blob: 45df82906bcc2f788d95b5640c4f2588af8104b7 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000027#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000028#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000029#include "llvm/Target/TargetMachine.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattnercf93cdd2004-01-30 22:13:44 +000031#include "llvm/Support/CFG.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattnercf93cdd2004-01-30 22:13:44 +000034//#define SMART_FP 1
35
Chris Lattner333b2fa2002-12-13 10:09:43 +000036/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000037/// instruction at as well as a basic block. This is the version for when you
38/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000039inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000040 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000041 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000042 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000043 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000044 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000045 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000046 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
47}
48
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000049/// BMI - A special BuildMI variant that takes an iterator to insert the
50/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000051inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000052 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000053 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000054 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000055 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000056 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000057 return MachineInstrBuilder(MI);
58}
59
Chris Lattner333b2fa2002-12-13 10:09:43 +000060
Chris Lattner72614082002-10-25 22:55:53 +000061namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000062 struct ISel : public FunctionPass, InstVisitor<ISel> {
63 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000064 MachineFunction *F; // The function we are compiling into
65 MachineBasicBlock *BB; // The current MBB we are compiling
66 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000067
Chris Lattner72614082002-10-25 22:55:53 +000068 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
69
Chris Lattner333b2fa2002-12-13 10:09:43 +000070 // MBBMap - Mapping between LLVM BB -> Machine BB
71 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
72
Chris Lattnerf70e0c22003-12-28 21:23:38 +000073 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000074
75 /// runOnFunction - Top level implementation of instruction selection for
76 /// the entire function.
77 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000078 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000079 // First pass over the function, lower any unknown intrinsic functions
80 // with the IntrinsicLowering class.
81 LowerUnknownIntrinsicFunctionCalls(Fn);
82
Chris Lattner36b36032002-10-29 23:40:58 +000083 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000084
Chris Lattner065faeb2002-12-28 20:24:02 +000085 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
87 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
88
Chris Lattner14aa7fe2002-12-16 22:54:46 +000089 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000090
Chris Lattnerdbd73722003-05-06 21:32:22 +000091 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000092 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000093
Chris Lattner333b2fa2002-12-13 10:09:43 +000094 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000095 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000096
97 // Select the PHI nodes
98 SelectPHINodes();
99
Chris Lattner72614082002-10-25 22:55:53 +0000100 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000101 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000102 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000103 // We always build a machine code representation for the function
104 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000105 }
106
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000107 virtual const char *getPassName() const {
108 return "X86 Simple Instruction Selection";
109 }
110
Chris Lattner72614082002-10-25 22:55:53 +0000111 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000112 /// block. This simply creates a new MachineBasicBlock to emit code into
113 /// and adds it to the current MachineFunction. Subsequent visit* for
114 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000115 ///
116 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000117 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000118 }
119
Chris Lattner44827152003-12-28 09:47:19 +0000120 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
121 /// function, lowering any calls to unknown intrinsic functions into the
122 /// equivalent LLVM code.
123 void LowerUnknownIntrinsicFunctionCalls(Function &F);
124
Chris Lattner065faeb2002-12-28 20:24:02 +0000125 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
126 /// from the stack into virtual registers.
127 ///
128 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000129
130 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
131 /// because we have to generate our sources into the source basic blocks,
132 /// not the current one.
133 ///
134 void SelectPHINodes();
135
Chris Lattner72614082002-10-25 22:55:53 +0000136 // Visitation methods for various instructions. These methods simply emit
137 // fixed X86 code for each instruction.
138 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000139
140 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000141 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000142 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000143
144 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000145 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000146 unsigned Reg;
147 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000148 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
149 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000150 };
151 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000152 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000153 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000154 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000155
156 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000157 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000158 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
159 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000160 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000161 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000162 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000163 void doMultiplyConst(MachineBasicBlock *MBB,
164 MachineBasicBlock::iterator &MBBI,
165 unsigned DestReg, const Type *DestTy,
166 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000167 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000168
Chris Lattnerf01729e2002-11-02 20:54:46 +0000169 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
170 void visitRem(BinaryOperator &B) { visitDivRem(B); }
171 void visitDivRem(BinaryOperator &B);
172
Chris Lattnere2954c82002-11-02 20:04:26 +0000173 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000174 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
175 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
176 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000177
Chris Lattner6d40c192003-01-16 16:43:00 +0000178 // Comparison operators...
179 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000180 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
181 MachineBasicBlock *MBB,
182 MachineBasicBlock::iterator &MBBI);
183
Chris Lattner6fc3c522002-11-17 21:11:55 +0000184 // Memory Instructions
185 void visitLoadInst(LoadInst &I);
186 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000187 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000188 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000189 void visitMallocInst(MallocInst &I);
190 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000191
Chris Lattnere2954c82002-11-02 20:04:26 +0000192 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000193 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000194 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000195 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000196 void visitVANextInst(VANextInst &I);
197 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000198
199 void visitInstruction(Instruction &I) {
200 std::cerr << "Cannot instruction select: " << I;
201 abort();
202 }
203
Brian Gaeke95780cc2002-12-13 07:56:18 +0000204 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000205 ///
206 void promote32(unsigned targetReg, const ValueRecord &VR);
207
Chris Lattner3e130a22003-01-13 00:32:26 +0000208 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
209 /// constant expression GEP support.
210 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000211 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000212 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000213 User::op_iterator IdxEnd, unsigned TargetReg);
214
Chris Lattner548f61d2003-04-23 17:22:12 +0000215 /// emitCastOperation - Common code shared between visitCastInst and
216 /// constant expression cast support.
217 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
218 Value *Src, const Type *DestTy, unsigned TargetReg);
219
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000220 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
221 /// and constant expression support.
222 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
223 MachineBasicBlock::iterator &IP,
224 Value *Op0, Value *Op1,
225 unsigned OperatorClass, unsigned TargetReg);
226
Chris Lattnercadff442003-10-23 17:21:43 +0000227 void emitDivRemOperation(MachineBasicBlock *BB,
228 MachineBasicBlock::iterator &IP,
229 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
230 const Type *Ty, unsigned TargetReg);
231
Chris Lattner58c41fe2003-08-24 19:19:47 +0000232 /// emitSetCCOperation - Common code shared between visitSetCondInst and
233 /// constant expression support.
234 void emitSetCCOperation(MachineBasicBlock *BB,
235 MachineBasicBlock::iterator &IP,
236 Value *Op0, Value *Op1, unsigned Opcode,
237 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000238
239 /// emitShiftOperation - Common code shared between visitShiftInst and
240 /// constant expression support.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000241 void emitShiftOperation(MachineBasicBlock *MBB,
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000242 MachineBasicBlock::iterator &IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000243 Value *Op, Value *ShiftAmount, bool isLeftShift,
244 const Type *ResultTy, unsigned DestReg);
245
Chris Lattner58c41fe2003-08-24 19:19:47 +0000246
Chris Lattnerc5291f52002-10-27 21:16:59 +0000247 /// copyConstantToRegister - Output the instructions required to put the
248 /// specified constant into the specified register.
249 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000250 void copyConstantToRegister(MachineBasicBlock *MBB,
251 MachineBasicBlock::iterator &MBBI,
252 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000253
Chris Lattner3e130a22003-01-13 00:32:26 +0000254 /// makeAnotherReg - This method returns the next register number we haven't
255 /// yet used.
256 ///
257 /// Long values are handled somewhat specially. They are always allocated
258 /// as pairs of 32 bit integer values. The register number returned is the
259 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
260 /// of the long value.
261 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000262 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000263 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
264 "Current target doesn't have X86 reg info??");
265 const X86RegisterInfo *MRI =
266 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000267 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000268 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
269 // Create the lower part
270 F->getSSARegMap()->createVirtualRegister(RC);
271 // Create the upper part.
