07 02:27:53 +0000277 if (Align == 0 && TD) {
Eli Friedmanc4c2a022011-11-28 22:48:22 +0000278 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky891495e2012-03-07 02:27:53 +0000280 if (ObjectType->isSized()) {
281 // If the object is defined in the current Module, we'll be giving
282 // it the preferred alignment. Otherwise, we have to assume that it
283 // may only have the minimum ABI alignment.
284 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285 Align = TD->getPreferredAlignment(GVar);
286 else
287 Align = TD->getABITypeAlignment(ObjectType);
288 }
Eli Friedmanc4c2a022011-11-28 22:48:22 +0000289 }
Dan Gohman00407252009-08-11 15:50:03 +0000290 }
Chris Lattner173234a2008-06-02 01:18:21 +0000291 if (Align > 0)
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000292 KnownZero = APInt::getLowBitsSet(BitWidth,
293 CountTrailingZeros_32(Align));
Chris Lattner173234a2008-06-02 01:18:21 +0000294 else
Jay Foad7a874dd2010-12-01 08:53:58 +0000295 KnownZero.clearAllBits();
296 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000297 return;
298 }
Dan Gohman307a7c42009-09-15 16:14:44 +0000299 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300 // the bits of its aliasee.
301 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302 if (GA->mayBeOverridden()) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000303 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman307a7c42009-09-15 16:14:44 +0000304 } else {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000305 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
Dan Gohman307a7c42009-09-15 16:14:44 +0000306 }
307 return;
308 }
Craig Topperc4265e12012-12-22 19:15:35 +0000309
Chris Lattnerb3f06732011-05-23 00:03:39 +0000310 if (Argument *A = dyn_cast<Argument>(V)) {
Duncan Sandsffcf6df2012-10-04 13:36:31 +0000311 unsigned Align = 0;
312
313 if (A->hasByValAttr()) {
314 // Get alignment information off byval arguments if specified in the IR.
315 Align = A->getParamAlignment();
316 } else if (TD && A->hasStructRetAttr()) {
317 // An sret parameter has at least the ABI alignment of the return type.
318 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319 if (EltTy->isSized())
320 Align = TD->getABITypeAlignment(EltTy);
321 }
322
323 if (Align)
324 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
Chris Lattnerb3f06732011-05-23 00:03:39 +0000325 return;
326 }
Chris Lattner173234a2008-06-02 01:18:21 +0000327
Chris Lattnerb3f06732011-05-23 00:03:39 +0000328 // Start out not knowing anything.
329 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000330
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000331 if (Depth == MaxDepth)
Chris Lattner173234a2008-06-02 01:18:21 +0000332 return; // Limit search depth.
333
Dan Gohmanca178902009-07-17 20:47:02 +0000334 Operator *I = dyn_cast<Operator>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000335 if (!I) return;
336
337 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohmanca178902009-07-17 20:47:02 +0000338 switch (I->getOpcode()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000339 default: break;
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000340 case Instruction::Load:
341 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000342 computeMaskedBitsLoad(*MD, KnownZero);
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000343 return;
Chris Lattner173234a2008-06-02 01:18:21 +0000344 case Instruction::And: {
345 // If either the LHS or the RHS are Zero, the result is zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000346 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
347 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000348 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
349 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
350
Chris Lattner173234a2008-06-02 01:18:21 +0000351 // Output known-1 bits are only known if set in both the LHS & RHS.
352 KnownOne &= KnownOne2;
353 // Output known-0 are known to be clear if zero in either the LHS | RHS.
354 KnownZero |= KnownZero2;
355 return;
356 }
357 case Instruction::Or: {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000358 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
359 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000360 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
361 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
362
Chris Lattner173234a2008-06-02 01:18:21 +0000363 // Output known-0 bits are only known if clear in both the LHS & RHS.
364 KnownZero &= KnownZero2;
365 // Output known-1 are known to be set if set in either the LHS | RHS.
366 KnownOne |= KnownOne2;
367 return;
368 }
369 case Instruction::Xor: {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000370 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
371 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000372 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
373 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
374
Chris Lattner173234a2008-06-02 01:18:21 +0000375 // Output known-0 bits are known if clear or set in both the LHS & RHS.
376 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
377 // Output known-1 are known to be set if set in only one of the LHS, RHS.
378 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
379 KnownZero = KnownZeroOut;
380 return;
381 }
382 case Instruction::Mul: {
Nick Lewyckyf201a062012-03-18 23:28:48 +0000383 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
384 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000385 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000386 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000387 }
388 case Instruction::UDiv: {
389 // For the purposes of computing leading zeros we can conservatively
390 // treat a udiv as a logical right shift by the power of 2 known to
391 // be less than the denominator.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000392 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000393 unsigned LeadZ = KnownZero2.countLeadingOnes();
394
Jay Foad7a874dd2010-12-01 08:53:58 +0000395 KnownOne2.clearAllBits();
396 KnownZero2.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000397 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000398 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
399 if (RHSUnknownLeadingOnes != BitWidth)
400 LeadZ = std::min(BitWidth,
401 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
402
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000403 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Chris Lattner173234a2008-06-02 01:18:21 +0000404 return;
405 }
406 case Instruction::Select:
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000407 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
408 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000409 Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000410 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
411 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000412
413 // Only known if known in both the LHS and RHS.
414 KnownOne &= KnownOne2;
415 KnownZero &= KnownZero2;
416 return;
417 case Instruction::FPTrunc:
418 case Instruction::FPExt:
419 case Instruction::FPToUI:
420 case Instruction::FPToSI:
421 case Instruction::SIToFP:
422 case Instruction::UIToFP:
423 return; // Can't work with floating point.
424 case Instruction::PtrToInt:
425 case Instruction::IntToPtr:
426 // We can't handle these if we don't know the pointer size.
427 if (!TD) return;
428 // FALL THROUGH and handle them the same as zext/trunc.
429 case Instruction::ZExt:
430 case Instruction::Trunc: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000431 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem12145f02012-10-26 17:17:05 +0000432
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000433 unsigned SrcBitWidth;
Chris Lattner173234a2008-06-02 01:18:21 +0000434 // Note that we handle pointer operands here because of inttoptr/ptrtoint
435 // which fall through here.
Nadav Rotem521396a2012-12-19 20:47:04 +0000436 if(TD) {
437 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
438 } else {
439 SrcBitWidth = SrcTy->getScalarSizeInBits();
440 if (!SrcBitWidth) return;
441 }
Nadav Rotem12145f02012-10-26 17:17:05 +0000442
443 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad40f8f622010-12-07 08:25:19 +0000444 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
445 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000446 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Jay Foad40f8f622010-12-07 08:25:19 +0000447 KnownZero = KnownZero.zextOrTrunc(BitWidth);
448 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000449 // Any top bits are known to be zero.
450 if (BitWidth > SrcBitWidth)
451 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
452 return;
453 }
454 case Instruction::BitCast: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000455 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands1df98592010-02-16 11:11:14 +0000456 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattner0dabb0b2009-07-02 16:04:08 +0000457 // TODO: For now, not handling conversions like:
458 // (bitcast i64 %x to <2 x i32>)
Duncan Sands1df98592010-02-16 11:11:14 +0000459 !I->getType()->isVectorTy()) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000460 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000461 return;
462 }
463 break;
464 }
465 case Instruction::SExt: {
466 // Compute the bits in the result that are not present in the input.
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000467 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topperc4265e12012-12-22 19:15:35 +0000468
Jay Foad40f8f622010-12-07 08:25:19 +0000469 KnownZero = KnownZero.trunc(SrcBitWidth);
470 KnownOne = KnownOne.trunc(SrcBitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000471 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000472 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Jay Foad40f8f622010-12-07 08:25:19 +0000473 KnownZero = KnownZero.zext(BitWidth);
474 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000475
476 // If the sign bit of the input is known set or clear, then we know the
477 // top bits of the result.
478 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
479 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
480 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
481 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
482 return;
483 }
484 case Instruction::Shl:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000485 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000486 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
487 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000488 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000489 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000490 KnownZero <<= ShiftAmt;
491 KnownOne <<= ShiftAmt;
492 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
493 return;
494 }
495 break;
496 case Instruction::LShr:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000497 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000498 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
499 // Compute the new bits that are at the top now.
500 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topperc4265e12012-12-22 19:15:35 +0000501
Chris Lattner173234a2008-06-02 01:18:21 +0000502 // Unsigned shift right.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000503 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000504 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000505 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
506 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
507 // high bits known zero.
508 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
509 return;
510 }
511 break;
512 case Instruction::AShr:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000513 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000514 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
515 // Compute the new bits that are at the top now.
