blob: 409d29c2a49cbd3967a2e6044ad64c574cdea3f2 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
77 std::vector<Instruction*> Worklist;
78 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
83 InstCombiner() : FunctionPass((intptr_t)&ID) {}
84
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
175 Instruction *commonRemTransforms(BinaryOperator &I);
176 Instruction *commonIRemTransforms(BinaryOperator &I);
177 Instruction *commonDivTransforms(BinaryOperator &I);
178 Instruction *commonIDivTransforms(BinaryOperator &I);
179 Instruction *visitUDiv(BinaryOperator &I);
180 Instruction *visitSDiv(BinaryOperator &I);
181 Instruction *visitFDiv(BinaryOperator &I);
182 Instruction *visitAnd(BinaryOperator &I);
183 Instruction *visitOr (BinaryOperator &I);
184 Instruction *visitXor(BinaryOperator &I);
185 Instruction *visitShl(BinaryOperator &I);
186 Instruction *visitAShr(BinaryOperator &I);
187 Instruction *visitLShr(BinaryOperator &I);
188 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000189 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
190 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 Instruction *visitFCmpInst(FCmpInst &I);
192 Instruction *visitICmpInst(ICmpInst &I);
193 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
194 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
195 Instruction *LHS,
196 ConstantInt *RHS);
197 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
198 ConstantInt *DivRHS);
199
200 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
201 ICmpInst::Predicate Cond, Instruction &I);
202 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
203 BinaryOperator &I);
204 Instruction *commonCastTransforms(CastInst &CI);
205 Instruction *commonIntCastTransforms(CastInst &CI);
206 Instruction *commonPointerCastTransforms(CastInst &CI);
207 Instruction *visitTrunc(TruncInst &CI);
208 Instruction *visitZExt(ZExtInst &CI);
209 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000210 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000212 Instruction *visitFPToUI(FPToUIInst &FI);
213 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 Instruction *visitUIToFP(CastInst &CI);
215 Instruction *visitSIToFP(CastInst &CI);
216 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000217 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000218 Instruction *visitBitCast(BitCastInst &CI);
219 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
220 Instruction *FI);
221 Instruction *visitSelectInst(SelectInst &CI);
222 Instruction *visitCallInst(CallInst &CI);
223 Instruction *visitInvokeInst(InvokeInst &II);
224 Instruction *visitPHINode(PHINode &PN);
225 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
226 Instruction *visitAllocationInst(AllocationInst &AI);
227 Instruction *visitFreeInst(FreeInst &FI);
228 Instruction *visitLoadInst(LoadInst &LI);
229 Instruction *visitStoreInst(StoreInst &SI);
230 Instruction *visitBranchInst(BranchInst &BI);
231 Instruction *visitSwitchInst(SwitchInst &SI);
232 Instruction *visitInsertElementInst(InsertElementInst &IE);
233 Instruction *visitExtractElementInst(ExtractElementInst &EI);
234 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000235 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236
237 // visitInstruction - Specify what to return for unhandled instructions...
238 Instruction *visitInstruction(Instruction &I) { return 0; }
239
240 private:
241 Instruction *visitCallSite(CallSite CS);
242 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000243 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000244 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
245 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000246 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000247
248 public:
249 // InsertNewInstBefore - insert an instruction New before instruction Old
250 // in the program. Add the new instruction to the worklist.
251 //
252 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
253 assert(New && New->getParent() == 0 &&
254 "New instruction already inserted into a basic block!");
255 BasicBlock *BB = Old.getParent();
256 BB->getInstList().insert(&Old, New); // Insert inst
257 AddToWorkList(New);
258 return New;
259 }
260
261 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
262 /// This also adds the cast to the worklist. Finally, this returns the
263 /// cast.
264 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
265 Instruction &Pos) {
266 if (V->getType() == Ty) return V;
267
268 if (Constant *CV = dyn_cast<Constant>(V))
269 return ConstantExpr::getCast(opc, CV, Ty);
270
Gabor Greifa645dd32008-05-16 19:29:10 +0000271 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000272 AddToWorkList(C);
273 return C;
274 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000275
276 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
277 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
278 }
279
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280
281 // ReplaceInstUsesWith - This method is to be used when an instruction is
282 // found to be dead, replacable with another preexisting expression. Here
283 // we add all uses of I to the worklist, replace all uses of I with the new
284 // value, then return I, so that the inst combiner will know that I was
285 // modified.
286 //
287 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
288 AddUsersToWorkList(I); // Add all modified instrs to worklist
289 if (&I != V) {
290 I.replaceAllUsesWith(V);
291 return &I;
292 } else {
293 // If we are replacing the instruction with itself, this must be in a
294 // segment of unreachable code, so just clobber the instruction.
295 I.replaceAllUsesWith(UndefValue::get(I.getType()));
296 return &I;
297 }
298 }
299
300 // UpdateValueUsesWith - This method is to be used when an value is
301 // found to be replacable with another preexisting expression or was
302 // updated. Here we add all uses of I to the worklist, replace all uses of
303 // I with the new value (unless the instruction was just updated), then
304 // return true, so that the inst combiner will know that I was modified.
305 //
306 bool UpdateValueUsesWith(Value *Old, Value *New) {
307 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
308 if (Old != New)
309 Old->replaceAllUsesWith(New);
310 if (Instruction *I = dyn_cast<Instruction>(Old))
311 AddToWorkList(I);
312 if (Instruction *I = dyn_cast<Instruction>(New))
313 AddToWorkList(I);
314 return true;
315 }
316
317 // EraseInstFromFunction - When dealing with an instruction that has side
318 // effects or produces a void value, we can't rely on DCE to delete the
319 // instruction. Instead, visit methods should return the value returned by
320 // this function.
321 Instruction *EraseInstFromFunction(Instruction &I) {
322 assert(I.use_empty() && "Cannot erase instruction that is used!");
323 AddUsesToWorkList(I);
324 RemoveFromWorkList(&I);
325 I.eraseFromParent();
326 return 0; // Don't do anything with FI
327 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000328
329 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
330 APInt &KnownOne, unsigned Depth = 0) const {
331 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
332 }
333
334 bool MaskedValueIsZero(Value *V, const APInt &Mask,
335 unsigned Depth = 0) const {
336 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
337 }
338 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
339 return llvm::ComputeNumSignBits(Op, TD, Depth);
340 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000341
342 private:
343 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
344 /// InsertBefore instruction. This is specialized a bit to avoid inserting
345 /// casts that are known to not do anything...
346 ///
347 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
348 Value *V, const Type *DestTy,
349 Instruction *InsertBefore);
350
351 /// SimplifyCommutative - This performs a few simplifications for
352 /// commutative operators.
353 bool SimplifyCommutative(BinaryOperator &I);
354
355 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
356 /// most-complex to least-complex order.
357 bool SimplifyCompare(CmpInst &I);
358
359 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
360 /// on the demanded bits.
361 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
362 APInt& KnownZero, APInt& KnownOne,
363 unsigned Depth = 0);
364
365 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
366 uint64_t &UndefElts, unsigned Depth = 0);
367
368 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
369 // PHI node as operand #0, see if we can fold the instruction into the PHI
370 // (which is only possible if all operands to the PHI are constants).
371 Instruction *FoldOpIntoPhi(Instruction &I);
372
373 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
374 // operator and they all are only used by the PHI, PHI together their
375 // inputs, and do the operation once, to the result of the PHI.
376 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
377 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
378
379
380 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
381 ConstantInt *AndRHS, BinaryOperator &TheAnd);
382
383 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
384 bool isSub, Instruction &I);
385 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
386 bool isSigned, bool Inside, Instruction &IB);
387 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
388 Instruction *MatchBSwap(BinaryOperator &I);
389 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000390 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000391 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000392
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393
394 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000395
Dan Gohman2d648bb2008-04-10 18:43:06 +0000396 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
397 unsigned CastOpc,
398 int &NumCastsRemoved);
399 unsigned GetOrEnforceKnownAlignment(Value *V,
400 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000401
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403}
404
Dan Gohman089efff2008-05-13 00:00:25 +0000405char InstCombiner::ID = 0;
406static RegisterPass<InstCombiner>
407X("instcombine", "Combine redundant instructions");
408
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409// getComplexity: Assign a complexity or rank value to LLVM Values...
410// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
411static unsigned getComplexity(Value *V) {
412 if (isa<Instruction>(V)) {
413 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
414 return 3;
415 return 4;
416 }
417 if (isa<Argument>(V)) return 3;
418 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
419}
420
421// isOnlyUse - Return true if this instruction will be deleted if we stop using
422// it.
423static bool isOnlyUse(Value *V) {
424 return V->hasOneUse() || isa<Constant>(V);
425}
426
427// getPromotedType - Return the specified type promoted as it would be to pass
428// though a va_arg area...
429static const Type *getPromotedType(const Type *Ty) {
430 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
431 if (ITy->getBitWidth() < 32)
432 return Type::Int32Ty;
433 }
434 return Ty;
435}
436
437/// getBitCastOperand - If the specified operand is a CastInst or a constant
438/// expression bitcast, return the operand value, otherwise return null.
439static Value *getBitCastOperand(Value *V) {
440 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
441 return I->getOperand(0);
442 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
443 if (CE->getOpcode() == Instruction::BitCast)
444 return CE->getOperand(0);
445 return 0;
446}
447
448/// This function is a wrapper around CastInst::isEliminableCastPair. It
449/// simply extracts arguments and returns what that function returns.
450static Instruction::CastOps
451isEliminableCastPair(
452 const CastInst *CI, ///< The first cast instruction
453 unsigned opcode, ///< The opcode of the second cast instruction
454 const Type *DstTy, ///< The target type for the second cast instruction
455 TargetData *TD ///< The target data for pointer size
456) {
457
458 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
459 const Type *MidTy = CI->getType(); // B from above
460
461 // Get the opcodes of the two Cast instructions
462 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
463 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
464
465 return Instruction::CastOps(
466 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
467 DstTy, TD->getIntPtrType()));
468}
469
470/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
471/// in any code being generated. It does not require codegen if V is simple
472/// enough or if the cast can be folded into other casts.
473static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
474 const Type *Ty, TargetData *TD) {
475 if (V->getType() == Ty || isa<Constant>(V)) return false;
476
477 // If this is another cast that can be eliminated, it isn't codegen either.
478 if (const CastInst *CI = dyn_cast<CastInst>(V))
479 if (isEliminableCastPair(CI, opcode, Ty, TD))
480 return false;
481 return true;
482}
483
484/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
485/// InsertBefore instruction. This is specialized a bit to avoid inserting
486/// casts that are known to not do anything...
487///
488Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
489 Value *V, const Type *DestTy,
490 Instruction *InsertBefore) {
491 if (V->getType() == DestTy) return V;
492 if (Constant *C = dyn_cast<Constant>(V))
493 return ConstantExpr::getCast(opcode, C, DestTy);
494
495 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
496}
497
498// SimplifyCommutative - This performs a few simplifications for commutative
499// operators:
500//
501// 1. Order operands such that they are listed from right (least complex) to
502// left (most complex). This puts constants before unary operators before
503// binary operators.
504//
505// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
506// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
507//
508bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
509 bool Changed = false;
510 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
511 Changed = !I.swapOperands();
512
513 if (!I.isAssociative()) return Changed;
514 Instruction::BinaryOps Opcode = I.getOpcode();
515 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
516 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
517 if (isa<Constant>(I.getOperand(1))) {
518 Constant *Folded = ConstantExpr::get(I.getOpcode(),
519 cast<Constant>(I.getOperand(1)),
520 cast<Constant>(Op->getOperand(1)));
521 I.setOperand(0, Op->getOperand(0));
522 I.setOperand(1, Folded);
523 return true;
524 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
525 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
526 isOnlyUse(Op) && isOnlyUse(Op1)) {
527 Constant *C1 = cast<Constant>(Op->getOperand(1));
528 Constant *C2 = cast<Constant>(Op1->getOperand(1));
529
530 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
531 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000532 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000533 Op1->getOperand(0),
534 Op1->getName(), &I);
535 AddToWorkList(New);
536 I.setOperand(0, New);
537 I.setOperand(1, Folded);
538 return true;
539 }
540 }
541 return Changed;
542}
543
544/// SimplifyCompare - For a CmpInst this function just orders the operands
545/// so that theyare listed from right (least complex) to left (most complex).
546/// This puts constants before unary operators before binary operators.
547bool InstCombiner::SimplifyCompare(CmpInst &I) {
548 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
549 return false;
550 I.swapOperands();
551 // Compare instructions are not associative so there's nothing else we can do.
552 return true;
553}
554
555// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
556// if the LHS is a constant zero (which is the 'negate' form).
557//
558static inline Value *dyn_castNegVal(Value *V) {
559 if (BinaryOperator::isNeg(V))
560 return BinaryOperator::getNegArgument(V);
561
562 // Constants can be considered to be negated values if they can be folded.
563 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
564 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000565
566 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
567 if (C->getType()->getElementType()->isInteger())
568 return ConstantExpr::getNeg(C);
569
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000570 return 0;
571}
572
573static inline Value *dyn_castNotVal(Value *V) {
574 if (BinaryOperator::isNot(V))
575 return BinaryOperator::getNotArgument(V);
576
577 // Constants can be considered to be not'ed values...
578 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
579 return ConstantInt::get(~C->getValue());
580 return 0;
581}
582
583// dyn_castFoldableMul - If this value is a multiply that can be folded into
584// other computations (because it has a constant operand), return the
585// non-constant operand of the multiply, and set CST to point to the multiplier.
586// Otherwise, return null.
587//
588static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
589 if (V->hasOneUse() && V->getType()->isInteger())
590 if (Instruction *I = dyn_cast<Instruction>(V)) {
591 if (I->getOpcode() == Instruction::Mul)
592 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
593 return I->getOperand(0);
594 if (I->getOpcode() == Instruction::Shl)
595 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
596 // The multiplier is really 1 << CST.
597 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
598 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
599 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
600 return I->getOperand(0);
601 }
602 }
603 return 0;
604}
605
606/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
607/// expression, return it.
608static User *dyn_castGetElementPtr(Value *V) {
609 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
610 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
611 if (CE->getOpcode() == Instruction::GetElementPtr)
612 return cast<User>(V);
613 return false;
614}
615
Dan Gohman2d648bb2008-04-10 18:43:06 +0000616/// getOpcode - If this is an Instruction or a ConstantExpr, return the
617/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000618static unsigned getOpcode(const Value *V) {
619 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000620 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000621 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000622 return CE->getOpcode();
623 // Use UserOp1 to mean there's no opcode.
624 return Instruction::UserOp1;
625}
626
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000627/// AddOne - Add one to a ConstantInt
628static ConstantInt *AddOne(ConstantInt *C) {
629 APInt Val(C->getValue());
630 return ConstantInt::get(++Val);
631}
632/// SubOne - Subtract one from a ConstantInt
633static ConstantInt *SubOne(ConstantInt *C) {
634 APInt Val(C->getValue());
635 return ConstantInt::get(--Val);
636}
637/// Add - Add two ConstantInts together
638static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
639 return ConstantInt::get(C1->getValue() + C2->getValue());
640}
641/// And - Bitwise AND two ConstantInts together
642static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
643 return ConstantInt::get(C1->getValue() & C2->getValue());
644}
645/// Subtract - Subtract one ConstantInt from another
646static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
647 return ConstantInt::get(C1->getValue() - C2->getValue());
648}
649/// Multiply - Multiply two ConstantInts together
650static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
651 return ConstantInt::get(C1->getValue() * C2->getValue());
652}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000653/// MultiplyOverflows - True if the multiply can not be expressed in an int
654/// this size.
655static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
656 uint32_t W = C1->getBitWidth();
657 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
658 if (sign) {
659 LHSExt.sext(W * 2);
660 RHSExt.sext(W * 2);
661 } else {
662 LHSExt.zext(W * 2);
663 RHSExt.zext(W * 2);
664 }
665
666 APInt MulExt = LHSExt * RHSExt;
667
668 if (sign) {
669 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
670 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
671 return MulExt.slt(Min) || MulExt.sgt(Max);
672 } else
673 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
674}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000675
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000676
677/// ShrinkDemandedConstant - Check to see if the specified operand of the
678/// specified instruction is a constant integer. If so, check to see if there
679/// are any bits set in the constant that are not demanded. If so, shrink the
680/// constant and return true.
681static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
682 APInt Demanded) {
683 assert(I && "No instruction?");
684 assert(OpNo < I->getNumOperands() && "Operand index too large");
685
686 // If the operand is not a constant integer, nothing to do.
687 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
688 if (!OpC) return false;
689
690 // If there are no bits set that aren't demanded, nothing to do.
691 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
692 if ((~Demanded & OpC->getValue()) == 0)
693 return false;
694
695 // This instruction is producing bits that are not demanded. Shrink the RHS.
696 Demanded &= OpC->getValue();
697 I->setOperand(OpNo, ConstantInt::get(Demanded));
698 return true;
699}
700
701// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
702// set of known zero and one bits, compute the maximum and minimum values that
703// could have the specified known zero and known one bits, returning them in
704// min/max.
705static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
706 const APInt& KnownZero,
707 const APInt& KnownOne,
708 APInt& Min, APInt& Max) {
709 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
710 assert(KnownZero.getBitWidth() == BitWidth &&
711 KnownOne.getBitWidth() == BitWidth &&
712 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
713 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
714 APInt UnknownBits = ~(KnownZero|KnownOne);
715
716 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
717 // bit if it is unknown.
718 Min = KnownOne;
719 Max = KnownOne|UnknownBits;
720
721 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
722 Min.set(BitWidth-1);
723 Max.clear(BitWidth-1);
724 }
725}
726
727// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
728// a set of known zero and one bits, compute the maximum and minimum values that
729// could have the specified known zero and known one bits, returning them in
730// min/max.
731static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000732 const APInt &KnownZero,
733 const APInt &KnownOne,
734 APInt &Min, APInt &Max) {
735 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000736 assert(KnownZero.getBitWidth() == BitWidth &&
737 KnownOne.getBitWidth() == BitWidth &&
738 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
739 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
740 APInt UnknownBits = ~(KnownZero|KnownOne);
741
742 // The minimum value is when the unknown bits are all zeros.
743 Min = KnownOne;
744 // The maximum value is when the unknown bits are all ones.
745 Max = KnownOne|UnknownBits;
746}
747
748/// SimplifyDemandedBits - This function attempts to replace V with a simpler
749/// value based on the demanded bits. When this function is called, it is known
750/// that only the bits set in DemandedMask of the result of V are ever used
751/// downstream. Consequently, depending on the mask and V, it may be possible
752/// to replace V with a constant or one of its operands. In such cases, this
753/// function does the replacement and returns true. In all other cases, it
754/// returns false after analyzing the expression and setting KnownOne and known
755/// to be one in the expression. KnownZero contains all the bits that are known
756/// to be zero in the expression. These are provided to potentially allow the
757/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
758/// the expression. KnownOne and KnownZero always follow the invariant that
759/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
760/// the bits in KnownOne and KnownZero may only be accurate for those bits set
761/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
762/// and KnownOne must all be the same.
763bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
764 APInt& KnownZero, APInt& KnownOne,
765 unsigned Depth) {
766 assert(V != 0 && "Null pointer of Value???");
767 assert(Depth <= 6 && "Limit Search Depth");
768 uint32_t BitWidth = DemandedMask.getBitWidth();
769 const IntegerType *VTy = cast<IntegerType>(V->getType());
770 assert(VTy->getBitWidth() == BitWidth &&
771 KnownZero.getBitWidth() == BitWidth &&
772 KnownOne.getBitWidth() == BitWidth &&
773 "Value *V, DemandedMask, KnownZero and KnownOne \
774 must have same BitWidth");
775 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
776 // We know all of the bits for a constant!
777 KnownOne = CI->getValue() & DemandedMask;
778 KnownZero = ~KnownOne & DemandedMask;
779 return false;
780 }
781
782 KnownZero.clear();
783 KnownOne.clear();
784 if (!V->hasOneUse()) { // Other users may use these bits.
785 if (Depth != 0) { // Not at the root.
786 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
787 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
788 return false;
789 }
790 // If this is the root being simplified, allow it to have multiple uses,
791 // just set the DemandedMask to all bits.
792 DemandedMask = APInt::getAllOnesValue(BitWidth);
793 } else if (DemandedMask == 0) { // Not demanding any bits from V.
794 if (V != UndefValue::get(VTy))
795 return UpdateValueUsesWith(V, UndefValue::get(VTy));
796 return false;
797 } else if (Depth == 6) { // Limit search depth.
798 return false;
799 }
800
801 Instruction *I = dyn_cast<Instruction>(V);
802 if (!I) return false; // Only analyze instructions.
803
804 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
805 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
806 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000807 default:
808 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
809 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000810 case Instruction::And:
811 // If either the LHS or the RHS are Zero, the result is zero.
812 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
813 RHSKnownZero, RHSKnownOne, Depth+1))
814 return true;
815 assert((RHSKnownZero & RHSKnownOne) == 0 &&
816 "Bits known to be one AND zero?");
817
818 // If something is known zero on the RHS, the bits aren't demanded on the
819 // LHS.
820 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
821 LHSKnownZero, LHSKnownOne, Depth+1))
822 return true;
823 assert((LHSKnownZero & LHSKnownOne) == 0 &&
824 "Bits known to be one AND zero?");
825
826 // If all of the demanded bits are known 1 on one side, return the other.
827 // These bits cannot contribute to the result of the 'and'.
828 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
829 (DemandedMask & ~LHSKnownZero))
830 return UpdateValueUsesWith(I, I->getOperand(0));
831 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
832 (DemandedMask & ~RHSKnownZero))
833 return UpdateValueUsesWith(I, I->getOperand(1));
834
835 // If all of the demanded bits in the inputs are known zeros, return zero.
836 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
837 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
838
839 // If the RHS is a constant, see if we can simplify it.
840 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
841 return UpdateValueUsesWith(I, I);
842
843 // Output known-1 bits are only known if set in both the LHS & RHS.
844 RHSKnownOne &= LHSKnownOne;
845 // Output known-0 are known to be clear if zero in either the LHS | RHS.
846 RHSKnownZero |= LHSKnownZero;
847 break;
848 case Instruction::Or:
849 // If either the LHS or the RHS are One, the result is One.
850 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
851 RHSKnownZero, RHSKnownOne, Depth+1))
852 return true;
853 assert((RHSKnownZero & RHSKnownOne) == 0 &&
854 "Bits known to be one AND zero?");
855 // If something is known one on the RHS, the bits aren't demanded on the
856 // LHS.
857 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
858 LHSKnownZero, LHSKnownOne, Depth+1))
859 return true;
860 assert((LHSKnownZero & LHSKnownOne) == 0 &&
861 "Bits known to be one AND zero?");
862
863 // If all of the demanded bits are known zero on one side, return the other.
864 // These bits cannot contribute to the result of the 'or'.
865 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
866 (DemandedMask & ~LHSKnownOne))
867 return UpdateValueUsesWith(I, I->getOperand(0));
868 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
869 (DemandedMask & ~RHSKnownOne))
870 return UpdateValueUsesWith(I, I->getOperand(1));
871
872 // If all of the potentially set bits on one side are known to be set on
873 // the other side, just use the 'other' side.
874 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
875 (DemandedMask & (~RHSKnownZero)))
876 return UpdateValueUsesWith(I, I->getOperand(0));
877 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
878 (DemandedMask & (~LHSKnownZero)))
879 return UpdateValueUsesWith(I, I->getOperand(1));
880
881 // If the RHS is a constant, see if we can simplify it.
882 if (ShrinkDemandedConstant(I, 1, DemandedMask))
883 return UpdateValueUsesWith(I, I);
884
885 // Output known-0 bits are only known if clear in both the LHS & RHS.
886 RHSKnownZero &= LHSKnownZero;
887 // Output known-1 are known to be set if set in either the LHS | RHS.
888 RHSKnownOne |= LHSKnownOne;
889 break;
890 case Instruction::Xor: {
891 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
892 RHSKnownZero, RHSKnownOne, Depth+1))
893 return true;
894 assert((RHSKnownZero & RHSKnownOne) == 0 &&
895 "Bits known to be one AND zero?");
896 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
897 LHSKnownZero, LHSKnownOne, Depth+1))
898 return true;
899 assert((LHSKnownZero & LHSKnownOne) == 0 &&
900 "Bits known to be one AND zero?");
901
902 // If all of the demanded bits are known zero on one side, return the other.
903 // These bits cannot contribute to the result of the 'xor'.
904 if ((DemandedMask & RHSKnownZero) == DemandedMask)
905 return UpdateValueUsesWith(I, I->getOperand(0));
906 if ((DemandedMask & LHSKnownZero) == DemandedMask)
907 return UpdateValueUsesWith(I, I->getOperand(1));
908
909 // Output known-0 bits are known if clear or set in both the LHS & RHS.
910 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
911 (RHSKnownOne & LHSKnownOne);
912 // Output known-1 are known to be set if set in only one of the LHS, RHS.
913 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
914 (RHSKnownOne & LHSKnownZero);
915
916 // If all of the demanded bits are known to be zero on one side or the
917 // other, turn this into an *inclusive* or.
918 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
919 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
920 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000921 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000922 I->getName());
923 InsertNewInstBefore(Or, *I);
924 return UpdateValueUsesWith(I, Or);
925 }
926
927 // If all of the demanded bits on one side are known, and all of the set
928 // bits on that side are also known to be set on the other side, turn this
929 // into an AND, as we know the bits will be cleared.
930 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
931 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
932 // all known
933 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
934 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
935 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000936 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000937 InsertNewInstBefore(And, *I);
938 return UpdateValueUsesWith(I, And);
939 }
940 }
941
942 // If the RHS is a constant, see if we can simplify it.
943 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
944 if (ShrinkDemandedConstant(I, 1, DemandedMask))
945 return UpdateValueUsesWith(I, I);
946
947 RHSKnownZero = KnownZeroOut;
948 RHSKnownOne = KnownOneOut;
949 break;
950 }
951 case Instruction::Select:
952 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
953 RHSKnownZero, RHSKnownOne, Depth+1))
954 return true;
955 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
956 LHSKnownZero, LHSKnownOne, Depth+1))
957 return true;
958 assert((RHSKnownZero & RHSKnownOne) == 0 &&
959 "Bits known to be one AND zero?");
960 assert((LHSKnownZero & LHSKnownOne) == 0 &&
961 "Bits known to be one AND zero?");
962
963 // If the operands are constants, see if we can simplify them.
964 if (ShrinkDemandedConstant(I, 1, DemandedMask))
965 return UpdateValueUsesWith(I, I);
966 if (ShrinkDemandedConstant(I, 2, DemandedMask))
967 return UpdateValueUsesWith(I, I);
968
969 // Only known if known in both the LHS and RHS.
970 RHSKnownOne &= LHSKnownOne;
971 RHSKnownZero &= LHSKnownZero;
972 break;
973 case Instruction::Trunc: {
974 uint32_t truncBf =
975 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
976 DemandedMask.zext(truncBf);
977 RHSKnownZero.zext(truncBf);
978 RHSKnownOne.zext(truncBf);
979 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
980 RHSKnownZero, RHSKnownOne, Depth+1))
981 return true;
982 DemandedMask.trunc(BitWidth);
983 RHSKnownZero.trunc(BitWidth);
984 RHSKnownOne.trunc(BitWidth);
985 assert((RHSKnownZero & RHSKnownOne) == 0 &&
986 "Bits known to be one AND zero?");
987 break;
988 }
989 case Instruction::BitCast:
990 if (!I->getOperand(0)->getType()->isInteger())
991 return false;
992
993 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
994 RHSKnownZero, RHSKnownOne, Depth+1))
995 return true;
996 assert((RHSKnownZero & RHSKnownOne) == 0 &&
997 "Bits known to be one AND zero?");
998 break;
999 case Instruction::ZExt: {
1000 // Compute the bits in the result that are not present in the input.
1001 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1002 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1003
1004 DemandedMask.trunc(SrcBitWidth);
1005 RHSKnownZero.trunc(SrcBitWidth);
1006 RHSKnownOne.trunc(SrcBitWidth);
1007 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1008 RHSKnownZero, RHSKnownOne, Depth+1))
1009 return true;
1010 DemandedMask.zext(BitWidth);
1011 RHSKnownZero.zext(BitWidth);
1012 RHSKnownOne.zext(BitWidth);
1013 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1014 "Bits known to be one AND zero?");
1015 // The top bits are known to be zero.
1016 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1017 break;
1018 }
1019 case Instruction::SExt: {
1020 // Compute the bits in the result that are not present in the input.
1021 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1022 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1023
1024 APInt InputDemandedBits = DemandedMask &
1025 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1026
1027 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1028 // If any of the sign extended bits are demanded, we know that the sign
1029 // bit is demanded.
1030 if ((NewBits & DemandedMask) != 0)
1031 InputDemandedBits.set(SrcBitWidth-1);
1032
1033 InputDemandedBits.trunc(SrcBitWidth);
1034 RHSKnownZero.trunc(SrcBitWidth);
1035 RHSKnownOne.trunc(SrcBitWidth);
1036 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1037 RHSKnownZero, RHSKnownOne, Depth+1))
1038 return true;
1039 InputDemandedBits.zext(BitWidth);
1040 RHSKnownZero.zext(BitWidth);
1041 RHSKnownOne.zext(BitWidth);
1042 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1043 "Bits known to be one AND zero?");
1044
1045 // If the sign bit of the input is known set or clear, then we know the
1046 // top bits of the result.
1047
1048 // If the input sign bit is known zero, or if the NewBits are not demanded
1049 // convert this into a zero extension.