272 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000273 }
274
Chris Lattnerc0812d82002-12-13 06:56:29 +0000275 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000276 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000277 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000278 }
279
Chris Lattner72614082002-10-25 22:55:53 +0000280 /// getReg - This method turns an LLVM value into a register number. This
281 /// is guaranteed to produce the same register number for a particular value
282 /// every time it is queried.
283 ///
284 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000285 unsigned getReg(Value *V) {
286 // Just append to the end of the current bb.
287 MachineBasicBlock::iterator It = BB->end();
288 return getReg(V, BB, It);
289 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000290 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000291 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000292 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000293 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000294 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000295 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000296 }
Chris Lattner72614082002-10-25 22:55:53 +0000297
Chris Lattner6f8fd252002-10-27 21:23:43 +0000298 // If this operand is a constant, emit the code to copy the constant into
299 // the register here...
300 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000301 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000302 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000303 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000304 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
305 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000306 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000307 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000308 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000309
Chris Lattner72614082002-10-25 22:55:53 +0000310 return Reg;
311 }
Chris Lattner72614082002-10-25 22:55:53 +0000312 };
313}
314
Chris Lattner43189d12002-11-17 20:07:45 +0000315/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
316/// Representation.
317///
318enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000319 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000320};
321
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000322/// getClass - Turn a primitive type into a "class" number which is based on the
323/// size of the type, and whether or not it is floating point.
324///
Chris Lattner43189d12002-11-17 20:07:45 +0000325static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000326 switch (Ty->getPrimitiveID()) {
327 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000328 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000329 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000330 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000331 case Type::IntTyID:
332 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000333 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000334
Chris Lattner94af4142002-12-25 05:13:53 +0000335 case Type::FloatTyID:
336 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000337
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000338 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000339 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000340 default:
341 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000342 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000343 }
344}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000345
Chris Lattner6b993cc2002-12-15 08:02:15 +0000346// getClassB - Just like getClass, but treat boolean values as bytes.
347static inline TypeClass getClassB(const Type *Ty) {
348 if (Ty == Type::BoolTy) return cByte;
349 return getClass(Ty);
350}
351
Chris Lattner06925362002-11-17 21:56:38 +0000352
Chris Lattnerc5291f52002-10-27 21:16:59 +0000353/// copyConstantToRegister - Output the instructions required to put the
354/// specified constant into the specified register.
355///
Chris Lattner8a307e82002-12-16 19:32:50 +0000356void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
357 MachineBasicBlock::iterator &IP,
358 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000359 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000360 unsigned Class = 0;
361 switch (CE->getOpcode()) {
362 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000363 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000364 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000365 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000366 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000367 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000368 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000369
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000370 case Instruction::Xor: ++Class; // FALL THROUGH
371 case Instruction::Or: ++Class; // FALL THROUGH
372 case Instruction::And: ++Class; // FALL THROUGH
373 case Instruction::Sub: ++Class; // FALL THROUGH
374 case Instruction::Add:
375 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
376 Class, R);
377 return;
378
Chris Lattnercadff442003-10-23 17:21:43 +0000379 case Instruction::Mul: {
380 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
381 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
382 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
383 return;
384 }
385 case Instruction::Div:
386 case Instruction::Rem: {
387 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
388 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
389 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
390 CE->getOpcode() == Instruction::Div,
391 CE->getType(), R);
392 return;
393 }
394
Chris Lattner58c41fe2003-08-24 19:19:47 +0000395 case Instruction::SetNE:
396 case Instruction::SetEQ:
397 case Instruction::SetLT:
398 case Instruction::SetGT:
399 case Instruction::SetLE:
400 case Instruction::SetGE:
401 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
402 CE->getOpcode(), R);
403 return;
404
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000405 case Instruction::Shl:
406 case Instruction::Shr:
407 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000408 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
409 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000410
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000411 default:
412 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000413 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000414 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000415 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000416
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000417 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000418 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000419
420 if (Class == cLong) {
421 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000422 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000423 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
424 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
425 return;
426 }
427
Chris Lattner94af4142002-12-25 05:13:53 +0000428 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000429
430 static const unsigned IntegralOpcodeTab[] = {
431 X86::MOVir8, X86::MOVir16, X86::MOVir32
432 };
433
Chris Lattner6b993cc2002-12-15 08:02:15 +0000434 if (C->getType() == Type::BoolTy) {
435 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000436 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000437 ConstantInt *CI = cast<ConstantInt>(C);
438 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000439 }
Chris Lattner94af4142002-12-25 05:13:53 +0000440 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000441 if (CFP->isExactlyValue(+0.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000442 BMI(MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000443 else if (CFP->isExactlyValue(+1.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000444 BMI(MBB, IP, X86::FLD1, 0, R);
445 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000446 // Otherwise we need to spill the constant to memory...
447 MachineConstantPool *CP = F->getConstantPool();
448 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000449 const Type *Ty = CFP->getType();
450
451 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
452 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
453 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000454 }
455
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000456 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000457 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000458 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000459 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000460 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000461 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000462 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000463 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000464 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000465 }
466}
467
Chris Lattner065faeb2002-12-28 20:24:02 +0000468/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
469/// the stack into virtual registers.
470///
471void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
472 // Emit instructions to load the arguments... On entry to a function on the
473 // X86, the stack frame looks like this:
474 //
475 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000476 // [ESP + 4] -- first argument (leftmost lexically)
477 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000478 // ...
479 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000480 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000481 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000482
483 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
484 unsigned Reg = getReg(*I);
485
Chris Lattner065faeb2002-12-28 20:24:02 +0000486 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000487 switch (getClassB(I->getType())) {
488 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000489 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000490 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
491 break;
492 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000493 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000494 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
495 break;
496 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000497 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000498 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
499 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000500 case cLong:
501 FI = MFI->CreateFixedObject(8, ArgOffset);
502 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
503 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
504 ArgOffset += 4; // longs require 4 additional bytes
505 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000506 case cFP:
507 unsigned Opcode;
508 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000509 Opcode = X86::FLDr32;
510 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000511 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000512 Opcode = X86::FLDr64;
513 FI = MFI->CreateFixedObject(8, ArgOffset);
514 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000515 }
516 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
517 break;
518 default:
519 assert(0 && "Unhandled argument type!");
520 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000521 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000522 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000523
524 // If the function takes variable number of arguments, add a frame offset for
525 // the start of the first vararg value... this is used to expand
526 // llvm.va_start.
527 if (Fn.getFunctionType()->isVarArg())
528 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000529}
530
531
Chris Lattner333b2fa2002-12-13 10:09:43 +0000532/// SelectPHINodes - Insert machine code to generate phis. This is tricky
533/// because we have to generate our sources into the source basic blocks, not
534/// the current one.
535///
536void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000537 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000538 const Function &LF = *F->getFunction(); // The LLVM function...
539 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
540 const BasicBlock *BB = I;
541 MachineBasicBlock *MBB = MBBMap[I];
542
543 // Loop over all of the PHI nodes in the LLVM basic block...
544 unsigned NumPHIs = 0;
545 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000546 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000547
Chris Lattner333b2fa2002-12-13 10:09:43 +0000548 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000549 unsigned PHIReg = getReg(*PN);
550 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
551 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
552
553 MachineInstr *LongPhiMI = 0;
554 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000555 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
556 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000557 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000558
Chris Lattnera6e73f12003-05-12 14:22:21 +0000559 // PHIValues - Map of blocks to incoming virtual registers. We use this
560 // so that we only initialize one incoming value for a particular block,
561 // even if the block has multiple entries in the PHI node.
562 //
563 std::map<MachineBasicBlock*, unsigned> PHIValues;
564
Chris Lattner333b2fa2002-12-13 10:09:43 +0000565 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
566 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000567 unsigned ValReg;
568 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
569 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000570
Chris Lattnera6e73f12003-05-12 14:22:21 +0000571 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
572 // We already inserted an initialization of the register for this
573 // predecessor. Recycle it.