Chris Lattner43b40a42011-01-04 18:19:15 +0000516 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topperc4265e12012-12-22 19:15:35 +0000517
Chris Lattner173234a2008-06-02 01:18:21 +0000518 // Signed shift right.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000519 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000520 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000521 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
522 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topperc4265e12012-12-22 19:15:35 +0000523
Chris Lattner173234a2008-06-02 01:18:21 +0000524 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
525 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
526 KnownZero |= HighBits;
527 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
528 KnownOne |= HighBits;
529 return;
530 }
531 break;
532 case Instruction::Sub: {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000533 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
534 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000535 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
536 Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000537 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000538 }
Chris Lattner173234a2008-06-02 01:18:21 +0000539 case Instruction::Add: {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000540 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
541 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000542 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
543 Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000544 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000545 }
546 case Instruction::SRem:
547 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sandscfd54182010-01-29 06:18:37 +0000548 APInt RA = Rem->getValue().abs();
549 if (RA.isPowerOf2()) {
550 APInt LowBits = RA - 1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000551 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000552
Duncan Sandscfd54182010-01-29 06:18:37 +0000553 // The low bits of the first operand are unchanged by the srem.
554 KnownZero = KnownZero2 & LowBits;
555 KnownOne = KnownOne2 & LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000556
Duncan Sandscfd54182010-01-29 06:18:37 +0000557 // If the first operand is non-negative or has all low bits zero, then
558 // the upper bits are all zero.
559 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
560 KnownZero |= ~LowBits;
561
562 // If the first operand is negative and not all low bits are zero, then
563 // the upper bits are all one.
564 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
565 KnownOne |= ~LowBits;
566
Craig Topperc4265e12012-12-22 19:15:35 +0000567 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000568 }
569 }
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000570
571 // The sign bit is the LHS's sign bit, except when the result of the
572 // remainder is zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000573 if (KnownZero.isNonNegative()) {
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000574 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000575 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000576 Depth+1);
577 // If it's known zero, our sign bit is also zero.
578 if (LHSKnownZero.isNegative())
Duncan Sands5ff30e72012-04-30 11:56:58 +0000579 KnownZero.setBit(BitWidth - 1);
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000580 }
581
Chris Lattner173234a2008-06-02 01:18:21 +0000582 break;
583 case Instruction::URem: {
584 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
585 APInt RA = Rem->getValue();
586 if (RA.isPowerOf2()) {
587 APInt LowBits = (RA - 1);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000588 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000589 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000590 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000591 KnownZero |= ~LowBits;
592 KnownOne &= LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000593 break;
594 }
595 }
596
597 // Since the result is less than or equal to either operand, any leading
598 // zero bits in either operand must also exist in the result.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000599 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
600 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000601
Chris Lattner79abedb2009-01-20 18:22:57 +0000602 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000603 KnownZero2.countLeadingOnes());
Jay Foad7a874dd2010-12-01 08:53:58 +0000604 KnownOne.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000605 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner173234a2008-06-02 01:18:21 +0000606 break;
607 }
608
Victor Hernandeza276c602009-10-17 01:18:07 +0000609 case Instruction::Alloca: {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000610 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000611 unsigned Align = AI->getAlignment();
Victor Hernandeza276c602009-10-17 01:18:07 +0000612 if (Align == 0 && TD)
613 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topperc4265e12012-12-22 19:15:35 +0000614
Chris Lattner173234a2008-06-02 01:18:21 +0000615 if (Align > 0)
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000616 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
Chris Lattner173234a2008-06-02 01:18:21 +0000617 break;
618 }
619 case Instruction::GetElementPtr: {
620 // Analyze all of the subscripts of this getelementptr instruction
621 // to determine if we can prove known low zero bits.
Chris Lattner173234a2008-06-02 01:18:21 +0000622 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000623 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
624 Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000625 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
626
627 gep_type_iterator GTI = gep_type_begin(I);
628 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
629 Value *Index = I->getOperand(i);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000630 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000631 // Handle struct member offset arithmetic.
632 if (!TD) return;
633 const StructLayout *SL = TD->getStructLayout(STy);
634 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
635 uint64_t Offset = SL->getElementOffset(Idx);
636 TrailZ = std::min(TrailZ,
637 CountTrailingZeros_64(Offset));
638 } else {
639 // Handle array index arithmetic.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000640 Type *IndexedTy = GTI.getIndexedType();
Chris Lattner173234a2008-06-02 01:18:21 +0000641 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000642 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000643 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000644 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000645 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000646 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000647 unsigned(CountTrailingZeros_64(TypeSize) +
648 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000649 }
650 }
Craig Topperc4265e12012-12-22 19:15:35 +0000651
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000652 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner173234a2008-06-02 01:18:21 +0000653 break;
654 }
655 case Instruction::PHI: {
656 PHINode *P = cast<PHINode>(I);
657 // Handle the case of a simple two-predecessor recurrence PHI.
658 // There's a lot more that could theoretically be done here, but
659 // this is sufficient to catch some interesting cases.
660 if (P->getNumIncomingValues() == 2) {
661 for (unsigned i = 0; i != 2; ++i) {
662 Value *L = P->getIncomingValue(i);
663 Value *R = P->getIncomingValue(!i);
Dan Gohmanca178902009-07-17 20:47:02 +0000664 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner173234a2008-06-02 01:18:21 +0000665 if (!LU)
666 continue;
Dan Gohmanca178902009-07-17 20:47:02 +0000667 unsigned Opcode = LU->getOpcode();
Chris Lattner173234a2008-06-02 01:18:21 +0000668 // Check for operations that have the property that if
669 // both their operands have low zero bits, the result
670 // will have low zero bits.
671 if (Opcode == Instruction::Add ||
672 Opcode == Instruction::Sub ||
673 Opcode == Instruction::And ||
674 Opcode == Instruction::Or ||
675 Opcode == Instruction::Mul) {
676 Value *LL = LU->getOperand(0);
677 Value *LR = LU->getOperand(1);
678 // Find a recurrence.
679 if (LL == I)
680 L = LR;
681 else if (LR == I)
682 L = LL;
683 else
684 break;
685 // Ok, we have a PHI of the form L op= R. Check for low
686 // zero bits.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000687 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
David Greenec714f132008-10-27 23:24:03 +0000688
689 // We need to take the minimum number of known bits
690 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000691 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
David Greenec714f132008-10-27 23:24:03 +0000692
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000693 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000694 std::min(KnownZero2.countTrailingOnes(),
695 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000696 break;
697 }
698 }
699 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000700
Nick Lewycky3b739d22011-02-10 23:54:10 +0000701 // Unreachable blocks may have zero-operand PHI nodes.
702 if (P->getNumIncomingValues() == 0)
703 return;
704
Dan Gohman9004c8a2009-05-21 02:28:33 +0000705 // Otherwise take the unions of the known bit sets of the operands,
706 // taking conservative care to avoid excessive recursion.
707 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands606199f2011-03-08 12:39:03 +0000708 // Skip if every incoming value references to ourself.
Nuno Lopes0fd518b2012-07-03 21:15:40 +0000709 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands606199f2011-03-08 12:39:03 +0000710 break;
711
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000712 KnownZero = APInt::getAllOnesValue(BitWidth);
713 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohman9004c8a2009-05-21 02:28:33 +0000714 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
715 // Skip direct self references.
716 if (P->getIncomingValue(i) == P) continue;
717
718 KnownZero2 = APInt(BitWidth, 0);
719 KnownOne2 = APInt(BitWidth, 0);
720 // Recurse, but cap the recursion to one level, because we don't
721 // want to waste time spinning around in loops.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000722 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
723 MaxDepth-1);
Dan Gohman9004c8a2009-05-21 02:28:33 +0000724 KnownZero &= KnownZero2;
725 KnownOne &= KnownOne2;
726 // If all bits have been ruled out, there's no need to check
727 // more operands.
728 if (!KnownZero && !KnownOne)
729 break;
730 }
731 }
Chris Lattner173234a2008-06-02 01:18:21 +0000732 break;
733 }
734 case Instruction::Call:
735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
736 switch (II->getIntrinsicID()) {
737 default: break;
Chris Lattner173234a2008-06-02 01:18:21 +0000738 case Intrinsic::ctlz:
739 case Intrinsic::cttz: {
740 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer009da052011-12-24 17:31:46 +0000741 // If this call is undefined for 0, the result will be less than 2^n.