1050 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1051 {
1052 // Convert to ZExt cast
1053 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1054 return UpdateValueUsesWith(I, NewCast);
1055 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1056 RHSKnownOne |= NewBits;
1057 }
1058 break;
1059 }
1060 case Instruction::Add: {
1061 // Figure out what the input bits are. If the top bits of the and result
1062 // are not demanded, then the add doesn't demand them from its input
1063 // either.
1064 uint32_t NLZ = DemandedMask.countLeadingZeros();
1065
1066 // If there is a constant on the RHS, there are a variety of xformations
1067 // we can do.
1068 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1069 // If null, this should be simplified elsewhere. Some of the xforms here
1070 // won't work if the RHS is zero.
1071 if (RHS->isZero())
1072 break;
1073
1074 // If the top bit of the output is demanded, demand everything from the
1075 // input. Otherwise, we demand all the input bits except NLZ top bits.
1076 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1077
1078 // Find information about known zero/one bits in the input.
1079 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1080 LHSKnownZero, LHSKnownOne, Depth+1))
1081 return true;
1082
1083 // If the RHS of the add has bits set that can't affect the input, reduce
1084 // the constant.
1085 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1086 return UpdateValueUsesWith(I, I);
1087
1088 // Avoid excess work.
1089 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1090 break;
1091
1092 // Turn it into OR if input bits are zero.
1093 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1094 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001095 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001096 I->getName());
1097 InsertNewInstBefore(Or, *I);
1098 return UpdateValueUsesWith(I, Or);
1099 }
1100
1101 // We can say something about the output known-zero and known-one bits,
1102 // depending on potential carries from the input constant and the
1103 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1104 // bits set and the RHS constant is 0x01001, then we know we have a known
1105 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1106
1107 // To compute this, we first compute the potential carry bits. These are
1108 // the bits which may be modified. I'm not aware of a better way to do
1109 // this scan.
1110 const APInt& RHSVal = RHS->getValue();
1111 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1112
1113 // Now that we know which bits have carries, compute the known-1/0 sets.
1114
1115 // Bits are known one if they are known zero in one operand and one in the
1116 // other, and there is no input carry.
1117 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1118 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1119
1120 // Bits are known zero if they are known zero in both operands and there
1121 // is no input carry.
1122 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1123 } else {
1124 // If the high-bits of this ADD are not demanded, then it does not demand
1125 // the high bits of its LHS or RHS.
1126 if (DemandedMask[BitWidth-1] == 0) {
1127 // Right fill the mask of bits for this ADD to demand the most
1128 // significant bit and all those below it.
1129 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1130 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1131 LHSKnownZero, LHSKnownOne, Depth+1))
1132 return true;
1133 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1134 LHSKnownZero, LHSKnownOne, Depth+1))
1135 return true;
1136 }
1137 }
1138 break;
1139 }
1140 case Instruction::Sub:
1141 // If the high-bits of this SUB are not demanded, then it does not demand
1142 // the high bits of its LHS or RHS.
1143 if (DemandedMask[BitWidth-1] == 0) {
1144 // Right fill the mask of bits for this SUB to demand the most
1145 // significant bit and all those below it.
1146 uint32_t NLZ = DemandedMask.countLeadingZeros();
1147 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1148 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1149 LHSKnownZero, LHSKnownOne, Depth+1))
1150 return true;
1151 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1152 LHSKnownZero, LHSKnownOne, Depth+1))
1153 return true;
1154 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001155 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1156 // the known zeros and ones.
1157 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001158 break;
1159 case Instruction::Shl:
1160 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1161 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1162 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1163 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1164 RHSKnownZero, RHSKnownOne, Depth+1))
1165 return true;
1166 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1167 "Bits known to be one AND zero?");
1168 RHSKnownZero <<= ShiftAmt;
1169 RHSKnownOne <<= ShiftAmt;
1170 // low bits known zero.
1171 if (ShiftAmt)
1172 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1173 }
1174 break;
1175 case Instruction::LShr:
1176 // For a logical shift right
1177 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1178 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1179
1180 // Unsigned shift right.
1181 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1182 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1183 RHSKnownZero, RHSKnownOne, Depth+1))
1184 return true;
1185 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1186 "Bits known to be one AND zero?");
1187 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1188 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1189 if (ShiftAmt) {
1190 // Compute the new bits that are at the top now.
1191 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1192 RHSKnownZero |= HighBits; // high bits known zero.
1193 }
1194 }
1195 break;
1196 case Instruction::AShr:
1197 // If this is an arithmetic shift right and only the low-bit is set, we can
1198 // always convert this into a logical shr, even if the shift amount is
1199 // variable. The low bit of the shift cannot be an input sign bit unless
1200 // the shift amount is >= the size of the datatype, which is undefined.
1201 if (DemandedMask == 1) {
1202 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001203 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001204 I->getOperand(0), I->getOperand(1), I->getName());
1205 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1206 return UpdateValueUsesWith(I, NewVal);
1207 }
1208
1209 // If the sign bit is the only bit demanded by this ashr, then there is no
1210 // need to do it, the shift doesn't change the high bit.
1211 if (DemandedMask.isSignBit())
1212 return UpdateValueUsesWith(I, I->getOperand(0));
1213
1214 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1215 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1216
1217 // Signed shift right.
1218 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1219 // If any of the "high bits" are demanded, we should set the sign bit as
1220 // demanded.
1221 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1222 DemandedMaskIn.set(BitWidth-1);
1223 if (SimplifyDemandedBits(I->getOperand(0),
1224 DemandedMaskIn,
1225 RHSKnownZero, RHSKnownOne, Depth+1))
1226 return true;
1227 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1228 "Bits known to be one AND zero?");
1229 // Compute the new bits that are at the top now.
1230 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1231 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1232 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1233
1234 // Handle the sign bits.
1235 APInt SignBit(APInt::getSignBit(BitWidth));
1236 // Adjust to where it is now in the mask.
1237 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1238
1239 // If the input sign bit is known to be zero, or if none of the top bits
1240 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001241 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 (HighBits & ~DemandedMask) == HighBits) {
1243 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001244 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001245 I->getOperand(0), SA, I->getName());
1246 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1247 return UpdateValueUsesWith(I, NewVal);
1248 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1249 RHSKnownOne |= HighBits;
1250 }
1251 }
1252 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001253 case Instruction::SRem:
1254 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1255 APInt RA = Rem->getValue();
1256 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
Dan Gohman5a154a12008-05-06 00:51:48 +00001257 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001258 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1259 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1260 LHSKnownZero, LHSKnownOne, Depth+1))
1261 return true;
1262
1263 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1264 LHSKnownZero |= ~LowBits;
1265 else if (LHSKnownOne[BitWidth-1])
1266 LHSKnownOne |= ~LowBits;
1267
1268 KnownZero |= LHSKnownZero & DemandedMask;
1269 KnownOne |= LHSKnownOne & DemandedMask;
1270
1271 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1272 }
1273 }
1274 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001275 case Instruction::URem: {
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001276 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1277 APInt RA = Rem->getValue();
Dan Gohman5a154a12008-05-06 00:51:48 +00001278 if (RA.isPowerOf2()) {
1279 APInt LowBits = (RA - 1);
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001280 APInt Mask2 = LowBits & DemandedMask;
1281 KnownZero |= ~LowBits & DemandedMask;
1282 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1283 KnownZero, KnownOne, Depth+1))
1284 return true;
1285
1286 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
Dan Gohmanbec16052008-04-28 17:02:21 +00001287 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001288 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001289 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001290
1291 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1292 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001293 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1294 KnownZero2, KnownOne2, Depth+1))
1295 return true;
1296
Dan Gohmanbec16052008-04-28 17:02:21 +00001297 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001298 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001299 KnownZero2, KnownOne2, Depth+1))
1300 return true;
1301
1302 Leaders = std::max(Leaders,
1303 KnownZero2.countLeadingOnes());
1304 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001305 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001306 }
Chris Lattner989ba312008-06-18 04:33:20 +00001307 case Instruction::Call:
1308 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1309 switch (II->getIntrinsicID()) {
1310 default: break;
1311 case Intrinsic::bswap: {
1312 // If the only bits demanded come from one byte of the bswap result,
1313 // just shift the input byte into position to eliminate the bswap.
1314 unsigned NLZ = DemandedMask.countLeadingZeros();
1315 unsigned NTZ = DemandedMask.countTrailingZeros();
1316
1317 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1318 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1319 // have 14 leading zeros, round to 8.
1320 NLZ &= ~7;
1321 NTZ &= ~7;
1322 // If we need exactly one byte, we can do this transformation.
1323 if (BitWidth-NLZ-NTZ == 8) {
1324 unsigned ResultBit = NTZ;
1325 unsigned InputBit = BitWidth-NTZ-8;
1326
1327 // Replace this with either a left or right shift to get the byte into
1328 // the right place.
1329 Instruction *NewVal;
1330 if (InputBit > ResultBit)
1331 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1332 ConstantInt::get(I->getType(), InputBit-ResultBit));
1333 else
1334 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1335 ConstantInt::get(I->getType(), ResultBit-InputBit));
1336 NewVal->takeName(I);
1337 InsertNewInstBefore(NewVal, *I);
1338 return UpdateValueUsesWith(I, NewVal);
1339 }
1340
1341 // TODO: Could compute known zero/one bits based on the input.
1342 break;
1343 }
1344 }
1345 }
Chris Lattner4946e222008-06-18 18:11:55 +00001346 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001347 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001348 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001349
1350 // If the client is only demanding bits that we know, return the known
1351 // constant.
1352 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1353 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1354 return false;
1355}
1356
1357
1358/// SimplifyDemandedVectorElts - The specified value producecs a vector with
1359/// 64 or fewer elements. DemandedElts contains the set of elements that are
1360/// actually used by the caller. This method analyzes which elements of the
1361/// operand are undef and returns that information in UndefElts.
1362///
1363/// If the information about demanded elements can be used to simplify the
1364/// operation, the operation is simplified, then the resultant value is
1365/// returned. This returns null if no change was made.
1366Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1367 uint64_t &UndefElts,
1368 unsigned Depth) {
1369 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1370 assert(VWidth <= 64 && "Vector too wide to analyze!");
1371 uint64_t EltMask = ~0ULL >> (64-VWidth);
1372 assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
1373 "Invalid DemandedElts!");
1374
1375 if (isa<UndefValue>(V)) {
1376 // If the entire vector is undefined, just return this info.
1377 UndefElts = EltMask;
1378 return 0;
1379 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1380 UndefElts = EltMask;
1381 return UndefValue::get(V->getType());
1382 }
1383
1384 UndefElts = 0;
1385 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1386 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1387 Constant *Undef = UndefValue::get(EltTy);
1388
1389 std::vector<Constant*> Elts;
1390 for (unsigned i = 0; i != VWidth; ++i)
1391 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1392 Elts.push_back(Undef);
1393 UndefElts |= (1ULL << i);
1394 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1395 Elts.push_back(Undef);
1396 UndefElts |= (1ULL << i);
1397 } else { // Otherwise, defined.
1398 Elts.push_back(CP->getOperand(i));
1399 }
1400
1401 // If we changed the constant, return it.
1402 Constant *NewCP = ConstantVector::get(Elts);
1403 return NewCP != CP ? NewCP : 0;
1404 } else if (isa<ConstantAggregateZero>(V)) {
1405 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1406 // set to undef.
1407 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1408 Constant *Zero = Constant::getNullValue(EltTy);
1409 Constant *Undef = UndefValue::get(EltTy);
1410 std::vector<Constant*> Elts;
1411 for (unsigned i = 0; i != VWidth; ++i)
1412 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1413 UndefElts = DemandedElts ^ EltMask;
1414 return ConstantVector::get(Elts);
1415 }
1416
1417 if (!V->hasOneUse()) { // Other users may use these bits.
1418 if (Depth != 0) { // Not at the root.
1419 // TODO: Just compute the UndefElts information recursively.
1420 return false;
1421 }
1422 return false;
1423 } else if (Depth == 10) { // Limit search depth.
1424 return false;
1425 }
1426
1427 Instruction *I = dyn_cast<Instruction>(V);
1428 if (!I) return false; // Only analyze instructions.
1429
1430 bool MadeChange = false;
1431 uint64_t UndefElts2;
1432 Value *TmpV;
1433 switch (I->getOpcode()) {
1434 default: break;
1435
1436 case Instruction::InsertElement: {
1437 // If this is a variable index, we don't know which element it overwrites.
1438 // demand exactly the same input as we produce.
1439 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1440 if (Idx == 0) {
1441 // Note that we can't propagate undef elt info, because we don't know
1442 // which elt is getting updated.
1443 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1444 UndefElts2, Depth+1);
1445 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1446 break;
1447 }
1448
1449 // If this is inserting an element that isn't demanded, remove this
1450 // insertelement.
1451 unsigned IdxNo = Idx->getZExtValue();
1452 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1453 return AddSoonDeadInstToWorklist(*I, 0);
1454
1455 // Otherwise, the element inserted overwrites whatever was there, so the
1456 // input demanded set is simpler than the output set.
1457 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1458 DemandedElts & ~(1ULL << IdxNo),
1459 UndefElts, Depth+1);
1460 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1461
1462 // The inserted element is defined.
1463 UndefElts |= 1ULL << IdxNo;
1464 break;
1465 }
1466 case Instruction::BitCast: {
1467 // Vector->vector casts only.
1468 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1469 if (!VTy) break;
1470 unsigned InVWidth = VTy->getNumElements();
1471 uint64_t InputDemandedElts = 0;
1472 unsigned Ratio;
1473
1474 if (VWidth == InVWidth) {
1475 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1476 // elements as are demanded of us.
1477 Ratio = 1;
1478 InputDemandedElts = DemandedElts;
1479 } else if (VWidth > InVWidth) {
1480 // Untested so far.
1481 break;
1482
1483 // If there are more elements in the result than there are in the source,
1484 // then an input element is live if any of the corresponding output
1485 // elements are live.
1486 Ratio = VWidth/InVWidth;
1487 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1488 if (DemandedElts & (1ULL << OutIdx))
1489 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1490 }
1491 } else {
1492 // Untested so far.
1493 break;
1494
1495 // If there are more elements in the source than there are in the result,
1496 // then an input element is live if the corresponding output element is
1497 // live.
1498 Ratio = InVWidth/VWidth;
1499 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1500 if (DemandedElts & (1ULL << InIdx/Ratio))
1501 InputDemandedElts |= 1ULL << InIdx;
1502 }
1503
1504 // div/rem demand all inputs, because they don't want divide by zero.
1505 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1506 UndefElts2, Depth+1);
1507 if (TmpV) {
1508 I->setOperand(0, TmpV);
1509 MadeChange = true;
1510 }
1511
1512 UndefElts = UndefElts2;
1513 if (VWidth > InVWidth) {
1514 assert(0 && "Unimp");
1515 // If there are more elements in the result than there are in the source,
1516 // then an output element is undef if the corresponding input element is
1517 // undef.
1518 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1519 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1520 UndefElts |= 1ULL << OutIdx;
1521 } else if (VWidth < InVWidth) {
1522 assert(0 && "Unimp");
1523 // If there are more elements in the source than there are in the result,
1524 // then a result element is undef if all of the corresponding input
1525 // elements are undef.
1526 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1527 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1528 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1529 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1530 }
1531 break;
1532 }
1533 case Instruction::And:
1534 case Instruction::Or:
1535 case Instruction::Xor:
1536 case Instruction::Add:
1537 case Instruction::Sub:
1538 case Instruction::Mul:
1539 // div/rem demand all inputs, because they don't want divide by zero.
1540 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1541 UndefElts, Depth+1);
1542 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1543 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1544 UndefElts2, Depth+1);
1545 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1546
1547 // Output elements are undefined if both are undefined. Consider things
1548 // like undef&0. The result is known zero, not undef.
1549 UndefElts &= UndefElts2;
1550 break;
1551
1552 case Instruction::Call: {
1553 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1554 if (!II) break;
1555 switch (II->getIntrinsicID()) {
1556 default: break;
1557
1558 // Binary vector operations that work column-wise. A dest element is a
1559 // function of the corresponding input elements from the two inputs.
1560 case Intrinsic::x86_sse_sub_ss:
1561 case Intrinsic::x86_sse_mul_ss:
1562 case Intrinsic::x86_sse_min_ss:
1563 case Intrinsic::x86_sse_max_ss:
1564 case Intrinsic::x86_sse2_sub_sd:
1565 case Intrinsic::x86_sse2_mul_sd:
1566 case Intrinsic::x86_sse2_min_sd:
1567 case Intrinsic::x86_sse2_max_sd:
1568 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1569 UndefElts, Depth+1);
1570 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1571 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1572 UndefElts2, Depth+1);
1573 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1574
1575 // If only the low elt is demanded and this is a scalarizable intrinsic,
1576 // scalarize it now.
1577 if (DemandedElts == 1) {
1578 switch (II->getIntrinsicID()) {
1579 default: break;
1580 case Intrinsic::x86_sse_sub_ss:
1581 case Intrinsic::x86_sse_mul_ss:
1582 case Intrinsic::x86_sse2_sub_sd:
1583 case Intrinsic::x86_sse2_mul_sd:
1584 // TODO: Lower MIN/MAX/ABS/etc
1585 Value *LHS = II->getOperand(1);
1586 Value *RHS = II->getOperand(2);
1587 // Extract the element as scalars.
1588 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1589 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1590
1591 switch (II->getIntrinsicID()) {
1592 default: assert(0 && "Case stmts out of sync!");
1593 case Intrinsic::x86_sse_sub_ss:
1594 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001595 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001596 II->getName()), *II);
1597 break;
1598 case Intrinsic::x86_sse_mul_ss:
1599 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001600 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001601 II->getName()), *II);
1602 break;
1603 }
1604
1605 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001606 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1607 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001608 InsertNewInstBefore(New, *II);
1609 AddSoonDeadInstToWorklist(*II, 0);
1610 return New;
1611 }
1612 }
1613
1614 // Output elements are undefined if both are undefined. Consider things
1615 // like undef&0. The result is known zero, not undef.
1616 UndefElts &= UndefElts2;
1617 break;
1618 }
1619 break;
1620 }
1621 }
1622 return MadeChange ? I : 0;
1623}
1624
Dan Gohman5d56fd42008-05-19 22:14:15 +00001625
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001626/// AssociativeOpt - Perform an optimization on an associative operator. This
1627/// function is designed to check a chain of associative operators for a
1628/// potential to apply a certain optimization. Since the optimization may be
1629/// applicable if the expression was reassociated, this checks the chain, then
1630/// reassociates the expression as necessary to expose the optimization
1631/// opportunity. This makes use of a special Functor, which must define
1632/// 'shouldApply' and 'apply' methods.
1633///
1634template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001635static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001636 unsigned Opcode = Root.getOpcode();
1637 Value *LHS = Root.getOperand(0);
1638
1639 // Quick check, see if the immediate LHS matches...
1640 if (F.shouldApply(LHS))
1641 return F.apply(Root);
1642
1643 // Otherwise, if the LHS is not of the same opcode as the root, return.
1644 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1645 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1646 // Should we apply this transform to the RHS?
1647 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1648
1649 // If not to the RHS, check to see if we should apply to the LHS...
1650 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1651 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1652 ShouldApply = true;
1653 }
1654
1655 // If the functor wants to apply the optimization to the RHS of LHSI,
1656 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1657 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001658 // Now all of the instructions are in the current basic block, go ahead
1659 // and perform the reassociation.
1660 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1661
1662 // First move the selected RHS to the LHS of the root...
1663 Root.setOperand(0, LHSI->getOperand(1));
1664
1665 // Make what used to be the LHS of the root be the user of the root...
1666 Value *ExtraOperand = TmpLHSI->getOperand(1);
1667 if (&Root == TmpLHSI) {
1668 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1669 return 0;
1670 }
1671 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1672 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001673 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001674 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001675 ARI = Root;
1676
1677 // Now propagate the ExtraOperand down the chain of instructions until we
1678 // get to LHSI.
1679 while (TmpLHSI != LHSI) {
1680 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1681 // Move the instruction to immediately before the chain we are
1682 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001683 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001684 ARI = NextLHSI;
1685
1686 Value *NextOp = NextLHSI->getOperand(1);
1687 NextLHSI->setOperand(1, ExtraOperand);
1688 TmpLHSI = NextLHSI;
1689 ExtraOperand = NextOp;
1690 }
1691
1692 // Now that the instructions are reassociated, have the functor perform
1693 // the transformation...
1694 return F.apply(Root);
1695 }
1696
1697 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1698 }
1699 return 0;
1700}
1701
Dan Gohman089efff2008-05-13 00:00:25 +00001702namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001703
Nick Lewycky27f6c132008-05-23 04:34:58 +00001704// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001705struct AddRHS {
1706 Value *RHS;
1707 AddRHS(Value *rhs) : RHS(rhs) {}
1708 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1709 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001710 return BinaryOperator::CreateShl(Add.getOperand(0),
1711 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001712 }
1713};
1714
1715// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1716// iff C1&C2 == 0
1717struct AddMaskingAnd {
1718 Constant *C2;
1719 AddMaskingAnd(Constant *c) : C2(c) {}
1720 bool shouldApply(Value *LHS) const {
1721 ConstantInt *C1;
1722 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1723 ConstantExpr::getAnd(C1, C2)->isNullValue();
1724 }
1725 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001726 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001727 }
1728};
1729
Dan Gohman089efff2008-05-13 00:00:25 +00001730}
1731
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001732static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1733 InstCombiner *IC) {
1734 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1735 if (Constant *SOC = dyn_cast<Constant>(SO))
1736 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1737
Gabor Greifa645dd32008-05-16 19:29:10 +00001738 return IC->InsertNewInstBefore(CastInst::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001739 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1740 }
1741
1742 // Figure out if the constant is the left or the right argument.
1743 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1744 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1745
1746 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1747 if (ConstIsRHS)
1748 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1749 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1750 }
1751
1752 Value *Op0 = SO, *Op1 = ConstOperand;
1753 if (!ConstIsRHS)
1754 std::swap(Op0, Op1);
1755 Instruction *New;
1756 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001757 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001758 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001759 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001760 SO->getName()+".cmp");
1761 else {
1762 assert(0 && "Unknown binary instruction type!");
1763 abort();
1764 }
1765 return IC->InsertNewInstBefore(New, I);
1766}
1767
1768// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1769// constant as the other operand, try to fold the binary operator into the
1770// select arguments. This also works for Cast instructions, which obviously do
1771// not have a second operand.
1772static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1773 InstCombiner *IC) {
1774 // Don't modify shared select instructions
1775 if (!SI->hasOneUse()) return 0;
1776 Value *TV = SI->getOperand(1);
1777 Value *FV = SI->getOperand(2);
1778
1779 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1780 // Bool selects with constant operands can be folded to logical ops.
1781 if (SI->getType() == Type::Int1Ty) return 0;
1782
1783 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1784 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1785
Gabor Greifd6da1d02008-04-06 20:25:17 +00001786 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1787 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001788 }
1789 return 0;
1790}
1791
1792
1793/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1794/// node as operand #0, see if we can fold the instruction into the PHI (which
1795/// is only possible if all operands to the PHI are constants).
1796Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1797 PHINode *PN = cast<PHINode>(I.getOperand(0));
1798 unsigned NumPHIValues = PN->getNumIncomingValues();
1799 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1800
1801 // Check to see if all of the operands of the PHI are constants. If there is
1802 // one non-constant value, remember the BB it is. If there is more than one
1803 // or if *it* is a PHI, bail out.
1804 BasicBlock *NonConstBB = 0;
1805 for (unsigned i = 0; i != NumPHIValues; ++i)
1806 if (!isa<Constant>(PN->getIncomingValue(i))) {
1807 if (NonConstBB) return 0; // More than one non-const value.
1808 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1809 NonConstBB = PN->getIncomingBlock(i);
1810
1811 // If the incoming non-constant value is in I's block, we have an infinite
1812 // loop.
1813 if (NonConstBB == I.getParent())
1814 return 0;
1815 }
1816
1817 // If there is exactly one non-constant value, we can insert a copy of the
1818 // operation in that block. However, if this is a critical edge, we would be
1819 // inserting the computation one some other paths (e.g. inside a loop). Only
1820 // do this if the pred block is unconditionally branching into the phi block.
1821 if (NonConstBB) {
1822 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1823 if (!BI || !BI->isUnconditional()) return 0;
1824 }
1825
1826 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001827 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001828 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1829 InsertNewInstBefore(NewPN, *PN);
1830 NewPN->takeName(PN);
1831
1832 // Next, add all of the operands to the PHI.
1833 if (I.getNumOperands() == 2) {
1834 Constant *C = cast<Constant>(I.getOperand(1));
1835 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001836 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001837 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1838 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1839 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1840 else
1841 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1842 } else {
1843 assert(PN->getIncomingBlock(i) == NonConstBB);
1844 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001845 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001846 PN->getIncomingValue(i), C, "phitmp",
1847 NonConstBB->getTerminator());
1848 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001849 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001850 CI->getPredicate(),
1851 PN->getIncomingValue(i), C, "phitmp",
1852 NonConstBB->getTerminator());
1853 else
1854 assert(0 && "Unknown binop!");
1855
1856 AddToWorkList(cast<Instruction>(InV));
1857 }
1858 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1859 }
1860 } else {
1861 CastInst *CI = cast<CastInst>(&I);
1862 const Type *RetTy = CI->getType();
1863 for (unsigned i = 0; i != NumPHIValues; ++i) {
1864 Value *InV;
1865 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1866 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1867 } else {
1868 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001869 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001870 I.getType(), "phitmp",
1871 NonConstBB->getTerminator());
1872 AddToWorkList(cast<Instruction>(InV));
1873 }
1874 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1875 }
1876 }
1877 return ReplaceInstUsesWith(I, NewPN);
1878}
1879
Chris Lattner55476162008-01-29 06:52:45 +00001880
Chris Lattner3554f972008-05-20 05:46:13 +00001881/// WillNotOverflowSignedAdd - Return true if we can prove that:
1882/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1883/// This basically requires proving that the add in the original type would not
1884/// overflow to change the sign bit or have a carry out.
1885bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1886 // There are different heuristics we can use for this. Here are some simple
1887 // ones.
1888
1889 // Add has the property that adding any two 2's complement numbers can only
1890 // have one carry bit which can change a sign. As such, if LHS and RHS each
1891 // have at least two sign bits, we know that the addition of the two values will
1892 // sign extend fine.
1893 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1894 return true;
1895
1896
1897 // If one of the operands only has one non-zero bit, and if the other operand
1898 // has a known-zero bit in a more significant place than it (not including the
1899 // sign bit) the ripple may go up to and fill the zero, but won't change the
1900 // sign. For example, (X & ~4) + 1.
1901
1902 // TODO: Implement.
1903
1904 return false;
1905}
1906
Chris Lattner55476162008-01-29 06:52:45 +00001907
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001908Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1909 bool Changed = SimplifyCommutative(I);
1910 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1911
1912 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1913 // X + undef -> undef
1914 if (isa<UndefValue>(RHS))
1915 return ReplaceInstUsesWith(I, RHS);
1916
1917 // X + 0 --> X
1918 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1919 if (RHSC->isNullValue())
1920 return ReplaceInstUsesWith(I, LHS);
1921 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001922 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1923 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001924 return ReplaceInstUsesWith(I, LHS);
1925 }
1926
1927 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1928 // X + (signbit) --> X ^ signbit
1929 const APInt& Val = CI->getValue();
1930 uint32_t BitWidth = Val.getBitWidth();
1931 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00001932 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001933
1934 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1935 // (X & 254)+1 -> (X&254)|1
1936 if (!isa<VectorType>(I.getType())) {
1937 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1938 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
1939 KnownZero, KnownOne))
1940 return &I;
1941 }
1942 }
1943
1944 if (isa<PHINode>(LHS))
1945 if (Instruction *NV = FoldOpIntoPhi(I))
1946 return NV;
1947
1948 ConstantInt *XorRHS = 0;
1949 Value *XorLHS = 0;
1950 if (isa<ConstantInt>(RHSC) &&
1951 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1952 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
1953 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
1954
1955 uint32_t Size = TySizeBits / 2;
1956 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
1957 APInt CFF80Val(-C0080Val);
1958 do {
1959 if (TySizeBits > Size) {
1960 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1961 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1962 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
1963 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
1964 // This is a sign extend if the top bits are known zero.
1965 if (!MaskedValueIsZero(XorLHS,
1966 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
1967 Size = 0; // Not a sign ext, but can't be any others either.
1968 break;
1969 }
1970 }
1971 Size >>= 1;
1972 C0080Val = APIntOps::lshr(C0080Val, Size);
1973 CFF80Val = APIntOps::ashr(CFF80Val, Size);
1974 } while (Size >= 1);
1975
1976 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00001977 // with funny bit widths then this switch statement should be removed. It
1978 // is just here to get the size of the "middle" type back up to something
1979 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001980 const Type *MiddleType = 0;
1981 switch (Size) {
1982 default: break;
1983 case 32: MiddleType = Type::Int32Ty; break;
1984 case 16: MiddleType = Type::Int16Ty; break;
1985 case 8: MiddleType = Type::Int8Ty; break;
1986 }
1987 if (MiddleType) {
1988 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
1989 InsertNewInstBefore(NewTrunc, I);
1990 return new SExtInst(NewTrunc, I.getType(), I.getName());
1991 }
1992 }
1993 }
1994
Nick Lewyckyd4b63672008-05-31 17:59:52 +00001995 if (I.getType() == Type::Int1Ty)
1996 return BinaryOperator::CreateXor(LHS, RHS);
1997
Nick Lewycky4d474cd2008-05-23 04:39:38 +00001998 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00001999 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002000 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2001
2002 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2003 if (RHSI->getOpcode() == Instruction::Sub)
2004 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2005 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2006 }
2007 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2008 if (LHSI->getOpcode() == Instruction::Sub)
2009 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2010 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2011 }
2012 }
2013
2014 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002015 // -A + -B --> -(A + B)
2016 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002017 if (LHS->getType()->isIntOrIntVector()) {
2018 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002019 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002020 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002021 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002022 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002023 }
2024
Gabor Greifa645dd32008-05-16 19:29:10 +00002025 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002026 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002027
2028 // A + -B --> A - B
2029 if (!isa<Constant>(RHS))
2030 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002031 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002032
2033
2034 ConstantInt *C2;
2035 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2036 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002037 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002038
2039 // X*C1 + X*C2 --> X * (C1+C2)
2040 ConstantInt *C1;
2041 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002042 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002043 }
2044
2045 // X + X*C --> X * (C+1)
2046 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002047 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002048
2049 // X + ~X --> -1 since ~X = -X-1
2050 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2051 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2052
2053
2054 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2055 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2056 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2057 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002058
2059 // A+B --> A|B iff A and B have no bits set in common.