574 ValReg = EntryIt->second;
575
576 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000577 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000578 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000579 Value *Val = PN->getIncomingValue(i);
580
581 // If this is a constant or GlobalValue, we may have to insert code
582 // into the basic block to compute it into a virtual register.
583 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
584 // Because we don't want to clobber any values which might be in
585 // physical registers with the computation of this constant (which
586 // might be arbitrarily complex if it is a constant expression),
587 // just insert the computation at the top of the basic block.
588 MachineBasicBlock::iterator PI = PredMBB->begin();
589
590 // Skip over any PHI nodes though!
591 while (PI != PredMBB->end() && (*PI)->getOpcode() == X86::PHI)
592 ++PI;
593
594 ValReg = getReg(Val, PredMBB, PI);
595 } else {
596 ValReg = getReg(Val);
597 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000598
599 // Remember that we inserted a value for this PHI for this predecessor
600 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
601 }
602
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000603 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000604 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000605 if (LongPhiMI) {
606 LongPhiMI->addRegOperand(ValReg+1);
607 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
608 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000609 }
610 }
611 }
612}
613
Chris Lattner6d40c192003-01-16 16:43:00 +0000614// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
615// the conditional branch instruction which is the only user of the cc
616// instruction. This is the case if the conditional branch is the only user of
617// the setcc, and if the setcc is in the same basic block as the conditional
618// branch. We also don't handle long arguments below, so we reject them here as
619// well.
620//
621static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
622 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000623 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000624 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
625 const Type *Ty = SCI->getOperand(0)->getType();
626 if (Ty != Type::LongTy && Ty != Type::ULongTy)
627 return SCI;
628 }
629 return 0;
630}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000631
Chris Lattner6d40c192003-01-16 16:43:00 +0000632// Return a fixed numbering for setcc instructions which does not depend on the
633// order of the opcodes.
634//
635static unsigned getSetCCNumber(unsigned Opcode) {
636 switch(Opcode) {
637 default: assert(0 && "Unknown setcc instruction!");
638 case Instruction::SetEQ: return 0;
639 case Instruction::SetNE: return 1;
640 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000641 case Instruction::SetGE: return 3;
642 case Instruction::SetGT: return 4;
643 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000644 }
645}
Chris Lattner06925362002-11-17 21:56:38 +0000646
Chris Lattner6d40c192003-01-16 16:43:00 +0000647// LLVM -> X86 signed X86 unsigned
648// ----- ---------- ------------
649// seteq -> sete sete
650// setne -> setne setne
651// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000652// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000653// setgt -> setg seta
654// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000655// ----
656// sets // Used by comparison with 0 optimization
657// setns
658static const unsigned SetCCOpcodeTab[2][8] = {
659 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
660 0, 0 },
661 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
662 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000663};
664
Chris Lattnerb2acc512003-10-19 21:09:10 +0000665// EmitComparison - This function emits a comparison of the two operands,
666// returning the extended setcc code to use.
667unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
668 MachineBasicBlock *MBB,
669 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000670 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000671 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000672 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000673 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000674
675 // Special case handling of: cmp R, i
676 if (Class == cByte || Class == cShort || Class == cInt)
677 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000678 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
679
Chris Lattner333864d2003-06-05 19:30:30 +0000680 // Mask off any upper bits of the constant, if there are any...
681 Op1v &= (1ULL << (8 << Class)) - 1;
682
Chris Lattnerb2acc512003-10-19 21:09:10 +0000683 // If this is a comparison against zero, emit more efficient code. We
684 // can't handle unsigned comparisons against zero unless they are == or
685 // !=. These should have been strength reduced already anyway.
686 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
687 static const unsigned TESTTab[] = {
688 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
689 };
690 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
691
692 if (OpNum == 2) return 6; // Map jl -> js
693 if (OpNum == 3) return 7; // Map jg -> jns
694 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000695 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000696
697 static const unsigned CMPTab[] = {
698 X86::CMPri8, X86::CMPri16, X86::CMPri32
699 };
700
701 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
702 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000703 }
704
Chris Lattner9f08a922004-02-03 18:54:04 +0000705 // Special case handling of comparison against +/- 0.0
706 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
707 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
708 BMI(MBB, IP, X86::FTST, 1).addReg(Op0r);
709 BMI(MBB, IP, X86::FNSTSWr8, 0);
710 BMI(MBB, IP, X86::SAHF, 1);
711 return OpNum;
712 }
713
Chris Lattner58c41fe2003-08-24 19:19:47 +0000714 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000715 switch (Class) {
716 default: assert(0 && "Unknown type class!");
717 // Emit: cmp <var1>, <var2> (do the comparison). We can
718 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
719 // 32-bit.
720 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000721 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000722 break;
723 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000724 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000725 break;
726 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000727 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000728 break;
729 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000730 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
731 BMI(MBB, IP, X86::FNSTSWr8, 0);
732 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000733 break;
734
735 case cLong:
736 if (OpNum < 2) { // seteq, setne
737 unsigned LoTmp = makeAnotherReg(Type::IntTy);
738 unsigned HiTmp = makeAnotherReg(Type::IntTy);
739 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000740 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
741 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
742 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000743 break; // Allow the sete or setne to be generated from flags set by OR
744 } else {
745 // Emit a sequence of code which compares the high and low parts once
746 // each, then uses a conditional move to handle the overflow case. For
747 // example, a setlt for long would generate code like this:
748 //
749 // AL = lo(op1) < lo(op2) // Signedness depends on operands
750 // BL = hi(op1) < hi(op2) // Always unsigned comparison
751 // dest = hi(op1) == hi(op2) ? AL : BL;
752 //
753
Chris Lattner6d40c192003-01-16 16:43:00 +0000754 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000755 // classes! Until then, hardcode registers so that we can deal with their
756 // aliases (because we don't have conditional byte moves).
757 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000758 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
759 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
760 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000761 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000762 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
763 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
764 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000765 // NOTE: visitSetCondInst knows that the value is dumped into the BL
766 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000767 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000768 }
769 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000770 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000771}
Chris Lattner3e130a22003-01-13 00:32:26 +0000772
Chris Lattner6d40c192003-01-16 16:43:00 +0000773
774/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
775/// register, then move it to wherever the result should be.
776///
777void ISel::visitSetCondInst(SetCondInst &I) {
778 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
779
Chris Lattner6d40c192003-01-16 16:43:00 +0000780 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000781 MachineBasicBlock::iterator MII = BB->end();
782 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
783 DestReg);
784}
Chris Lattner6d40c192003-01-16 16:43:00 +0000785
Chris Lattner58c41fe2003-08-24 19:19:47 +0000786/// emitSetCCOperation - Common code shared between visitSetCondInst and
787/// constant expression support.
788void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
789 MachineBasicBlock::iterator &IP,
790 Value *Op0, Value *Op1, unsigned Opcode,
791 unsigned TargetReg) {
792 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000793 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000794
Chris Lattnerb2acc512003-10-19 21:09:10 +0000795 const Type *CompTy = Op0->getType();
796 unsigned CompClass = getClassB(CompTy);
797 bool isSigned = CompTy->isSigned() && CompClass != cFP;
798
799 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000800 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000801 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000802 } else {
803 // Handle long comparisons by copying the value which is already in BL into
804 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000805 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000806 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000807}
Chris Lattner51b49a92002-11-02 19:45:49 +0000808
Chris Lattner58c41fe2003-08-24 19:19:47 +0000809
810
811
Brian Gaekec2505982002-11-30 11:57:28 +0000812/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
813/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000814void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
815 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000816
817 // Make sure we have the register number for this value...