742 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
743 LowBits -= 1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000744 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer009da052011-12-24 17:31:46 +0000745 break;
746 }
747 case Intrinsic::ctpop: {
748 unsigned LowBits = Log2_32(BitWidth)+1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000749 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner173234a2008-06-02 01:18:21 +0000750 break;
751 }
Chad Rosier62660312011-05-26 23:13:19 +0000752 case Intrinsic::x86_sse42_crc32_64_8:
753 case Intrinsic::x86_sse42_crc32_64_64:
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000754 KnownZero = APInt::getHighBitsSet(64, 32);
Evan Chengcb559c12011-05-22 18:25:30 +0000755 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000756 }
757 }
758 break;
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000759 case Instruction::ExtractValue:
760 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
761 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
762 if (EVI->getNumIndices() != 1) break;
763 if (EVI->getIndices()[0] == 0) {
764 switch (II->getIntrinsicID()) {
765 default: break;
766 case Intrinsic::uadd_with_overflow:
767 case Intrinsic::sadd_with_overflow:
768 ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000769 II->getArgOperand(1), false, KnownZero,
770 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000771 break;
772 case Intrinsic::usub_with_overflow:
773 case Intrinsic::ssub_with_overflow:
774 ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000775 II->getArgOperand(1), false, KnownZero,
776 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000777 break;
Nick Lewyckyf201a062012-03-18 23:28:48 +0000778 case Intrinsic::umul_with_overflow:
779 case Intrinsic::smul_with_overflow:
780 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000781 false, KnownZero, KnownOne,
Nick Lewyckyf201a062012-03-18 23:28:48 +0000782 KnownZero2, KnownOne2, TD, Depth);
783 break;
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000784 }
785 }
786 }
Chris Lattner173234a2008-06-02 01:18:21 +0000787 }
788}
789
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000790/// ComputeSignBit - Determine whether the sign bit is known to be zero or
791/// one. Convenience wrapper around ComputeMaskedBits.
792void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Micah Villmow3574eca2012-10-08 16:38:25 +0000793 const DataLayout *TD, unsigned Depth) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000794 unsigned BitWidth = getBitWidth(V->getType(), TD);
795 if (!BitWidth) {
796 KnownZero = false;
797 KnownOne = false;
798 return;
799 }
800 APInt ZeroBits(BitWidth, 0);
801 APInt OneBits(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000802 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000803 KnownOne = OneBits[BitWidth - 1];
804 KnownZero = ZeroBits[BitWidth - 1];
805}
806
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000807/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000808/// bit set when defined. For vectors return true if every element is known to
809/// be a power of two when defined. Supports values with integer or pointer
810/// types and vectors of integers.
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000811bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000812 if (Constant *C = dyn_cast<Constant>(V)) {
813 if (C->isNullValue())
814 return OrZero;
815 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
816 return CI->getValue().isPowerOf2();
817 // TODO: Handle vector constants.
818 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000819
820 // 1 << X is clearly a power of two if the one is not shifted off the end. If
821 // it is shifted off the end then the result is undefined.
822 if (match(V, m_Shl(m_One(), m_Value())))
823 return true;
824
825 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
826 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands93c78022011-02-01 08:50:33 +0000827 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000828 return true;
829
830 // The remaining tests are all recursive, so bail out if we hit the limit.
831 if (Depth++ == MaxDepth)
832 return false;
833
Duncan Sands4604fc72011-10-28 18:30:05 +0000834 Value *X = 0, *Y = 0;
835 // A shift of a power of two is a power of two or zero.
836 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
837 match(V, m_Shr(m_Value(X), m_Value()))))
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000838 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
Duncan Sands4604fc72011-10-28 18:30:05 +0000839
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000840 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000841 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000842
843 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000844 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
845 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000846
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000847 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
848 // A power of two and'd with anything is a power of two or zero.
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000849 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
850 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000851 return true;
852 // X & (-X) is always a power of two or zero.
853 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
854 return true;
855 return false;
856 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000857
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000858 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewycky1f7bc702011-03-21 21:40:32 +0000859 // is a power of two only if the first operand is a power of two and not
860 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer55c6d572012-01-01 17:55:30 +0000861 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
862 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000863 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000864 }
865
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000866 return false;
867}
868
Chandler Carruth70d3beb2012-12-07 02:08:58 +0000869/// \brief Test whether a GEP's result is known to be non-null.
870///
871/// Uses properties inherent in a GEP to try to determine whether it is known
872/// to be non-null.
873///
874/// Currently this routine does not support vector GEPs.
875static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
876 unsigned Depth) {
877 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
878 return false;
879
880 // FIXME: Support vector-GEPs.
881 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
882
883 // If the base pointer is non-null, we cannot walk to a null address with an
884 // inbounds GEP in address space zero.
885 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
886 return true;
887
888 // Past this, if we don't have DataLayout, we can't do much.
889 if (!DL)
890 return false;
891
892 // Walk the GEP operands and see if any operand introduces a non-zero offset.
893 // If so, then the GEP cannot produce a null pointer, as doing so would
894 // inherently violate the inbounds contract within address space zero.
895 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
896 GTI != GTE; ++GTI) {
897 // Struct types are easy -- they must always be indexed by a constant.
898 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
899 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
900 unsigned ElementIdx = OpC->getZExtValue();
901 const StructLayout *SL = DL->getStructLayout(STy);
902 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
903 if (ElementOffset > 0)
904 return true;
905 continue;
906 }
907
908 // If we have a zero-sized type, the index doesn't matter. Keep looping.
909 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
910 continue;
911
912 // Fast path the constant operand case both for efficiency and so we don't
913 // increment Depth when just zipping down an all-constant GEP.
914 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
915 if (!OpC->isZero())
916 return true;
917 continue;
918 }
919
920 // We post-increment Depth here because while isKnownNonZero increments it
921 // as well, when we pop back up that increment won't persist. We don't want
922 // to recurse 10k times just because we have 10k GEP operands. We don't
923 // bail completely out because we want to handle constant GEPs regardless
924 // of depth.
925 if (Depth++ >= MaxDepth)
926 continue;
927
928 if (isKnownNonZero(GTI.getOperand(), DL, Depth))
929 return true;
930 }
931
932 return false;
933}
934
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000935/// isKnownNonZero - Return true if the given value is known to be non-zero
936/// when defined. For vectors return true if every element is known to be
937/// non-zero when defined. Supports values with integer or pointer type and
938/// vectors of integers.
Micah Villmow3574eca2012-10-08 16:38:25 +0000939bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000940 if (Constant *C = dyn_cast<Constant>(V)) {
941 if (C->isNullValue())
942 return false;
943 if (isa<ConstantInt>(C))
944 // Must be non-zero due to null test above.
945 return true;
946 // TODO: Handle vectors
947 return false;
948 }
949
950 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000951 if (Depth++ >= MaxDepth)
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000952 return false;
953
Chandler Carruth70d3beb2012-12-07 02:08:58 +0000954 // Check for pointer simplifications.
955 if (V->getType()->isPointerTy()) {
Manman Ren90842422013-03-18 21:23:25 +0000956 if (isKnownNonNull(V))
957 return true;
Chandler Carruth70d3beb2012-12-07 02:08:58 +0000958 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
959 if (isGEPKnownNonNull(GEP, TD, Depth))
960 return true;
961 }
962
Nadav Rotemfd360c32012-12-14 20:43:49 +0000963 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000964
965 // X | Y != 0 if X != 0 or Y != 0.
966 Value *X = 0, *Y = 0;
967 if (match(V, m_Or(m_Value(X), m_Value(Y))))
968 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
969
970 // ext X != 0 if X != 0.
971 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
972 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
973
Duncan Sands91367822011-01-29 13:27:00 +0000974 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000975 // if the lowest bit is shifted off the end.
976 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000977 // shl nuw can't remove any non-zero bits.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000978 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000979 if (BO->hasNoUnsignedWrap())
980 return isKnownNonZero(X, TD, Depth);
981
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000982 APInt KnownZero(BitWidth, 0);
983 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000984 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000985 if (KnownOne[0])
986 return true;
987 }
Duncan Sands91367822011-01-29 13:27:00 +0000988 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000989 // defined if the sign bit is shifted off the end.
990 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000991 // shr exact can only shift out zero bits.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000992 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000993 if (BO->isExact())
994 return isKnownNonZero(X, TD, Depth);
995
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000996 bool XKnownNonNegative, XKnownNegative;
997 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
998 if (XKnownNegative)
999 return true;
1000 }
Nick Lewycky3dfd9872011-02-28 08:02:21 +00001001 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer55c6d572012-01-01 17:55:30 +00001002 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1003 return isKnownNonZero(X, TD, Depth);
Nick Lewycky3dfd9872011-02-28 08:02:21 +00001004 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001005 // X + Y.
1006 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1007 bool XKnownNonNegative, XKnownNegative;
1008 bool YKnownNonNegative, YKnownNegative;
1009 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1010 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1011
1012 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands227fba12011-01-25 15:14:15 +00001013 // zero unless both X and Y are zero.
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001014 if (XKnownNonNegative && YKnownNonNegative)
Duncan Sands227fba12011-01-25 15:14:15 +00001015 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1016 return true;
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001017
1018 // If X and Y are both negative (as signed values) then their sum is not
1019 // zero unless both X and Y equal INT_MIN.