2060 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2061 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2062 APInt LHSKnownOne(IT->getBitWidth(), 0);
2063 APInt LHSKnownZero(IT->getBitWidth(), 0);
2064 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2065 if (LHSKnownZero != 0) {
2066 APInt RHSKnownOne(IT->getBitWidth(), 0);
2067 APInt RHSKnownZero(IT->getBitWidth(), 0);
2068 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2069
2070 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002071 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002072 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002073 }
2074 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002075
Nick Lewycky83598a72008-02-03 07:42:09 +00002076 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002077 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002078 Value *W, *X, *Y, *Z;
2079 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2080 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2081 if (W != Y) {
2082 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002083 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002084 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002085 std::swap(W, X);
2086 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002087 std::swap(Y, Z);
2088 std::swap(W, X);
2089 }
2090 }
2091
2092 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002093 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002094 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002095 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002096 }
2097 }
2098 }
2099
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002100 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2101 Value *X = 0;
2102 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002103 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002104
2105 // (X & FF00) + xx00 -> (X+xx00) & FF00
2106 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2107 Constant *Anded = And(CRHS, C2);
2108 if (Anded == CRHS) {
2109 // See if all bits from the first bit set in the Add RHS up are included
2110 // in the mask. First, get the rightmost bit.
2111 const APInt& AddRHSV = CRHS->getValue();
2112
2113 // Form a mask of all bits from the lowest bit added through the top.
2114 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2115
2116 // See if the and mask includes all of these bits.
2117 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2118
2119 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2120 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002121 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002122 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002123 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002124 }
2125 }
2126 }
2127
2128 // Try to fold constant add into select arguments.
2129 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2130 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2131 return R;
2132 }
2133
2134 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002135 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002136 {
2137 CastInst *CI = dyn_cast<CastInst>(LHS);
2138 Value *Other = RHS;
2139 if (!CI) {
2140 CI = dyn_cast<CastInst>(RHS);
2141 Other = LHS;
2142 }
2143 if (CI && CI->getType()->isSized() &&
2144 (CI->getType()->getPrimitiveSizeInBits() ==
2145 TD->getIntPtrType()->getPrimitiveSizeInBits())
2146 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002147 unsigned AS =
2148 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002149 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2150 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002151 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002152 return new PtrToIntInst(I2, CI->getType());
2153 }
2154 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002155
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002156 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002157 {
2158 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2159 Value *Other = RHS;
2160 if (!SI) {
2161 SI = dyn_cast<SelectInst>(RHS);
2162 Other = LHS;
2163 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002164 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002165 Value *TV = SI->getTrueValue();
2166 Value *FV = SI->getFalseValue();
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002167 Value *A, *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002168
2169 // Can we fold the add into the argument of the select?
2170 // We check both true and false select arguments for a matching subtract.
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002171 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
2172 A == Other) // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002173 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002174 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) &&
2175 A == Other) // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002176 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002177 }
2178 }
Chris Lattner55476162008-01-29 06:52:45 +00002179
2180 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2181 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2182 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2183 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002184
Chris Lattner3554f972008-05-20 05:46:13 +00002185 // Check for (add (sext x), y), see if we can merge this into an
2186 // integer add followed by a sext.
2187 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2188 // (add (sext x), cst) --> (sext (add x, cst'))
2189 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2190 Constant *CI =
2191 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2192 if (LHSConv->hasOneUse() &&
2193 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2194 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2195 // Insert the new, smaller add.
2196 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2197 CI, "addconv");
2198 InsertNewInstBefore(NewAdd, I);
2199 return new SExtInst(NewAdd, I.getType());
2200 }
2201 }
2202
2203 // (add (sext x), (sext y)) --> (sext (add int x, y))
2204 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2205 // Only do this if x/y have the same type, if at last one of them has a
2206 // single use (so we don't increase the number of sexts), and if the
2207 // integer add will not overflow.
2208 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2209 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2210 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2211 RHSConv->getOperand(0))) {
2212 // Insert the new integer add.
2213 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2214 RHSConv->getOperand(0),
2215 "addconv");
2216 InsertNewInstBefore(NewAdd, I);
2217 return new SExtInst(NewAdd, I.getType());
2218 }
2219 }
2220 }
2221
2222 // Check for (add double (sitofp x), y), see if we can merge this into an
2223 // integer add followed by a promotion.
2224 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2225 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2226 // ... if the constant fits in the integer value. This is useful for things
2227 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2228 // requires a constant pool load, and generally allows the add to be better
2229 // instcombined.
2230 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2231 Constant *CI =
2232 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2233 if (LHSConv->hasOneUse() &&
2234 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2235 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2236 // Insert the new integer add.
2237 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2238 CI, "addconv");
2239 InsertNewInstBefore(NewAdd, I);
2240 return new SIToFPInst(NewAdd, I.getType());
2241 }
2242 }
2243
2244 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2245 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2246 // Only do this if x/y have the same type, if at last one of them has a
2247 // single use (so we don't increase the number of int->fp conversions),
2248 // and if the integer add will not overflow.
2249 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2250 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2251 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2252 RHSConv->getOperand(0))) {
2253 // Insert the new integer add.
2254 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2255 RHSConv->getOperand(0),
2256 "addconv");
2257 InsertNewInstBefore(NewAdd, I);
2258 return new SIToFPInst(NewAdd, I.getType());
2259 }
2260 }
2261 }
2262
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002263 return Changed ? &I : 0;
2264}
2265
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002266Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2267 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2268
2269 if (Op0 == Op1) // sub X, X -> 0
2270 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2271
2272 // If this is a 'B = x-(-A)', change to B = x+A...
2273 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002274 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002275
2276 if (isa<UndefValue>(Op0))
2277 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2278 if (isa<UndefValue>(Op1))
2279 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2280
2281 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2282 // Replace (-1 - A) with (~A)...
2283 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002284 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002285
2286 // C - ~X == X + (1+C)
2287 Value *X = 0;
2288 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002289 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002290
2291 // -(X >>u 31) -> (X >>s 31)
2292 // -(X >>s 31) -> (X >>u 31)
2293 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002294 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002295 if (SI->getOpcode() == Instruction::LShr) {
2296 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2297 // Check to see if we are shifting out everything but the sign bit.
2298 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2299 SI->getType()->getPrimitiveSizeInBits()-1) {
2300 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002301 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002302 SI->getOperand(0), CU, SI->getName());
2303 }
2304 }
2305 }
2306 else if (SI->getOpcode() == Instruction::AShr) {
2307 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2308 // Check to see if we are shifting out everything but the sign bit.
2309 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2310 SI->getType()->getPrimitiveSizeInBits()-1) {
2311 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002312 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002313 SI->getOperand(0), CU, SI->getName());
2314 }
2315 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002316 }
2317 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002318 }
2319
2320 // Try to fold constant sub into select arguments.
2321 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2322 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2323 return R;
2324
2325 if (isa<PHINode>(Op0))
2326 if (Instruction *NV = FoldOpIntoPhi(I))
2327 return NV;
2328 }
2329
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002330 if (I.getType() == Type::Int1Ty)
2331 return BinaryOperator::CreateXor(Op0, Op1);
2332
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002333 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2334 if (Op1I->getOpcode() == Instruction::Add &&
2335 !Op0->getType()->isFPOrFPVector()) {
2336 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002337 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002338 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002339 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002340 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2341 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2342 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002343 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002344 Op1I->getOperand(0));
2345 }
2346 }
2347
2348 if (Op1I->hasOneUse()) {
2349 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2350 // is not used by anyone else...
2351 //
2352 if (Op1I->getOpcode() == Instruction::Sub &&
2353 !Op1I->getType()->isFPOrFPVector()) {
2354 // Swap the two operands of the subexpr...
2355 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2356 Op1I->setOperand(0, IIOp1);
2357 Op1I->setOperand(1, IIOp0);
2358
2359 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002360 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002361 }
2362
2363 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2364 //
2365 if (Op1I->getOpcode() == Instruction::And &&
2366 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2367 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2368
2369 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002370 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2371 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002372 }
2373
2374 // 0 - (X sdiv C) -> (X sdiv -C)
2375 if (Op1I->getOpcode() == Instruction::SDiv)
2376 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2377 if (CSI->isZero())
2378 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002379 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002380 ConstantExpr::getNeg(DivRHS));
2381
2382 // X - X*C --> X * (1-C)
2383 ConstantInt *C2 = 0;
2384 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2385 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002386 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002387 }
Dan Gohmanda338742007-09-17 17:31:57 +00002388
2389 // X - ((X / Y) * Y) --> X % Y
2390 if (Op1I->getOpcode() == Instruction::Mul)
2391 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2392 if (Op0 == I->getOperand(0) &&
2393 Op1I->getOperand(1) == I->getOperand(1)) {
2394 if (I->getOpcode() == Instruction::SDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002395 return BinaryOperator::CreateSRem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002396 if (I->getOpcode() == Instruction::UDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002397 return BinaryOperator::CreateURem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002398 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002399 }
2400 }
2401
2402 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002403 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404 if (Op0I->getOpcode() == Instruction::Add) {
2405 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2406 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2407 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2408 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2409 } else if (Op0I->getOpcode() == Instruction::Sub) {
2410 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002411 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002412 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002413 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002414
2415 ConstantInt *C1;
2416 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2417 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002418 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002419
2420 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2421 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002422 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002423 }
2424 return 0;
2425}
2426
2427/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2428/// comparison only checks the sign bit. If it only checks the sign bit, set
2429/// TrueIfSigned if the result of the comparison is true when the input value is
2430/// signed.
2431static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2432 bool &TrueIfSigned) {
2433 switch (pred) {
2434 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2435 TrueIfSigned = true;
2436 return RHS->isZero();
2437 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2438 TrueIfSigned = true;
2439 return RHS->isAllOnesValue();
2440 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2441 TrueIfSigned = false;
2442 return RHS->isAllOnesValue();
2443 case ICmpInst::ICMP_UGT:
2444 // True if LHS u> RHS and RHS == high-bit-mask - 1
2445 TrueIfSigned = true;
2446 return RHS->getValue() ==
2447 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2448 case ICmpInst::ICMP_UGE:
2449 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2450 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002451 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002452 default:
2453 return false;
2454 }
2455}
2456
2457Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2458 bool Changed = SimplifyCommutative(I);
2459 Value *Op0 = I.getOperand(0);
2460
2461 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2462 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2463
2464 // Simplify mul instructions with a constant RHS...
2465 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2466 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2467
2468 // ((X << C1)*C2) == (X * (C2 << C1))
2469 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2470 if (SI->getOpcode() == Instruction::Shl)
2471 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002472 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002473 ConstantExpr::getShl(CI, ShOp));
2474
2475 if (CI->isZero())
2476 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2477 if (CI->equalsInt(1)) // X * 1 == X
2478 return ReplaceInstUsesWith(I, Op0);
2479 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002480 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002481
2482 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2483 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002484 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002485 ConstantInt::get(Op0->getType(), Val.logBase2()));
2486 }
2487 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2488 if (Op1F->isNullValue())
2489 return ReplaceInstUsesWith(I, Op1);
2490
2491 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2492 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Dale Johannesen2fc20782007-09-14 22:26:36 +00002493 // We need a better interface for long double here.
2494 if (Op1->getType() == Type::FloatTy || Op1->getType() == Type::DoubleTy)
2495 if (Op1F->isExactlyValue(1.0))
2496 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002497 }
2498
2499 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2500 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002501 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002502 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002503 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002504 Op1, "tmp");
2505 InsertNewInstBefore(Add, I);
2506 Value *C1C2 = ConstantExpr::getMul(Op1,
2507 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002508 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002509
2510 }
2511
2512 // Try to fold constant mul into select arguments.
2513 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2514 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2515 return R;
2516
2517 if (isa<PHINode>(Op0))
2518 if (Instruction *NV = FoldOpIntoPhi(I))
2519 return NV;
2520 }
2521
2522 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2523 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002524 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002525
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002526 if (I.getType() == Type::Int1Ty)
2527 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2528
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002529 // If one of the operands of the multiply is a cast from a boolean value, then
2530 // we know the bool is either zero or one, so this is a 'masking' multiply.
2531 // See if we can simplify things based on how the boolean was originally
2532 // formed.
2533 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002534 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002535 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2536 BoolCast = CI;
2537 if (!BoolCast)
2538 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2539 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2540 BoolCast = CI;
2541 if (BoolCast) {
2542 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2543 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2544 const Type *SCOpTy = SCIOp0->getType();
2545 bool TIS = false;
2546
2547 // If the icmp is true iff the sign bit of X is set, then convert this
2548 // multiply into a shift/and combination.
2549 if (isa<ConstantInt>(SCIOp1) &&
2550 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2551 TIS) {
2552 // Shift the X value right to turn it into "all signbits".
2553 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2554 SCOpTy->getPrimitiveSizeInBits()-1);
2555 Value *V =
2556 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002557 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002558 BoolCast->getOperand(0)->getName()+
2559 ".mask"), I);
2560
2561 // If the multiply type is not the same as the source type, sign extend
2562 // or truncate to the multiply type.
2563 if (I.getType() != V->getType()) {
2564 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2565 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2566 Instruction::CastOps opcode =
2567 (SrcBits == DstBits ? Instruction::BitCast :
2568 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2569 V = InsertCastBefore(opcode, V, I.getType(), I);
2570 }
2571
2572 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002573 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002574 }
2575 }
2576 }
2577
2578 return Changed ? &I : 0;
2579}
2580
2581/// This function implements the transforms on div instructions that work
2582/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2583/// used by the visitors to those instructions.
2584/// @brief Transforms common to all three div instructions
2585Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2586 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2587
Chris Lattner653ef3c2008-02-19 06:12:18 +00002588 // undef / X -> 0 for integer.
2589 // undef / X -> undef for FP (the undef could be a snan).
2590 if (isa<UndefValue>(Op0)) {
2591 if (Op0->getType()->isFPOrFPVector())
2592 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002593 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002594 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002595
2596 // X / undef -> undef
2597 if (isa<UndefValue>(Op1))
2598 return ReplaceInstUsesWith(I, Op1);
2599
Chris Lattner5be238b2008-01-28 00:58:18 +00002600 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2601 // This does not apply for fdiv.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002602 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
Chris Lattner5be238b2008-01-28 00:58:18 +00002603 // [su]div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in
2604 // the same basic block, then we replace the select with Y, and the
2605 // condition of the select with false (if the cond value is in the same BB).
2606 // If the select has uses other than the div, this allows them to be
2607 // simplified also. Note that div X, Y is just as good as div X, 0 (undef)
2608 if (ConstantInt *ST = dyn_cast<ConstantInt>(SI->getOperand(1)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002609 if (ST->isNullValue()) {
2610 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2611 if (CondI && CondI->getParent() == I.getParent())
2612 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2613 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2614 I.setOperand(1, SI->getOperand(2));
2615 else
2616 UpdateValueUsesWith(SI, SI->getOperand(2));
2617 return &I;
2618 }
2619
Chris Lattner5be238b2008-01-28 00:58:18 +00002620 // Likewise for: [su]div X, (Cond ? Y : 0) -> div X, Y
2621 if (ConstantInt *ST = dyn_cast<ConstantInt>(SI->getOperand(2)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002622 if (ST->isNullValue()) {
2623 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2624 if (CondI && CondI->getParent() == I.getParent())
2625 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2626 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2627 I.setOperand(1, SI->getOperand(1));
2628 else
2629 UpdateValueUsesWith(SI, SI->getOperand(1));
2630 return &I;
2631 }
2632 }
2633
2634 return 0;
2635}
2636
2637/// This function implements the transforms common to both integer division
2638/// instructions (udiv and sdiv). It is called by the visitors to those integer
2639/// division instructions.
2640/// @brief Common integer divide transforms
2641Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2642 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2643
Chris Lattnercefb36c2008-05-16 02:59:42 +00002644 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002645 if (Op0 == Op1) {
2646 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2647 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2648 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2649 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2650 }
2651
2652 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2653 return ReplaceInstUsesWith(I, CI);
2654 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002655
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002656 if (Instruction *Common = commonDivTransforms(I))
2657 return Common;
2658
2659 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2660 // div X, 1 == X
2661 if (RHS->equalsInt(1))
2662 return ReplaceInstUsesWith(I, Op0);
2663
2664 // (X / C1) / C2 -> X / (C1*C2)
2665 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2666 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2667 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002668 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2669 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2670 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002671 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002672 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002673 }
2674
2675 if (!RHS->isZero()) { // avoid X udiv 0
2676 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2677 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2678 return R;
2679 if (isa<PHINode>(Op0))
2680 if (Instruction *NV = FoldOpIntoPhi(I))
2681 return NV;
2682 }
2683 }
2684
2685 // 0 / X == 0, we don't need to preserve faults!
2686 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2687 if (LHS->equalsInt(0))
2688 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2689
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002690 // It can't be division by zero, hence it must be division by one.
2691 if (I.getType() == Type::Int1Ty)
2692 return ReplaceInstUsesWith(I, Op0);
2693
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002694 return 0;
2695}
2696
2697Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2698 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2699
2700 // Handle the integer div common cases
2701 if (Instruction *Common = commonIDivTransforms(I))
2702 return Common;
2703
2704 // X udiv C^2 -> X >> C
2705 // Check to see if this is an unsigned division with an exact power of 2,
2706 // if so, convert to a right shift.
2707 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2708 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002709 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002710 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2711 }
2712
2713 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2714 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2715 if (RHSI->getOpcode() == Instruction::Shl &&
2716 isa<ConstantInt>(RHSI->getOperand(0))) {
2717 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2718 if (C1.isPowerOf2()) {
2719 Value *N = RHSI->getOperand(1);
2720 const Type *NTy = N->getType();
2721 if (uint32_t C2 = C1.logBase2()) {
2722 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002723 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002724 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002725 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002726 }
2727 }
2728 }
2729
2730 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2731 // where C1&C2 are powers of two.
2732 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2733 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2734 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2735 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2736 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2737 // Compute the shift amounts
2738 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2739 // Construct the "on true" case of the select
2740 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002741 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002742 Op0, TC, SI->getName()+".t");
2743 TSI = InsertNewInstBefore(TSI, I);
2744
2745 // Construct the "on false" case of the select
2746 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002747 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002748 Op0, FC, SI->getName()+".f");
2749 FSI = InsertNewInstBefore(FSI, I);
2750
2751 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002752 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002753 }
2754 }
2755 return 0;
2756}
2757
2758Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2759 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2760
2761 // Handle the integer div common cases
2762 if (Instruction *Common = commonIDivTransforms(I))
2763 return Common;
2764
2765 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2766 // sdiv X, -1 == -X
2767 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002768 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002769
2770 // -X/C -> X/-C
2771 if (Value *LHSNeg = dyn_castNegVal(Op0))
Gabor Greifa645dd32008-05-16 19:29:10 +00002772 return BinaryOperator::CreateSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002773 }
2774
2775 // If the sign bits of both operands are zero (i.e. we can prove they are
2776 // unsigned inputs), turn this into a udiv.
2777 if (I.getType()->isInteger()) {
2778 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2779 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002780 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002781 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002782 }
2783 }
2784
2785 return 0;
2786}
2787
2788Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2789 return commonDivTransforms(I);
2790}
2791
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002792/// This function implements the transforms on rem instructions that work
2793/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2794/// is used by the visitors to those instructions.
2795/// @brief Transforms common to all three rem instructions
2796Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2797 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2798
Chris Lattner653ef3c2008-02-19 06:12:18 +00002799 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002800 if (Constant *LHS = dyn_cast<Constant>(Op0))
2801 if (LHS->isNullValue())
2802 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2803
Chris Lattner653ef3c2008-02-19 06:12:18 +00002804 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2805 if (I.getType()->isFPOrFPVector())
2806 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002807 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002808 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002809 if (isa<UndefValue>(Op1))
2810 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2811
2812 // Handle cases involving: rem X, (select Cond, Y, Z)
2813 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2814 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
2815 // the same basic block, then we replace the select with Y, and the
2816 // condition of the select with false (if the cond value is in the same
2817 // BB). If the select has uses other than the div, this allows them to be
2818 // simplified also.
2819 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2820 if (ST->isNullValue()) {
2821 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2822 if (CondI && CondI->getParent() == I.getParent())
2823 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2824 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2825 I.setOperand(1, SI->getOperand(2));
2826 else
2827 UpdateValueUsesWith(SI, SI->getOperand(2));
2828 return &I;
2829 }
2830 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
2831 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2832 if (ST->isNullValue()) {
2833 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2834 if (CondI && CondI->getParent() == I.getParent())
2835 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2836 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2837 I.setOperand(1, SI->getOperand(1));
2838 else
2839 UpdateValueUsesWith(SI, SI->getOperand(1));
2840 return &I;
2841 }
2842 }
2843
2844 return 0;
2845}
2846
2847/// This function implements the transforms common to both integer remainder
2848/// instructions (urem and srem). It is called by the visitors to those integer
2849/// remainder instructions.
2850/// @brief Common integer remainder transforms
2851Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2852 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2853
2854 if (Instruction *common = commonRemTransforms(I))
2855 return common;
2856
2857 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2858 // X % 0 == undef, we don't need to preserve faults!
2859 if (RHS->equalsInt(0))
2860 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2861
2862 if (RHS->equalsInt(1)) // X % 1 == 0
2863 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2864
2865 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2866 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2867 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2868 return R;
2869 } else if (isa<PHINode>(Op0I)) {
2870 if (Instruction *NV = FoldOpIntoPhi(I))
2871 return NV;
2872 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00002873
2874 // See if we can fold away this rem instruction.
2875 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
2876 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2877 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2878 KnownZero, KnownOne))
2879 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002880 }
2881 }
2882
2883 return 0;
2884}
2885
2886Instruction *InstCombiner::visitURem(BinaryOperator &I) {
2887 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2888
2889 if (Instruction *common = commonIRemTransforms(I))
2890 return common;
2891
2892 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2893 // X urem C^2 -> X and C
2894 // Check to see if this is an unsigned remainder with an exact power of 2,
2895 // if so, convert to a bitwise and.
2896 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
2897 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00002898 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002899 }
2900
2901 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
2902 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
2903 if (RHSI->getOpcode() == Instruction::Shl &&
2904 isa<ConstantInt>(RHSI->getOperand(0))) {
2905 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
2906 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00002907 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002908 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002909 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002910 }
2911 }
2912 }
2913
2914 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
2915 // where C1&C2 are powers of two.
2916 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2917 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2918 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2919 // STO == 0 and SFO == 0 handled above.
2920 if ((STO->getValue().isPowerOf2()) &&
2921 (SFO->getValue().isPowerOf2())) {
2922 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002923 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002924 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002925 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002926 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002927 }
2928 }
2929 }
2930
2931 return 0;
2932}
2933
2934Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
2935 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2936
Dan Gohmandb3dd962007-11-05 23:16:33 +00002937 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002938 if (Instruction *common = commonIRemTransforms(I))
2939 return common;
2940
2941 if (Value *RHSNeg = dyn_castNegVal(Op1))
2942 if (!isa<ConstantInt>(RHSNeg) ||
2943 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive()) {
2944 // X % -Y -> X % Y
2945 AddUsesToWorkList(I);
2946 I.setOperand(1, RHSNeg);
2947 return &I;
2948 }
2949
Dan Gohmandb3dd962007-11-05 23:16:33 +00002950 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002951 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00002952 if (I.getType()->isInteger()) {
2953 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2954 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
2955 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002956 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00002957 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002958 }
2959
2960 return 0;
2961}
2962
2963Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
2964 return commonRemTransforms(I);
2965}
2966
2967// isMaxValueMinusOne - return true if this is Max-1
2968static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
2969 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
2970 if (!isSigned)
2971 return C->getValue() == APInt::getAllOnesValue(TypeBits) - 1;
2972 return C->getValue() == APInt::getSignedMaxValue(TypeBits)-1;
2973}
2974
2975// isMinValuePlusOne - return true if this is Min+1
2976static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
2977 if (!isSigned)
2978 return C->getValue() == 1; // unsigned
2979
2980 // Calculate 1111111111000000000000
2981 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
2982 return C->getValue() == APInt::getSignedMinValue(TypeBits)+1;
2983}
2984
2985// isOneBitSet - Return true if there is exactly one bit set in the specified
2986// constant.
2987static bool isOneBitSet(const ConstantInt *CI) {
2988 return CI->getValue().isPowerOf2();
2989}
2990
2991// isHighOnes - Return true if the constant is of the form 1+0+.
2992// This is the same as lowones(~X).
2993static bool isHighOnes(const ConstantInt *CI) {
2994 return (~CI->getValue() + 1).isPowerOf2();
2995}
2996
2997/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
2998/// are carefully arranged to allow folding of expressions such as:
2999///
3000/// (A < B) | (A > B) --> (A != B)
3001///
3002/// Note that this is only valid if the first and second predicates have the
3003/// same sign. Is illegal to do: (A u< B) | (A s> B)
3004///
3005/// Three bits are used to represent the condition, as follows:
3006/// 0 A > B
3007/// 1 A == B
3008/// 2 A < B
3009///
3010/// <=> Value Definition
3011/// 000 0 Always false
3012/// 001 1 A > B
3013/// 010 2 A == B
3014/// 011 3 A >= B
3015/// 100 4 A < B
3016/// 101 5 A != B
3017/// 110 6 A <= B
3018/// 111 7 Always true
3019///
3020static unsigned getICmpCode(const ICmpInst *ICI) {
3021 switch (ICI->getPredicate()) {
3022 // False -> 0
3023 case ICmpInst::ICMP_UGT: return 1; // 001
3024 case ICmpInst::ICMP_SGT: return 1; // 001
3025 case ICmpInst::ICMP_EQ: return 2; // 010
3026 case ICmpInst::ICMP_UGE: return 3; // 011
3027 case ICmpInst::ICMP_SGE: return 3; // 011
3028 case ICmpInst::ICMP_ULT: return 4; // 100
3029 case ICmpInst::ICMP_SLT: return 4; // 100
3030 case ICmpInst::ICMP_NE: return 5; // 101
3031 case ICmpInst::ICMP_ULE: return 6; // 110
3032 case ICmpInst::ICMP_SLE: return 6; // 110
3033 // True -> 7
3034 default:
3035 assert(0 && "Invalid ICmp predicate!");
3036 return 0;
3037 }
3038}
3039
3040/// getICmpValue - This is the complement of getICmpCode, which turns an
3041/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003042/// new ICmp instruction. The sign is passed in to determine which kind
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003043/// of predicate to use in new icmp instructions.
3044static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3045 switch (code) {
3046 default: assert(0 && "Illegal ICmp code!");
3047 case 0: return ConstantInt::getFalse();
3048 case 1:
3049 if (sign)
3050 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3051 else
3052 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3053 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3054 case 3:
3055 if (sign)
3056 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3057 else
3058 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3059 case 4:
3060 if (sign)
3061 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3062 else
3063 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3064 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3065 case 6:
3066 if (sign)
3067 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3068 else
3069 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3070 case 7: return ConstantInt::getTrue();
3071 }
3072}
3073
3074static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3075 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3076 (ICmpInst::isSignedPredicate(p1) &&
3077 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3078 (ICmpInst::isSignedPredicate(p2) &&
3079 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3080}
3081
3082namespace {
3083// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3084struct FoldICmpLogical {
3085 InstCombiner &IC;
3086 Value *LHS, *RHS;
3087 ICmpInst::Predicate pred;
3088 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3089 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3090 pred(ICI->getPredicate()) {}
3091 bool shouldApply(Value *V) const {
3092 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3093 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003094 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3095 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003096 return false;
3097 }
3098 Instruction *apply(Instruction &Log) const {
3099 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3100 if (ICI->getOperand(0) != LHS) {
3101 assert(ICI->getOperand(1) == LHS);
3102 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3103 }
3104
3105 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3106 unsigned LHSCode = getICmpCode(ICI);
3107 unsigned RHSCode = getICmpCode(RHSICI);
3108 unsigned Code;
3109 switch (Log.getOpcode()) {
3110 case Instruction::And: Code = LHSCode & RHSCode; break;
3111 case Instruction::Or: Code = LHSCode | RHSCode; break;
3112 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3113 default: assert(0 && "Illegal logical opcode!"); return 0;
3114 }
3115
3116 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3117 ICmpInst::isSignedPredicate(ICI->getPredicate());
3118
3119 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3120 if (Instruction *I = dyn_cast<Instruction>(RV))
3121 return I;
3122 // Otherwise, it's a constant boolean value...