818 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
819
Chris Lattner3e130a22003-01-13 00:32:26 +0000820 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000821 case cByte:
822 // Extend value into target register (8->32)
823 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000824 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000825 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000826 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000827 break;
828 case cShort:
829 // Extend value into target register (16->32)
830 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000831 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000832 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000833 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000834 break;
835 case cInt:
836 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000837 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000838 break;
839 default:
840 assert(0 && "Unpromotable operand class in promote32");
841 }
Brian Gaekec2505982002-11-30 11:57:28 +0000842}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000843
Chris Lattner72614082002-10-25 22:55:53 +0000844/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
845/// we have the following possibilities:
846///
847/// ret void: No return value, simply emit a 'ret' instruction
848/// ret sbyte, ubyte : Extend value into EAX and return
849/// ret short, ushort: Extend value into EAX and return
850/// ret int, uint : Move value into EAX and return
851/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000852/// ret long, ulong : Move value into EAX/EDX and return
853/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000854///
Chris Lattner3e130a22003-01-13 00:32:26 +0000855void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000856 if (I.getNumOperands() == 0) {
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000857#ifndef SMART_FP
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000858 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000859#endif
Chris Lattner94af4142002-12-25 05:13:53 +0000860 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
861 return;
862 }
863
864 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000865 unsigned RetReg = getReg(RetVal);
866 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000867 case cByte: // integral return values: extend or move into EAX and return
868 case cShort:
869 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000870 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000871 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000872 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000873 break;
874 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000875 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000876 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000877 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000878 break;
879 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000880 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
881 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000882 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000883 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
884 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000885 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000886 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000887 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000888 }
Chris Lattner43189d12002-11-17 20:07:45 +0000889 // Emit a 'ret' instruction
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000890#ifndef SMART_FP
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000891 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000892#endif
Chris Lattner94af4142002-12-25 05:13:53 +0000893 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000894}
895
Chris Lattner55f6fab2003-01-16 18:07:23 +0000896// getBlockAfter - Return the basic block which occurs lexically after the
897// specified one.
898static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
899 Function::iterator I = BB; ++I; // Get iterator to next block
900 return I != BB->getParent()->end() ? &*I : 0;
901}
902
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000903/// RequiresFPRegKill - The floating point stackifier pass cannot insert
904/// compensation code on critical edges. As such, it requires that we kill all
905/// FP registers on the exit from any blocks that either ARE critical edges, or
906/// branch to a block that has incoming critical edges.
907///
908/// Note that this kill instruction will eventually be eliminated when
909/// restrictions in the stackifier are relaxed.
910///
911static bool RequiresFPRegKill(const BasicBlock *BB) {
912#ifdef SMART_FP
913 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
914 const BasicBlock *Succ = *SI;
915 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
916 ++PI; // Block have at least one predecessory
917 if (PI != PE) { // If it has exactly one, this isn't crit edge
918 // If this block has more than one predecessor, check all of the
919 // predecessors to see if they have multiple successors. If so, then the
920 // block we are analyzing needs an FPRegKill.
921 for (PI = pred_begin(Succ); PI != PE; ++PI) {
922 const BasicBlock *Pred = *PI;
923 succ_const_iterator SI2 = succ_begin(Pred);
924 ++SI2; // There must be at least one successor of this block.
925 if (SI2 != succ_end(Pred))
926 return true; // Yes, we must insert the kill on this edge.
927 }
928 }
929 }
930 // If we got this far, there is no need to insert the kill instruction.
931 return false;
932#else
933 return true;
934#endif
935}
936
Chris Lattner51b49a92002-11-02 19:45:49 +0000937/// visitBranchInst - Handle conditional and unconditional branches here. Note
938/// that since code layout is frozen at this point, that if we are trying to
939/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000940/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000941///
Chris Lattner94af4142002-12-25 05:13:53 +0000942void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000943 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
944
945 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000946 if (RequiresFPRegKill(BI.getParent()))
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000947 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000948 if (BI.getSuccessor(0) != NextBB)
Chris Lattner55f6fab2003-01-16 18:07:23 +0000949 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000950 return;
951 }
952
953 // See if we can fold the setcc into the branch itself...
954 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
955 if (SCI == 0) {
956 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
957 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000958 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000959 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000960 if (RequiresFPRegKill(BI.getParent()))
961 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000962 if (BI.getSuccessor(1) == NextBB) {
963 if (BI.getSuccessor(0) != NextBB)
964 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
965 } else {
966 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
967
968 if (BI.getSuccessor(0) != NextBB)
969 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
970 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000971 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000972 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000973
974 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000975 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000976 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000977
978 const Type *CompTy = SCI->getOperand(0)->getType();
979 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000980
Chris Lattnerb2acc512003-10-19 21:09:10 +0000981
Chris Lattner6d40c192003-01-16 16:43:00 +0000982 // LLVM -> X86 signed X86 unsigned
983 // ----- ---------- ------------
984 // seteq -> je je
985 // setne -> jne jne
986 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000987 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000988 // setgt -> jg ja
989 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000990 // ----
991 // js // Used by comparison with 0 optimization
992 // jns
993
994 static const unsigned OpcodeTab[2][8] = {
995 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
996 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
997 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +0000998 };
999
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001000 if (RequiresFPRegKill(BI.getParent()))
1001 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001002 if (BI.getSuccessor(0) != NextBB) {
1003 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
1004 if (BI.getSuccessor(1) != NextBB)
1005 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
1006 } else {
1007 // Change to the inverse condition...
1008 if (BI.getSuccessor(1) != NextBB) {
1009 OpNum ^= 1;
1010 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
1011 }
1012 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001013}
1014
Chris Lattner3e130a22003-01-13 00:32:26 +00001015
1016/// doCall - This emits an abstract call instruction, setting up the arguments
1017/// and the return value as appropriate. For the actual function call itself,
1018/// it inserts the specified CallMI instruction into the stream.
1019///
1020void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001021 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001022
Chris Lattner065faeb2002-12-28 20:24:02 +00001023 // Count how many bytes are to be pushed on the stack...
1024 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001025
Chris Lattner3e130a22003-01-13 00:32:26 +00001026 if (!Args.empty()) {
1027 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1028 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001029 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001030 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001031 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001032 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001033 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001034 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1035 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001036 default: assert(0 && "Unknown class!");
1037 }
1038
1039 // Adjust the stack pointer for the new arguments...
1040 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
1041
1042 // Arguments go on the stack in reverse order, as specified by the ABI.
1043 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001044 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001045 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001046 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001047 case cByte:
1048 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001049 // Promote arg to 32 bits wide into a temporary register...
1050 unsigned R = makeAnotherReg(Type::UIntTy);
1051 promote32(R, Args[i]);
1052 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1053 X86::ESP, ArgOffset).addReg(R);
1054 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001055 }
1056 case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001057 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1058 X86::ESP, ArgOffset).addReg(ArgReg);
1059 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001060 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001061 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1062 X86::ESP, ArgOffset).addReg(ArgReg);
1063 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1064 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1065 ArgOffset += 4; // 8 byte entry, not 4.
1066 break;
1067
Chris Lattner065faeb2002-12-28 20:24:02 +00001068 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001069 if (Args[i].Ty == Type::FloatTy) {
1070 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
1071 X86::ESP, ArgOffset).addReg(ArgReg);
1072 } else {
1073 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1074 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
1075 X86::ESP, ArgOffset).addReg(ArgReg);
1076 ArgOffset += 4; // 8 byte entry, not 4.
1077 }
1078 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001079
Chris Lattner3e130a22003-01-13 00:32:26 +00001080 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001081 }
1082 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001083 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001084 } else {
1085 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001086 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001087
Chris Lattner3e130a22003-01-13 00:32:26 +00001088 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001089
Chris Lattner065faeb2002-12-28 20:24:02 +00001090 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001091
1092 // If there is a return value, scavenge the result from the location the call
1093 // leaves it in...
1094 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001095 if (Ret.Ty != Type::VoidTy) {
1096 unsigned DestClass = getClassB(Ret.Ty);
1097 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001098 case cByte:
1099 case cShort:
1100 case cInt: {
1101 // Integral results are in %eax, or the appropriate portion
1102 // thereof.