1020 if (BitWidth && XKnownNegative && YKnownNegative) {
1021 APInt KnownZero(BitWidth, 0);
1022 APInt KnownOne(BitWidth, 0);
1023 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1024 // The sign bit of X is set. If some other bit is set then X is not equal
1025 // to INT_MIN.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001026 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001027 if ((KnownOne & Mask) != 0)
1028 return true;
1029 // The sign bit of Y is set. If some other bit is set then Y is not equal
1030 // to INT_MIN.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001031 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001032 if ((KnownOne & Mask) != 0)
1033 return true;
1034 }
1035
1036 // The sum of a non-negative number and a power of two is not zero.
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001037 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001038 return true;
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001039 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001040 return true;
1041 }
Duncan Sands32a43cc2011-10-27 19:16:21 +00001042 // X * Y.
1043 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1044 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1045 // If X and Y are non-zero then so is X * Y as long as the multiplication
1046 // does not overflow.
1047 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1048 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1049 return true;
1050 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001051 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1052 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1053 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1054 isKnownNonZero(SI->getFalseValue(), TD, Depth))
1055 return true;
1056 }
1057
1058 if (!BitWidth) return false;
1059 APInt KnownZero(BitWidth, 0);
1060 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001061 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001062 return KnownOne != 0;
1063}
1064
Chris Lattner173234a2008-06-02 01:18:21 +00001065/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1066/// this predicate to simplify operations downstream. Mask is known to be zero
1067/// for bits that V cannot have.
Chris Lattnercf5128e2009-09-08 00:06:16 +00001068///
1069/// This function is defined on values with integer type, values with pointer
1070/// type (but only if TD is non-null), and vectors of integers. In the case
1071/// where V is a vector, the mask, known zero, and known one values are the
1072/// same width as the vector element, and the bit is set only if it is true
1073/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +00001074bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
Micah Villmow3574eca2012-10-08 16:38:25 +00001075 const DataLayout *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +00001076 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001077 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Craig Topperc4265e12012-12-22 19:15:35 +00001078 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +00001079 return (KnownZero & Mask) == Mask;
1080}
1081
1082
1083
1084/// ComputeNumSignBits - Return the number of times the sign bit of the
1085/// register is replicated into the other bits. We know that at least 1 bit
1086/// is always equal to the sign bit (itself), but other cases can give us
1087/// information. For example, immediately after an "ashr X, 2", we know that
1088/// the top 3 bits are all equal to each other, so we return 3.
1089///
1090/// 'Op' must have a scalar integer type.
1091///
Micah Villmow3574eca2012-10-08 16:38:25 +00001092unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
Dan Gohman846a2f22009-08-27 17:51:25 +00001093 unsigned Depth) {
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001094 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmow3574eca2012-10-08 16:38:25 +00001095 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohmanbd5ce522009-06-22 22:02:32 +00001096 "on non-integer values!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001097 Type *Ty = V->getType();
Dan Gohmanbd5ce522009-06-22 22:02:32 +00001098 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1099 Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +00001100 unsigned Tmp, Tmp2;
1101 unsigned FirstAnswer = 1;
1102
Chris Lattnerd82e5112008-06-02 18:39:07 +00001103 // Note that ConstantInt is handled by the general ComputeMaskedBits case
1104 // below.
1105
Chris Lattner173234a2008-06-02 01:18:21 +00001106 if (Depth == 6)
1107 return 1; // Limit search depth.
Craig Topperc4265e12012-12-22 19:15:35 +00001108
Dan Gohmanca178902009-07-17 20:47:02 +00001109 Operator *U = dyn_cast<Operator>(V);
1110 switch (Operator::getOpcode(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +00001111 default: break;
1112 case Instruction::SExt:
Mon P Wang69a00802009-12-02 04:59:58 +00001113 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +00001114 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
Craig Topperc4265e12012-12-22 19:15:35 +00001115
Chris Lattner6b0dc922012-01-26 21:37:55 +00001116 case Instruction::AShr: {
Chris Lattner173234a2008-06-02 01:18:21 +00001117 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner6b0dc922012-01-26 21:37:55 +00001118 // ashr X, C -> adds C sign bits. Vectors too.
1119 const APInt *ShAmt;
1120 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1121 Tmp += ShAmt->getZExtValue();
Chris Lattner173234a2008-06-02 01:18:21 +00001122 if (Tmp > TyBits) Tmp = TyBits;
1123 }
1124 return Tmp;
Chris Lattner6b0dc922012-01-26 21:37:55 +00001125 }
1126 case Instruction::Shl: {
1127 const APInt *ShAmt;
1128 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner173234a2008-06-02 01:18:21 +00001129 // shl destroys sign bits.
1130 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner6b0dc922012-01-26 21:37:55 +00001131 Tmp2 = ShAmt->getZExtValue();
1132 if (Tmp2 >= TyBits || // Bad shift.
1133 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1134 return Tmp - Tmp2;
Chris Lattner173234a2008-06-02 01:18:21 +00001135 }
1136 break;
Chris Lattner6b0dc922012-01-26 21:37:55 +00001137 }
Chris Lattner173234a2008-06-02 01:18:21 +00001138 case Instruction::And:
1139 case Instruction::Or:
1140 case Instruction::Xor: // NOT is handled here.
1141 // Logical binary ops preserve the number of sign bits at the worst.
1142 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1143 if (Tmp != 1) {
1144 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1145 FirstAnswer = std::min(Tmp, Tmp2);
1146 // We computed what we know about the sign bits as our first
1147 // answer. Now proceed to the generic code that uses
1148 // ComputeMaskedBits, and pick whichever answer is better.
1149 }
1150 break;
1151
1152 case Instruction::Select:
1153 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1154 if (Tmp == 1) return 1; // Early out.
1155 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1156 return std::min(Tmp, Tmp2);
Craig Topperc4265e12012-12-22 19:15:35 +00001157
Chris Lattner173234a2008-06-02 01:18:21 +00001158 case Instruction::Add:
1159 // Add can have at most one carry bit. Thus we know that the output
1160 // is, at worst, one more bit than the inputs.
1161 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1162 if (Tmp == 1) return 1; // Early out.
Craig Topperc4265e12012-12-22 19:15:35 +00001163
Chris Lattner173234a2008-06-02 01:18:21 +00001164 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +00001165 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +00001166 if (CRHS->isAllOnesValue()) {
1167 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001168 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +00001169
Chris Lattner173234a2008-06-02 01:18:21 +00001170 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1171 // sign bits set.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001172 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner173234a2008-06-02 01:18:21 +00001173 return TyBits;
Craig Topperc4265e12012-12-22 19:15:35 +00001174
Chris Lattner173234a2008-06-02 01:18:21 +00001175 // If we are subtracting one from a positive number, there is no carry
1176 // out of the result.
1177 if (KnownZero.isNegative())
1178 return Tmp;
1179 }
Craig Topperc4265e12012-12-22 19:15:35 +00001180
Chris Lattner173234a2008-06-02 01:18:21 +00001181 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1182 if (Tmp2 == 1) return 1;
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001183 return std::min(Tmp, Tmp2)-1;
Craig Topperc4265e12012-12-22 19:15:35 +00001184
Chris Lattner173234a2008-06-02 01:18:21 +00001185 case Instruction::Sub:
1186 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1187 if (Tmp2 == 1) return 1;
Craig Topperc4265e12012-12-22 19:15:35 +00001188
Chris Lattner173234a2008-06-02 01:18:21 +00001189 // Handle NEG.
1190 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1191 if (CLHS->isNullValue()) {
1192 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001193 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +00001194 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1195 // sign bits set.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001196 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner173234a2008-06-02 01:18:21 +00001197 return TyBits;
Craig Topperc4265e12012-12-22 19:15:35 +00001198
Chris Lattner173234a2008-06-02 01:18:21 +00001199 // If the input is known to be positive (the sign bit is known clear),
1200 // the output of the NEG has the same number of sign bits as the input.
1201 if (KnownZero.isNegative())
1202 return Tmp2;
Craig Topperc4265e12012-12-22 19:15:35 +00001203
Chris Lattner173234a2008-06-02 01:18:21 +00001204 // Otherwise, we treat this like a SUB.
1205 }
Craig Topperc4265e12012-12-22 19:15:35 +00001206
Chris Lattner173234a2008-06-02 01:18:21 +00001207 // Sub can have at most one carry bit. Thus we know that the output
1208 // is, at worst, one more bit than the inputs.
1209 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1210 if (Tmp == 1) return 1; // Early out.
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001211 return std::min(Tmp, Tmp2)-1;
Craig Topperc4265e12012-12-22 19:15:35 +00001212
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001213 case Instruction::PHI: {
1214 PHINode *PN = cast<PHINode>(U);
1215 // Don't analyze large in-degree PHIs.