3123 return IC.ReplaceInstUsesWith(Log, RV);
3124 }
3125};
3126} // end anonymous namespace
3127
3128// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3129// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3130// guaranteed to be a binary operator.
3131Instruction *InstCombiner::OptAndOp(Instruction *Op,
3132 ConstantInt *OpRHS,
3133 ConstantInt *AndRHS,
3134 BinaryOperator &TheAnd) {
3135 Value *X = Op->getOperand(0);
3136 Constant *Together = 0;
3137 if (!Op->isShift())
3138 Together = And(AndRHS, OpRHS);
3139
3140 switch (Op->getOpcode()) {
3141 case Instruction::Xor:
3142 if (Op->hasOneUse()) {
3143 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003144 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003145 InsertNewInstBefore(And, TheAnd);
3146 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003147 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003148 }
3149 break;
3150 case Instruction::Or:
3151 if (Together == AndRHS) // (X | C) & C --> C
3152 return ReplaceInstUsesWith(TheAnd, AndRHS);
3153
3154 if (Op->hasOneUse() && Together != OpRHS) {
3155 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003156 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003157 InsertNewInstBefore(Or, TheAnd);
3158 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003159 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003160 }
3161 break;
3162 case Instruction::Add:
3163 if (Op->hasOneUse()) {
3164 // Adding a one to a single bit bit-field should be turned into an XOR
3165 // of the bit. First thing to check is to see if this AND is with a
3166 // single bit constant.
3167 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3168
3169 // If there is only one bit set...
3170 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3171 // Ok, at this point, we know that we are masking the result of the
3172 // ADD down to exactly one bit. If the constant we are adding has
3173 // no bits set below this bit, then we can eliminate the ADD.
3174 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3175
3176 // Check to see if any bits below the one bit set in AndRHSV are set.
3177 if ((AddRHS & (AndRHSV-1)) == 0) {
3178 // If not, the only thing that can effect the output of the AND is
3179 // the bit specified by AndRHSV. If that bit is set, the effect of
3180 // the XOR is to toggle the bit. If it is clear, then the ADD has
3181 // no effect.
3182 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3183 TheAnd.setOperand(0, X);
3184 return &TheAnd;
3185 } else {
3186 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003187 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003188 InsertNewInstBefore(NewAnd, TheAnd);
3189 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003190 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003191 }
3192 }
3193 }
3194 }
3195 break;
3196
3197 case Instruction::Shl: {
3198 // We know that the AND will not produce any of the bits shifted in, so if
3199 // the anded constant includes them, clear them now!
3200 //
3201 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3202 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3203 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3204 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3205
3206 if (CI->getValue() == ShlMask) {
3207 // Masking out bits that the shift already masks
3208 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3209 } else if (CI != AndRHS) { // Reducing bits set in and.
3210 TheAnd.setOperand(1, CI);
3211 return &TheAnd;
3212 }
3213 break;
3214 }
3215 case Instruction::LShr:
3216 {
3217 // We know that the AND will not produce any of the bits shifted in, so if
3218 // the anded constant includes them, clear them now! This only applies to
3219 // unsigned shifts, because a signed shr may bring in set bits!
3220 //
3221 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3222 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3223 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3224 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3225
3226 if (CI->getValue() == ShrMask) {
3227 // Masking out bits that the shift already masks.
3228 return ReplaceInstUsesWith(TheAnd, Op);
3229 } else if (CI != AndRHS) {
3230 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3231 return &TheAnd;
3232 }
3233 break;
3234 }
3235 case Instruction::AShr:
3236 // Signed shr.
3237 // See if this is shifting in some sign extension, then masking it out
3238 // with an and.
3239 if (Op->hasOneUse()) {
3240 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3241 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3242 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3243 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3244 if (C == AndRHS) { // Masking out bits shifted in.
3245 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3246 // Make the argument unsigned.
3247 Value *ShVal = Op->getOperand(0);
3248 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003249 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003250 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003251 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003252 }
3253 }
3254 break;
3255 }
3256 return 0;
3257}
3258
3259
3260/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3261/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3262/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3263/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3264/// insert new instructions.
3265Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3266 bool isSigned, bool Inside,
3267 Instruction &IB) {
3268 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3269 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3270 "Lo is not <= Hi in range emission code!");
3271
3272 if (Inside) {
3273 if (Lo == Hi) // Trivially false.
3274 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3275
3276 // V >= Min && V < Hi --> V < Hi
3277 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3278 ICmpInst::Predicate pred = (isSigned ?
3279 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3280 return new ICmpInst(pred, V, Hi);
3281 }
3282
3283 // Emit V-Lo <u Hi-Lo
3284 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003285 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003286 InsertNewInstBefore(Add, IB);
3287 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3288 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3289 }
3290
3291 if (Lo == Hi) // Trivially true.
3292 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3293
3294 // V < Min || V >= Hi -> V > Hi-1
3295 Hi = SubOne(cast<ConstantInt>(Hi));
3296 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3297 ICmpInst::Predicate pred = (isSigned ?
3298 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3299 return new ICmpInst(pred, V, Hi);
3300 }
3301
3302 // Emit V-Lo >u Hi-1-Lo
3303 // Note that Hi has already had one subtracted from it, above.
3304 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003305 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003306 InsertNewInstBefore(Add, IB);
3307 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3308 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3309}
3310
3311// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3312// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3313// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3314// not, since all 1s are not contiguous.
3315static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3316 const APInt& V = Val->getValue();
3317 uint32_t BitWidth = Val->getType()->getBitWidth();
3318 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3319
3320 // look for the first zero bit after the run of ones
3321 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3322 // look for the first non-zero bit
3323 ME = V.getActiveBits();
3324 return true;
3325}
3326
3327/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3328/// where isSub determines whether the operator is a sub. If we can fold one of
3329/// the following xforms:
3330///
3331/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3332/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3333/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3334///
3335/// return (A +/- B).
3336///
3337Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3338 ConstantInt *Mask, bool isSub,
3339 Instruction &I) {
3340 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3341 if (!LHSI || LHSI->getNumOperands() != 2 ||
3342 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3343
3344 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3345
3346 switch (LHSI->getOpcode()) {
3347 default: return 0;
3348 case Instruction::And:
3349 if (And(N, Mask) == Mask) {
3350 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3351 if ((Mask->getValue().countLeadingZeros() +
3352 Mask->getValue().countPopulation()) ==
3353 Mask->getValue().getBitWidth())
3354 break;
3355
3356 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3357 // part, we don't need any explicit masks to take them out of A. If that
3358 // is all N is, ignore it.
3359 uint32_t MB = 0, ME = 0;
3360 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3361 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3362 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3363 if (MaskedValueIsZero(RHS, Mask))
3364 break;
3365 }
3366 }
3367 return 0;
3368 case Instruction::Or:
3369 case Instruction::Xor:
3370 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3371 if ((Mask->getValue().countLeadingZeros() +
3372 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3373 && And(N, Mask)->isZero())
3374 break;
3375 return 0;
3376 }
3377
3378 Instruction *New;
3379 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003380 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003381 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003382 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003383 return InsertNewInstBefore(New, I);
3384}
3385
3386Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3387 bool Changed = SimplifyCommutative(I);
3388 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3389
3390 if (isa<UndefValue>(Op1)) // X & undef -> 0
3391 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3392
3393 // and X, X = X
3394 if (Op0 == Op1)
3395 return ReplaceInstUsesWith(I, Op1);
3396
3397 // See if we can simplify any instructions used by the instruction whose sole
3398 // purpose is to compute bits we don't care about.
3399 if (!isa<VectorType>(I.getType())) {
3400 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3401 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3402 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3403 KnownZero, KnownOne))
3404 return &I;
3405 } else {
3406 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3407 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3408 return ReplaceInstUsesWith(I, I.getOperand(0));
3409 } else if (isa<ConstantAggregateZero>(Op1)) {
3410 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3411 }
3412 }
3413
3414 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3415 const APInt& AndRHSMask = AndRHS->getValue();
3416 APInt NotAndRHS(~AndRHSMask);
3417
3418 // Optimize a variety of ((val OP C1) & C2) combinations...
3419 if (isa<BinaryOperator>(Op0)) {
3420 Instruction *Op0I = cast<Instruction>(Op0);
3421 Value *Op0LHS = Op0I->getOperand(0);
3422 Value *Op0RHS = Op0I->getOperand(1);
3423 switch (Op0I->getOpcode()) {
3424 case Instruction::Xor:
3425 case Instruction::Or:
3426 // If the mask is only needed on one incoming arm, push it up.
3427 if (Op0I->hasOneUse()) {
3428 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3429 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003430 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003431 Op0RHS->getName()+".masked");
3432 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003433 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003434 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3435 }
3436 if (!isa<Constant>(Op0RHS) &&
3437 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3438 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003439 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003440 Op0LHS->getName()+".masked");
3441 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003442 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003443 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3444 }
3445 }
3446
3447 break;
3448 case Instruction::Add:
3449 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3450 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3451 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3452 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003453 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003454 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003455 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003456 break;
3457
3458 case Instruction::Sub:
3459 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3460 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3461 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3462 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003463 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003464
Nick Lewyckya349ba42008-07-10 05:51:40 +00003465 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3466 // has 1's for all bits that the subtraction with A might affect.
3467 if (Op0I->hasOneUse()) {
3468 uint32_t BitWidth = AndRHSMask.getBitWidth();
3469 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3470 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3471
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003472 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003473 if (!(A && A->isZero()) && // avoid infinite recursion.
3474 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003475 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3476 InsertNewInstBefore(NewNeg, I);
3477 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3478 }
3479 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003480 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003481
3482 case Instruction::Shl:
3483 case Instruction::LShr:
3484 // (1 << x) & 1 --> zext(x == 0)
3485 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003486 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003487 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3488 Constant::getNullValue(I.getType()));
3489 InsertNewInstBefore(NewICmp, I);
3490 return new ZExtInst(NewICmp, I.getType());
3491 }
3492 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003493 }
3494
3495 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3496 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3497 return Res;
3498 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3499 // If this is an integer truncation or change from signed-to-unsigned, and
3500 // if the source is an and/or with immediate, transform it. This
3501 // frequently occurs for bitfield accesses.
3502 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3503 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3504 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003505 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003506 if (CastOp->getOpcode() == Instruction::And) {
3507 // Change: and (cast (and X, C1) to T), C2
3508 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3509 // This will fold the two constants together, which may allow
3510 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003511 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003512 CastOp->getOperand(0), I.getType(),
3513 CastOp->getName()+".shrunk");
3514 NewCast = InsertNewInstBefore(NewCast, I);
3515 // trunc_or_bitcast(C1)&C2
3516 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3517 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003518 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003519 } else if (CastOp->getOpcode() == Instruction::Or) {
3520 // Change: and (cast (or X, C1) to T), C2
3521 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3522 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3523 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3524 return ReplaceInstUsesWith(I, AndRHS);
3525 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003526 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003527 }
3528 }
3529
3530 // Try to fold constant and into select arguments.
3531 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3532 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3533 return R;
3534 if (isa<PHINode>(Op0))
3535 if (Instruction *NV = FoldOpIntoPhi(I))
3536 return NV;
3537 }
3538
3539 Value *Op0NotVal = dyn_castNotVal(Op0);
3540 Value *Op1NotVal = dyn_castNotVal(Op1);
3541
3542 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3543 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3544
3545 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3546 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003547 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003548 I.getName()+".demorgan");
3549 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003550 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003551 }
3552
3553 {
3554 Value *A = 0, *B = 0, *C = 0, *D = 0;
3555 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3556 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3557 return ReplaceInstUsesWith(I, Op1);
3558
3559 // (A|B) & ~(A&B) -> A^B
3560 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3561 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003562 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003563 }
3564 }
3565
3566 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3567 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3568 return ReplaceInstUsesWith(I, Op0);
3569
3570 // ~(A&B) & (A|B) -> A^B
3571 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3572 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003573 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003574 }
3575 }
3576
3577 if (Op0->hasOneUse() &&
3578 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3579 if (A == Op1) { // (A^B)&A -> A&(A^B)
3580 I.swapOperands(); // Simplify below
3581 std::swap(Op0, Op1);
3582 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3583 cast<BinaryOperator>(Op0)->swapOperands();
3584 I.swapOperands(); // Simplify below
3585 std::swap(Op0, Op1);
3586 }
3587 }
3588 if (Op1->hasOneUse() &&
3589 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3590 if (B == Op0) { // B&(A^B) -> B&(B^A)
3591 cast<BinaryOperator>(Op1)->swapOperands();
3592 std::swap(A, B);
3593 }
3594 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003595 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003596 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003597 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003598 }
3599 }
3600 }
3601
Nick Lewycky50e507b2008-07-09 07:29:11 +00003602
3603 { // (icmp ugt/ult A, C) & (icmp B, C) --> (icmp (A|B), C)
3604 // where C is a power of 2
3605 Value *A, *B;
3606 ConstantInt *C1, *C2;
3607 ICmpInst::Predicate LHSCC, RHSCC;
3608 if (match(&I, m_And(m_ICmp(LHSCC, m_Value(A), m_ConstantInt(C1)),
3609 m_ICmp(RHSCC, m_Value(B), m_ConstantInt(C2)))))
3610 if (C1 == C2 && LHSCC == RHSCC && C1->getValue().isPowerOf2() &&
3611 (LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_UGT)) {
3612 Instruction *NewOr = BinaryOperator::CreateOr(A, B);
3613 InsertNewInstBefore(NewOr, I);
3614 return new ICmpInst(LHSCC, NewOr, C1);
3615 }
3616 }
3617
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003618 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3619 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3620 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3621 return R;
3622
3623 Value *LHSVal, *RHSVal;
3624 ConstantInt *LHSCst, *RHSCst;
3625 ICmpInst::Predicate LHSCC, RHSCC;
3626 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3627 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3628 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3629 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3630 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3631 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3632 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattner205ad1d2007-11-22 23:47:13 +00003633 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3634
3635 // Don't try to fold ICMP_SLT + ICMP_ULT.
3636 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3637 ICmpInst::isSignedPredicate(LHSCC) ==
3638 ICmpInst::isSignedPredicate(RHSCC))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003639 // Ensure that the larger constant is on the RHS.
Chris Lattnerda628ca2008-01-13 20:59:02 +00003640 ICmpInst::Predicate GT;
3641 if (ICmpInst::isSignedPredicate(LHSCC) ||
3642 (ICmpInst::isEquality(LHSCC) &&
3643 ICmpInst::isSignedPredicate(RHSCC)))
3644 GT = ICmpInst::ICMP_SGT;
3645 else
3646 GT = ICmpInst::ICMP_UGT;
3647
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003648 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3649 ICmpInst *LHS = cast<ICmpInst>(Op0);
3650 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3651 std::swap(LHS, RHS);
3652 std::swap(LHSCst, RHSCst);
3653 std::swap(LHSCC, RHSCC);
3654 }
3655
3656 // At this point, we know we have have two icmp instructions
3657 // comparing a value against two constants and and'ing the result
3658 // together. Because of the above check, we know that we only have
3659 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3660 // (from the FoldICmpLogical check above), that the two constants
3661 // are not equal and that the larger constant is on the RHS
3662 assert(LHSCst != RHSCst && "Compares not folded above?");
3663
3664 switch (LHSCC) {
3665 default: assert(0 && "Unknown integer condition code!");
3666 case ICmpInst::ICMP_EQ:
3667 switch (RHSCC) {
3668 default: assert(0 && "Unknown integer condition code!");
3669 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3670 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3671 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3672 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3673 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3674 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3675 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3676 return ReplaceInstUsesWith(I, LHS);
3677 }
3678 case ICmpInst::ICMP_NE:
3679 switch (RHSCC) {
3680 default: assert(0 && "Unknown integer condition code!");
3681 case ICmpInst::ICMP_ULT:
3682 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3683 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3684 break; // (X != 13 & X u< 15) -> no change
3685 case ICmpInst::ICMP_SLT:
3686 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3687 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3688 break; // (X != 13 & X s< 15) -> no change
3689 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3690 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3691 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3692 return ReplaceInstUsesWith(I, RHS);
3693 case ICmpInst::ICMP_NE:
3694 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3695 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00003696 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003697 LHSVal->getName()+".off");
3698 InsertNewInstBefore(Add, I);
3699 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3700 ConstantInt::get(Add->getType(), 1));
3701 }
3702 break; // (X != 13 & X != 15) -> no change
3703 }
3704 break;
3705 case ICmpInst::ICMP_ULT:
3706 switch (RHSCC) {
3707 default: assert(0 && "Unknown integer condition code!");
3708 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3709 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3710 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3711 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3712 break;
3713 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3714 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3715 return ReplaceInstUsesWith(I, LHS);
3716 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3717 break;
3718 }
3719 break;
3720 case ICmpInst::ICMP_SLT:
3721 switch (RHSCC) {
3722 default: assert(0 && "Unknown integer condition code!");
3723 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3724 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3725 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3726 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3727 break;
3728 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3729 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3730 return ReplaceInstUsesWith(I, LHS);
3731 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3732 break;
3733 }
3734 break;
3735 case ICmpInst::ICMP_UGT:
3736 switch (RHSCC) {
3737 default: assert(0 && "Unknown integer condition code!");
Eli Friedman22b85622008-06-21 23:36:13 +00003738 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003739 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3740 return ReplaceInstUsesWith(I, RHS);
3741 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3742 break;
3743 case ICmpInst::ICMP_NE:
3744 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3745 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3746 break; // (X u> 13 & X != 15) -> no change
3747 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3748 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3749 true, I);
3750 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3751 break;
3752 }
3753 break;
3754 case ICmpInst::ICMP_SGT:
3755 switch (RHSCC) {
3756 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerab0fc252007-11-16 06:04:17 +00003757 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003758 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3759 return ReplaceInstUsesWith(I, RHS);
3760 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3761 break;
3762 case ICmpInst::ICMP_NE:
3763 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3764 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3765 break; // (X s> 13 & X != 15) -> no change
3766 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
3767 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
3768 true, I);
3769 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3770 break;
3771 }
3772 break;
3773 }
3774 }
3775 }
3776
3777 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3778 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3779 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3780 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3781 const Type *SrcTy = Op0C->getOperand(0)->getType();
3782 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3783 // Only do this if the casts both really cause code to be generated.
3784 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3785 I.getType(), TD) &&
3786 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3787 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003788 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003789 Op1C->getOperand(0),
3790 I.getName());
3791 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003792 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003793 }
3794 }
3795
3796 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3797 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3798 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3799 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3800 SI0->getOperand(1) == SI1->getOperand(1) &&
3801 (SI0->hasOneUse() || SI1->hasOneUse())) {
3802 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00003803 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003804 SI1->getOperand(0),
3805 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003806 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003807 SI1->getOperand(1));
3808 }
3809 }
3810
Chris Lattner91882432007-10-24 05:38:08 +00003811 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
3812 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
3813 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
3814 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
3815 RHS->getPredicate() == FCmpInst::FCMP_ORD)
3816 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3817 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3818 // If either of the constants are nans, then the whole thing returns
3819 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00003820 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00003821 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3822 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
3823 RHS->getOperand(0));
3824 }
3825 }
3826 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003827
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003828 return Changed ? &I : 0;
3829}
3830
3831/// CollectBSwapParts - Look to see if the specified value defines a single byte
3832/// in the result. If it does, and if the specified byte hasn't been filled in
3833/// yet, fill it in and return false.
3834static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
3835 Instruction *I = dyn_cast<Instruction>(V);
3836 if (I == 0) return true;
3837
3838 // If this is an or instruction, it is an inner node of the bswap.
3839 if (I->getOpcode() == Instruction::Or)
3840 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
3841 CollectBSwapParts(I->getOperand(1), ByteValues);
3842
3843 uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits();
3844 // If this is a shift by a constant int, and it is "24", then its operand
3845 // defines a byte. We only handle unsigned types here.
3846 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
3847 // Not shifting the entire input by N-1 bytes?
3848 if (cast<ConstantInt>(I->getOperand(1))->getLimitedValue(BitWidth) !=
3849 8*(ByteValues.size()-1))
3850 return true;
3851
3852 unsigned DestNo;
3853 if (I->getOpcode() == Instruction::Shl) {
3854 // X << 24 defines the top byte with the lowest of the input bytes.
3855 DestNo = ByteValues.size()-1;
3856 } else {
3857 // X >>u 24 defines the low byte with the highest of the input bytes.
3858 DestNo = 0;
3859 }
3860
3861 // If the destination byte value is already defined, the values are or'd
3862 // together, which isn't a bswap (unless it's an or of the same bits).
3863 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
3864 return true;
3865 ByteValues[DestNo] = I->getOperand(0);
3866 return false;
3867 }
3868
3869 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
3870 // don't have this.
3871 Value *Shift = 0, *ShiftLHS = 0;
3872 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
3873 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
3874 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
3875 return true;
3876 Instruction *SI = cast<Instruction>(Shift);
3877
3878 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
3879 if (ShiftAmt->getLimitedValue(BitWidth) & 7 ||
3880 ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size())
3881 return true;
3882
3883 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
3884 unsigned DestByte;
3885 if (AndAmt->getValue().getActiveBits() > 64)
3886 return true;
3887 uint64_t AndAmtVal = AndAmt->getZExtValue();
3888 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
3889 if (AndAmtVal == uint64_t(0xFF) << 8*DestByte)
3890 break;
3891 // Unknown mask for bswap.
3892 if (DestByte == ByteValues.size()) return true;
3893
3894 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
3895 unsigned SrcByte;
3896 if (SI->getOpcode() == Instruction::Shl)
3897 SrcByte = DestByte - ShiftBytes;
3898 else
3899 SrcByte = DestByte + ShiftBytes;
3900
3901 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
3902 if (SrcByte != ByteValues.size()-DestByte-1)
3903 return true;
3904
3905 // If the destination byte value is already defined, the values are or'd
3906 // together, which isn't a bswap (unless it's an or of the same bits).
3907 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
3908 return true;
3909 ByteValues[DestByte] = SI->getOperand(0);
3910 return false;
3911}
3912
3913/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
3914/// If so, insert the new bswap intrinsic and return it.
3915Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
3916 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
3917 if (!ITy || ITy->getBitWidth() % 16)
3918 return 0; // Can only bswap pairs of bytes. Can't do vectors.
3919
3920 /// ByteValues - For each byte of the result, we keep track of which value
3921 /// defines each byte.
3922 SmallVector<Value*, 8> ByteValues;
3923 ByteValues.resize(ITy->getBitWidth()/8);
3924
3925 // Try to find all the pieces corresponding to the bswap.
3926 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
3927 CollectBSwapParts(I.getOperand(1), ByteValues))
3928 return 0;
3929
3930 // Check to see if all of the bytes come from the same value.
3931 Value *V = ByteValues[0];
3932 if (V == 0) return 0; // Didn't find a byte? Must be zero.
3933
3934 // Check to make sure that all of the bytes come from the same value.
3935 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
3936 if (ByteValues[i] != V)
3937 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00003938 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003939 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00003940 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003941 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003942}
3943
3944
3945Instruction *InstCombiner::visitOr(BinaryOperator &I) {
3946 bool Changed = SimplifyCommutative(I);
3947 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3948
3949 if (isa<UndefValue>(Op1)) // X | undef -> -1
3950 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
3951
3952 // or X, X = X
3953 if (Op0 == Op1)
3954 return ReplaceInstUsesWith(I, Op0);
3955
3956 // See if we can simplify any instructions used by the instruction whose sole
3957 // purpose is to compute bits we don't care about.
3958 if (!isa<VectorType>(I.getType())) {
3959 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3960 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3961 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3962 KnownZero, KnownOne))
3963 return &I;
3964 } else if (isa<ConstantAggregateZero>(Op1)) {
3965 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
3966 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3967 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
3968 return ReplaceInstUsesWith(I, I.getOperand(1));
3969 }
3970
3971
3972
3973 // or X, -1 == -1
3974 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3975 ConstantInt *C1 = 0; Value *X = 0;
3976 // (X & C1) | C2 --> (X | C2) & (C1|C2)
3977 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003978 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003979 InsertNewInstBefore(Or, I);
3980 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00003981 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003982 ConstantInt::get(RHS->getValue() | C1->getValue()));
3983 }
3984
3985 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
3986 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003987 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003988 InsertNewInstBefore(Or, I);
3989 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00003990 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003991 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
3992 }
3993
3994 // Try to fold constant and into select arguments.
3995 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3996 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3997 return R;
3998 if (isa<PHINode>(Op0))
3999 if (Instruction *NV = FoldOpIntoPhi(I))
4000 return NV;
4001 }
4002
4003 Value *A = 0, *B = 0;
4004 ConstantInt *C1 = 0, *C2 = 0;
4005
4006 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4007 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4008 return ReplaceInstUsesWith(I, Op1);
4009 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4010 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4011 return ReplaceInstUsesWith(I, Op0);
4012
4013 // (A | B) | C and A | (B | C) -> bswap if possible.
4014 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4015 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4016 match(Op1, m_Or(m_Value(), m_Value())) ||
4017 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4018 match(Op1, m_Shift(m_Value(), m_Value())))) {
4019 if (Instruction *BSwap = MatchBSwap(I))
4020 return BSwap;
4021 }
4022
4023 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4024 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4025 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004026 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004027 InsertNewInstBefore(NOr, I);
4028 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004029 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004030 }
4031
4032 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4033 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4034 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004035 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004036 InsertNewInstBefore(NOr, I);
4037 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004038 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004039 }
4040
4041 // (A & C)|(B & D)
4042 Value *C = 0, *D = 0;
4043 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4044 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4045 Value *V1 = 0, *V2 = 0, *V3 = 0;
4046 C1 = dyn_cast<ConstantInt>(C);
4047 C2 = dyn_cast<ConstantInt>(D);
4048 if (C1 && C2) { // (A & C1)|(B & C2)
4049 // If we have: ((V + N) & C1) | (V & C2)
4050 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4051 // replace with V+N.
4052 if (C1->getValue() == ~C2->getValue()) {
4053 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4054 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4055 // Add commutes, try both ways.
4056 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4057 return ReplaceInstUsesWith(I, A);
4058 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4059 return ReplaceInstUsesWith(I, A);
4060 }
4061 // Or commutes, try both ways.
4062 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4063 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4064 // Add commutes, try both ways.
4065 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4066 return ReplaceInstUsesWith(I, B);
4067 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4068 return ReplaceInstUsesWith(I, B);
4069 }
4070 }
4071 V1 = 0; V2 = 0; V3 = 0;
4072 }
4073
4074 // Check to see if we have any common things being and'ed. If so, find the
4075 // terms for V1 & (V2|V3).
4076 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4077 if (A == B) // (A & C)|(A & D) == A & (C|D)
4078 V1 = A, V2 = C, V3 = D;
4079 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4080 V1 = A, V2 = B, V3 = C;
4081 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4082 V1 = C, V2 = A, V3 = D;
4083 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4084 V1 = C, V2 = A, V3 = B;
4085
4086 if (V1) {
4087 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004088 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4089 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004090 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004091 }
4092 }
4093
4094 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4095 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4096 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4097 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4098 SI0->getOperand(1) == SI1->getOperand(1) &&
4099 (SI0->hasOneUse() || SI1->hasOneUse())) {
4100 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004101 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004102 SI1->getOperand(0),
4103 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004104 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004105 SI1->getOperand(1));
4106 }
4107 }
4108
4109 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4110 if (A == Op1) // ~A | A == -1
4111 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4112 } else {
4113 A = 0;
4114 }
4115 // Note, A is still live here!
4116 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4117 if (Op0 == B)
4118 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4119
4120 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4121 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004122 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004123 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004124 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004125 }
4126 }
4127
4128 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4129 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4130 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4131 return R;
4132
4133 Value *LHSVal, *RHSVal;
4134 ConstantInt *LHSCst, *RHSCst;
4135 ICmpInst::Predicate LHSCC, RHSCC;
4136 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4137 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4138 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4139 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4140 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4141 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4142 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4143 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4144 // We can't fold (ugt x, C) | (sgt x, C2).
4145 PredicatesFoldable(LHSCC, RHSCC)) {
4146 // Ensure that the larger constant is on the RHS.
4147 ICmpInst *LHS = cast<ICmpInst>(Op0);
4148 bool NeedsSwap;
4149 if (ICmpInst::isSignedPredicate(LHSCC))
4150 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4151 else
4152 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4153
4154 if (NeedsSwap) {
4155 std::swap(LHS, RHS);
4156 std::swap(LHSCst, RHSCst);
4157 std::swap(LHSCC, RHSCC);
4158 }
4159
4160 // At this point, we know we have have two icmp instructions
4161 // comparing a value against two constants and or'ing the result
4162 // together. Because of the above check, we know that we only have
4163 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4164 // FoldICmpLogical check above), that the two constants are not
4165 // equal.
4166 assert(LHSCst != RHSCst && "Compares not folded above?");
4167
4168 switch (LHSCC) {
4169 default: assert(0 && "Unknown integer condition code!");
4170 case ICmpInst::ICMP_EQ:
4171 switch (RHSCC) {
4172 default: assert(0 && "Unknown integer condition code!");
4173 case ICmpInst::ICMP_EQ:
4174 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4175 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00004176 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004177 LHSVal->getName()+".off");
4178 InsertNewInstBefore(Add, I);
4179 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4180 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4181 }
4182 break; // (X == 13 | X == 15) -> no change
4183 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4184 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4185 break;
4186 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4187 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4188 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4189 return ReplaceInstUsesWith(I, RHS);
4190 }
4191 break;
4192 case ICmpInst::ICMP_NE:
4193 switch (RHSCC) {
4194 default: assert(0 && "Unknown integer condition code!");
4195 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4196 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4197 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4198 return ReplaceInstUsesWith(I, LHS);
4199 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4200 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4201 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4202 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4203 }
4204 break;
4205 case ICmpInst::ICMP_ULT:
4206 switch (RHSCC) {
4207 default: assert(0 && "Unknown integer condition code!");
4208 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4209 break;
4210 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
Chris Lattner26376862007-11-01 02:18:41 +00004211 // If RHSCst is [us]MAXINT, it is always false. Not handling
4212 // this can cause overflow.