1103 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001104 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001105 };
1106 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001107 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001108 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001109 }
Chris Lattner94af4142002-12-25 05:13:53 +00001110 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001111 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001112 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001113 case cLong: // Long values are left in EDX:EAX
1114 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1115 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1116 break;
1117 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001118 }
Chris Lattnera3243642002-12-04 23:45:28 +00001119 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001120}
Chris Lattner2df035b2002-11-02 19:27:56 +00001121
Chris Lattner3e130a22003-01-13 00:32:26 +00001122
1123/// visitCallInst - Push args on stack and do a procedure call instruction.
1124void ISel::visitCallInst(CallInst &CI) {
1125 MachineInstr *TheCall;
1126 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001127 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001128 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001129 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1130 return;
1131 }
1132
Chris Lattner3e130a22003-01-13 00:32:26 +00001133 // Emit a CALL instruction with PC-relative displacement.
1134 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1135 } else { // Emit an indirect call...
1136 unsigned Reg = getReg(CI.getCalledValue());
1137 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1138 }
1139
1140 std::vector<ValueRecord> Args;
1141 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001142 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001143
1144 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1145 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001146}
Chris Lattner3e130a22003-01-13 00:32:26 +00001147
Chris Lattneraeb54b82003-08-28 21:23:43 +00001148
Chris Lattner44827152003-12-28 09:47:19 +00001149/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1150/// function, lowering any calls to unknown intrinsic functions into the
1151/// equivalent LLVM code.
1152void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1153 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1154 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1155 if (CallInst *CI = dyn_cast<CallInst>(I++))
1156 if (Function *F = CI->getCalledFunction())
1157 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001158 case Intrinsic::not_intrinsic:
Chris Lattner44827152003-12-28 09:47:19 +00001159 case Intrinsic::va_start:
1160 case Intrinsic::va_copy:
1161 case Intrinsic::va_end:
1162 // We directly implement these intrinsics
1163 break;
1164 default:
1165 // All other intrinsic calls we must lower.
1166 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001167 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001168 if (Before) { // Move iterator to instruction after call
1169 I = Before; ++I;
1170 } else {
1171 I = BB->begin();
1172 }
1173 }
1174
1175}
1176
Brian Gaeked0fde302003-11-11 22:41:34 +00001177void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001178 unsigned TmpReg1, TmpReg2;
1179 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001180 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001181 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001182 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001183 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001184 return;
1185
Brian Gaeked0fde302003-11-11 22:41:34 +00001186 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001187 TmpReg1 = getReg(CI);
1188 TmpReg2 = getReg(CI.getOperand(1));
1189 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001190 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001191 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001192
Chris Lattner44827152003-12-28 09:47:19 +00001193 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001194 }
1195}
1196
1197
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001198/// visitSimpleBinary - Implement simple binary operators for integral types...
1199/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1200/// Xor.
1201void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1202 unsigned DestReg = getReg(B);
1203 MachineBasicBlock::iterator MI = BB->end();
1204 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1205 OperatorClass, DestReg);
1206}
Chris Lattner3e130a22003-01-13 00:32:26 +00001207
Chris Lattnerb2acc512003-10-19 21:09:10 +00001208/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1209/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1210/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001211///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001212/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1213/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001214///
1215void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001216 MachineBasicBlock::iterator &IP,
1217 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001218 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001219 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001220
1221 // sub 0, X -> neg X
1222 if (OperatorClass == 1 && Class != cLong)
Chris Lattneraf703622004-02-02 18:56:30 +00001223 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001224 if (CI->isNullValue()) {
1225 unsigned op1Reg = getReg(Op1, MBB, IP);
1226 switch (Class) {
1227 default: assert(0 && "Unknown class for this function!");
1228 case cByte:
1229 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1230 return;
1231 case cShort:
1232 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1233 return;
1234 case cInt:
1235 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1236 return;
1237 }
1238 }
Chris Lattner9f8fd6d2004-02-02 19:31:38 +00001239 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1240 if (CFP->isExactlyValue(-0.0)) {
1241 // -0.0 - X === -X
1242 unsigned op1Reg = getReg(Op1, MBB, IP);
1243 BMI(MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
1244 return;
1245 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001246
Chris Lattner35333e12003-06-05 18:28:55 +00001247 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1248 static const unsigned OpcodeTab[][4] = {
1249 // Arithmetic operators
1250 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1251 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1252
1253 // Bitwise operators
1254 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1255 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1256 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001257 };
Chris Lattner35333e12003-06-05 18:28:55 +00001258
1259 bool isLong = false;
1260 if (Class == cLong) {
1261 isLong = true;
1262 Class = cInt; // Bottom 32 bits are handled just like ints
1263 }
1264
1265 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1266 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001267 unsigned Op0r = getReg(Op0, MBB, IP);
1268 unsigned Op1r = getReg(Op1, MBB, IP);
1269 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001270
1271 if (isLong) { // Handle the upper 32 bits of long values...
1272 static const unsigned TopTab[] = {
1273 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1274 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001275 BMI(MBB, IP, TopTab[OperatorClass], 2,
1276 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001277 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001278 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001279 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001280
1281 // Special case: op Reg, <const>
1282 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1283 unsigned Op0r = getReg(Op0, MBB, IP);
1284
1285 // xor X, -1 -> not X
1286 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1287 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1288 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1289 return;
1290 }
1291
1292 // add X, -1 -> dec X
1293 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1294 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1295 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1296 return;
1297 }
1298
1299 // add X, 1 -> inc X
1300 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1301 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1302 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1303 return;
1304 }
1305
1306 static const unsigned OpcodeTab[][3] = {
1307 // Arithmetic operators
1308 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1309 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1310
1311 // Bitwise operators
1312 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1313 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1314 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1315 };
1316
1317 assert(Class < 3 && "General code handles 64-bit integer types!");
1318 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1319 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1320
1321 // Mask off any upper bits of the constant, if there are any...
1322 Op1v &= (1ULL << (8 << Class)) - 1;
1323 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001324}
1325
Chris Lattner3e130a22003-01-13 00:32:26 +00001326/// doMultiply - Emit appropriate instructions to multiply together the
1327/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1328/// result should be given as DestTy.
1329///
Chris Lattner8a307e82002-12-16 19:32:50 +00001330void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001331 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001332 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001333 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001334 switch (Class) {
1335 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001336 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001337 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001338 case cInt:
1339 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001340 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001341 .addReg(op0Reg).addReg(op1Reg);
1342 return;
1343 case cByte:
1344 // Must use the MUL instruction, which forces use of AL...
1345 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1346 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1347 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1348 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001349 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001350 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001351 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001352}
1353
Chris Lattnerb2acc512003-10-19 21:09:10 +00001354// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1355// returns zero when the input is not exactly a power of two.
1356static unsigned ExactLog2(unsigned Val) {
1357 if (Val == 0) return 0;
1358 unsigned Count = 0;
1359 while (Val != 1) {
1360 if (Val & 1) return 0;
1361 Val >>= 1;
1362 ++Count;
1363 }
1364 return Count+1;
1365}
1366
1367void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1368 MachineBasicBlock::iterator &IP,
1369 unsigned DestReg, const Type *DestTy,
1370 unsigned op0Reg, unsigned ConstRHS) {
1371 unsigned Class = getClass(DestTy);
1372
1373 // If the element size is exactly a power of 2, use a shift to get it.
1374 if (unsigned Shift = ExactLog2(ConstRHS)) {
1375 switch (Class) {
1376 default: assert(0 && "Unknown class for this function!");
1377 case cByte:
1378 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1379 return;
1380 case cShort:
1381 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1382 return;
1383 case cInt:
1384 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1385 return;
1386 }
1387 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001388
1389 if (Class == cShort) {
1390 BMI(MBB, IP, X86::IMULri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1391 return;
1392 } else if (Class == cInt) {
1393 BMI(MBB, IP, X86::IMULri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1394 return;
1395 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001396
1397 // Most general case, emit a normal multiply...