1216 if (PN->getNumIncomingValues() > 4) break;
Craig Topperc4265e12012-12-22 19:15:35 +00001217
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001218 // Take the minimum of all incoming values. This can't infinitely loop
1219 // because of our depth threshold.
1220 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1221 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1222 if (Tmp == 1) return Tmp;
1223 Tmp = std::min(Tmp,
Evan Cheng0af20d82010-03-13 02:20:29 +00001224 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001225 }
1226 return Tmp;
1227 }
1228
Chris Lattner173234a2008-06-02 01:18:21 +00001229 case Instruction::Trunc:
1230 // FIXME: it's tricky to do anything useful for this, but it is an important
1231 // case for targets like X86.
1232 break;
1233 }
Craig Topperc4265e12012-12-22 19:15:35 +00001234
Chris Lattner173234a2008-06-02 01:18:21 +00001235 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1236 // use this information.
1237 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001238 APInt Mask;
1239 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Craig Topperc4265e12012-12-22 19:15:35 +00001240
Chris Lattner173234a2008-06-02 01:18:21 +00001241 if (KnownZero.isNegative()) { // sign bit is 0
1242 Mask = KnownZero;
1243 } else if (KnownOne.isNegative()) { // sign bit is 1;
1244 Mask = KnownOne;
1245 } else {
1246 // Nothing known.
1247 return FirstAnswer;
1248 }
Craig Topperc4265e12012-12-22 19:15:35 +00001249
Chris Lattner173234a2008-06-02 01:18:21 +00001250 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1251 // the number of identical bits in the top of the input value.
1252 Mask = ~Mask;
1253 Mask <<= Mask.getBitWidth()-TyBits;
1254 // Return # leading zeros. We use 'min' here in case Val was zero before
1255 // shifting. We don't want to return '64' as for an i32 "0".
1256 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1257}
Chris Lattner833f25d2008-06-02 01:29:46 +00001258
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001259/// ComputeMultiple - This function computes the integer multiple of Base that
1260/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001261/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001262/// through SExt instructions only if LookThroughSExt is true.
1263bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001264 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001265 const unsigned MaxDepth = 6;
1266
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001267 assert(V && "No Value?");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001268 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001269 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001270
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001271 Type *T = V->getType();
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001272
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001273 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001274
1275 if (Base == 0)
1276 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001277
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001278 if (Base == 1) {
1279 Multiple = V;
1280 return true;
1281 }
1282
1283 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1284 Constant *BaseVal = ConstantInt::get(T, Base);
1285 if (CO && CO == BaseVal) {
1286 // Multiple is 1.
1287 Multiple = ConstantInt::get(T, 1);
1288 return true;
1289 }
1290
1291 if (CI && CI->getZExtValue() % Base == 0) {
1292 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topperc4265e12012-12-22 19:15:35 +00001293 return true;
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001294 }
Craig Topperc4265e12012-12-22 19:15:35 +00001295
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001296 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topperc4265e12012-12-22 19:15:35 +00001297
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001298 Operator *I = dyn_cast<Operator>(V);
1299 if (!I) return false;
1300
1301 switch (I->getOpcode()) {
1302 default: break;
Chris Lattner11fe7262009-11-26 01:50:12 +00001303 case Instruction::SExt:
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001304 if (!LookThroughSExt) return false;
1305 // otherwise fall through to ZExt
Chris Lattner11fe7262009-11-26 01:50:12 +00001306 case Instruction::ZExt:
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001307 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1308 LookThroughSExt, Depth+1);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001309 case Instruction::Shl:
1310 case Instruction::Mul: {
1311 Value *Op0 = I->getOperand(0);
1312 Value *Op1 = I->getOperand(1);
1313
1314 if (I->getOpcode() == Instruction::Shl) {
1315 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1316 if (!Op1CI) return false;
1317 // Turn Op0 << Op1 into Op0 * 2^Op1
1318 APInt Op1Int = Op1CI->getValue();
1319 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foada99793c2010-11-30 09:02:01 +00001320 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00001321 API.setBit(BitToSet);
Jay Foada99793c2010-11-30 09:02:01 +00001322 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001323 }
1324
1325 Value *Mul0 = NULL;
Chris Lattnere9711312010-09-05 17:20:46 +00001326 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1327 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1328 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topperc4265e12012-12-22 19:15:35 +00001329 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattnere9711312010-09-05 17:20:46 +00001330 MulC->getType()->getPrimitiveSizeInBits())
1331 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topperc4265e12012-12-22 19:15:35 +00001332 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattnere9711312010-09-05 17:20:46 +00001333 MulC->getType()->getPrimitiveSizeInBits())
1334 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topperc4265e12012-12-22 19:15:35 +00001335
Chris Lattnere9711312010-09-05 17:20:46 +00001336 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1337 Multiple = ConstantExpr::getMul(MulC, Op1C);
1338 return true;
1339 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001340
1341 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1342 if (Mul0CI->getValue() == 1) {
1343 // V == Base * Op1, so return Op1
1344 Multiple = Op1;
1345 return true;
1346 }
1347 }
1348
Chris Lattnere9711312010-09-05 17:20:46 +00001349 Value *Mul1 = NULL;
1350 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1351 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1352 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topperc4265e12012-12-22 19:15:35 +00001353 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattnere9711312010-09-05 17:20:46 +00001354 MulC->getType()->getPrimitiveSizeInBits())
1355 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topperc4265e12012-12-22 19:15:35 +00001356 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattnere9711312010-09-05 17:20:46 +00001357 MulC->getType()->getPrimitiveSizeInBits())
1358 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topperc4265e12012-12-22 19:15:35 +00001359
Chris Lattnere9711312010-09-05 17:20:46 +00001360 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1361 Multiple = ConstantExpr::getMul(MulC, Op0C);
1362 return true;
1363 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001364
1365 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1366 if (Mul1CI->getValue() == 1) {
1367 // V == Base * Op0, so return Op0
1368 Multiple = Op0;
1369 return true;
1370 }
1371 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001372 }
1373 }
1374
1375 // We could not determine if V is a multiple of Base.
1376 return false;
1377}
1378
Craig Topperc4265e12012-12-22 19:15:35 +00001379/// CannotBeNegativeZero - Return true if we can prove that the specified FP
Chris Lattner833f25d2008-06-02 01:29:46 +00001380/// value is never equal to -0.0.
1381///
1382/// NOTE: this function will need to be revisited when we support non-default
1383/// rounding modes!
1384///
1385bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1386 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1387 return !CFP->getValueAPF().isNegZero();
Craig Topperc4265e12012-12-22 19:15:35 +00001388
Chris Lattner833f25d2008-06-02 01:29:46 +00001389 if (Depth == 6)
1390 return 1; // Limit search depth.
1391
Dan Gohmanca178902009-07-17 20:47:02 +00001392 const Operator *I = dyn_cast<Operator>(V);
Chris Lattner833f25d2008-06-02 01:29:46 +00001393 if (I == 0) return false;
Michael Ilseman85893f42012-12-06 00:07:09 +00001394
1395 // Check if the nsz fast-math flag is set
1396 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1397 if (FPO->hasNoSignedZeros())
1398 return true;
1399
Chris Lattner833f25d2008-06-02 01:29:46 +00001400 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszak603e8742013-03-06 00:16:16 +00001401 if (I->getOpcode() == Instruction::FAdd)
1402 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1403 if (CFP->isNullValue())
1404 return true;
Craig Topperc4265e12012-12-22 19:15:35 +00001405
Chris Lattner833f25d2008-06-02 01:29:46 +00001406 // sitofp and uitofp turn into +0.0 for zero.
1407 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1408 return true;
Craig Topperc4265e12012-12-22 19:15:35 +00001409
Chris Lattner833f25d2008-06-02 01:29:46 +00001410 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1411 // sqrt(-0.0) = -0.0, no other negative results are possible.
1412 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif71339c92010-06-23 23:38:07 +00001413 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +00001414
Chris Lattner833f25d2008-06-02 01:29:46 +00001415 if (const CallInst *CI = dyn_cast<CallInst>(I))
1416 if (const Function *F = CI->getCalledFunction()) {
1417 if (F->isDeclaration()) {
Daniel Dunbarf0443c12009-07-26 08:34:35 +00001418 // abs(x) != -0.0
1419 if (F->getName() == "abs") return true;
Dale Johannesen9d061752009-09-25 20:54:50 +00001420 // fabs[lf](x) != -0.0
1421 if (F->getName() == "fabs") return true;
1422 if (F->getName() == "fabsf") return true;
1423 if (F->getName() == "fabsl") return true;
1424 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1425 F->getName() == "sqrtl")
Gabor Greif71339c92010-06-23 23:38:07 +00001426 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001427 }
1428 }
Craig Topperc4265e12012-12-22 19:15:35 +00001429
Chris Lattner833f25d2008-06-02 01:29:46 +00001430 return false;
1431}
1432
Chris Lattnerbb897102010-12-26 20:15:01 +00001433/// isBytewiseValue - If the specified value can be set by repeating the same
1434/// byte in memory, return the i8 value that it is represented with. This is
1435/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1436/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1437/// byte store (e.g. i16 0x1234), return null.