4213 if (RHSCst->isMaxValue(false))
4214 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004215 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4216 false, I);
4217 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4218 break;
4219 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4220 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4221 return ReplaceInstUsesWith(I, RHS);
4222 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4223 break;
4224 }
4225 break;
4226 case ICmpInst::ICMP_SLT:
4227 switch (RHSCC) {
4228 default: assert(0 && "Unknown integer condition code!");
4229 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4230 break;
4231 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
Chris Lattner26376862007-11-01 02:18:41 +00004232 // If RHSCst is [us]MAXINT, it is always false. Not handling
4233 // this can cause overflow.
4234 if (RHSCst->isMaxValue(true))
4235 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004236 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4237 false, I);
4238 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4239 break;
4240 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4241 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4242 return ReplaceInstUsesWith(I, RHS);
4243 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4244 break;
4245 }
4246 break;
4247 case ICmpInst::ICMP_UGT:
4248 switch (RHSCC) {
4249 default: assert(0 && "Unknown integer condition code!");
4250 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4251 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4252 return ReplaceInstUsesWith(I, LHS);
4253 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4254 break;
4255 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4256 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4257 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4258 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4259 break;
4260 }
4261 break;
4262 case ICmpInst::ICMP_SGT:
4263 switch (RHSCC) {
4264 default: assert(0 && "Unknown integer condition code!");
4265 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4266 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4267 return ReplaceInstUsesWith(I, LHS);
4268 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4269 break;
4270 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4271 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4272 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4273 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4274 break;
4275 }
4276 break;
4277 }
4278 }
4279 }
4280
4281 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004282 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004283 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4284 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004285 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4286 !isa<ICmpInst>(Op1C->getOperand(0))) {
4287 const Type *SrcTy = Op0C->getOperand(0)->getType();
4288 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4289 // Only do this if the casts both really cause code to be
4290 // generated.
4291 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4292 I.getType(), TD) &&
4293 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4294 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004295 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004296 Op1C->getOperand(0),
4297 I.getName());
4298 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004299 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004300 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004301 }
4302 }
Chris Lattner91882432007-10-24 05:38:08 +00004303 }
4304
4305
4306 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4307 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4308 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4309 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004310 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
4311 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType())
Chris Lattner91882432007-10-24 05:38:08 +00004312 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4313 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4314 // If either of the constants are nans, then the whole thing returns
4315 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004316 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004317 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4318
4319 // Otherwise, no need to compare the two constants, compare the
4320 // rest.
4321 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4322 RHS->getOperand(0));
4323 }
4324 }
4325 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004326
4327 return Changed ? &I : 0;
4328}
4329
Dan Gohman089efff2008-05-13 00:00:25 +00004330namespace {
4331
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004332// XorSelf - Implements: X ^ X --> 0
4333struct XorSelf {
4334 Value *RHS;
4335 XorSelf(Value *rhs) : RHS(rhs) {}
4336 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4337 Instruction *apply(BinaryOperator &Xor) const {
4338 return &Xor;
4339 }
4340};
4341
Dan Gohman089efff2008-05-13 00:00:25 +00004342}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004343
4344Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4345 bool Changed = SimplifyCommutative(I);
4346 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4347
Evan Chenge5cd8032008-03-25 20:07:13 +00004348 if (isa<UndefValue>(Op1)) {
4349 if (isa<UndefValue>(Op0))
4350 // Handle undef ^ undef -> 0 special case. This is a common
4351 // idiom (misuse).
4352 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004353 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004354 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004355
4356 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4357 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004358 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004359 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4360 }
4361
4362 // See if we can simplify any instructions used by the instruction whose sole
4363 // purpose is to compute bits we don't care about.
4364 if (!isa<VectorType>(I.getType())) {
4365 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4366 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4367 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4368 KnownZero, KnownOne))
4369 return &I;
4370 } else if (isa<ConstantAggregateZero>(Op1)) {
4371 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4372 }
4373
4374 // Is this a ~ operation?
4375 if (Value *NotOp = dyn_castNotVal(&I)) {
4376 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4377 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4378 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4379 if (Op0I->getOpcode() == Instruction::And ||
4380 Op0I->getOpcode() == Instruction::Or) {
4381 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4382 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4383 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004384 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004385 Op0I->getOperand(1)->getName()+".not");
4386 InsertNewInstBefore(NotY, I);
4387 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004388 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004389 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004390 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004391 }
4392 }
4393 }
4394 }
4395
4396
4397 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004398 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4399 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4400 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004401 return new ICmpInst(ICI->getInversePredicate(),
4402 ICI->getOperand(0), ICI->getOperand(1));
4403
Nick Lewycky1405e922007-08-06 20:04:16 +00004404 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4405 return new FCmpInst(FCI->getInversePredicate(),
4406 FCI->getOperand(0), FCI->getOperand(1));
4407 }
4408
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004409 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4410 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4411 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4412 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4413 Instruction::CastOps Opcode = Op0C->getOpcode();
4414 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4415 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4416 Op0C->getDestTy())) {
4417 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4418 CI->getOpcode(), CI->getInversePredicate(),
4419 CI->getOperand(0), CI->getOperand(1)), I);
4420 NewCI->takeName(CI);
4421 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4422 }
4423 }
4424 }
4425 }
4426 }
4427
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004428 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4429 // ~(c-X) == X-c-1 == X+(-c-1)
4430 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4431 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4432 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4433 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4434 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004435 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004436 }
4437
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004438 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004439 if (Op0I->getOpcode() == Instruction::Add) {
4440 // ~(X-c) --> (-c-1)-X
4441 if (RHS->isAllOnesValue()) {
4442 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004443 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004444 ConstantExpr::getSub(NegOp0CI,
4445 ConstantInt::get(I.getType(), 1)),
4446 Op0I->getOperand(0));
4447 } else if (RHS->getValue().isSignBit()) {
4448 // (X + C) ^ signbit -> (X + C + signbit)
4449 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004450 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004451
4452 }
4453 } else if (Op0I->getOpcode() == Instruction::Or) {
4454 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4455 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4456 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4457 // Anything in both C1 and C2 is known to be zero, remove it from
4458 // NewRHS.
4459 Constant *CommonBits = And(Op0CI, RHS);
4460 NewRHS = ConstantExpr::getAnd(NewRHS,
4461 ConstantExpr::getNot(CommonBits));
4462 AddToWorkList(Op0I);
4463 I.setOperand(0, Op0I->getOperand(0));
4464 I.setOperand(1, NewRHS);
4465 return &I;
4466 }
4467 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004468 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004469 }
4470
4471 // Try to fold constant and into select arguments.
4472 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4473 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4474 return R;
4475 if (isa<PHINode>(Op0))
4476 if (Instruction *NV = FoldOpIntoPhi(I))
4477 return NV;
4478 }
4479
4480 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4481 if (X == Op1)
4482 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4483
4484 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4485 if (X == Op0)
4486 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4487
4488
4489 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4490 if (Op1I) {
4491 Value *A, *B;
4492 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4493 if (A == Op0) { // B^(B|A) == (A|B)^B
4494 Op1I->swapOperands();
4495 I.swapOperands();
4496 std::swap(Op0, Op1);
4497 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4498 I.swapOperands(); // Simplified below.
4499 std::swap(Op0, Op1);
4500 }
4501 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4502 if (Op0 == A) // A^(A^B) == B
4503 return ReplaceInstUsesWith(I, B);
4504 else if (Op0 == B) // A^(B^A) == B
4505 return ReplaceInstUsesWith(I, A);
4506 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4507 if (A == Op0) { // A^(A&B) -> A^(B&A)
4508 Op1I->swapOperands();
4509 std::swap(A, B);
4510 }
4511 if (B == Op0) { // A^(B&A) -> (B&A)^A
4512 I.swapOperands(); // Simplified below.
4513 std::swap(Op0, Op1);
4514 }
4515 }
4516 }
4517
4518 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4519 if (Op0I) {
4520 Value *A, *B;
4521 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4522 if (A == Op1) // (B|A)^B == (A|B)^B
4523 std::swap(A, B);
4524 if (B == Op1) { // (A|B)^B == A & ~B
4525 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004526 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4527 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004528 }
4529 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4530 if (Op1 == A) // (A^B)^A == B
4531 return ReplaceInstUsesWith(I, B);
4532 else if (Op1 == B) // (B^A)^A == B
4533 return ReplaceInstUsesWith(I, A);
4534 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4535 if (A == Op1) // (A&B)^A -> (B&A)^A
4536 std::swap(A, B);
4537 if (B == Op1 && // (B&A)^A == ~B & A
4538 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4539 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00004540 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4541 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004542 }
4543 }
4544 }
4545
4546 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4547 if (Op0I && Op1I && Op0I->isShift() &&
4548 Op0I->getOpcode() == Op1I->getOpcode() &&
4549 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4550 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4551 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004552 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004553 Op1I->getOperand(0),
4554 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004555 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004556 Op1I->getOperand(1));
4557 }
4558
4559 if (Op0I && Op1I) {
4560 Value *A, *B, *C, *D;
4561 // (A & B)^(A | B) -> A ^ B
4562 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4563 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4564 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004565 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004566 }
4567 // (A | B)^(A & B) -> A ^ B
4568 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4569 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4570 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004571 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004572 }
4573
4574 // (A & B)^(C & D)
4575 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4576 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4577 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4578 // (X & Y)^(X & Y) -> (Y^Z) & X
4579 Value *X = 0, *Y = 0, *Z = 0;
4580 if (A == C)
4581 X = A, Y = B, Z = D;
4582 else if (A == D)
4583 X = A, Y = B, Z = C;
4584 else if (B == C)
4585 X = B, Y = A, Z = D;
4586 else if (B == D)
4587 X = B, Y = A, Z = C;
4588
4589 if (X) {
4590 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004591 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
4592 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004593 }
4594 }
4595 }
4596
4597 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4598 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4599 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4600 return R;
4601
4602 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004603 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004604 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4605 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4606 const Type *SrcTy = Op0C->getOperand(0)->getType();
4607 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4608 // Only do this if the casts both really cause code to be generated.
4609 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4610 I.getType(), TD) &&
4611 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4612 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004613 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004614 Op1C->getOperand(0),
4615 I.getName());
4616 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004617 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004618 }
4619 }
Chris Lattner91882432007-10-24 05:38:08 +00004620 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004621
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004622 return Changed ? &I : 0;
4623}
4624
4625/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4626/// overflowed for this type.
4627static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4628 ConstantInt *In2, bool IsSigned = false) {
4629 Result = cast<ConstantInt>(Add(In1, In2));
4630
4631 if (IsSigned)
4632 if (In2->getValue().isNegative())
4633 return Result->getValue().sgt(In1->getValue());
4634 else
4635 return Result->getValue().slt(In1->getValue());
4636 else
4637 return Result->getValue().ult(In1->getValue());
4638}
4639
4640/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4641/// code necessary to compute the offset from the base pointer (without adding
4642/// in the base pointer). Return the result as a signed integer of intptr size.
4643static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4644 TargetData &TD = IC.getTargetData();
4645 gep_type_iterator GTI = gep_type_begin(GEP);
4646 const Type *IntPtrTy = TD.getIntPtrType();
4647 Value *Result = Constant::getNullValue(IntPtrTy);
4648
4649 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00004650 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004651 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4652
Gabor Greif17396002008-06-12 21:37:33 +00004653 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
4654 ++i, ++GTI) {
4655 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004656 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004657 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
4658 if (OpC->isZero()) continue;
4659
4660 // Handle a struct index, which adds its field offset to the pointer.
4661 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4662 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
4663
4664 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
4665 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
4666 else
4667 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00004668 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004669 ConstantInt::get(IntPtrTy, Size),
4670 GEP->getName()+".offs"), I);
4671 continue;
4672 }
4673
4674 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4675 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
4676 Scale = ConstantExpr::getMul(OC, Scale);
4677 if (Constant *RC = dyn_cast<Constant>(Result))
4678 Result = ConstantExpr::getAdd(RC, Scale);
4679 else {
4680 // Emit an add instruction.
4681 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00004682 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004683 GEP->getName()+".offs"), I);
4684 }
4685 continue;
4686 }
4687 // Convert to correct type.
4688 if (Op->getType() != IntPtrTy) {
4689 if (Constant *OpC = dyn_cast<Constant>(Op))
4690 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
4691 else
4692 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
4693 Op->getName()+".c"), I);
4694 }
4695 if (Size != 1) {
4696 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4697 if (Constant *OpC = dyn_cast<Constant>(Op))
4698 Op = ConstantExpr::getMul(OpC, Scale);
4699 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00004700 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004701 GEP->getName()+".idx"), I);
4702 }
4703
4704 // Emit an add instruction.
4705 if (isa<Constant>(Op) && isa<Constant>(Result))
4706 Result = ConstantExpr::getAdd(cast<Constant>(Op),
4707 cast<Constant>(Result));
4708 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004709 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004710 GEP->getName()+".offs"), I);
4711 }
4712 return Result;
4713}
4714
Chris Lattnereba75862008-04-22 02:53:33 +00004715
4716/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
4717/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
4718/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
4719/// complex, and scales are involved. The above expression would also be legal
4720/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
4721/// later form is less amenable to optimization though, and we are allowed to
4722/// generate the first by knowing that pointer arithmetic doesn't overflow.
4723///
4724/// If we can't emit an optimized form for this expression, this returns null.
4725///
4726static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
4727 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00004728 TargetData &TD = IC.getTargetData();
4729 gep_type_iterator GTI = gep_type_begin(GEP);
4730
4731 // Check to see if this gep only has a single variable index. If so, and if
4732 // any constant indices are a multiple of its scale, then we can compute this
4733 // in terms of the scale of the variable index. For example, if the GEP
4734 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
4735 // because the expression will cross zero at the same point.
4736 unsigned i, e = GEP->getNumOperands();
4737 int64_t Offset = 0;
4738 for (i = 1; i != e; ++i, ++GTI) {
4739 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4740 // Compute the aggregate offset of constant indices.
4741 if (CI->isZero()) continue;
4742
4743 // Handle a struct index, which adds its field offset to the pointer.
4744 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4745 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
4746 } else {
4747 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
4748 Offset += Size*CI->getSExtValue();
4749 }
4750 } else {
4751 // Found our variable index.
4752 break;
4753 }
4754 }
4755
4756 // If there are no variable indices, we must have a constant offset, just
4757 // evaluate it the general way.
4758 if (i == e) return 0;
4759
4760 Value *VariableIdx = GEP->getOperand(i);
4761 // Determine the scale factor of the variable element. For example, this is
4762 // 4 if the variable index is into an array of i32.
4763 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
4764
4765 // Verify that there are no other variable indices. If so, emit the hard way.
4766 for (++i, ++GTI; i != e; ++i, ++GTI) {
4767 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
4768 if (!CI) return 0;
4769
4770 // Compute the aggregate offset of constant indices.
4771 if (CI->isZero()) continue;
4772
4773 // Handle a struct index, which adds its field offset to the pointer.
4774 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4775 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
4776 } else {
4777 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
4778 Offset += Size*CI->getSExtValue();
4779 }
4780 }
4781
4782 // Okay, we know we have a single variable index, which must be a
4783 // pointer/array/vector index. If there is no offset, life is simple, return
4784 // the index.
4785 unsigned IntPtrWidth = TD.getPointerSizeInBits();
4786 if (Offset == 0) {
4787 // Cast to intptrty in case a truncation occurs. If an extension is needed,
4788 // we don't need to bother extending: the extension won't affect where the
4789 // computation crosses zero.
4790 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
4791 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
4792 VariableIdx->getNameStart(), &I);
4793 return VariableIdx;
4794 }
4795
4796 // Otherwise, there is an index. The computation we will do will be modulo
4797 // the pointer size, so get it.
4798 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4799
4800 Offset &= PtrSizeMask;
4801 VariableScale &= PtrSizeMask;
4802
4803 // To do this transformation, any constant index must be a multiple of the
4804 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
4805 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
4806 // multiple of the variable scale.
4807 int64_t NewOffs = Offset / (int64_t)VariableScale;
4808 if (Offset != NewOffs*(int64_t)VariableScale)
4809 return 0;
4810
4811 // Okay, we can do this evaluation. Start by converting the index to intptr.
4812 const Type *IntPtrTy = TD.getIntPtrType();
4813 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00004814 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00004815 true /*SExt*/,
4816 VariableIdx->getNameStart(), &I);
4817 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00004818 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00004819}
4820
4821
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004822/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
4823/// else. At this point we know that the GEP is on the LHS of the comparison.
4824Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
4825 ICmpInst::Predicate Cond,
4826 Instruction &I) {
4827 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
4828
Chris Lattnereba75862008-04-22 02:53:33 +00004829 // Look through bitcasts.
4830 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
4831 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004832
4833 Value *PtrBase = GEPLHS->getOperand(0);
4834 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00004835 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00004836 // This transformation (ignoring the base and scales) is valid because we
4837 // know pointers can't overflow. See if we can output an optimized form.
4838 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
4839
4840 // If not, synthesize the offset the hard way.
4841 if (Offset == 0)
4842 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00004843 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
4844 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004845 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
4846 // If the base pointers are different, but the indices are the same, just
4847 // compare the base pointer.
4848 if (PtrBase != GEPRHS->getOperand(0)) {
4849 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
4850 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
4851 GEPRHS->getOperand(0)->getType();
4852 if (IndicesTheSame)
4853 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
4854 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
4855 IndicesTheSame = false;
4856 break;
4857 }
4858
4859 // If all indices are the same, just compare the base pointers.
4860 if (IndicesTheSame)
4861 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
4862 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
4863
4864 // Otherwise, the base pointers are different and the indices are
4865 // different, bail out.
4866 return 0;
4867 }
4868
4869 // If one of the GEPs has all zero indices, recurse.
4870 bool AllZeros = true;
4871 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
4872 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
4873 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
4874 AllZeros = false;
4875 break;
4876 }
4877 if (AllZeros)
4878 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
4879 ICmpInst::getSwappedPredicate(Cond), I);
4880
4881 // If the other GEP has all zero indices, recurse.
4882 AllZeros = true;
4883 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
4884 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
4885 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
4886 AllZeros = false;
4887 break;
4888 }
4889 if (AllZeros)
4890 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
4891
4892 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
4893 // If the GEPs only differ by one index, compare it.
4894 unsigned NumDifferences = 0; // Keep track of # differences.
4895 unsigned DiffOperand = 0; // The operand that differs.
4896 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
4897 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
4898 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
4899 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
4900 // Irreconcilable differences.
4901 NumDifferences = 2;
4902 break;
4903 } else {
4904 if (NumDifferences++) break;
4905 DiffOperand = i;
4906 }
4907 }
4908
4909 if (NumDifferences == 0) // SAME GEP?
4910 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00004911 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00004912 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00004913
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004914 else if (NumDifferences == 1) {
4915 Value *LHSV = GEPLHS->getOperand(DiffOperand);
4916 Value *RHSV = GEPRHS->getOperand(DiffOperand);
4917 // Make sure we do a signed comparison here.
4918 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
4919 }
4920 }
4921
4922 // Only lower this if the icmp is the only user of the GEP or if we expect
4923 // the result to fold to a constant!
4924 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
4925 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
4926 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
4927 Value *L = EmitGEPOffset(GEPLHS, I, *this);
4928 Value *R = EmitGEPOffset(GEPRHS, I, *this);
4929 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
4930 }
4931 }
4932 return 0;
4933}
4934
Chris Lattnere6b62d92008-05-19 20:18:56 +00004935/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
4936///
4937Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
4938 Instruction *LHSI,
4939 Constant *RHSC) {
4940 if (!isa<ConstantFP>(RHSC)) return 0;
4941 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
4942
4943 // Get the width of the mantissa. We don't want to hack on conversions that
4944 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00004945 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00004946 if (MantissaWidth == -1) return 0; // Unknown.
4947
4948 // Check to see that the input is converted from an integer type that is small
4949 // enough that preserves all bits. TODO: check here for "known" sign bits.
4950 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
4951 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
4952
4953 // If this is a uitofp instruction, we need an extra bit to hold the sign.
4954 if (isa<UIToFPInst>(LHSI))
4955 ++InputSize;
4956
4957 // If the conversion would lose info, don't hack on this.
4958 if ((int)InputSize > MantissaWidth)
4959 return 0;
4960
4961 // Otherwise, we can potentially simplify the comparison. We know that it
4962 // will always come through as an integer value and we know the constant is
4963 // not a NAN (it would have been previously simplified).
4964 assert(!RHS.isNaN() && "NaN comparison not already folded!");
4965
4966 ICmpInst::Predicate Pred;
4967 switch (I.getPredicate()) {
4968 default: assert(0 && "Unexpected predicate!");
4969 case FCmpInst::FCMP_UEQ:
4970 case FCmpInst::FCMP_OEQ: Pred = ICmpInst::ICMP_EQ; break;
4971 case FCmpInst::FCMP_UGT:
4972 case FCmpInst::FCMP_OGT: Pred = ICmpInst::ICMP_SGT; break;
4973 case FCmpInst::FCMP_UGE:
4974 case FCmpInst::FCMP_OGE: Pred = ICmpInst::ICMP_SGE; break;
4975 case FCmpInst::FCMP_ULT:
4976 case FCmpInst::FCMP_OLT: Pred = ICmpInst::ICMP_SLT; break;
4977 case FCmpInst::FCMP_ULE:
4978 case FCmpInst::FCMP_OLE: Pred = ICmpInst::ICMP_SLE; break;
4979 case FCmpInst::FCMP_UNE:
4980 case FCmpInst::FCMP_ONE: Pred = ICmpInst::ICMP_NE; break;
4981 case FCmpInst::FCMP_ORD:
4982 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
4983 case FCmpInst::FCMP_UNO:
4984 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
4985 }
4986
4987 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
4988
4989 // Now we know that the APFloat is a normal number, zero or inf.
4990
Chris Lattnerf13ff492008-05-20 03:50:52 +00004991 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00004992 // comparing an i8 to 300.0.
4993 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
4994
4995 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
4996 // and large values.
4997 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
4998 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
4999 APFloat::rmNearestTiesToEven);
5000 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
Chris Lattner82a80002008-05-24 04:06:28 +00005001 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5002 Pred == ICmpInst::ICMP_SLE)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005003 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5004 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5005 }
5006
5007 // See if the RHS value is < SignedMin.
5008 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5009 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5010 APFloat::rmNearestTiesToEven);
5011 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
Chris Lattner82a80002008-05-24 04:06:28 +00005012 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5013 Pred == ICmpInst::ICMP_SGE)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005014 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5015 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5016 }
5017
5018 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] but
5019 // it may still be fractional. See if it is fractional by casting the FP
5020 // value to the integer value and back, checking for equality. Don't do this
5021 // for zero, because -0.0 is not fractional.
5022 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5023 if (!RHS.isZero() &&
5024 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
5025 // If we had a comparison against a fractional value, we have to adjust
5026 // the compare predicate and sometimes the value. RHSC is rounded towards
5027 // zero at this point.
5028 switch (Pred) {
5029 default: assert(0 && "Unexpected integer comparison!");
5030 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5031 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5032 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5033 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5034 case ICmpInst::ICMP_SLE:
5035 // (float)int <= 4.4 --> int <= 4
5036 // (float)int <= -4.4 --> int < -4
5037 if (RHS.isNegative())
5038 Pred = ICmpInst::ICMP_SLT;
5039 break;
5040 case ICmpInst::ICMP_SLT:
5041 // (float)int < -4.4 --> int < -4
5042 // (float)int < 4.4 --> int <= 4
5043 if (!RHS.isNegative())
5044 Pred = ICmpInst::ICMP_SLE;
5045 break;
5046 case ICmpInst::ICMP_SGT:
5047 // (float)int > 4.4 --> int > 4
5048 // (float)int > -4.4 --> int >= -4
5049 if (RHS.isNegative())
5050 Pred = ICmpInst::ICMP_SGE;
5051 break;
5052 case ICmpInst::ICMP_SGE:
5053 // (float)int >= -4.4 --> int >= -4
5054 // (float)int >= 4.4 --> int > 4
5055 if (!RHS.isNegative())
5056 Pred = ICmpInst::ICMP_SGT;
5057 break;
5058 }
5059 }
5060
5061 // Lower this FP comparison into an appropriate integer version of the
5062 // comparison.
5063 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5064}
5065
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005066Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5067 bool Changed = SimplifyCompare(I);
5068 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5069
5070 // Fold trivial predicates.
5071 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5072 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5073 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5074 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5075
5076 // Simplify 'fcmp pred X, X'
5077 if (Op0 == Op1) {
5078 switch (I.getPredicate()) {
5079 default: assert(0 && "Unknown predicate!");
5080 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5081 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5082 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5083 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5084 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5085 case FCmpInst::FCMP_OLT: // True if ordered and less than
5086 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5087 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5088
5089 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5090 case FCmpInst::FCMP_ULT: // True if unordered or less than
5091 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5092 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5093 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5094 I.setPredicate(FCmpInst::FCMP_UNO);
5095 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5096 return &I;
5097
5098 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5099 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5100 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5101 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5102 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5103 I.setPredicate(FCmpInst::FCMP_ORD);
5104 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5105 return &I;
5106 }
5107 }
5108
5109 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5110 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5111
5112 // Handle fcmp with constant RHS
5113 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005114 // If the constant is a nan, see if we can fold the comparison based on it.
5115 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5116 if (CFP->getValueAPF().isNaN()) {
5117 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
5118 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Chris Lattnerf13ff492008-05-20 03:50:52 +00005119 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5120 "Comparison must be either ordered or unordered!");
5121 // True if unordered.
5122 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
Chris Lattnere6b62d92008-05-19 20:18:56 +00005123 }
5124 }
5125
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005126 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5127 switch (LHSI->getOpcode()) {
5128 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005129 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5130 // block. If in the same block, we're encouraging jump threading. If
5131 // not, we are just pessimizing the code by making an i1 phi.
5132 if (LHSI->getParent() == I.getParent())
5133 if (Instruction *NV = FoldOpIntoPhi(I))
5134 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005135 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005136 case Instruction::SIToFP:
5137 case Instruction::UIToFP:
5138 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5139 return NV;
5140 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005141 case Instruction::Select:
5142 // If either operand of the select is a constant, we can fold the
5143 // comparison into the select arms, which will cause one to be
5144 // constant folded and the select turned into a bitwise or.
5145 Value *Op1 = 0, *Op2 = 0;
5146 if (LHSI->hasOneUse()) {
5147 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5148 // Fold the known value into the constant operand.
5149 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5150 // Insert a new FCmp of the other select operand.
5151 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5152 LHSI->getOperand(2), RHSC,
5153 I.getName()), I);
5154 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5155 // Fold the known value into the constant operand.
5156 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5157 // Insert a new FCmp of the other select operand.
5158 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5159 LHSI->getOperand(1), RHSC,
5160 I.getName()), I);
5161 }
5162 }
5163
5164 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005165 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005166 break;
5167 }
5168 }
5169
5170 return Changed ? &I : 0;
5171}
5172
5173Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5174 bool Changed = SimplifyCompare(I);
5175 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5176 const Type *Ty = Op0->getType();
5177
5178 // icmp X, X
5179 if (Op0 == Op1)
5180 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005181 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005182
5183 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5184 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005185
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005186 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5187 // addresses never equal each other! We already know that Op0 != Op1.
5188 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5189 isa<ConstantPointerNull>(Op0)) &&
5190 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5191 isa<ConstantPointerNull>(Op1)))
5192 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005193 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005194
5195 // icmp's with boolean values can always be turned into bitwise operations
5196 if (Ty == Type::Int1Ty) {
5197 switch (I.getPredicate()) {
5198 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005199 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005200 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005201 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005202 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005203 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005204 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005205 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005206
5207 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005208 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005209 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005210 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005211 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005212 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005213 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005214 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005215 case ICmpInst::ICMP_SGT:
5216 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005217 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005218 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5219 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5220 InsertNewInstBefore(Not, I);
5221 return BinaryOperator::CreateAnd(Not, Op0);
5222 }
5223 case ICmpInst::ICMP_UGE:
5224 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5225 // FALL THROUGH
5226 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005227 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005228 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005229 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005230 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005231 case ICmpInst::ICMP_SGE:
5232 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5233 // FALL THROUGH
5234 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5235 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5236 InsertNewInstBefore(Not, I);
5237 return BinaryOperator::CreateOr(Not, Op0);
5238 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005239 }
5240 }
5241
5242 // See if we are doing a comparison between a constant and an instruction that
5243 // can be folded into the comparison.