1398 static const unsigned MOVirTab[] = {
1399 X86::MOVir8, X86::MOVir16, X86::MOVir32
1400 };
1401
1402 unsigned TmpReg = makeAnotherReg(DestTy);
1403 BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
1404
1405 // Emit a MUL to multiply the register holding the index by
1406 // elementSize, putting the result in OffsetReg.
1407 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1408}
1409
Chris Lattnerca9671d2002-11-02 20:28:58 +00001410/// visitMul - Multiplies are not simple binary operators because they must deal
1411/// with the EAX register explicitly.
1412///
1413void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001414 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001415 unsigned DestReg = getReg(I);
1416
1417 // Simple scalar multiply?
1418 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001419 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1420 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1421 MachineBasicBlock::iterator MBBI = BB->end();
1422 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1423 } else {
1424 unsigned Op1Reg = getReg(I.getOperand(1));
1425 MachineBasicBlock::iterator MBBI = BB->end();
1426 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1427 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001428 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001429 unsigned Op1Reg = getReg(I.getOperand(1));
1430
Chris Lattner3e130a22003-01-13 00:32:26 +00001431 // Long value. We have to do things the hard way...
1432 // Multiply the two low parts... capturing carry into EDX
1433 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1434 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1435
1436 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1437 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1438 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1439
1440 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001441 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001442 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001443
1444 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1445 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001446 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001447
1448 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001449 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001450 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001451
1452 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001453 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001454 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001455}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001456
Chris Lattner06925362002-11-17 21:56:38 +00001457
Chris Lattnerf01729e2002-11-02 20:54:46 +00001458/// visitDivRem - Handle division and remainder instructions... these
1459/// instruction both require the same instructions to be generated, they just
1460/// select the result from a different register. Note that both of these
1461/// instructions work differently for signed and unsigned operands.
1462///
1463void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001464 unsigned Op0Reg = getReg(I.getOperand(0));
1465 unsigned Op1Reg = getReg(I.getOperand(1));
1466 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001467
Chris Lattnercadff442003-10-23 17:21:43 +00001468 MachineBasicBlock::iterator IP = BB->end();
1469 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1470 I.getType(), ResultReg);
1471}
1472
1473void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1474 MachineBasicBlock::iterator &IP,
1475 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1476 const Type *Ty, unsigned ResultReg) {
1477 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001478 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001479 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001480 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001481 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001482 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001483 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001484 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001485 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001486 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1487 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001488 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1489 }
Chris Lattner94af4142002-12-25 05:13:53 +00001490 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001491 case cLong: {
1492 static const char *FnName[] =
1493 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1494
Chris Lattnercadff442003-10-23 17:21:43 +00001495 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001496 MachineInstr *TheCall =
1497 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1498
1499 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001500 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1501 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001502 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1503 return;
1504 }
1505 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001506 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001507 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001508 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001509
1510 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1511 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001512 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001513 static const unsigned ClrOpcode[]={ X86::MOVir8, X86::MOVir16, X86::MOVir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001514 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1515
1516 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001517 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1518 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001519 };
1520
Chris Lattnercadff442003-10-23 17:21:43 +00001521 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001522 unsigned Reg = Regs[Class];
1523 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001524
1525 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001526 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001527
1528 if (isSigned) {
1529 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001530 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001531 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1532 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001533 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001534 // If unsigned, emit a zeroing instruction... (reg = 0)
1535 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addZImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001536 }
1537
Chris Lattner06925362002-11-17 21:56:38 +00001538 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001539 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001540
Chris Lattnerf01729e2002-11-02 20:54:46 +00001541 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001542 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001543
Chris Lattnerf01729e2002-11-02 20:54:46 +00001544 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001545 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001546}
Chris Lattnere2954c82002-11-02 20:04:26 +00001547
Chris Lattner06925362002-11-17 21:56:38 +00001548
Brian Gaekea1719c92002-10-31 23:03:59 +00001549/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1550/// for constant immediate shift values, and for constant immediate
1551/// shift values equal to 1. Even the general case is sort of special,
1552/// because the shift amount has to be in CL, not just any old register.
1553///
Chris Lattner3e130a22003-01-13 00:32:26 +00001554void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001555 MachineBasicBlock::iterator IP = BB->end ();
1556 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1557 I.getOpcode () == Instruction::Shl, I.getType (),
1558 getReg (I));
1559}
1560
1561/// emitShiftOperation - Common code shared between visitShiftInst and
1562/// constant expression support.
1563void ISel::emitShiftOperation(MachineBasicBlock *MBB,
1564 MachineBasicBlock::iterator &IP,
1565 Value *Op, Value *ShiftAmount, bool isLeftShift,
1566 const Type *ResultTy, unsigned DestReg) {
1567 unsigned SrcReg = getReg (Op, MBB, IP);
1568 bool isSigned = ResultTy->isSigned ();
1569 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001570
1571 static const unsigned ConstantOperand[][4] = {
1572 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1573 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1574 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1575 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1576 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001577
Chris Lattner3e130a22003-01-13 00:32:26 +00001578 static const unsigned NonConstantOperand[][4] = {
1579 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1580 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1581 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1582 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1583 };
Chris Lattner796df732002-11-02 00:44:25 +00001584
Chris Lattner3e130a22003-01-13 00:32:26 +00001585 // Longs, as usual, are handled specially...
1586 if (Class == cLong) {
1587 // If we have a constant shift, we can generate much more efficient code
1588 // than otherwise...
1589 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001590 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001591 unsigned Amount = CUI->getValue();
1592 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001593 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1594 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001595 BMI(MBB, IP, Opc[3], 3,
1596 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1597 BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001598 } else {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001599 BMI(MBB, IP, Opc[3], 3,
1600 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1601 BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001602 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001603 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001604 Amount -= 32;
1605 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001606 BMI(MBB, IP, X86::SHLir32, 2,
1607 DestReg + 1).addReg(SrcReg).addZImm(Amount);
1608 BMI(MBB, IP, X86::MOVir32, 1,
1609 DestReg).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001610 } else {
1611 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001612 BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1613 BMI(MBB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001614 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001615 }
1616 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001617 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1618
1619 if (!isLeftShift && isSigned) {
1620 // If this is a SHR of a Long, then we need to do funny sign extension
1621 // stuff. TmpReg gets the value to use as the high-part if we are
1622 // shifting more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001623 BMI(MBB, IP, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00001624 } else {
1625 // Other shifts use a fixed zero value if the shift is more than 32
1626 // bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001627 BMI(MBB, IP, X86::MOVir32, 1, TmpReg).addZImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00001628 }
1629
1630 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001631 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
1632 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001633
1634 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1635 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1636 if (isLeftShift) {
1637 // TmpReg2 = shld inHi, inLo
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001638 BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001639 // TmpReg3 = shl inLo, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001640 BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001641
1642 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001643 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001644
1645 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001646 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001647 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1648 // DestLo = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001649 BMI(MBB, IP, X86::CMOVNErr32, 2,
1650 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001651 } else {
1652 // TmpReg2 = shrd inLo, inHi
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001653 BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00001654 // TmpReg3 = s[ah]r inHi, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001655 BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00001656 .addReg(SrcReg+1);
1657
1658 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001659 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001660
1661 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001662 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001663 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1664
1665 // DestHi = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001666 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001667 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1668 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001669 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001670 return;
1671 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001672
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001673 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001674 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1675 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001676
Chris Lattner3e130a22003-01-13 00:32:26 +00001677 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001678 BMI(MBB, IP, Opc[Class], 2,
1679 DestReg).addReg(SrcReg).addZImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00001680 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001681 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
1682 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001683
Chris Lattner3e130a22003-01-13 00:32:26 +00001684 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001685 BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001686 }
1687}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001688
Chris Lattner3e130a22003-01-13 00:32:26 +00001689
Chris Lattner6fc3c522002-11-17 21:11:55 +00001690/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001691/// instruction. The load and store instructions are the only place where we
1692/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001693///
1694void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001695 unsigned SrcAddrReg = getReg(I.getOperand(0));
1696 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001697
Brian Gaekebfedb912003-07-17 21:30:06 +00001698 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001699
1700 if (Class == cLong) {
1701 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), SrcAddrReg);
1702 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
Chris Lattner94af4142002-12-25 05:13:53 +00001703 return;
1704 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001705
Chris Lattner6ac1d712003-10-20 04:48:06 +00001706 static const unsigned Opcodes[] = {
1707 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001708 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001709 unsigned Opcode = Opcodes[Class];
1710 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
1711 addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001712}
1713
Chris Lattner6fc3c522002-11-17 21:11:55 +00001714/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1715/// instruction.