1438Value *llvm::isBytewiseValue(Value *V) {
1439 // All byte-wide stores are splatable, even of arbitrary variables.
1440 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattner41bfbb02011-02-19 19:35:49 +00001441
1442 // Handle 'null' ConstantArrayZero etc.
1443 if (Constant *C = dyn_cast<Constant>(V))
1444 if (C->isNullValue())
1445 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topperc4265e12012-12-22 19:15:35 +00001446
Chris Lattnerbb897102010-12-26 20:15:01 +00001447 // Constant float and double values can be handled as integer values if the
Craig Topperc4265e12012-12-22 19:15:35 +00001448 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattnerbb897102010-12-26 20:15:01 +00001449 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1450 if (CFP->getType()->isFloatTy())
1451 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1452 if (CFP->getType()->isDoubleTy())
1453 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1454 // Don't handle long double formats, which have strange constraints.
1455 }
Craig Topperc4265e12012-12-22 19:15:35 +00001456
1457 // We can handle constant integers that are power of two in size and a
Chris Lattnerbb897102010-12-26 20:15:01 +00001458 // multiple of 8 bits.
1459 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1460 unsigned Width = CI->getBitWidth();
1461 if (isPowerOf2_32(Width) && Width > 8) {
1462 // We can handle this value if the recursive binary decomposition is the
1463 // same at all levels.
1464 APInt Val = CI->getValue();
1465 APInt Val2;
1466 while (Val.getBitWidth() != 8) {
1467 unsigned NextWidth = Val.getBitWidth()/2;
1468 Val2 = Val.lshr(NextWidth);
1469 Val2 = Val2.trunc(Val.getBitWidth()/2);
1470 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topperc4265e12012-12-22 19:15:35 +00001471
Chris Lattnerbb897102010-12-26 20:15:01 +00001472 // If the top/bottom halves aren't the same, reject it.
1473 if (Val != Val2)
1474 return 0;
1475 }
1476 return ConstantInt::get(V->getContext(), Val);
1477 }
1478 }
Craig Topperc4265e12012-12-22 19:15:35 +00001479
Chris Lattner18c7f802012-02-05 02:29:43 +00001480 // A ConstantDataArray/Vector is splatable if all its members are equal and
1481 // also splatable.
1482 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1483 Value *Elt = CA->getElementAsConstant(0);
1484 Value *Val = isBytewiseValue(Elt);
Chris Lattnerbb897102010-12-26 20:15:01 +00001485 if (!Val)
1486 return 0;
Craig Topperc4265e12012-12-22 19:15:35 +00001487
Chris Lattner18c7f802012-02-05 02:29:43 +00001488 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1489 if (CA->getElementAsConstant(I) != Elt)
Chris Lattnerbb897102010-12-26 20:15:01 +00001490 return 0;
Craig Topperc4265e12012-12-22 19:15:35 +00001491
Chris Lattnerbb897102010-12-26 20:15:01 +00001492 return Val;
1493 }
Chad Rosierdce42b72011-12-06 00:19:08 +00001494
Chris Lattnerbb897102010-12-26 20:15:01 +00001495 // Conceptually, we could handle things like:
1496 // %a = zext i8 %X to i16
1497 // %b = shl i16 %a, 8
1498 // %c = or i16 %a, %b
1499 // but until there is an example that actually needs this, it doesn't seem
1500 // worth worrying about.
1501 return 0;
1502}
1503
1504
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001505// This is the recursive version of BuildSubAggregate. It takes a few different
1506// arguments. Idxs is the index within the nested struct From that we are
1507// looking at now (which is of type IndexedType). IdxSkip is the number of
1508// indices from Idxs that should be left out when inserting into the resulting
1509// struct. To is the result struct built so far, new insertvalue instructions
1510// build on that.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001511static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Dan Gohman7db949d2009-08-07 01:32:21 +00001512 SmallVector<unsigned, 10> &Idxs,
1513 unsigned IdxSkip,
Dan Gohman7db949d2009-08-07 01:32:21 +00001514 Instruction *InsertBefore) {
Dmitri Gribenko96f498b2013-01-13 16:01:15 +00001515 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001516 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001517 // Save the original To argument so we can modify it
1518 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001519 // General case, the type indexed by Idxs is a struct
1520 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1521 // Process each struct element recursively
1522 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001523 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001524 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001525 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001526 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001527 if (!To) {
1528 // Couldn't find any inserted value for this index? Cleanup
1529 while (PrevTo != OrigTo) {
1530 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1531 PrevTo = Del->getAggregateOperand();
1532 Del->eraseFromParent();
1533 }
1534 // Stop processing elements
1535 break;
1536 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001537 }
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001538 // If we successfully found a value for each of our subaggregates
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001539 if (To)
1540 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001541 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001542 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1543 // the struct's elements had a value that was inserted directly. In the latter
1544 // case, perhaps we can't determine each of the subelements individually, but
1545 // we might be able to find the complete struct somewhere.
Craig Topperc4265e12012-12-22 19:15:35 +00001546
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001547 // Find the value that is at that particular spot
Jay Foadfc6d3a42011-07-13 10:26:04 +00001548 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001549
1550 if (!V)
1551 return NULL;
1552
1553 // Insert the value in the new (sub) aggregrate
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001554 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001555 "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001556}
1557
1558// This helper takes a nested struct and extracts a part of it (which is again a
1559// struct) into a new value. For example, given the struct:
1560// { a, { b, { c, d }, e } }
1561// and the indices "1, 1" this returns
1562// { c, d }.
1563//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001564// It does this by inserting an insertvalue for each element in the resulting
1565// struct, as opposed to just inserting a single struct. This will only work if
1566// each of the elements of the substruct are known (ie, inserted into From by an
1567// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001568//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001569// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foadfc6d3a42011-07-13 10:26:04 +00001570static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohman7db949d2009-08-07 01:32:21 +00001571 Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001572 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001573 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001574 idx_range);
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001575 Value *To = UndefValue::get(IndexedType);
Jay Foadfc6d3a42011-07-13 10:26:04 +00001576 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001577 unsigned IdxSkip = Idxs.size();
1578
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001579 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001580}
1581
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001582/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1583/// the scalar value indexed is already around as a register, for example if it
1584/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001585///
1586/// If InsertBefore is not null, this function will duplicate (modified)
1587/// insertvalues when a part of a nested struct is extracted.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001588Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1589 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001590 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerdf390282012-01-24 07:54:10 +00001591 // recursion).
Jay Foadfc6d3a42011-07-13 10:26:04 +00001592 if (idx_range.empty())
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001593 return V;
Chris Lattnerdf390282012-01-24 07:54:10 +00001594 // We have indices, so V should have an indexable type.
1595 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1596 "Not looking at a struct or array?");
1597 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1598 "Invalid indices for type?");
Owen Anderson76f600b2009-07-06 22:37:39 +00001599
Chris Lattnera1f00f42012-01-25 06:48:06 +00001600 if (Constant *C = dyn_cast<Constant>(V)) {
1601 C = C->getAggregateElement(idx_range[0]);
1602 if (C == 0) return 0;
1603 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1604 }
Craig Topperc4265e12012-12-22 19:15:35 +00001605
Chris Lattnerdf390282012-01-24 07:54:10 +00001606 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001607 // Loop the indices for the insertvalue instruction in parallel with the
1608 // requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001609 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001610 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1611 i != e; ++i, ++req_idx) {
Jay Foadfc6d3a42011-07-13 10:26:04 +00001612 if (req_idx == idx_range.end()) {
Chris Lattnerdf390282012-01-24 07:54:10 +00001613 // We can't handle this without inserting insertvalues
1614 if (!InsertBefore)
Matthijs Kooijman97728912008-06-16 13:28:31 +00001615 return 0;
Chris Lattnerdf390282012-01-24 07:54:10 +00001616
1617 // The requested index identifies a part of a nested aggregate. Handle
1618 // this specially. For example,
1619 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1620 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1621 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1622 // This can be changed into
1623 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1624 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1625 // which allows the unused 0,0 element from the nested struct to be
1626 // removed.
1627 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1628 InsertBefore);
Duncan Sands9954c762008-06-19 08:47:31 +00001629 }
Craig Topperc4265e12012-12-22 19:15:35 +00001630
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001631 // This insert value inserts something else than what we are looking for.
1632 // See if the (aggregrate) value inserted into has the value we are
1633 // looking for, then.