5244 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005245 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005246
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005247 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5248 if (I.isEquality() && CI->isNullValue() &&
5249 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5250 // (icmp cond A B) if cond is equality
5251 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005252 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005253
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005254 switch (I.getPredicate()) {
5255 default: break;
5256 case ICmpInst::ICMP_ULT: // A <u MIN -> FALSE
5257 if (CI->isMinValue(false))
5258 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5259 if (CI->isMaxValue(false)) // A <u MAX -> A != MAX
5260 return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
5261 if (isMinValuePlusOne(CI,false)) // A <u MIN+1 -> A == MIN
5262 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5263 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5264 if (CI->isMinValue(true))
5265 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5266 ConstantInt::getAllOnesValue(Op0->getType()));
5267
5268 break;
5269
5270 case ICmpInst::ICMP_SLT:
5271 if (CI->isMinValue(true)) // A <s MIN -> FALSE
5272 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5273 if (CI->isMaxValue(true)) // A <s MAX -> A != MAX
5274 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5275 if (isMinValuePlusOne(CI,true)) // A <s MIN+1 -> A == MIN
5276 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5277 break;
5278
5279 case ICmpInst::ICMP_UGT:
5280 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
5281 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5282 if (CI->isMinValue(false)) // A >u MIN -> A != MIN
5283 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5284 if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX
5285 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5286
5287 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5288 if (CI->isMaxValue(true))
5289 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5290 ConstantInt::getNullValue(Op0->getType()));
5291 break;
5292
5293 case ICmpInst::ICMP_SGT:
5294 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
5295 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5296 if (CI->isMinValue(true)) // A >s MIN -> A != MIN
5297 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5298 if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX
5299 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5300 break;
5301
5302 case ICmpInst::ICMP_ULE:
5303 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5304 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5305 if (CI->isMinValue(false)) // A <=u MIN -> A == MIN
5306 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5307 if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX
5308 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5309 break;
5310
5311 case ICmpInst::ICMP_SLE:
5312 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5313 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5314 if (CI->isMinValue(true)) // A <=s MIN -> A == MIN
5315 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5316 if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX
5317 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5318 break;
5319
5320 case ICmpInst::ICMP_UGE:
5321 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5322 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5323 if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX
5324 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5325 if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN
5326 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5327 break;
5328
5329 case ICmpInst::ICMP_SGE:
5330 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5331 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5332 if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX
5333 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5334 if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN
5335 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5336 break;
5337 }
5338
5339 // If we still have a icmp le or icmp ge instruction, turn it into the
5340 // appropriate icmp lt or icmp gt instruction. Since the border cases have
5341 // already been handled above, this requires little checking.
5342 //
5343 switch (I.getPredicate()) {
5344 default: break;
5345 case ICmpInst::ICMP_ULE:
5346 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5347 case ICmpInst::ICMP_SLE:
5348 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5349 case ICmpInst::ICMP_UGE:
5350 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5351 case ICmpInst::ICMP_SGE:
5352 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5353 }
5354
5355 // See if we can fold the comparison based on bits known to be zero or one
5356 // in the input. If this comparison is a normal comparison, it demands all
5357 // bits, if it is a sign bit comparison, it only demands the sign bit.
5358
5359 bool UnusedBit;
5360 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5361
5362 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5363 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5364 if (SimplifyDemandedBits(Op0,
5365 isSignBit ? APInt::getSignBit(BitWidth)
5366 : APInt::getAllOnesValue(BitWidth),
5367 KnownZero, KnownOne, 0))
5368 return &I;
5369
5370 // Given the known and unknown bits, compute a range that the LHS could be
5371 // in.
5372 if ((KnownOne | KnownZero) != 0) {
5373 // Compute the Min, Max and RHS values based on the known bits. For the
5374 // EQ and NE we use unsigned values.
5375 APInt Min(BitWidth, 0), Max(BitWidth, 0);
5376 const APInt& RHSVal = CI->getValue();
5377 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
5378 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
5379 Max);
5380 } else {
5381 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
5382 Max);
5383 }
5384 switch (I.getPredicate()) { // LE/GE have been folded already.
5385 default: assert(0 && "Unknown icmp opcode!");
5386 case ICmpInst::ICMP_EQ:
5387 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5388 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5389 break;
5390 case ICmpInst::ICMP_NE:
5391 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5392 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5393 break;
5394 case ICmpInst::ICMP_ULT:
5395 if (Max.ult(RHSVal))
5396 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5397 if (Min.uge(RHSVal))
5398 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5399 break;
5400 case ICmpInst::ICMP_UGT:
5401 if (Min.ugt(RHSVal))
5402 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5403 if (Max.ule(RHSVal))
5404 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5405 break;
5406 case ICmpInst::ICMP_SLT:
5407 if (Max.slt(RHSVal))
5408 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5409 if (Min.sgt(RHSVal))
5410 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner3d816532008-07-11 04:09:09 +00005411 if (Max == RHSVal) // A <s MAX -> A != MAX
5412 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005413 break;
5414 case ICmpInst::ICMP_SGT:
5415 if (Min.sgt(RHSVal))
5416 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5417 if (Max.sle(RHSVal))
5418 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5419 break;
5420 }
5421 }
5422
5423 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5424 // instruction, see if that instruction also has constants so that the
5425 // instruction can be folded into the icmp
5426 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5427 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5428 return Res;
5429 }
5430
5431 // Handle icmp with constant (but not simple integer constant) RHS
5432 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5433 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5434 switch (LHSI->getOpcode()) {
5435 case Instruction::GetElementPtr:
5436 if (RHSC->isNullValue()) {
5437 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5438 bool isAllZeros = true;
5439 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5440 if (!isa<Constant>(LHSI->getOperand(i)) ||
5441 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5442 isAllZeros = false;
5443 break;
5444 }
5445 if (isAllZeros)
5446 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5447 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5448 }
5449 break;
5450
5451 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005452 // Only fold icmp into the PHI if the phi and fcmp are in the same
5453 // block. If in the same block, we're encouraging jump threading. If
5454 // not, we are just pessimizing the code by making an i1 phi.
5455 if (LHSI->getParent() == I.getParent())
5456 if (Instruction *NV = FoldOpIntoPhi(I))
5457 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005458 break;
5459 case Instruction::Select: {
5460 // If either operand of the select is a constant, we can fold the
5461 // comparison into the select arms, which will cause one to be
5462 // constant folded and the select turned into a bitwise or.
5463 Value *Op1 = 0, *Op2 = 0;
5464 if (LHSI->hasOneUse()) {
5465 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5466 // Fold the known value into the constant operand.
5467 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5468 // Insert a new ICmp of the other select operand.
5469 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5470 LHSI->getOperand(2), RHSC,
5471 I.getName()), I);
5472 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5473 // Fold the known value into the constant operand.
5474 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5475 // Insert a new ICmp of the other select operand.
5476 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5477 LHSI->getOperand(1), RHSC,
5478 I.getName()), I);
5479 }
5480 }
5481
5482 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005483 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005484 break;
5485 }
5486 case Instruction::Malloc:
5487 // If we have (malloc != null), and if the malloc has a single use, we
5488 // can assume it is successful and remove the malloc.
5489 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5490 AddToWorkList(LHSI);
5491 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005492 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005493 }
5494 break;
5495 }
5496 }
5497
5498 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5499 if (User *GEP = dyn_castGetElementPtr(Op0))
5500 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5501 return NI;
5502 if (User *GEP = dyn_castGetElementPtr(Op1))
5503 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5504 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5505 return NI;
5506
5507 // Test to see if the operands of the icmp are casted versions of other
5508 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5509 // now.
5510 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5511 if (isa<PointerType>(Op0->getType()) &&
5512 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5513 // We keep moving the cast from the left operand over to the right
5514 // operand, where it can often be eliminated completely.
5515 Op0 = CI->getOperand(0);
5516
5517 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5518 // so eliminate it as well.
5519 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5520 Op1 = CI2->getOperand(0);
5521
5522 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005523 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005524 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5525 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5526 } else {
5527 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00005528 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005529 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005530 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005531 return new ICmpInst(I.getPredicate(), Op0, Op1);
5532 }
5533 }
5534
5535 if (isa<CastInst>(Op0)) {
5536 // Handle the special case of: icmp (cast bool to X), <cst>
5537 // This comes up when you have code like
5538 // int X = A < B;
5539 // if (X) ...
5540 // For generality, we handle any zero-extension of any operand comparison
5541 // with a constant or another cast from the same type.
5542 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5543 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5544 return R;
5545 }
5546
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005547 // ~x < ~y --> y < x
5548 { Value *A, *B;
5549 if (match(Op0, m_Not(m_Value(A))) &&
5550 match(Op1, m_Not(m_Value(B))))
5551 return new ICmpInst(I.getPredicate(), B, A);
5552 }
5553
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005554 if (I.isEquality()) {
5555 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005556
5557 // -x == -y --> x == y
5558 if (match(Op0, m_Neg(m_Value(A))) &&
5559 match(Op1, m_Neg(m_Value(B))))
5560 return new ICmpInst(I.getPredicate(), A, B);
5561
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005562 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5563 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5564 Value *OtherVal = A == Op1 ? B : A;
5565 return new ICmpInst(I.getPredicate(), OtherVal,
5566 Constant::getNullValue(A->getType()));
5567 }
5568
5569 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5570 // A^c1 == C^c2 --> A == C^(c1^c2)
5571 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5572 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5573 if (Op1->hasOneUse()) {
5574 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00005575 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005576 return new ICmpInst(I.getPredicate(), A,
5577 InsertNewInstBefore(Xor, I));
5578 }
5579
5580 // A^B == A^D -> B == D
5581 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5582 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5583 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5584 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5585 }
5586 }
5587
5588 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5589 (A == Op0 || B == Op0)) {
5590 // A == (A^B) -> B == 0
5591 Value *OtherVal = A == Op0 ? B : A;
5592 return new ICmpInst(I.getPredicate(), OtherVal,
5593 Constant::getNullValue(A->getType()));
5594 }
5595 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
5596 // (A-B) == A -> B == 0
5597 return new ICmpInst(I.getPredicate(), B,
5598 Constant::getNullValue(B->getType()));
5599 }
5600 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
5601 // A == (A-B) -> B == 0
5602 return new ICmpInst(I.getPredicate(), B,
5603 Constant::getNullValue(B->getType()));
5604 }
5605
5606 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5607 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5608 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5609 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5610 Value *X = 0, *Y = 0, *Z = 0;
5611
5612 if (A == C) {
5613 X = B; Y = D; Z = A;
5614 } else if (A == D) {
5615 X = B; Y = C; Z = A;
5616 } else if (B == C) {
5617 X = A; Y = D; Z = B;
5618 } else if (B == D) {
5619 X = A; Y = C; Z = B;
5620 }
5621
5622 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00005623 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
5624 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005625 I.setOperand(0, Op1);
5626 I.setOperand(1, Constant::getNullValue(Op1->getType()));
5627 return &I;
5628 }
5629 }
5630 }
5631 return Changed ? &I : 0;
5632}
5633
5634
5635/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5636/// and CmpRHS are both known to be integer constants.
5637Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
5638 ConstantInt *DivRHS) {
5639 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
5640 const APInt &CmpRHSV = CmpRHS->getValue();
5641
5642 // FIXME: If the operand types don't match the type of the divide
5643 // then don't attempt this transform. The code below doesn't have the
5644 // logic to deal with a signed divide and an unsigned compare (and
5645 // vice versa). This is because (x /s C1) <s C2 produces different
5646 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5647 // (x /u C1) <u C2. Simply casting the operands and result won't
5648 // work. :( The if statement below tests that condition and bails
5649 // if it finds it.
5650 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
5651 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
5652 return 0;
5653 if (DivRHS->isZero())
5654 return 0; // The ProdOV computation fails on divide by zero.
5655
5656 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5657 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5658 // C2 (CI). By solving for X we can turn this into a range check
5659 // instead of computing a divide.
5660 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
5661
5662 // Determine if the product overflows by seeing if the product is
5663 // not equal to the divide. Make sure we do the same kind of divide
5664 // as in the LHS instruction that we're folding.
5665 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
5666 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
5667
5668 // Get the ICmp opcode
5669 ICmpInst::Predicate Pred = ICI.getPredicate();
5670
5671 // Figure out the interval that is being checked. For example, a comparison
5672 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5673 // Compute this interval based on the constants involved and the signedness of
5674 // the compare/divide. This computes a half-open interval, keeping track of
5675 // whether either value in the interval overflows. After analysis each
5676 // overflow variable is set to 0 if it's corresponding bound variable is valid
5677 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5678 int LoOverflow = 0, HiOverflow = 0;
5679 ConstantInt *LoBound = 0, *HiBound = 0;
5680
5681
5682 if (!DivIsSigned) { // udiv
5683 // e.g. X/5 op 3 --> [15, 20)
5684 LoBound = Prod;
5685 HiOverflow = LoOverflow = ProdOV;
5686 if (!HiOverflow)
5687 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00005688 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005689 if (CmpRHSV == 0) { // (X / pos) op 0
5690 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
5691 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5692 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00005693 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005694 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
5695 HiOverflow = LoOverflow = ProdOV;
5696 if (!HiOverflow)
5697 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
5698 } else { // (X / pos) op neg
5699 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
5700 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5701 LoOverflow = AddWithOverflow(LoBound, Prod,
5702 cast<ConstantInt>(DivRHSH), true) ? -1 : 0;
5703 HiBound = AddOne(Prod);
5704 HiOverflow = ProdOV ? -1 : 0;
5705 }
Dan Gohman5dceed12008-02-13 22:09:18 +00005706 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005707 if (CmpRHSV == 0) { // (X / neg) op 0
5708 // e.g. X/-5 op 0 --> [-4, 5)
5709 LoBound = AddOne(DivRHS);
5710 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
5711 if (HiBound == DivRHS) { // -INTMIN = INTMIN
5712 HiOverflow = 1; // [INTMIN+1, overflow)
5713 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5714 }
Dan Gohman5dceed12008-02-13 22:09:18 +00005715 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005716 // e.g. X/-5 op 3 --> [-19, -14)
5717 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
5718 if (!LoOverflow)
5719 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0;
5720 HiBound = AddOne(Prod);
5721 } else { // (X / neg) op neg
5722 // e.g. X/-5 op -3 --> [15, 20)
5723 LoBound = Prod;
5724 LoOverflow = HiOverflow = ProdOV ? 1 : 0;
5725 HiBound = Subtract(Prod, DivRHS);
5726 }
5727
5728 // Dividing by a negative swaps the condition. LT <-> GT
5729 Pred = ICmpInst::getSwappedPredicate(Pred);
5730 }
5731
5732 Value *X = DivI->getOperand(0);
5733 switch (Pred) {
5734 default: assert(0 && "Unhandled icmp opcode!");
5735 case ICmpInst::ICMP_EQ:
5736 if (LoOverflow && HiOverflow)
5737 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5738 else if (HiOverflow)
5739 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5740 ICmpInst::ICMP_UGE, X, LoBound);
5741 else if (LoOverflow)
5742 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5743 ICmpInst::ICMP_ULT, X, HiBound);
5744 else
5745 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
5746 case ICmpInst::ICMP_NE:
5747 if (LoOverflow && HiOverflow)
5748 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5749 else if (HiOverflow)
5750 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5751 ICmpInst::ICMP_ULT, X, LoBound);
5752 else if (LoOverflow)
5753 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5754 ICmpInst::ICMP_UGE, X, HiBound);
5755 else
5756 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
5757 case ICmpInst::ICMP_ULT:
5758 case ICmpInst::ICMP_SLT:
5759 if (LoOverflow == +1) // Low bound is greater than input range.
5760 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5761 if (LoOverflow == -1) // Low bound is less than input range.
5762 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5763 return new ICmpInst(Pred, X, LoBound);
5764 case ICmpInst::ICMP_UGT:
5765 case ICmpInst::ICMP_SGT:
5766 if (HiOverflow == +1) // High bound greater than input range.
5767 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5768 else if (HiOverflow == -1) // High bound less than input range.
5769 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5770 if (Pred == ICmpInst::ICMP_UGT)
5771 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5772 else
5773 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
5774 }
5775}
5776
5777
5778/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
5779///
5780Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
5781 Instruction *LHSI,
5782 ConstantInt *RHS) {
5783 const APInt &RHSV = RHS->getValue();
5784
5785 switch (LHSI->getOpcode()) {
5786 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
5787 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
5788 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
5789 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005790 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
5791 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005792 Value *CompareVal = LHSI->getOperand(0);
5793
5794 // If the sign bit of the XorCST is not set, there is no change to
5795 // the operation, just stop using the Xor.
5796 if (!XorCST->getValue().isNegative()) {
5797 ICI.setOperand(0, CompareVal);
5798 AddToWorkList(LHSI);
5799 return &ICI;
5800 }
5801
5802 // Was the old condition true if the operand is positive?
5803 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
5804
5805 // If so, the new one isn't.
5806 isTrueIfPositive ^= true;
5807
5808 if (isTrueIfPositive)
5809 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
5810 else
5811 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
5812 }
5813 }
5814 break;
5815 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
5816 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5817 LHSI->getOperand(0)->hasOneUse()) {
5818 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5819
5820 // If the LHS is an AND of a truncating cast, we can widen the
5821 // and/compare to be the input width without changing the value
5822 // produced, eliminating a cast.
5823 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
5824 // We can do this transformation if either the AND constant does not
5825 // have its sign bit set or if it is an equality comparison.
5826 // Extending a relational comparison when we're checking the sign
5827 // bit would not work.
5828 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00005829 (ICI.isEquality() ||
5830 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005831 uint32_t BitWidth =
5832 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
5833 APInt NewCST = AndCST->getValue();
5834 NewCST.zext(BitWidth);
5835 APInt NewCI = RHSV;
5836 NewCI.zext(BitWidth);
5837 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00005838 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005839 ConstantInt::get(NewCST),LHSI->getName());
5840 InsertNewInstBefore(NewAnd, ICI);
5841 return new ICmpInst(ICI.getPredicate(), NewAnd,
5842 ConstantInt::get(NewCI));
5843 }
5844 }
5845
5846 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5847 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5848 // happens a LOT in code produced by the C front-end, for bitfield
5849 // access.
5850 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5851 if (Shift && !Shift->isShift())
5852 Shift = 0;
5853
5854 ConstantInt *ShAmt;
5855 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
5856 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5857 const Type *AndTy = AndCST->getType(); // Type of the and.
5858
5859 // We can fold this as long as we can't shift unknown bits
5860 // into the mask. This can only happen with signed shift
5861 // rights, as they sign-extend.
5862 if (ShAmt) {
5863 bool CanFold = Shift->isLogicalShift();
5864 if (!CanFold) {
5865 // To test for the bad case of the signed shr, see if any
5866 // of the bits shifted in could be tested after the mask.
5867 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
5868 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
5869
5870 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
5871 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
5872 AndCST->getValue()) == 0)
5873 CanFold = true;
5874 }
5875
5876 if (CanFold) {
5877 Constant *NewCst;
5878 if (Shift->getOpcode() == Instruction::Shl)
5879 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
5880 else
5881 NewCst = ConstantExpr::getShl(RHS, ShAmt);
5882
5883 // Check to see if we are shifting out any of the bits being
5884 // compared.
5885 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
5886 // If we shifted bits out, the fold is not going to work out.
5887 // As a special case, check to see if this means that the
5888 // result is always true or false now.
5889 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5890 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5891 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5892 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5893 } else {
5894 ICI.setOperand(1, NewCst);
5895 Constant *NewAndCST;
5896 if (Shift->getOpcode() == Instruction::Shl)
5897 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
5898 else
5899 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
5900 LHSI->setOperand(1, NewAndCST);
5901 LHSI->setOperand(0, Shift->getOperand(0));
5902 AddToWorkList(Shift); // Shift is dead.
5903 AddUsesToWorkList(ICI);
5904 return &ICI;
5905 }
5906 }
5907 }
5908
5909 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
5910 // preferable because it allows the C<<Y expression to be hoisted out
5911 // of a loop if Y is invariant and X is not.
5912 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
5913 ICI.isEquality() && !Shift->isArithmeticShift() &&
5914 isa<Instruction>(Shift->getOperand(0))) {
5915 // Compute C << Y.
5916 Value *NS;
5917 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00005918 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005919 Shift->getOperand(1), "tmp");
5920 } else {
5921 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00005922 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005923 Shift->getOperand(1), "tmp");
5924 }
5925 InsertNewInstBefore(cast<Instruction>(NS), ICI);
5926
5927 // Compute X & (C << Y).
5928 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00005929 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005930 InsertNewInstBefore(NewAnd, ICI);
5931
5932 ICI.setOperand(0, NewAnd);
5933 return &ICI;
5934 }
5935 }
5936 break;
5937
5938 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
5939 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
5940 if (!ShAmt) break;
5941
5942 uint32_t TypeBits = RHSV.getBitWidth();
5943
5944 // Check that the shift amount is in range. If not, don't perform
5945 // undefined shifts. When the shift is visited it will be
5946 // simplified.
5947 if (ShAmt->uge(TypeBits))
5948 break;
5949
5950 if (ICI.isEquality()) {
5951 // If we are comparing against bits always shifted out, the
5952 // comparison cannot succeed.
5953 Constant *Comp =
5954 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
5955 if (Comp != RHS) {// Comparing against a bit that we know is zero.
5956 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5957 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
5958 return ReplaceInstUsesWith(ICI, Cst);
5959 }
5960
5961 if (LHSI->hasOneUse()) {
5962 // Otherwise strength reduce the shift into an and.
5963 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
5964 Constant *Mask =
5965 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
5966
5967 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00005968 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005969 Mask, LHSI->getName()+".mask");
5970 Value *And = InsertNewInstBefore(AndI, ICI);
5971 return new ICmpInst(ICI.getPredicate(), And,
5972 ConstantInt::get(RHSV.lshr(ShAmtVal)));
5973 }
5974 }
5975
5976 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
5977 bool TrueIfSigned = false;
5978 if (LHSI->hasOneUse() &&
5979 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
5980 // (X << 31) <s 0 --> (X&1) != 0
5981 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
5982 (TypeBits-ShAmt->getZExtValue()-1));
5983 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00005984 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005985 Mask, LHSI->getName()+".mask");
5986 Value *And = InsertNewInstBefore(AndI, ICI);
5987
5988 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
5989 And, Constant::getNullValue(And->getType()));
5990 }
5991 break;
5992 }
5993
5994 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
5995 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00005996 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005997 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00005998 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005999
Chris Lattner5ee84f82008-03-21 05:19:58 +00006000 // Check that the shift amount is in range. If not, don't perform
6001 // undefined shifts. When the shift is visited it will be
6002 // simplified.
6003 uint32_t TypeBits = RHSV.getBitWidth();
6004 if (ShAmt->uge(TypeBits))
6005 break;
6006
6007 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006008
Chris Lattner5ee84f82008-03-21 05:19:58 +00006009 // If we are comparing against bits always shifted out, the
6010 // comparison cannot succeed.
6011 APInt Comp = RHSV << ShAmtVal;
6012 if (LHSI->getOpcode() == Instruction::LShr)
6013 Comp = Comp.lshr(ShAmtVal);
6014 else
6015 Comp = Comp.ashr(ShAmtVal);
6016
6017 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6018 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6019 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6020 return ReplaceInstUsesWith(ICI, Cst);
6021 }
6022
6023 // Otherwise, check to see if the bits shifted out are known to be zero.
6024 // If so, we can compare against the unshifted value:
6025 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006026 if (LHSI->hasOneUse() &&
6027 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006028 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6029 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6030 ConstantExpr::getShl(RHS, ShAmt));
6031 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006032
Evan Chengfb9292a2008-04-23 00:38:06 +00006033 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006034 // Otherwise strength reduce the shift into an and.
6035 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6036 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006037
Chris Lattner5ee84f82008-03-21 05:19:58 +00006038 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006039 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006040 Mask, LHSI->getName()+".mask");
6041 Value *And = InsertNewInstBefore(AndI, ICI);
6042 return new ICmpInst(ICI.getPredicate(), And,
6043 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006044 }
6045 break;
6046 }
6047
6048 case Instruction::SDiv:
6049 case Instruction::UDiv:
6050 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6051 // Fold this div into the comparison, producing a range check.
6052 // Determine, based on the divide type, what the range is being
6053 // checked. If there is an overflow on the low or high side, remember
6054 // it, otherwise compute the range [low, hi) bounding the new value.
6055 // See: InsertRangeTest above for the kinds of replacements possible.
6056 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6057 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6058 DivRHS))
6059 return R;
6060 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006061
6062 case Instruction::Add:
6063 // Fold: icmp pred (add, X, C1), C2
6064
6065 if (!ICI.isEquality()) {
6066 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6067 if (!LHSC) break;
6068 const APInt &LHSV = LHSC->getValue();
6069
6070 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6071 .subtract(LHSV);
6072
6073 if (ICI.isSignedPredicate()) {
6074 if (CR.getLower().isSignBit()) {
6075 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6076 ConstantInt::get(CR.getUpper()));
6077 } else if (CR.getUpper().isSignBit()) {
6078 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6079 ConstantInt::get(CR.getLower()));
6080 }
6081 } else {
6082 if (CR.getLower().isMinValue()) {
6083 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6084 ConstantInt::get(CR.getUpper()));
6085 } else if (CR.getUpper().isMinValue()) {
6086 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6087 ConstantInt::get(CR.getLower()));
6088 }
6089 }
6090 }
6091 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006092 }
6093
6094 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6095 if (ICI.isEquality()) {
6096 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6097
6098 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6099 // the second operand is a constant, simplify a bit.
6100 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6101 switch (BO->getOpcode()) {
6102 case Instruction::SRem:
6103 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6104 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6105 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6106 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6107 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006108 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006109 BO->getName());
6110 InsertNewInstBefore(NewRem, ICI);
6111 return new ICmpInst(ICI.getPredicate(), NewRem,
6112 Constant::getNullValue(BO->getType()));
6113 }
6114 }
6115 break;
6116 case Instruction::Add:
6117 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6118 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6119 if (BO->hasOneUse())
6120 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6121 Subtract(RHS, BOp1C));
6122 } else if (RHSV == 0) {
6123 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6124 // efficiently invertible, or if the add has just this one use.
6125 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6126
6127 if (Value *NegVal = dyn_castNegVal(BOp1))
6128 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6129 else if (Value *NegVal = dyn_castNegVal(BOp0))
6130 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6131 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006132 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006133 InsertNewInstBefore(Neg, ICI);
6134 Neg->takeName(BO);
6135 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6136 }
6137 }
6138 break;
6139 case Instruction::Xor:
6140 // For the xor case, we can xor two constants together, eliminating
6141 // the explicit xor.
6142 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6143 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6144 ConstantExpr::getXor(RHS, BOC));
6145
6146 // FALLTHROUGH
6147 case Instruction::Sub:
6148 // Replace (([sub|xor] A, B) != 0) with (A != B)
6149 if (RHSV == 0)
6150 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6151 BO->getOperand(1));
6152 break;
6153
6154 case Instruction::Or:
6155 // If bits are being or'd in that are not present in the constant we
6156 // are comparing against, then the comparison could never succeed!
6157 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6158 Constant *NotCI = ConstantExpr::getNot(RHS);
6159 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6160 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6161 isICMP_NE));
6162 }
6163 break;
6164
6165 case Instruction::And:
6166 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6167 // If bits are being compared against that are and'd out, then the
6168 // comparison can never succeed!
6169 if ((RHSV & ~BOC->getValue()) != 0)
6170 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6171 isICMP_NE));
6172
6173 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6174 if (RHS == BOC && RHSV.isPowerOf2())
6175 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6176 ICmpInst::ICMP_NE, LHSI,
6177 Constant::getNullValue(RHS->getType()));
6178
6179 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006180 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006181 Value *X = BO->getOperand(0);
6182 Constant *Zero = Constant::getNullValue(X->getType());
6183 ICmpInst::Predicate pred = isICMP_NE ?
6184 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6185 return new ICmpInst(pred, X, Zero);
6186 }
6187
6188 // ((X & ~7) == 0) --> X < 8
6189 if (RHSV == 0 && isHighOnes(BOC)) {
6190 Value *X = BO->getOperand(0);
6191 Constant *NegX = ConstantExpr::getNeg(BOC);
6192 ICmpInst::Predicate pred = isICMP_NE ?
6193 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6194 return new ICmpInst(pred, X, NegX);
6195 }
6196 }
6197 default: break;
6198 }
6199 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6200 // Handle icmp {eq|ne} <intrinsic>, intcst.
6201 if (II->getIntrinsicID() == Intrinsic::bswap) {
6202 AddToWorkList(II);
6203 ICI.setOperand(0, II->getOperand(1));
6204 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6205 return &ICI;
6206 }
6207 }
6208 } else { // Not a ICMP_EQ/ICMP_NE
6209 // If the LHS is a cast from an integral value of the same size,
6210 // then since we know the RHS is a constant, try to simlify.
6211 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6212 Value *CastOp = Cast->getOperand(0);
6213 const Type *SrcTy = CastOp->getType();
6214 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6215 if (SrcTy->isInteger() &&
6216 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6217 // If this is an unsigned comparison, try to make the comparison use
6218 // smaller constant values.
6219 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6220 // X u< 128 => X s> -1
6221 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6222 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6223 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6224 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6225 // X u> 127 => X s< 0
6226 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6227 Constant::getNullValue(SrcTy));
6228 }
6229 }
6230 }
6231 }
6232 return 0;
6233}
6234
6235/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6236/// We only handle extending casts so far.
6237///
6238Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6239 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6240 Value *LHSCIOp = LHSCI->getOperand(0);
6241 const Type *SrcTy = LHSCIOp->getType();
6242 const Type *DestTy = LHSCI->getType();
6243 Value *RHSCIOp;
6244
6245 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6246 // integer type is the same size as the pointer type.
6247 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6248 getTargetData().getPointerSizeInBits() ==
6249 cast<IntegerType>(DestTy)->getBitWidth()) {
6250 Value *RHSOp = 0;
6251 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6252 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6253 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6254 RHSOp = RHSC->getOperand(0);
6255 // If the pointer types don't match, insert a bitcast.
6256 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006257 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006258 }
6259
6260 if (RHSOp)
6261 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6262 }
6263
6264 // The code below only handles extension cast instructions, so far.