1716///
1717void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001718 unsigned ValReg = getReg(I.getOperand(0));
1719 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattner6c09db22003-10-20 04:11:23 +00001720
1721 const Type *ValTy = I.getOperand(0)->getType();
1722 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001723
1724 if (Class == cLong) {
Chris Lattner6c09db22003-10-20 04:11:23 +00001725 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1726 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg,4).addReg(ValReg+1);
Chris Lattner94af4142002-12-25 05:13:53 +00001727 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001728 }
1729
Chris Lattner6ac1d712003-10-20 04:48:06 +00001730 static const unsigned Opcodes[] = {
1731 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FSTr32
1732 };
1733 unsigned Opcode = Opcodes[Class];
1734 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
1735 addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +00001736}
1737
1738
Brian Gaekec11232a2002-11-26 10:43:30 +00001739/// visitCastInst - Here we have various kinds of copying with or without
1740/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001741void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001742 Value *Op = CI.getOperand(0);
1743 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1744 // of the case are GEP instructions, then the cast does not need to be
1745 // generated explicitly, it will be folded into the GEP.
1746 if (CI.getType() == Type::LongTy &&
1747 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1748 bool AllUsesAreGEPs = true;
1749 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1750 if (!isa<GetElementPtrInst>(*I)) {
1751 AllUsesAreGEPs = false;
1752 break;
1753 }
1754
1755 // No need to codegen this cast if all users are getelementptr instrs...
1756 if (AllUsesAreGEPs) return;
1757 }
1758
Chris Lattner548f61d2003-04-23 17:22:12 +00001759 unsigned DestReg = getReg(CI);
1760 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001761 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001762}
1763
1764/// emitCastOperation - Common code shared between visitCastInst and
1765/// constant expression cast support.
1766void ISel::emitCastOperation(MachineBasicBlock *BB,
1767 MachineBasicBlock::iterator &IP,
1768 Value *Src, const Type *DestTy,
1769 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001770 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001771 const Type *SrcTy = Src->getType();
1772 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001773 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001774
Chris Lattner3e130a22003-01-13 00:32:26 +00001775 // Implement casts to bool by using compare on the operand followed by set if
1776 // not zero on the result.
1777 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001778 switch (SrcClass) {
1779 case cByte:
1780 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1781 break;
1782 case cShort:
1783 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1784 break;
1785 case cInt:
1786 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1787 break;
1788 case cLong: {
1789 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1790 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1791 break;
1792 }
1793 case cFP:
1794 assert(0 && "FIXME: implement cast FP to bool");
1795 abort();
1796 }
1797
1798 // If the zero flag is not set, then the value is true, set the byte to
1799 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001800 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001801 return;
1802 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001803
1804 static const unsigned RegRegMove[] = {
1805 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1806 };
1807
1808 // Implement casts between values of the same type class (as determined by
1809 // getClass) by using a register-to-register move.
1810 if (SrcClass == DestClass) {
1811 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001812 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001813 } else if (SrcClass == cFP) {
1814 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001815 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1816 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001817 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001818 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1819 "Unknown cFP member!");
1820 // Truncate from double to float by storing to memory as short, then
1821 // reading it back.
1822 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00001823 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001824 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1825 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001826 }
1827 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001828 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1829 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001830 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001831 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001832 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001833 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001834 return;
1835 }
1836
1837 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1838 // or zero extension, depending on whether the source type was signed.
1839 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1840 SrcClass < DestClass) {
1841 bool isLong = DestClass == cLong;
1842 if (isLong) DestClass = cInt;
1843
1844 static const unsigned Opc[][4] = {
1845 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1846 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1847 };
1848
1849 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001850 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1851 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001852
1853 if (isLong) { // Handle upper 32 bits as appropriate...
1854 if (isUnsigned) // Zero out top bits...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001855 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001856 else // Sign extend bottom half...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001857 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001858 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001859 return;
1860 }
1861
1862 // Special case long -> int ...
1863 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001864 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001865 return;
1866 }
1867
1868 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1869 // move out of AX or AL.
1870 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1871 && SrcClass > DestClass) {
1872 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001873 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1874 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001875 return;
1876 }
1877
1878 // Handle casts from integer to floating point now...
1879 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001880 // Promote the integer to a type supported by FLD. We do this because there
1881 // are no unsigned FLD instructions, so we must promote an unsigned value to
1882 // a larger signed value, then use FLD on the larger value.
1883 //
1884 const Type *PromoteType = 0;
1885 unsigned PromoteOpcode;
1886 switch (SrcTy->getPrimitiveID()) {
1887 case Type::BoolTyID:
1888 case Type::SByteTyID:
1889 // We don't have the facilities for directly loading byte sized data from
1890 // memory (even signed). Promote it to 16 bits.
1891 PromoteType = Type::ShortTy;
1892 PromoteOpcode = X86::MOVSXr16r8;
1893 break;
1894 case Type::UByteTyID:
1895 PromoteType = Type::ShortTy;
1896 PromoteOpcode = X86::MOVZXr16r8;
1897 break;
1898 case Type::UShortTyID:
1899 PromoteType = Type::IntTy;
1900 PromoteOpcode = X86::MOVZXr32r16;
1901 break;
1902 case Type::UIntTyID: {
1903 // Make a 64 bit temporary... and zero out the top of it...
1904 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1905 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1906 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1907 SrcTy = Type::LongTy;
1908 SrcClass = cLong;
1909 SrcReg = TmpReg;
1910 break;
1911 }
1912 case Type::ULongTyID:
1913 assert("FIXME: not implemented: cast ulong X to fp type!");
1914 default: // No promotion needed...
1915 break;
1916 }
1917
1918 if (PromoteType) {
1919 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001920 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1921 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001922 SrcTy = PromoteType;
1923 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001924 SrcReg = TmpReg;
1925 }
1926
1927 // Spill the integer to memory and reload it from there...
1928 int FrameIdx =
1929 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1930
1931 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001932 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1933 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001934 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001935 } else {
1936 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001937 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001938 }
1939
1940 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001941 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001942 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001943 return;
1944 }
1945
1946 // Handle casts from floating point to integer now...
1947 if (SrcClass == cFP) {
1948 // Change the floating point control register to use "round towards zero"
1949 // mode when truncating to an integer value.
1950 //
1951 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001952 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001953
1954 // Load the old value of the high byte of the control word...
1955 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001956 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001957
1958 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001959 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001960
1961 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001962 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001963
1964 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001965 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001966 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00001967
1968 // We don't have the facilities for directly storing byte sized data to
1969 // memory. Promote it to 16 bits. We also must promote unsigned values to
1970 // larger classes because we only have signed FP stores.
1971 unsigned StoreClass = DestClass;
1972 const Type *StoreTy = DestTy;
1973 if (StoreClass == cByte || DestTy->isUnsigned())
1974 switch (StoreClass) {
1975 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1976 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1977 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001978 // The following treatment of cLong may not be perfectly right,
1979 // but it survives chains of casts of the form
1980 // double->ulong->double.