1634 if (*req_idx != *i)
Jay Foadfc6d3a42011-07-13 10:26:04 +00001635 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001636 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001637 }
1638 // If we end up here, the indices of the insertvalue match with those
1639 // requested (though possibly only partially). Now we recursively look at
1640 // the inserted value, passing any remaining indices.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001641 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001642 makeArrayRef(req_idx, idx_range.end()),
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001643 InsertBefore);
Chris Lattnerdf390282012-01-24 07:54:10 +00001644 }
Craig Topperc4265e12012-12-22 19:15:35 +00001645
Chris Lattnerdf390282012-01-24 07:54:10 +00001646 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001647 // If we're extracting a value from an aggregrate that was extracted from
1648 // something else, we can extract from that something else directly instead.
1649 // However, we will need to chain I's indices with the requested indices.
Craig Topperc4265e12012-12-22 19:15:35 +00001650
1651 // Calculate the number of indices required
Jay Foadfc6d3a42011-07-13 10:26:04 +00001652 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001653 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001654 SmallVector<unsigned, 5> Idxs;
1655 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001656 // Add indices from the extract value instruction
Jay Foadfc6d3a42011-07-13 10:26:04 +00001657 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topperc4265e12012-12-22 19:15:35 +00001658
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001659 // Add requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001660 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001661
Craig Topperc4265e12012-12-22 19:15:35 +00001662 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001663 && "Number of indices added not correct?");
Craig Topperc4265e12012-12-22 19:15:35 +00001664
Jay Foadfc6d3a42011-07-13 10:26:04 +00001665 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001666 }
1667 // Otherwise, we don't know (such as, extracting from a function return value
1668 // or load instruction)
1669 return 0;
1670}
Evan Cheng0ff39b32008-06-30 07:31:25 +00001671
Chris Lattnered58a6f2010-11-30 22:25:26 +00001672/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1673/// it can be expressed as a base pointer plus a constant offset. Return the
1674/// base and offset to the caller.
1675Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Dan Gohmana070d2a2013-01-31 02:00:45 +00001676 const DataLayout *TD) {
1677 // Without DataLayout, conservatively assume 64-bit offsets, which is
1678 // the widest we support.
1679 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
Nuno Lopes5cec3472012-12-31 20:48:35 +00001680 APInt ByteOffset(BitWidth, 0);
1681 while (1) {
1682 if (Ptr->getType()->isVectorTy())
1683 break;
Craig Topperc4265e12012-12-22 19:15:35 +00001684
Nuno Lopes5cec3472012-12-31 20:48:35 +00001685 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1686 APInt GEPOffset(BitWidth, 0);
Dan Gohmana070d2a2013-01-31 02:00:45 +00001687 if (TD && !GEP->accumulateConstantOffset(*TD, GEPOffset))
Nuno Lopes5cec3472012-12-31 20:48:35 +00001688 break;
1689 ByteOffset += GEPOffset;
1690 Ptr = GEP->getPointerOperand();
1691 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1692 Ptr = cast<Operator>(Ptr)->getOperand(0);
1693 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1694 if (GA->mayBeOverridden())
1695 break;
1696 Ptr = GA->getAliasee();
Chris Lattnered58a6f2010-11-30 22:25:26 +00001697 } else {
Nuno Lopes5cec3472012-12-31 20:48:35 +00001698 break;
Chris Lattnered58a6f2010-11-30 22:25:26 +00001699 }
1700 }
Nuno Lopes5cec3472012-12-31 20:48:35 +00001701 Offset = ByteOffset.getSExtValue();
1702 return Ptr;
Chris Lattnered58a6f2010-11-30 22:25:26 +00001703}
1704
1705
Chris Lattner18c7f802012-02-05 02:29:43 +00001706/// getConstantStringInfo - This function computes the length of a
Evan Cheng0ff39b32008-06-30 07:31:25 +00001707/// null-terminated C string pointed to by V. If successful, it returns true
1708/// and returns the string in Str. If unsuccessful, it returns false.
Chris Lattner18c7f802012-02-05 02:29:43 +00001709bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1710 uint64_t Offset, bool TrimAtNul) {
1711 assert(V);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001712
Chris Lattner18c7f802012-02-05 02:29:43 +00001713 // Look through bitcast instructions and geps.
1714 V = V->stripPointerCasts();
Craig Topperc4265e12012-12-22 19:15:35 +00001715
Chris Lattner18c7f802012-02-05 02:29:43 +00001716 // If the value is a GEP instructionor constant expression, treat it as an
1717 // offset.
1718 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001719 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001720 if (GEP->getNumOperands() != 3)
1721 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001722
Evan Cheng0ff39b32008-06-30 07:31:25 +00001723 // Make sure the index-ee is a pointer to array of i8.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001724 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1725 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001726 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001727 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001728
Evan Cheng0ff39b32008-06-30 07:31:25 +00001729 // Check to make sure that the first operand of the GEP is an integer and
1730 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001731 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001732 if (FirstIdx == 0 || !FirstIdx->isZero())
1733 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001734
Evan Cheng0ff39b32008-06-30 07:31:25 +00001735 // If the second index isn't a ConstantInt, then this is a variable index
1736 // into the array. If this occurs, we can't say anything meaningful about
1737 // the string.
1738 uint64_t StartIdx = 0;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001739 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001740 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001741 else
1742 return false;
Chris Lattner18c7f802012-02-05 02:29:43 +00001743 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001744 }
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001745
Evan Cheng0ff39b32008-06-30 07:31:25 +00001746 // The GEP instruction, constant or instruction, must reference a global
1747 // variable that is a constant and is initialized. The referenced constant
1748 // initializer is the array that we'll use for optimization.
Chris Lattner18c7f802012-02-05 02:29:43 +00001749 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman82555732009-08-19 18:20:44 +00001750 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendling0582ae92009-03-13 04:39:26 +00001751 return false;
Chris Lattner18c7f802012-02-05 02:29:43 +00001752
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001753 // Handle the all-zeros case
Chris Lattner18c7f802012-02-05 02:29:43 +00001754 if (GV->getInitializer()->isNullValue()) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001755 // This is a degenerate case. The initializer is constant zero so the
1756 // length of the string must be zero.
Chris Lattner18c7f802012-02-05 02:29:43 +00001757 Str = "";
Bill Wendling0582ae92009-03-13 04:39:26 +00001758 return true;
1759 }
Craig Topperc4265e12012-12-22 19:15:35 +00001760
Evan Cheng0ff39b32008-06-30 07:31:25 +00001761 // Must be a Constant Array
Chris Lattner18c7f802012-02-05 02:29:43 +00001762 const ConstantDataArray *Array =
1763 dyn_cast<ConstantDataArray>(GV->getInitializer());
1764 if (Array == 0 || !Array->isString())
Bill Wendling0582ae92009-03-13 04:39:26 +00001765 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001766
Evan Cheng0ff39b32008-06-30 07:31:25 +00001767 // Get the number of elements in the array
Chris Lattner18c7f802012-02-05 02:29:43 +00001768 uint64_t NumElts = Array->getType()->getArrayNumElements();
1769
1770 // Start out with the entire array in the StringRef.
1771 Str = Array->getAsString();
1772
Bill Wendling0582ae92009-03-13 04:39:26 +00001773 if (Offset > NumElts)
1774 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001775
Chris Lattner18c7f802012-02-05 02:29:43 +00001776 // Skip over 'offset' bytes.
1777 Str = Str.substr(Offset);
Craig Topperc4265e12012-12-22 19:15:35 +00001778
Chris Lattner18c7f802012-02-05 02:29:43 +00001779 if (TrimAtNul) {
1780 // Trim off the \0 and anything after it. If the array is not nul
1781 // terminated, we just return the whole end of string. The client may know
1782 // some other way that the string is length-bound.
1783 Str = Str.substr(0, Str.find('\0'));
1784 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001785 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001786}
Eric Christopher25ec4832010-03-05 06:58:57 +00001787
1788// These next two are very similar to the above, but also look through PHI
1789// nodes.
1790// TODO: See if we can integrate these two together.
1791
1792/// GetStringLengthH - If we can compute the length of the string pointed to by
1793/// the specified pointer, return 'len+1'. If we can't, return 0.
1794static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1795 // Look through noop bitcast instructions.
Chris Lattner18c7f802012-02-05 02:29:43 +00001796 V = V->stripPointerCasts();
Eric Christopher25ec4832010-03-05 06:58:57 +00001797
1798 // If this is a PHI node, there are two cases: either we have already seen it
1799 // or we haven't.
1800 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1801 if (!PHIs.insert(PN))
1802 return ~0ULL; // already in the set.
1803
1804 // If it was new, see if all the input strings are the same length.
1805 uint64_t LenSoFar = ~0ULL;
1806 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1807 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1808 if (Len == 0) return 0; // Unknown length -> unknown.
1809
1810 if (Len == ~0ULL) continue;
1811
1812 if (Len != LenSoFar && LenSoFar != ~0ULL)
1813 return 0; // Disagree -> unknown.