6265 // Enforce this.
6266 if (LHSCI->getOpcode() != Instruction::ZExt &&
6267 LHSCI->getOpcode() != Instruction::SExt)
6268 return 0;
6269
6270 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6271 bool isSignedCmp = ICI.isSignedPredicate();
6272
6273 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6274 // Not an extension from the same type?
6275 RHSCIOp = CI->getOperand(0);
6276 if (RHSCIOp->getType() != LHSCIOp->getType())
6277 return 0;
6278
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006279 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006280 // and the other is a zext), then we can't handle this.
6281 if (CI->getOpcode() != LHSCI->getOpcode())
6282 return 0;
6283
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006284 // Deal with equality cases early.
6285 if (ICI.isEquality())
6286 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6287
6288 // A signed comparison of sign extended values simplifies into a
6289 // signed comparison.
6290 if (isSignedCmp && isSignedExt)
6291 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6292
6293 // The other three cases all fold into an unsigned comparison.
6294 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006295 }
6296
6297 // If we aren't dealing with a constant on the RHS, exit early
6298 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6299 if (!CI)
6300 return 0;
6301
6302 // Compute the constant that would happen if we truncated to SrcTy then
6303 // reextended to DestTy.
6304 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6305 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6306
6307 // If the re-extended constant didn't change...
6308 if (Res2 == CI) {
6309 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6310 // For example, we might have:
6311 // %A = sext short %X to uint
6312 // %B = icmp ugt uint %A, 1330
6313 // It is incorrect to transform this into
6314 // %B = icmp ugt short %X, 1330
6315 // because %A may have negative value.
6316 //
Chris Lattner3d816532008-07-11 04:09:09 +00006317 // However, we allow this when the compare is EQ/NE, because they are
6318 // signless.
6319 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006320 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006321 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006322 }
6323
6324 // The re-extended constant changed so the constant cannot be represented
6325 // in the shorter type. Consequently, we cannot emit a simple comparison.
6326
6327 // First, handle some easy cases. We know the result cannot be equal at this
6328 // point so handle the ICI.isEquality() cases
6329 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6330 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6331 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6332 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6333
6334 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6335 // should have been folded away previously and not enter in here.
6336 Value *Result;
6337 if (isSignedCmp) {
6338 // We're performing a signed comparison.
6339 if (cast<ConstantInt>(CI)->getValue().isNegative())
6340 Result = ConstantInt::getFalse(); // X < (small) --> false
6341 else
6342 Result = ConstantInt::getTrue(); // X < (large) --> true
6343 } else {
6344 // We're performing an unsigned comparison.
6345 if (isSignedExt) {
6346 // We're performing an unsigned comp with a sign extended value.
6347 // This is true if the input is >= 0. [aka >s -1]
6348 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6349 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6350 NegOne, ICI.getName()), ICI);
6351 } else {
6352 // Unsigned extend & unsigned compare -> always true.
6353 Result = ConstantInt::getTrue();
6354 }
6355 }
6356
6357 // Finally, return the value computed.
6358 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006359 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006360 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006361
6362 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6363 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6364 "ICmp should be folded!");
6365 if (Constant *CI = dyn_cast<Constant>(Result))
6366 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6367 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006368}
6369
6370Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6371 return commonShiftTransforms(I);
6372}
6373
6374Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6375 return commonShiftTransforms(I);
6376}
6377
6378Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006379 if (Instruction *R = commonShiftTransforms(I))
6380 return R;
6381
6382 Value *Op0 = I.getOperand(0);
6383
6384 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6385 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6386 if (CSI->isAllOnesValue())
6387 return ReplaceInstUsesWith(I, CSI);
6388
6389 // See if we can turn a signed shr into an unsigned shr.
6390 if (MaskedValueIsZero(Op0,
6391 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006392 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006393
6394 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006395}
6396
6397Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6398 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6399 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6400
6401 // shl X, 0 == X and shr X, 0 == X
6402 // shl 0, X == 0 and shr 0, X == 0
6403 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6404 Op0 == Constant::getNullValue(Op0->getType()))
6405 return ReplaceInstUsesWith(I, Op0);
6406
6407 if (isa<UndefValue>(Op0)) {
6408 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6409 return ReplaceInstUsesWith(I, Op0);
6410 else // undef << X -> 0, undef >>u X -> 0
6411 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6412 }
6413 if (isa<UndefValue>(Op1)) {
6414 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6415 return ReplaceInstUsesWith(I, Op0);
6416 else // X << undef, X >>u undef -> 0
6417 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6418 }
6419
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006420 // Try to fold constant and into select arguments.
6421 if (isa<Constant>(Op0))
6422 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6423 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6424 return R;
6425
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006426 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6427 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6428 return Res;
6429 return 0;
6430}
6431
6432Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6433 BinaryOperator &I) {
6434 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6435
6436 // See if we can simplify any instructions used by the instruction whose sole
6437 // purpose is to compute bits we don't care about.
6438 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6439 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6440 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6441 KnownZero, KnownOne))
6442 return &I;
6443
6444 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6445 // of a signed value.
6446 //
6447 if (Op1->uge(TypeBits)) {
6448 if (I.getOpcode() != Instruction::AShr)
6449 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6450 else {
6451 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6452 return &I;
6453 }
6454 }
6455
6456 // ((X*C1) << C2) == (X * (C1 << C2))
6457 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6458 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6459 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00006460 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006461 ConstantExpr::getShl(BOOp, Op1));
6462
6463 // Try to fold constant and into select arguments.
6464 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6465 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6466 return R;
6467 if (isa<PHINode>(Op0))
6468 if (Instruction *NV = FoldOpIntoPhi(I))
6469 return NV;
6470
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006471 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6472 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6473 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6474 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6475 // place. Don't try to do this transformation in this case. Also, we
6476 // require that the input operand is a shift-by-constant so that we have
6477 // confidence that the shifts will get folded together. We could do this
6478 // xform in more cases, but it is unlikely to be profitable.
6479 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6480 isa<ConstantInt>(TrOp->getOperand(1))) {
6481 // Okay, we'll do this xform. Make the shift of shift.
6482 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00006483 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006484 I.getName());
6485 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6486
6487 // For logical shifts, the truncation has the effect of making the high
6488 // part of the register be zeros. Emulate this by inserting an AND to
6489 // clear the top bits as needed. This 'and' will usually be zapped by
6490 // other xforms later if dead.
6491 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6492 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6493 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6494
6495 // The mask we constructed says what the trunc would do if occurring
6496 // between the shifts. We want to know the effect *after* the second
6497 // shift. We know that it is a logical shift by a constant, so adjust the
6498 // mask as appropriate.
6499 if (I.getOpcode() == Instruction::Shl)
6500 MaskV <<= Op1->getZExtValue();
6501 else {
6502 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6503 MaskV = MaskV.lshr(Op1->getZExtValue());
6504 }
6505
Gabor Greifa645dd32008-05-16 19:29:10 +00006506 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006507 TI->getName());
6508 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6509
6510 // Return the value truncated to the interesting size.
6511 return new TruncInst(And, I.getType());
6512 }
6513 }
6514
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006515 if (Op0->hasOneUse()) {
6516 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6517 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6518 Value *V1, *V2;
6519 ConstantInt *CC;
6520 switch (Op0BO->getOpcode()) {
6521 default: break;
6522 case Instruction::Add:
6523 case Instruction::And:
6524 case Instruction::Or:
6525 case Instruction::Xor: {
6526 // These operators commute.
6527 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6528 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6529 match(Op0BO->getOperand(1),
6530 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006531 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006532 Op0BO->getOperand(0), Op1,
6533 Op0BO->getName());
6534 InsertNewInstBefore(YS, I); // (Y << C)
6535 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006536 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006537 Op0BO->getOperand(1)->getName());
6538 InsertNewInstBefore(X, I); // (X + (Y << C))
6539 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006540 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006541 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6542 }
6543
6544 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6545 Value *Op0BOOp1 = Op0BO->getOperand(1);
6546 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6547 match(Op0BOOp1,
6548 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
6549 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6550 V2 == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006551 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006552 Op0BO->getOperand(0), Op1,
6553 Op0BO->getName());
6554 InsertNewInstBefore(YS, I); // (Y << C)
6555 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006556 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006557 V1->getName()+".mask");
6558 InsertNewInstBefore(XM, I); // X & (CC << C)
6559
Gabor Greifa645dd32008-05-16 19:29:10 +00006560 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006561 }
6562 }
6563
6564 // FALL THROUGH.
6565 case Instruction::Sub: {
6566 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6567 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6568 match(Op0BO->getOperand(0),
6569 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006570 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006571 Op0BO->getOperand(1), Op1,
6572 Op0BO->getName());
6573 InsertNewInstBefore(YS, I); // (Y << C)
6574 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006575 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006576 Op0BO->getOperand(0)->getName());
6577 InsertNewInstBefore(X, I); // (X + (Y << C))
6578 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006579 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006580 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6581 }
6582
6583 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
6584 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6585 match(Op0BO->getOperand(0),
6586 m_And(m_Shr(m_Value(V1), m_Value(V2)),
6587 m_ConstantInt(CC))) && V2 == Op1 &&
6588 cast<BinaryOperator>(Op0BO->getOperand(0))
6589 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006590 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006591 Op0BO->getOperand(1), Op1,
6592 Op0BO->getName());
6593 InsertNewInstBefore(YS, I); // (Y << C)
6594 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006595 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006596 V1->getName()+".mask");
6597 InsertNewInstBefore(XM, I); // X & (CC << C)
6598
Gabor Greifa645dd32008-05-16 19:29:10 +00006599 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006600 }
6601
6602 break;
6603 }
6604 }
6605
6606
6607 // If the operand is an bitwise operator with a constant RHS, and the
6608 // shift is the only use, we can pull it out of the shift.
6609 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6610 bool isValid = true; // Valid only for And, Or, Xor
6611 bool highBitSet = false; // Transform if high bit of constant set?
6612
6613 switch (Op0BO->getOpcode()) {
6614 default: isValid = false; break; // Do not perform transform!
6615 case Instruction::Add:
6616 isValid = isLeftShift;
6617 break;
6618 case Instruction::Or:
6619 case Instruction::Xor:
6620 highBitSet = false;
6621 break;
6622 case Instruction::And:
6623 highBitSet = true;
6624 break;
6625 }
6626
6627 // If this is a signed shift right, and the high bit is modified
6628 // by the logical operation, do not perform the transformation.
6629 // The highBitSet boolean indicates the value of the high bit of
6630 // the constant which would cause it to be modified for this
6631 // operation.
6632 //
Chris Lattner15b76e32007-12-06 06:25:04 +00006633 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006634 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006635
6636 if (isValid) {
6637 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6638
6639 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006640 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006641 InsertNewInstBefore(NewShift, I);
6642 NewShift->takeName(Op0BO);
6643
Gabor Greifa645dd32008-05-16 19:29:10 +00006644 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006645 NewRHS);
6646 }
6647 }
6648 }
6649 }
6650
6651 // Find out if this is a shift of a shift by a constant.
6652 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6653 if (ShiftOp && !ShiftOp->isShift())
6654 ShiftOp = 0;
6655
6656 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
6657 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
6658 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
6659 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
6660 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6661 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6662 Value *X = ShiftOp->getOperand(0);
6663
6664 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6665 if (AmtSum > TypeBits)
6666 AmtSum = TypeBits;
6667
6668 const IntegerType *Ty = cast<IntegerType>(I.getType());
6669
6670 // Check for (X << c1) << c2 and (X >> c1) >> c2
6671 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006672 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006673 ConstantInt::get(Ty, AmtSum));
6674 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6675 I.getOpcode() == Instruction::AShr) {
6676 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00006677 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006678 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6679 I.getOpcode() == Instruction::LShr) {
6680 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6681 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006682 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006683 InsertNewInstBefore(Shift, I);
6684
6685 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006686 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006687 }
6688
6689 // Okay, if we get here, one shift must be left, and the other shift must be
6690 // right. See if the amounts are equal.
6691 if (ShiftAmt1 == ShiftAmt2) {
6692 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6693 if (I.getOpcode() == Instruction::Shl) {
6694 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00006695 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006696 }
6697 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6698 if (I.getOpcode() == Instruction::LShr) {
6699 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00006700 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006701 }
6702 // We can simplify ((X << C) >>s C) into a trunc + sext.
6703 // NOTE: we could do this for any C, but that would make 'unusual' integer
6704 // types. For now, just stick to ones well-supported by the code
6705 // generators.
6706 const Type *SExtType = 0;
6707 switch (Ty->getBitWidth() - ShiftAmt1) {
6708 case 1 :
6709 case 8 :
6710 case 16 :
6711 case 32 :
6712 case 64 :
6713 case 128:
6714 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
6715 break;
6716 default: break;
6717 }
6718 if (SExtType) {
6719 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6720 InsertNewInstBefore(NewTrunc, I);
6721 return new SExtInst(NewTrunc, Ty);
6722 }
6723 // Otherwise, we can't handle it yet.
6724 } else if (ShiftAmt1 < ShiftAmt2) {
6725 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
6726
6727 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
6728 if (I.getOpcode() == Instruction::Shl) {
6729 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6730 ShiftOp->getOpcode() == Instruction::AShr);
6731 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006732 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006733 InsertNewInstBefore(Shift, I);
6734
6735 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006736 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006737 }
6738
6739 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
6740 if (I.getOpcode() == Instruction::LShr) {
6741 assert(ShiftOp->getOpcode() == Instruction::Shl);
6742 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006743 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006744 InsertNewInstBefore(Shift, I);
6745
6746 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006747 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006748 }
6749
6750 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6751 } else {
6752 assert(ShiftAmt2 < ShiftAmt1);
6753 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
6754
6755 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
6756 if (I.getOpcode() == Instruction::Shl) {
6757 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6758 ShiftOp->getOpcode() == Instruction::AShr);
6759 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006760 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006761 ConstantInt::get(Ty, ShiftDiff));
6762 InsertNewInstBefore(Shift, I);
6763
6764 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006765 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006766 }
6767
6768 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
6769 if (I.getOpcode() == Instruction::LShr) {
6770 assert(ShiftOp->getOpcode() == Instruction::Shl);
6771 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006772 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006773 InsertNewInstBefore(Shift, I);
6774
6775 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006776 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006777 }
6778
6779 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
6780 }
6781 }
6782 return 0;
6783}
6784
6785
6786/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6787/// expression. If so, decompose it, returning some value X, such that Val is
6788/// X*Scale+Offset.
6789///
6790static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
6791 int &Offset) {
6792 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
6793 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
6794 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00006795 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006796 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00006797 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
6798 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6799 if (I->getOpcode() == Instruction::Shl) {
6800 // This is a value scaled by '1 << the shift amt'.
6801 Scale = 1U << RHS->getZExtValue();
6802 Offset = 0;
6803 return I->getOperand(0);
6804 } else if (I->getOpcode() == Instruction::Mul) {
6805 // This value is scaled by 'RHS'.
6806 Scale = RHS->getZExtValue();
6807 Offset = 0;
6808 return I->getOperand(0);
6809 } else if (I->getOpcode() == Instruction::Add) {
6810 // We have X+C. Check to see if we really have (X*C2)+C1,
6811 // where C1 is divisible by C2.
6812 unsigned SubScale;
6813 Value *SubVal =
6814 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6815 Offset += RHS->getZExtValue();
6816 Scale = SubScale;
6817 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006818 }
6819 }
6820 }
6821
6822 // Otherwise, we can't look past this.
6823 Scale = 1;
6824 Offset = 0;
6825 return Val;
6826}
6827
6828
6829/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6830/// try to eliminate the cast by moving the type information into the alloc.
6831Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
6832 AllocationInst &AI) {
6833 const PointerType *PTy = cast<PointerType>(CI.getType());
6834
6835 // Remove any uses of AI that are dead.
6836 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
6837
6838 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6839 Instruction *User = cast<Instruction>(*UI++);
6840 if (isInstructionTriviallyDead(User)) {
6841 while (UI != E && *UI == User)
6842 ++UI; // If this instruction uses AI more than once, don't break UI.
6843
6844 ++NumDeadInst;
6845 DOUT << "IC: DCE: " << *User;
6846 EraseInstFromFunction(*User);
6847 }
6848 }
6849
6850 // Get the type really allocated and the type casted to.
6851 const Type *AllocElTy = AI.getAllocatedType();
6852 const Type *CastElTy = PTy->getElementType();
6853 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
6854
6855 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6856 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
6857 if (CastElTyAlign < AllocElTyAlign) return 0;
6858
6859 // If the allocation has multiple uses, only promote it if we are strictly
6860 // increasing the alignment of the resultant allocation. If we keep it the
6861 // same, we open the door to infinite loops of various kinds.
6862 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6863
Duncan Sandsf99fdc62007-11-01 20:53:16 +00006864 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
6865 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006866 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
6867
6868 // See if we can satisfy the modulus by pulling a scale out of the array
6869 // size argument.
6870 unsigned ArraySizeScale;
6871 int ArrayOffset;
6872 Value *NumElements = // See if the array size is a decomposable linear expr.
6873 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6874
6875 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6876 // do the xform.
6877 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6878 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
6879
6880 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6881 Value *Amt = 0;
6882 if (Scale == 1) {
6883 Amt = NumElements;
6884 } else {
6885 // If the allocation size is constant, form a constant mul expression
6886 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6887 if (isa<ConstantInt>(NumElements))
6888 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
6889 // otherwise multiply the amount and the number of elements
6890 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006891 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006892 Amt = InsertNewInstBefore(Tmp, AI);
6893 }
6894 }
6895
6896 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
6897 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00006898 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006899 Amt = InsertNewInstBefore(Tmp, AI);
6900 }
6901
6902 AllocationInst *New;
6903 if (isa<MallocInst>(AI))
6904 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
6905 else
6906 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
6907 InsertNewInstBefore(New, AI);
6908 New->takeName(&AI);
6909
6910 // If the allocation has multiple uses, insert a cast and change all things
6911 // that used it to use the new cast. This will also hack on CI, but it will
6912 // die soon.
6913 if (!AI.hasOneUse()) {
6914 AddUsesToWorkList(AI);
6915 // New is the allocation instruction, pointer typed. AI is the original
6916 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
6917 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
6918 InsertNewInstBefore(NewCast, AI);
6919 AI.replaceAllUsesWith(NewCast);
6920 }
6921 return ReplaceInstUsesWith(CI, New);
6922}
6923
6924/// CanEvaluateInDifferentType - Return true if we can take the specified value
6925/// and return it as type Ty without inserting any new casts and without
6926/// changing the computed value. This is used by code that tries to decide
6927/// whether promoting or shrinking integer operations to wider or smaller types
6928/// will allow us to eliminate a truncate or extend.
6929///
6930/// This is a truncation operation if Ty is smaller than V->getType(), or an
6931/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00006932///
6933/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
6934/// should return true if trunc(V) can be computed by computing V in the smaller
6935/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
6936/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
6937/// efficiently truncated.
6938///
6939/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
6940/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
6941/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00006942bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
6943 unsigned CastOpc,
6944 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006945 // We can always evaluate constants in another type.
6946 if (isa<ConstantInt>(V))
6947 return true;
6948
6949 Instruction *I = dyn_cast<Instruction>(V);
6950 if (!I) return false;
6951
6952 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
6953
Chris Lattneref70bb82007-08-02 06:11:14 +00006954 // If this is an extension or truncate, we can often eliminate it.
6955 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6956 // If this is a cast from the destination type, we can trivially eliminate
6957 // it, and this will remove a cast overall.
6958 if (I->getOperand(0)->getType() == Ty) {
6959 // If the first operand is itself a cast, and is eliminable, do not count
6960 // this as an eliminable cast. We would prefer to eliminate those two
6961 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00006962 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00006963 ++NumCastsRemoved;
6964 return true;
6965 }
6966 }
6967
6968 // We can't extend or shrink something that has multiple uses: doing so would
6969 // require duplicating the instruction in general, which isn't profitable.
6970 if (!I->hasOneUse()) return false;
6971
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006972 switch (I->getOpcode()) {
6973 case Instruction::Add:
6974 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00006975 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006976 case Instruction::And:
6977 case Instruction::Or:
6978 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006979 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00006980 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6981 NumCastsRemoved) &&
6982 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
6983 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006984
6985 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006986 // If we are truncating the result of this SHL, and if it's a shift of a
6987 // constant amount, we can always perform a SHL in a smaller type.
6988 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6989 uint32_t BitWidth = Ty->getBitWidth();
6990 if (BitWidth < OrigTy->getBitWidth() &&
6991 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00006992 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6993 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006994 }
6995 break;
6996 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006997 // If this is a truncate of a logical shr, we can truncate it to a smaller
6998 // lshr iff we know that the bits we would otherwise be shifting in are
6999 // already zeros.
7000 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7001 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7002 uint32_t BitWidth = Ty->getBitWidth();
7003 if (BitWidth < OrigBitWidth &&
7004 MaskedValueIsZero(I->getOperand(0),
7005 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7006 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007007 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7008 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007009 }
7010 }
7011 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007012 case Instruction::ZExt:
7013 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007014 case Instruction::Trunc:
7015 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007016 // can safely replace it. Note that replacing it does not reduce the number
7017 // of casts in the input.
7018 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007019 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007020 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007021 case Instruction::Select: {
7022 SelectInst *SI = cast<SelectInst>(I);
7023 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7024 NumCastsRemoved) &&
7025 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7026 NumCastsRemoved);
7027 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007028 case Instruction::PHI: {
7029 // We can change a phi if we can change all operands.
7030 PHINode *PN = cast<PHINode>(I);
7031 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7032 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7033 NumCastsRemoved))
7034 return false;
7035 return true;
7036 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007037 default:
7038 // TODO: Can handle more cases here.
7039 break;
7040 }
7041
7042 return false;
7043}
7044
7045/// EvaluateInDifferentType - Given an expression that
7046/// CanEvaluateInDifferentType returns true for, actually insert the code to
7047/// evaluate the expression.
7048Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7049 bool isSigned) {
7050 if (Constant *C = dyn_cast<Constant>(V))
7051 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7052
7053 // Otherwise, it must be an instruction.
7054 Instruction *I = cast<Instruction>(V);
7055 Instruction *Res = 0;
7056 switch (I->getOpcode()) {
7057 case Instruction::Add:
7058 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007059 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007060 case Instruction::And:
7061 case Instruction::Or:
7062 case Instruction::Xor:
7063 case Instruction::AShr:
7064 case Instruction::LShr:
7065 case Instruction::Shl: {
7066 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7067 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007068 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007069 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007070 break;
7071 }
7072 case Instruction::Trunc:
7073 case Instruction::ZExt:
7074 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007075 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007076 // just return the source. There's no need to insert it because it is not
7077 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007078 if (I->getOperand(0)->getType() == Ty)
7079 return I->getOperand(0);
7080
Chris Lattner4200c2062008-06-18 04:00:49 +00007081 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007082 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007083 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007084 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007085 case Instruction::Select: {
7086 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7087 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7088 Res = SelectInst::Create(I->getOperand(0), True, False);
7089 break;
7090 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007091 case Instruction::PHI: {
7092 PHINode *OPN = cast<PHINode>(I);
7093 PHINode *NPN = PHINode::Create(Ty);
7094 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7095 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7096 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7097 }
7098 Res = NPN;
7099 break;
7100 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007101 default:
7102 // TODO: Can handle more cases here.
7103 assert(0 && "Unreachable!");
7104 break;
7105 }
7106
Chris Lattner4200c2062008-06-18 04:00:49 +00007107 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007108 return InsertNewInstBefore(Res, *I);
7109}
7110
7111/// @brief Implement the transforms common to all CastInst visitors.
7112Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7113 Value *Src = CI.getOperand(0);
7114
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007115 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7116 // eliminate it now.
7117 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7118 if (Instruction::CastOps opc =
7119 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7120 // The first cast (CSrc) is eliminable so we need to fix up or replace
7121 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007122 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007123 }
7124 }
7125
7126 // If we are casting a select then fold the cast into the select
7127 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7128 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7129 return NV;
7130
7131 // If we are casting a PHI then fold the cast into the PHI
7132 if (isa<PHINode>(Src))
7133 if (Instruction *NV = FoldOpIntoPhi(CI))
7134 return NV;
7135
7136 return 0;
7137}
7138
7139/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7140Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7141 Value *Src = CI.getOperand(0);
7142
7143 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7144 // If casting the result of a getelementptr instruction with no offset, turn
7145 // this into a cast of the original pointer!
7146 if (GEP->hasAllZeroIndices()) {
7147 // Changing the cast operand is usually not a good idea but it is safe
7148 // here because the pointer operand is being replaced with another
7149 // pointer operand so the opcode doesn't need to change.
7150 AddToWorkList(GEP);
7151 CI.setOperand(0, GEP->getOperand(0));
7152 return &CI;
7153 }
7154
7155 // If the GEP has a single use, and the base pointer is a bitcast, and the
7156 // GEP computes a constant offset, see if we can convert these three
7157 // instructions into fewer. This typically happens with unions and other
7158 // non-type-safe code.
7159 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7160 if (GEP->hasAllConstantIndices()) {
7161 // We are guaranteed to get a constant from EmitGEPOffset.
7162 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7163 int64_t Offset = OffsetV->getSExtValue();
7164
7165 // Get the base pointer input of the bitcast, and the type it points to.
7166 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7167 const Type *GEPIdxTy =
7168 cast<PointerType>(OrigBase->getType())->getElementType();
7169 if (GEPIdxTy->isSized()) {
7170 SmallVector<Value*, 8> NewIndices;
7171
7172 // Start with the index over the outer type. Note that the type size
7173 // might be zero (even if the offset isn't zero) if the indexed type
7174 // is something like [0 x {int, int}]
7175 const Type *IntPtrTy = TD->getIntPtrType();
7176 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007177 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007178 FirstIdx = Offset/TySize;
7179 Offset %= TySize;
7180
7181 // Handle silly modulus not returning values values [0..TySize).
7182 if (Offset < 0) {
7183 --FirstIdx;
7184 Offset += TySize;
7185 assert(Offset >= 0);
7186 }
7187 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7188 }
7189
7190 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7191
7192 // Index into the types. If we fail, set OrigBase to null.
7193 while (Offset) {
7194 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7195 const StructLayout *SL = TD->getStructLayout(STy);
7196 if (Offset < (int64_t)SL->getSizeInBytes()) {
7197 unsigned Elt = SL->getElementContainingOffset(Offset);
7198 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7199
7200 Offset -= SL->getElementOffset(Elt);
7201 GEPIdxTy = STy->getElementType(Elt);
7202 } else {
7203 // Otherwise, we can't index into this, bail out.
7204 Offset = 0;
7205 OrigBase = 0;
7206 }
7207 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7208 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007209 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007210 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7211 Offset %= EltSize;
7212 } else {
7213 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7214 }
7215 GEPIdxTy = STy->getElementType();
7216 } else {
7217 // Otherwise, we can't index into this, bail out.
7218 Offset = 0;
7219 OrigBase = 0;
7220 }
7221 }
7222 if (OrigBase) {
7223 // If we were able to index down into an element, create the GEP
7224 // and bitcast the result. This eliminates one bitcast, potentially
7225 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007226 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7227 NewIndices.begin(),
7228 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007229 InsertNewInstBefore(NGEP, CI);
7230 NGEP->takeName(GEP);
7231
7232 if (isa<BitCastInst>(CI))
7233 return new BitCastInst(NGEP, CI.getType());
7234 assert(isa<PtrToIntInst>(CI));
7235 return new PtrToIntInst(NGEP, CI.getType());
7236 }
7237 }
7238 }
7239 }
7240 }
7241
7242 return commonCastTransforms(CI);
7243}
7244
7245
7246
7247/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7248/// integer types. This function implements the common transforms for all those
7249/// cases.
7250/// @brief Implement the transforms common to CastInst with integer operands
7251Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7252 if (Instruction *Result = commonCastTransforms(CI))
7253 return Result;
7254
7255 Value *Src = CI.getOperand(0);
7256 const Type *SrcTy = Src->getType();
7257 const Type *DestTy = CI.getType();
7258 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7259 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7260
7261 // See if we can simplify any instructions used by the LHS whose sole
7262 // purpose is to compute bits we don't care about.
7263 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7264 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7265 KnownZero, KnownOne))
7266 return &CI;
7267
7268 // If the source isn't an instruction or has more than one use then we
7269 // can't do anything more.
7270 Instruction *SrcI = dyn_cast<Instruction>(Src);
7271 if (!SrcI || !Src->hasOneUse())
7272 return 0;
7273
7274 // Attempt to propagate the cast into the instruction for int->int casts.
7275 int NumCastsRemoved = 0;
7276 if (!isa<BitCastInst>(CI) &&
7277 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007278 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007279 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007280 // eliminates the cast, so it is always a win. If this is a zero-extension,
7281 // we need to do an AND to maintain the clear top-part of the computation,
7282 // so we require that the input have eliminated at least one cast. If this
7283 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007284 // require that two casts have been eliminated.
7285 bool DoXForm;
7286 switch (CI.getOpcode()) {
7287 default:
7288 // All the others use floating point so we shouldn't actually
7289 // get here because of the check above.
7290 assert(0 && "Unknown cast type");
7291 case Instruction::Trunc:
7292 DoXForm = true;
7293 break;
7294 case Instruction::ZExt:
7295 DoXForm = NumCastsRemoved >= 1;
7296 break;
7297 case Instruction::SExt:
7298 DoXForm = NumCastsRemoved >= 2;
7299 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007300 }
7301
7302 if (DoXForm) {
7303 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7304 CI.getOpcode() == Instruction::SExt);
7305 assert(Res->getType() == DestTy);
7306 switch (CI.getOpcode()) {
7307 default: assert(0 && "Unknown cast type!");
7308 case Instruction::Trunc:
7309 case Instruction::BitCast:
7310 // Just replace this cast with the result.