1981 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001982 default: assert(0 && "Unknown store class!");
1983 }
1984
1985 // Spill the integer to memory and reload it from there...
1986 int FrameIdx =
1987 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1988
1989 static const unsigned Op1[] =
1990 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001991 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001992
1993 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001994 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1995 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001996 } else {
1997 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001998 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001999 }
2000
2001 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00002002 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002003 return;
2004 }
2005
Brian Gaeked474e9c2002-12-06 10:49:33 +00002006 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00002007 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00002008 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00002009}
Brian Gaekea1719c92002-10-31 23:03:59 +00002010
Chris Lattner73815062003-10-18 05:56:40 +00002011/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00002012///
Chris Lattner73815062003-10-18 05:56:40 +00002013void ISel::visitVANextInst(VANextInst &I) {
2014 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00002015 unsigned DestReg = getReg(I);
2016
Chris Lattnereca195e2003-05-08 19:44:13 +00002017 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00002018 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00002019 default:
2020 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00002021 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00002022 return;
2023 case Type::PointerTyID:
2024 case Type::UIntTyID:
2025 case Type::IntTyID:
2026 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00002027 break;
2028 case Type::ULongTyID:
2029 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00002030 case Type::DoubleTyID:
2031 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00002032 break;
2033 }
2034
2035 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00002036 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
2037}
Chris Lattnereca195e2003-05-08 19:44:13 +00002038
Chris Lattner73815062003-10-18 05:56:40 +00002039void ISel::visitVAArgInst(VAArgInst &I) {
2040 unsigned VAList = getReg(I.getOperand(0));
2041 unsigned DestReg = getReg(I);
2042
2043 switch (I.getType()->getPrimitiveID()) {
2044 default:
2045 std::cerr << I;
2046 assert(0 && "Error: bad type for va_next instruction!");
2047 return;
2048 case Type::PointerTyID:
2049 case Type::UIntTyID:
2050 case Type::IntTyID:
2051 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2052 break;
2053 case Type::ULongTyID:
2054 case Type::LongTyID:
2055 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2056 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
2057 break;
2058 case Type::DoubleTyID:
2059 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
2060 break;
2061 }
Chris Lattnereca195e2003-05-08 19:44:13 +00002062}
2063
2064
Chris Lattner3e130a22003-01-13 00:32:26 +00002065void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2066 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002067 MachineBasicBlock::iterator MI = BB->end();
2068 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00002069 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002070}
2071
Brian Gaeke71794c02002-12-13 11:22:48 +00002072void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002073 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00002074 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00002075 User::op_iterator IdxEnd, unsigned TargetReg) {
2076 const TargetData &TD = TM.getTargetData();
2077 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00002078 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002079
Brian Gaeke20244b72002-12-12 15:33:40 +00002080 // GEPs have zero or more indices; we must perform a struct access
2081 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00002082 for (GetElementPtrInst::op_iterator oi = IdxBegin,
2083 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002084 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00002085 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00002086 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002087 // It's a struct access. idx is the index into the structure,
2088 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00002089 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
2090 assert(CUI->getType() == Type::UByteTy
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002091 && "Funny-looking structure index in GEP");
Brian Gaeke20244b72002-12-12 15:33:40 +00002092 // Use the TargetData structure to pick out what the layout of
2093 // the structure is in memory. Since the structure index must
2094 // be constant, we can get its value and use it to find the
2095 // right byte offset from the StructLayout class's list of
2096 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002097 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002098 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2099 if (FieldOff) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002100 NextReg = makeAnotherReg(Type::UIntTy);
2101 // Emit an ADD to add FieldOff to the basePtr.
2102 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
Chris Lattner3e130a22003-01-13 00:32:26 +00002103 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002104 // The next type is the member of the structure selected by the
2105 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00002106 Ty = StTy->getElementTypes()[idxValue];
2107 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002108 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00002109
Brian Gaeke20244b72002-12-12 15:33:40 +00002110 // idx is the index into the array. Unlike with structure
2111 // indices, we may not know its actual value at code-generation
2112 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002113 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2114
Chris Lattnerf5854472003-06-21 16:01:24 +00002115 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2116 // operand on X86. Handle this case directly now...
2117 if (CastInst *CI = dyn_cast<CastInst>(idx))
2118 if (CI->getOperand(0)->getType() == Type::IntTy ||
2119 CI->getOperand(0)->getType() == Type::UIntTy)
2120 idx = CI->getOperand(0);
2121
Chris Lattner3e130a22003-01-13 00:32:26 +00002122 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002123 // must find the size of the pointed-to type (Not coincidentally, the next
2124 // type is the type of the elements in the array).
2125 Ty = SqTy->getElementType();
2126 unsigned elementSize = TD.getTypeSize(Ty);
2127
2128 // If idxReg is a constant, we don't need to perform the multiply!
2129 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002130 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002131 unsigned Offset = elementSize*CSI->getValue();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002132 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002133 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002134 }
2135 } else if (elementSize == 1) {
2136 // If the element size is 1, we don't have to multiply, just add
2137 unsigned idxReg = getReg(idx, MBB, IP);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002138 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002139 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002140 } else {
2141 unsigned idxReg = getReg(idx, MBB, IP);
2142 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002143
2144 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2145
Chris Lattner8a307e82002-12-16 19:32:50 +00002146 // Emit an ADD to add OffsetReg to the basePtr.
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002147 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002148 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002149 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002150 }
2151 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002152 // one, so we don't need to worry about BaseReg itself, anymore.
2153 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002154 }
2155 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002156 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002157 // put the answer. A 32-bit move should do it, because we are in
2158 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002159 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002160}
2161
2162
Chris Lattner065faeb2002-12-28 20:24:02 +00002163/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2164/// frame manager, otherwise do it the hard way.
2165///
2166void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002167 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002168 const Type *Ty = I.getAllocatedType();
2169 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2170
2171 // If this is a fixed size alloca in the entry block for the function,
2172 // statically stack allocate the space.
2173 //
2174 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2175 if (I.getParent() == I.getParent()->getParent()->begin()) {
2176 TySize *= CUI->getValue(); // Get total allocated size...
2177 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2178
2179 // Create a new stack object using the frame manager...
2180 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2181 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2182 return;
2183 }
2184 }
2185
2186 // Create a register to hold the temporary result of multiplying the type size
2187 // constant by the variable amount.
2188 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2189 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002190
2191 // TotalSizeReg = mul <numelements>, <TypeSize>
2192 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002193 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002194
2195 // AddedSize = add <TotalSizeReg>, 15
2196 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2197 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2198
2199 // AlignedSize = and <AddedSize>, ~15
2200 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2201 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2202
Brian Gaekee48ec012002-12-13 06:46:31 +00002203 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002204 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002205
Brian Gaekee48ec012002-12-13 06:46:31 +00002206 // Put a pointer to the space into the result register, by copying
2207 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002208 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2209
Misha Brukman48196b32003-05-03 02:18:17 +00002210 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002211 // object.
2212 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002213}
Chris Lattner3e130a22003-01-13 00:32:26 +00002214
2215/// visitMallocInst - Malloc instructions are code generated into direct calls
2216/// to the library malloc.
2217///
2218void ISel::visitMallocInst(MallocInst &I) {
2219 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2220 unsigned Arg;
2221
2222 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2223 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2224 } else {
2225 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002226 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002227 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002228 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002229 }
2230
2231 std::vector<ValueRecord> Args;
2232 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2233 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002234 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002235 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2236}
2237
2238
2239/// visitFreeInst - Free instructions are code gen'd to call the free libc
2240/// function.
2241///
2242void ISel::visitFreeInst(FreeInst &I) {
2243 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002244 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002245 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002246 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002247 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2248}
2249
Chris Lattnerd281de22003-07-26 23:49:58 +00002250/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002251/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002252/// generated code sucks but the implementation is nice and simple.
2253///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00002254FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
2255 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002256}