1814 LenSoFar = Len;
1815 }
1816
1817 // Success, all agree.
1818 return LenSoFar;
1819 }
1820
1821 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1822 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1823 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1824 if (Len1 == 0) return 0;
1825 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1826 if (Len2 == 0) return 0;
1827 if (Len1 == ~0ULL) return Len2;
1828 if (Len2 == ~0ULL) return Len1;
1829 if (Len1 != Len2) return 0;
1830 return Len1;
1831 }
Craig Topperc4265e12012-12-22 19:15:35 +00001832
Chris Lattner18c7f802012-02-05 02:29:43 +00001833 // Otherwise, see if we can read the string.
1834 StringRef StrData;
1835 if (!getConstantStringInfo(V, StrData))
Eric Christopher25ec4832010-03-05 06:58:57 +00001836 return 0;
1837
Chris Lattner18c7f802012-02-05 02:29:43 +00001838 return StrData.size()+1;
Eric Christopher25ec4832010-03-05 06:58:57 +00001839}
1840
1841/// GetStringLength - If we can compute the length of the string pointed to by
1842/// the specified pointer, return 'len+1'. If we can't, return 0.
1843uint64_t llvm::GetStringLength(Value *V) {
1844 if (!V->getType()->isPointerTy()) return 0;
1845
1846 SmallPtrSet<PHINode*, 32> PHIs;
1847 uint64_t Len = GetStringLengthH(V, PHIs);
1848 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1849 // an empty string as a length.
1850 return Len == ~0ULL ? 1 : Len;
1851}
Dan Gohman5034dd32010-12-15 20:02:24 +00001852
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001853Value *
Micah Villmow3574eca2012-10-08 16:38:25 +00001854llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohman5034dd32010-12-15 20:02:24 +00001855 if (!V->getType()->isPointerTy())
1856 return V;
1857 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1858 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1859 V = GEP->getPointerOperand();
1860 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1861 V = cast<Operator>(V)->getOperand(0);
1862 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1863 if (GA->mayBeOverridden())
1864 return V;
1865 V = GA->getAliasee();
1866 } else {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001867 // See if InstructionSimplify knows any relevant tricks.
1868 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001869 // TODO: Acquire a DominatorTree and use it.
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001870 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001871 V = Simplified;
1872 continue;
1873 }
1874
Dan Gohman5034dd32010-12-15 20:02:24 +00001875 return V;
1876 }
1877 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1878 }
1879 return V;
1880}
Nick Lewycky99e0b2a2011-06-27 04:20:45 +00001881
Dan Gohmanb401e3b2012-05-10 18:57:38 +00001882void
1883llvm::GetUnderlyingObjects(Value *V,
1884 SmallVectorImpl<Value *> &Objects,
Micah Villmow3574eca2012-10-08 16:38:25 +00001885 const DataLayout *TD,
Dan Gohmanb401e3b2012-05-10 18:57:38 +00001886 unsigned MaxLookup) {
1887 SmallPtrSet<Value *, 4> Visited;
1888 SmallVector<Value *, 4> Worklist;
1889 Worklist.push_back(V);
1890 do {
1891 Value *P = Worklist.pop_back_val();
1892 P = GetUnderlyingObject(P, TD, MaxLookup);
1893
1894 if (!Visited.insert(P))
1895 continue;
1896
1897 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1898 Worklist.push_back(SI->getTrueValue());
1899 Worklist.push_back(SI->getFalseValue());
1900 continue;
1901 }
1902
1903 if (PHINode *PN = dyn_cast<PHINode>(P)) {
1904 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1905 Worklist.push_back(PN->getIncomingValue(i));
1906 continue;
1907 }
1908
1909 Objects.push_back(P);
1910 } while (!Worklist.empty());
1911}
1912
Nick Lewycky99e0b2a2011-06-27 04:20:45 +00001913/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1914/// are lifetime markers.
1915///
1916bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1917 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1918 UI != UE; ++UI) {
1919 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1920 if (!II) return false;
1921
1922 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1923 II->getIntrinsicID() != Intrinsic::lifetime_end)
1924 return false;
1925 }
1926 return true;
1927}
Dan Gohmanf0426602011-12-14 23:49:11 +00001928
Dan Gohmanfebaf842012-01-04 23:01:09 +00001929bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmow3574eca2012-10-08 16:38:25 +00001930 const DataLayout *TD) {
Dan Gohmanfebaf842012-01-04 23:01:09 +00001931 const Operator *Inst = dyn_cast<Operator>(V);
1932 if (!Inst)
1933 return false;
1934
Dan Gohmanf0426602011-12-14 23:49:11 +00001935 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1936 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1937 if (C->canTrap())
1938 return false;
1939
1940 switch (Inst->getOpcode()) {
1941 default:
1942 return true;
1943 case Instruction::UDiv:
1944 case Instruction::URem:
1945 // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1946 return isKnownNonZero(Inst->getOperand(1), TD);
1947 case Instruction::SDiv:
1948 case Instruction::SRem: {
1949 Value *Op = Inst->getOperand(1);
1950 // x / y is undefined if y == 0
1951 if (!isKnownNonZero(Op, TD))
1952 return false;
1953 // x / y might be undefined if y == -1
1954 unsigned BitWidth = getBitWidth(Op->getType(), TD);
1955 if (BitWidth == 0)
1956 return false;
1957 APInt KnownZero(BitWidth, 0);
1958 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001959 ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
Dan Gohmanf0426602011-12-14 23:49:11 +00001960 return !!KnownZero;
1961 }
1962 case Instruction::Load: {
1963 const LoadInst *LI = cast<LoadInst>(Inst);
1964 if (!LI->isUnordered())
1965 return false;
1966 return LI->getPointerOperand()->isDereferenceablePointer();
1967 }
Nick Lewycky83696872011-12-21 05:52:02 +00001968 case Instruction::Call: {
1969 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1970 switch (II->getIntrinsicID()) {
Chandler Carruthc0d18b62012-04-07 19:22:18 +00001971 // These synthetic intrinsics have no side-effects, and just mark
1972 // information about their operands.
1973 // FIXME: There are other no-op synthetic instructions that potentially
1974 // should be considered at least *safe* to speculate...
1975 case Intrinsic::dbg_declare:
1976 case Intrinsic::dbg_value:
1977 return true;
1978
Nick Lewycky83696872011-12-21 05:52:02 +00001979 case Intrinsic::bswap:
1980 case Intrinsic::ctlz:
1981 case Intrinsic::ctpop:
1982 case Intrinsic::cttz:
1983 case Intrinsic::objectsize:
1984 case Intrinsic::sadd_with_overflow:
1985 case Intrinsic::smul_with_overflow:
1986 case Intrinsic::ssub_with_overflow:
1987 case Intrinsic::uadd_with_overflow:
1988 case Intrinsic::umul_with_overflow:
1989 case Intrinsic::usub_with_overflow:
1990 return true;
1991 // TODO: some fp intrinsics are marked as having the same error handling
1992 // as libm. They're safe to speculate when they won't error.
1993 // TODO: are convert_{from,to}_fp16 safe?
1994 // TODO: can we list target-specific intrinsics here?
1995 default: break;
1996 }
1997 }
Dan Gohmanf0426602011-12-14 23:49:11 +00001998 return false; // The called function could have undefined behavior or
Nick Lewycky83696872011-12-21 05:52:02 +00001999 // side-effects, even if marked readnone nounwind.
2000 }
Dan Gohmanf0426602011-12-14 23:49:11 +00002001 case Instruction::VAArg:
2002 case Instruction::Alloca:
2003 case Instruction::Invoke:
2004 case Instruction::PHI:
2005 case Instruction::Store:
2006 case Instruction::Ret:
2007 case Instruction::Br:
2008 case Instruction::IndirectBr:
2009 case Instruction::Switch:
Dan Gohmanf0426602011-12-14 23:49:11 +00002010 case Instruction::Unreachable:
2011 case Instruction::Fence:
2012 case Instruction::LandingPad:
2013 case Instruction::AtomicRMW:
2014 case Instruction::AtomicCmpXchg:
2015 case Instruction::Resume:
2016 return false; // Misc instructions which have effects
2017 }
2018}
Dan Gohmande0eb192013-01-31 02:40:59 +00002019
2020/// isKnownNonNull - Return true if we know that the specified value is never
2021/// null.
2022bool llvm::isKnownNonNull(const Value *V) {
2023 // Alloca never returns null, malloc might.
2024 if (isa<AllocaInst>(V)) return true;
2025
2026 // A byval argument is never null.
2027 if (const Argument *A = dyn_cast<Argument>(V))
2028 return A->hasByValAttr();
2029
2030 // Global values are not null unless extern weak.
2031 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2032 return !GV->hasExternalWeakLinkage();
2033 return false;
2034}