7311 return ReplaceInstUsesWith(CI, Res);
7312 case Instruction::ZExt: {
7313 // We need to emit an AND to clear the high bits.
7314 assert(SrcBitSize < DestBitSize && "Not a zext?");
7315 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7316 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007317 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007318 }
7319 case Instruction::SExt:
7320 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007321 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007322 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7323 CI), DestTy);
7324 }
7325 }
7326 }
7327
7328 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7329 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7330
7331 switch (SrcI->getOpcode()) {
7332 case Instruction::Add:
7333 case Instruction::Mul:
7334 case Instruction::And:
7335 case Instruction::Or:
7336 case Instruction::Xor:
7337 // If we are discarding information, rewrite.
7338 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7339 // Don't insert two casts if they cannot be eliminated. We allow
7340 // two casts to be inserted if the sizes are the same. This could
7341 // only be converting signedness, which is a noop.
7342 if (DestBitSize == SrcBitSize ||
7343 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7344 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7345 Instruction::CastOps opcode = CI.getOpcode();
7346 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7347 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007348 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007349 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7350 }
7351 }
7352
7353 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7354 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7355 SrcI->getOpcode() == Instruction::Xor &&
7356 Op1 == ConstantInt::getTrue() &&
7357 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7358 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007359 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007360 }
7361 break;
7362 case Instruction::SDiv:
7363 case Instruction::UDiv:
7364 case Instruction::SRem:
7365 case Instruction::URem:
7366 // If we are just changing the sign, rewrite.
7367 if (DestBitSize == SrcBitSize) {
7368 // Don't insert two casts if they cannot be eliminated. We allow
7369 // two casts to be inserted if the sizes are the same. This could
7370 // only be converting signedness, which is a noop.
7371 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7372 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7373 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7374 Op0, DestTy, SrcI);
7375 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7376 Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007377 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007378 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7379 }
7380 }
7381 break;
7382
7383 case Instruction::Shl:
7384 // Allow changing the sign of the source operand. Do not allow
7385 // changing the size of the shift, UNLESS the shift amount is a
7386 // constant. We must not change variable sized shifts to a smaller
7387 // size, because it is undefined to shift more bits out than exist
7388 // in the value.
7389 if (DestBitSize == SrcBitSize ||
7390 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7391 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7392 Instruction::BitCast : Instruction::Trunc);
7393 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7394 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007395 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007396 }
7397 break;
7398 case Instruction::AShr:
7399 // If this is a signed shr, and if all bits shifted in are about to be
7400 // truncated off, turn it into an unsigned shr to allow greater
7401 // simplifications.
7402 if (DestBitSize < SrcBitSize &&
7403 isa<ConstantInt>(Op1)) {
7404 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7405 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7406 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007407 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007408 }
7409 }
7410 break;
7411 }
7412 return 0;
7413}
7414
7415Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7416 if (Instruction *Result = commonIntCastTransforms(CI))
7417 return Result;
7418
7419 Value *Src = CI.getOperand(0);
7420 const Type *Ty = CI.getType();
7421 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7422 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7423
7424 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7425 switch (SrcI->getOpcode()) {
7426 default: break;
7427 case Instruction::LShr:
7428 // We can shrink lshr to something smaller if we know the bits shifted in
7429 // are already zeros.
7430 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7431 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7432
7433 // Get a mask for the bits shifting in.
7434 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7435 Value* SrcIOp0 = SrcI->getOperand(0);
7436 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7437 if (ShAmt >= DestBitWidth) // All zeros.
7438 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7439
7440 // Okay, we can shrink this. Truncate the input, then return a new
7441 // shift.
7442 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7443 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7444 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007445 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007446 }
7447 } else { // This is a variable shr.
7448
7449 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7450 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7451 // loop-invariant and CSE'd.
7452 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7453 Value *One = ConstantInt::get(SrcI->getType(), 1);
7454
7455 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00007456 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007457 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007458 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007459 SrcI->getOperand(0),
7460 "tmp"), CI);
7461 Value *Zero = Constant::getNullValue(V->getType());
7462 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7463 }
7464 }
7465 break;
7466 }
7467 }
7468
7469 return 0;
7470}
7471
Evan Chenge3779cf2008-03-24 00:21:34 +00007472/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7473/// in order to eliminate the icmp.
7474Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7475 bool DoXform) {
7476 // If we are just checking for a icmp eq of a single bit and zext'ing it
7477 // to an integer, then shift the bit to the appropriate place and then
7478 // cast to integer to avoid the comparison.
7479 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7480 const APInt &Op1CV = Op1C->getValue();
7481
7482 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7483 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7484 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7485 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7486 if (!DoXform) return ICI;
7487
7488 Value *In = ICI->getOperand(0);
7489 Value *Sh = ConstantInt::get(In->getType(),
7490 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007491 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00007492 In->getName()+".lobit"),
7493 CI);
7494 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007495 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00007496 false/*ZExt*/, "tmp", &CI);
7497
7498 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7499 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007500 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00007501 In->getName()+".not"),
7502 CI);
7503 }
7504
7505 return ReplaceInstUsesWith(CI, In);
7506 }
7507
7508
7509
7510 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7511 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7512 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7513 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7514 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7515 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7516 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7517 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7518 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7519 // This only works for EQ and NE
7520 ICI->isEquality()) {
7521 // If Op1C some other power of two, convert:
7522 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7523 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7524 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7525 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7526
7527 APInt KnownZeroMask(~KnownZero);
7528 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7529 if (!DoXform) return ICI;
7530
7531 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7532 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7533 // (X&4) == 2 --> false
7534 // (X&4) != 2 --> true
7535 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7536 Res = ConstantExpr::getZExt(Res, CI.getType());
7537 return ReplaceInstUsesWith(CI, Res);
7538 }
7539
7540 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7541 Value *In = ICI->getOperand(0);
7542 if (ShiftAmt) {
7543 // Perform a logical shr by shiftamt.
7544 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00007545 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00007546 ConstantInt::get(In->getType(), ShiftAmt),
7547 In->getName()+".lobit"), CI);
7548 }
7549
7550 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7551 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007552 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00007553 InsertNewInstBefore(cast<Instruction>(In), CI);
7554 }
7555
7556 if (CI.getType() == In->getType())
7557 return ReplaceInstUsesWith(CI, In);
7558 else
Gabor Greifa645dd32008-05-16 19:29:10 +00007559 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00007560 }
7561 }
7562 }
7563
7564 return 0;
7565}
7566
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007567Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
7568 // If one of the common conversion will work ..
7569 if (Instruction *Result = commonIntCastTransforms(CI))
7570 return Result;
7571
7572 Value *Src = CI.getOperand(0);
7573
7574 // If this is a cast of a cast
7575 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7576 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7577 // types and if the sizes are just right we can convert this into a logical
7578 // 'and' which will be much cheaper than the pair of casts.
7579 if (isa<TruncInst>(CSrc)) {
7580 // Get the sizes of the types involved
7581 Value *A = CSrc->getOperand(0);
7582 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
7583 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
7584 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
7585 // If we're actually extending zero bits and the trunc is a no-op
7586 if (MidSize < DstSize && SrcSize == DstSize) {
7587 // Replace both of the casts with an And of the type mask.
7588 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
7589 Constant *AndConst = ConstantInt::get(AndValue);
7590 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00007591 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007592 // Unfortunately, if the type changed, we need to cast it back.
7593 if (And->getType() != CI.getType()) {
7594 And->setName(CSrc->getName()+".mask");
7595 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007596 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007597 }
7598 return And;
7599 }
7600 }
7601 }
7602
Evan Chenge3779cf2008-03-24 00:21:34 +00007603 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
7604 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007605
Evan Chenge3779cf2008-03-24 00:21:34 +00007606 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
7607 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
7608 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
7609 // of the (zext icmp) will be transformed.
7610 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
7611 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
7612 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
7613 (transformZExtICmp(LHS, CI, false) ||
7614 transformZExtICmp(RHS, CI, false))) {
7615 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
7616 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007617 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007618 }
Evan Chenge3779cf2008-03-24 00:21:34 +00007619 }
7620
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007621 return 0;
7622}
7623
7624Instruction *InstCombiner::visitSExt(SExtInst &CI) {
7625 if (Instruction *I = commonIntCastTransforms(CI))
7626 return I;
7627
7628 Value *Src = CI.getOperand(0);
7629
7630 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
7631 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
7632 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
7633 // If we are just checking for a icmp eq of a single bit and zext'ing it
7634 // to an integer, then shift the bit to the appropriate place and then
7635 // cast to integer to avoid the comparison.
7636 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7637 const APInt &Op1CV = Op1C->getValue();
7638
7639 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
7640 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
7641 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7642 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
7643 Value *In = ICI->getOperand(0);
7644 Value *Sh = ConstantInt::get(In->getType(),
7645 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007646 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007647 In->getName()+".lobit"),
7648 CI);
7649 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007650 In = CastInst::CreateIntegerCast(In, CI.getType(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007651 true/*SExt*/, "tmp", &CI);
7652
7653 if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
Gabor Greifa645dd32008-05-16 19:29:10 +00007654 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007655 In->getName()+".not"), CI);
7656
7657 return ReplaceInstUsesWith(CI, In);
7658 }
7659 }
7660 }
Dan Gohmanf0f12022008-05-20 21:01:12 +00007661
7662 // See if the value being truncated is already sign extended. If so, just
7663 // eliminate the trunc/sext pair.
7664 if (getOpcode(Src) == Instruction::Trunc) {
7665 Value *Op = cast<User>(Src)->getOperand(0);
7666 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
7667 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
7668 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
7669 unsigned NumSignBits = ComputeNumSignBits(Op);
7670
7671 if (OpBits == DestBits) {
7672 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
7673 // bits, it is already ready.
7674 if (NumSignBits > DestBits-MidBits)
7675 return ReplaceInstUsesWith(CI, Op);
7676 } else if (OpBits < DestBits) {
7677 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
7678 // bits, just sext from i32.
7679 if (NumSignBits > OpBits-MidBits)
7680 return new SExtInst(Op, CI.getType(), "tmp");
7681 } else {
7682 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
7683 // bits, just truncate to i32.
7684 if (NumSignBits > OpBits-MidBits)
7685 return new TruncInst(Op, CI.getType(), "tmp");
7686 }
7687 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007688
7689 return 0;
7690}
7691
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007692/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
7693/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007694static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007695 APFloat F = CFP->getValueAPF();
7696 if (F.convert(Sem, APFloat::rmNearestTiesToEven) == APFloat::opOK)
Chris Lattner5e0610f2008-04-20 00:41:09 +00007697 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007698 return 0;
7699}
7700
7701/// LookThroughFPExtensions - If this is an fp extension instruction, look
7702/// through it until we get the source value.
7703static Value *LookThroughFPExtensions(Value *V) {
7704 if (Instruction *I = dyn_cast<Instruction>(V))
7705 if (I->getOpcode() == Instruction::FPExt)
7706 return LookThroughFPExtensions(I->getOperand(0));
7707
7708 // If this value is a constant, return the constant in the smallest FP type
7709 // that can accurately represent it. This allows us to turn
7710 // (float)((double)X+2.0) into x+2.0f.
7711 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
7712 if (CFP->getType() == Type::PPC_FP128Ty)
7713 return V; // No constant folding of this.
7714 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007715 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007716 return V;
7717 if (CFP->getType() == Type::DoubleTy)
7718 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007719 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007720 return V;
7721 // Don't try to shrink to various long double types.
7722 }
7723
7724 return V;
7725}
7726
7727Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
7728 if (Instruction *I = commonCastTransforms(CI))
7729 return I;
7730
7731 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
7732 // smaller than the destination type, we can eliminate the truncate by doing
7733 // the add as the smaller type. This applies to add/sub/mul/div as well as
7734 // many builtins (sqrt, etc).
7735 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
7736 if (OpI && OpI->hasOneUse()) {
7737 switch (OpI->getOpcode()) {
7738 default: break;
7739 case Instruction::Add:
7740 case Instruction::Sub:
7741 case Instruction::Mul:
7742 case Instruction::FDiv:
7743 case Instruction::FRem:
7744 const Type *SrcTy = OpI->getType();
7745 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
7746 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
7747 if (LHSTrunc->getType() != SrcTy &&
7748 RHSTrunc->getType() != SrcTy) {
7749 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
7750 // If the source types were both smaller than the destination type of
7751 // the cast, do this xform.
7752 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
7753 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
7754 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
7755 CI.getType(), CI);
7756 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
7757 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007758 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007759 }
7760 }
7761 break;
7762 }
7763 }
7764 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007765}
7766
7767Instruction *InstCombiner::visitFPExt(CastInst &CI) {
7768 return commonCastTransforms(CI);
7769}
7770
Chris Lattnerdeef1a72008-05-19 20:25:04 +00007771Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
7772 // fptoui(uitofp(X)) --> X if the intermediate type has enough bits in its
7773 // mantissa to accurately represent all values of X. For example, do not
7774 // do this with i64->float->i64.
7775 if (UIToFPInst *SrcI = dyn_cast<UIToFPInst>(FI.getOperand(0)))
7776 if (SrcI->getOperand(0)->getType() == FI.getType() &&
7777 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
Chris Lattner9ce836b2008-05-19 21:17:23 +00007778 SrcI->getType()->getFPMantissaWidth())
Chris Lattnerdeef1a72008-05-19 20:25:04 +00007779 return ReplaceInstUsesWith(FI, SrcI->getOperand(0));
7780
7781 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007782}
7783
Chris Lattnerdeef1a72008-05-19 20:25:04 +00007784Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
7785 // fptosi(sitofp(X)) --> X if the intermediate type has enough bits in its
7786 // mantissa to accurately represent all values of X. For example, do not
7787 // do this with i64->float->i64.
7788 if (SIToFPInst *SrcI = dyn_cast<SIToFPInst>(FI.getOperand(0)))
7789 if (SrcI->getOperand(0)->getType() == FI.getType() &&
7790 (int)FI.getType()->getPrimitiveSizeInBits() <=
Chris Lattner9ce836b2008-05-19 21:17:23 +00007791 SrcI->getType()->getFPMantissaWidth())
Chris Lattnerdeef1a72008-05-19 20:25:04 +00007792 return ReplaceInstUsesWith(FI, SrcI->getOperand(0));
7793
7794 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007795}
7796
7797Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
7798 return commonCastTransforms(CI);
7799}
7800
7801Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7802 return commonCastTransforms(CI);
7803}
7804
7805Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
7806 return commonPointerCastTransforms(CI);
7807}
7808
Chris Lattner7c1626482008-01-08 07:23:51 +00007809Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
7810 if (Instruction *I = commonCastTransforms(CI))
7811 return I;
7812
7813 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
7814 if (!DestPointee->isSized()) return 0;
7815
7816 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
7817 ConstantInt *Cst;
7818 Value *X;
7819 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
7820 m_ConstantInt(Cst)))) {
7821 // If the source and destination operands have the same type, see if this
7822 // is a single-index GEP.
7823 if (X->getType() == CI.getType()) {
7824 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00007825 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00007826
7827 // Convert the constant to intptr type.
7828 APInt Offset = Cst->getValue();
7829 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7830
7831 // If Offset is evenly divisible by Size, we can do this xform.
7832 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7833 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00007834 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00007835 }
7836 }
7837 // TODO: Could handle other cases, e.g. where add is indexing into field of
7838 // struct etc.
7839 } else if (CI.getOperand(0)->hasOneUse() &&
7840 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
7841 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
7842 // "inttoptr+GEP" instead of "add+intptr".
7843
7844 // Get the size of the pointee type.
7845 uint64_t Size = TD->getABITypeSize(DestPointee);
7846
7847 // Convert the constant to intptr type.
7848 APInt Offset = Cst->getValue();
7849 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7850
7851 // If Offset is evenly divisible by Size, we can do this xform.
7852 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7853 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
7854
7855 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
7856 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00007857 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00007858 }
7859 }
7860 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007861}
7862
7863Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
7864 // If the operands are integer typed then apply the integer transforms,
7865 // otherwise just apply the common ones.
7866 Value *Src = CI.getOperand(0);
7867 const Type *SrcTy = Src->getType();
7868 const Type *DestTy = CI.getType();
7869
7870 if (SrcTy->isInteger() && DestTy->isInteger()) {
7871 if (Instruction *Result = commonIntCastTransforms(CI))
7872 return Result;
7873 } else if (isa<PointerType>(SrcTy)) {
7874 if (Instruction *I = commonPointerCastTransforms(CI))
7875 return I;
7876 } else {
7877 if (Instruction *Result = commonCastTransforms(CI))
7878 return Result;
7879 }
7880
7881
7882 // Get rid of casts from one type to the same type. These are useless and can
7883 // be replaced by the operand.
7884 if (DestTy == Src->getType())
7885 return ReplaceInstUsesWith(CI, Src);
7886
7887 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
7888 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
7889 const Type *DstElTy = DstPTy->getElementType();
7890 const Type *SrcElTy = SrcPTy->getElementType();
7891
Nate Begemandf5b3612008-03-31 00:22:16 +00007892 // If the address spaces don't match, don't eliminate the bitcast, which is
7893 // required for changing types.
7894 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
7895 return 0;
7896
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007897 // If we are casting a malloc or alloca to a pointer to a type of the same
7898 // size, rewrite the allocation instruction to allocate the "right" type.
7899 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
7900 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
7901 return V;
7902
7903 // If the source and destination are pointers, and this cast is equivalent
7904 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
7905 // This can enhance SROA and other transforms that want type-safe pointers.
7906 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
7907 unsigned NumZeros = 0;
7908 while (SrcElTy != DstElTy &&
7909 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
7910 SrcElTy->getNumContainedTypes() /* not "{}" */) {
7911 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
7912 ++NumZeros;
7913 }
7914
7915 // If we found a path from the src to dest, create the getelementptr now.
7916 if (SrcElTy == DstElTy) {
7917 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00007918 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
7919 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007920 }
7921 }
7922
7923 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
7924 if (SVI->hasOneUse()) {
7925 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7926 // a bitconvert to a vector with the same # elts.
7927 if (isa<VectorType>(DestTy) &&
7928 cast<VectorType>(DestTy)->getNumElements() ==
7929 SVI->getType()->getNumElements()) {
7930 CastInst *Tmp;
7931 // If either of the operands is a cast from CI.getType(), then
7932 // evaluating the shuffle in the casted destination's type will allow
7933 // us to eliminate at least one cast.
7934 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
7935 Tmp->getOperand(0)->getType() == DestTy) ||
7936 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
7937 Tmp->getOperand(0)->getType() == DestTy)) {
7938 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
7939 SVI->getOperand(0), DestTy, &CI);
7940 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
7941 SVI->getOperand(1), DestTy, &CI);
7942 // Return a new shuffle vector. Use the same element ID's, as we
7943 // know the vector types match #elts.
7944 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
7945 }
7946 }
7947 }
7948 }
7949 return 0;
7950}
7951
7952/// GetSelectFoldableOperands - We want to turn code that looks like this:
7953/// %C = or %A, %B
7954/// %D = select %cond, %C, %A
7955/// into:
7956/// %C = select %cond, %B, 0
7957/// %D = or %A, %C
7958///
7959/// Assuming that the specified instruction is an operand to the select, return
7960/// a bitmask indicating which operands of this instruction are foldable if they
7961/// equal the other incoming value of the select.
7962///
7963static unsigned GetSelectFoldableOperands(Instruction *I) {
7964 switch (I->getOpcode()) {
7965 case Instruction::Add:
7966 case Instruction::Mul:
7967 case Instruction::And:
7968 case Instruction::Or:
7969 case Instruction::Xor:
7970 return 3; // Can fold through either operand.
7971 case Instruction::Sub: // Can only fold on the amount subtracted.
7972 case Instruction::Shl: // Can only fold on the shift amount.
7973 case Instruction::LShr:
7974 case Instruction::AShr:
7975 return 1;
7976 default:
7977 return 0; // Cannot fold
7978 }
7979}
7980
7981/// GetSelectFoldableConstant - For the same transformation as the previous
7982/// function, return the identity constant that goes into the select.
7983static Constant *GetSelectFoldableConstant(Instruction *I) {
7984 switch (I->getOpcode()) {
7985 default: assert(0 && "This cannot happen!"); abort();
7986 case Instruction::Add:
7987 case Instruction::Sub:
7988 case Instruction::Or:
7989 case Instruction::Xor:
7990 case Instruction::Shl:
7991 case Instruction::LShr:
7992 case Instruction::AShr:
7993 return Constant::getNullValue(I->getType());
7994 case Instruction::And:
7995 return Constant::getAllOnesValue(I->getType());
7996 case Instruction::Mul:
7997 return ConstantInt::get(I->getType(), 1);
7998 }
7999}
8000
8001/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8002/// have the same opcode and only one use each. Try to simplify this.
8003Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8004 Instruction *FI) {
8005 if (TI->getNumOperands() == 1) {
8006 // If this is a non-volatile load or a cast from the same type,
8007 // merge.
8008 if (TI->isCast()) {
8009 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8010 return 0;
8011 } else {
8012 return 0; // unknown unary op.
8013 }
8014
8015 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008016 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8017 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008018 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008019 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008020 TI->getType());
8021 }
8022
8023 // Only handle binary operators here.
8024 if (!isa<BinaryOperator>(TI))
8025 return 0;
8026
8027 // Figure out if the operations have any operands in common.
8028 Value *MatchOp, *OtherOpT, *OtherOpF;
8029 bool MatchIsOpZero;
8030 if (TI->getOperand(0) == FI->getOperand(0)) {
8031 MatchOp = TI->getOperand(0);
8032 OtherOpT = TI->getOperand(1);
8033 OtherOpF = FI->getOperand(1);
8034 MatchIsOpZero = true;
8035 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8036 MatchOp = TI->getOperand(1);
8037 OtherOpT = TI->getOperand(0);
8038 OtherOpF = FI->getOperand(0);
8039 MatchIsOpZero = false;
8040 } else if (!TI->isCommutative()) {
8041 return 0;
8042 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8043 MatchOp = TI->getOperand(0);
8044 OtherOpT = TI->getOperand(1);
8045 OtherOpF = FI->getOperand(0);
8046 MatchIsOpZero = true;
8047 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8048 MatchOp = TI->getOperand(1);
8049 OtherOpT = TI->getOperand(0);
8050 OtherOpF = FI->getOperand(1);
8051 MatchIsOpZero = true;
8052 } else {
8053 return 0;
8054 }
8055
8056 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008057 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8058 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008059 InsertNewInstBefore(NewSI, SI);
8060
8061 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8062 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008063 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008064 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008065 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008066 }
8067 assert(0 && "Shouldn't get here");
8068 return 0;
8069}
8070
8071Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8072 Value *CondVal = SI.getCondition();
8073 Value *TrueVal = SI.getTrueValue();
8074 Value *FalseVal = SI.getFalseValue();
8075
8076 // select true, X, Y -> X
8077 // select false, X, Y -> Y
8078 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8079 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8080
8081 // select C, X, X -> X
8082 if (TrueVal == FalseVal)
8083 return ReplaceInstUsesWith(SI, TrueVal);
8084
8085 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8086 return ReplaceInstUsesWith(SI, FalseVal);
8087 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8088 return ReplaceInstUsesWith(SI, TrueVal);
8089 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8090 if (isa<Constant>(TrueVal))
8091 return ReplaceInstUsesWith(SI, TrueVal);
8092 else
8093 return ReplaceInstUsesWith(SI, FalseVal);
8094 }
8095
8096 if (SI.getType() == Type::Int1Ty) {
8097 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8098 if (C->getZExtValue()) {
8099 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008100 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008101 } else {
8102 // Change: A = select B, false, C --> A = and !B, C
8103 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008104 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008105 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008106 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008107 }
8108 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8109 if (C->getZExtValue() == false) {
8110 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008111 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008112 } else {
8113 // Change: A = select B, C, true --> A = or !B, C
8114 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008115 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008116 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008117 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008118 }
8119 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008120
8121 // select a, b, a -> a&b
8122 // select a, a, b -> a|b
8123 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008124 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008125 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008126 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008127 }
8128
8129 // Selecting between two integer constants?
8130 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8131 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8132 // select C, 1, 0 -> zext C to int
8133 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008134 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008135 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8136 // select C, 0, 1 -> zext !C to int
8137 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008138 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008139 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008140 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008141 }
8142
8143 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8144
8145 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8146
8147 // (x <s 0) ? -1 : 0 -> ashr x, 31
8148 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8149 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8150 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8151 // The comparison constant and the result are not neccessarily the
8152 // same width. Make an all-ones value by inserting a AShr.
8153 Value *X = IC->getOperand(0);
8154 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8155 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008156 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008157 ShAmt, "ones");
8158 InsertNewInstBefore(SRA, SI);
8159
8160 // Finally, convert to the type of the select RHS. We figure out
8161 // if this requires a SExt, Trunc or BitCast based on the sizes.
8162 Instruction::CastOps opc = Instruction::BitCast;
8163 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8164 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8165 if (SRASize < SISize)
8166 opc = Instruction::SExt;
8167 else if (SRASize > SISize)
8168 opc = Instruction::Trunc;
Gabor Greifa645dd32008-05-16 19:29:10 +00008169 return CastInst::Create(opc, SRA, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008170 }
8171 }
8172
8173
8174 // If one of the constants is zero (we know they can't both be) and we
8175 // have an icmp instruction with zero, and we have an 'and' with the
8176 // non-constant value, eliminate this whole mess. This corresponds to
8177 // cases like this: ((X & 27) ? 27 : 0)
8178 if (TrueValC->isZero() || FalseValC->isZero())
8179 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8180 cast<Constant>(IC->getOperand(1))->isNullValue())
8181 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8182 if (ICA->getOpcode() == Instruction::And &&
8183 isa<ConstantInt>(ICA->getOperand(1)) &&
8184 (ICA->getOperand(1) == TrueValC ||
8185 ICA->getOperand(1) == FalseValC) &&
8186 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8187 // Okay, now we know that everything is set up, we just don't
8188 // know whether we have a icmp_ne or icmp_eq and whether the
8189 // true or false val is the zero.
8190 bool ShouldNotVal = !TrueValC->isZero();
8191 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8192 Value *V = ICA;
8193 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008194 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008195 Instruction::Xor, V, ICA->getOperand(1)), SI);
8196 return ReplaceInstUsesWith(SI, V);
8197 }
8198 }
8199 }
8200
8201 // See if we are selecting two values based on a comparison of the two values.
8202 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8203 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8204 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008205 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8206 // This is not safe in general for floating point:
8207 // consider X== -0, Y== +0.
8208 // It becomes safe if either operand is a nonzero constant.
8209 ConstantFP *CFPt, *CFPf;
8210 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8211 !CFPt->getValueAPF().isZero()) ||
8212 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8213 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008214 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008215 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008216 // Transform (X != Y) ? X : Y -> X
8217 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8218 return ReplaceInstUsesWith(SI, TrueVal);
8219 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8220
8221 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8222 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008223 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8224 // This is not safe in general for floating point:
8225 // consider X== -0, Y== +0.
8226 // It becomes safe if either operand is a nonzero constant.
8227 ConstantFP *CFPt, *CFPf;
8228 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8229 !CFPt->getValueAPF().isZero()) ||
8230 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8231 !CFPf->getValueAPF().isZero()))
8232 return ReplaceInstUsesWith(SI, FalseVal);
8233 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008234 // Transform (X != Y) ? Y : X -> Y
8235 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8236 return ReplaceInstUsesWith(SI, TrueVal);
8237 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8238 }
8239 }
8240
8241 // See if we are selecting two values based on a comparison of the two values.
8242 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
8243 if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
8244 // Transform (X == Y) ? X : Y -> Y
8245 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
8246 return ReplaceInstUsesWith(SI, FalseVal);
8247 // Transform (X != Y) ? X : Y -> X
8248 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
8249 return ReplaceInstUsesWith(SI, TrueVal);
8250 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8251
8252 } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
8253 // Transform (X == Y) ? Y : X -> X
8254 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
8255 return ReplaceInstUsesWith(SI, FalseVal);
8256 // Transform (X != Y) ? Y : X -> Y
8257 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
8258 return ReplaceInstUsesWith(SI, TrueVal);
8259 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8260 }
8261 }
8262
8263 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8264 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8265 if (TI->hasOneUse() && FI->hasOneUse()) {
8266 Instruction *AddOp = 0, *SubOp = 0;
8267
8268 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8269 if (TI->getOpcode() == FI->getOpcode())
8270 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8271 return IV;
8272
8273 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8274 // even legal for FP.
8275 if (TI->getOpcode() == Instruction::Sub &&
8276 FI->getOpcode() == Instruction::Add) {
8277 AddOp = FI; SubOp = TI;
8278 } else if (FI->getOpcode() == Instruction::Sub &&
8279 TI->getOpcode() == Instruction::Add) {
8280 AddOp = TI; SubOp = FI;
8281 }
8282
8283 if (AddOp) {
8284 Value *OtherAddOp = 0;
8285 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8286 OtherAddOp = AddOp->getOperand(1);
8287 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8288 OtherAddOp = AddOp->getOperand(0);
8289 }
8290
8291 if (OtherAddOp) {
8292 // So at this point we know we have (Y -> OtherAddOp):
8293 // select C, (add X, Y), (sub X, Z)
8294 Value *NegVal; // Compute -Z
8295 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8296 NegVal = ConstantExpr::getNeg(C);
8297 } else {
8298 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008299 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008300 }
8301
8302 Value *NewTrueOp = OtherAddOp;
8303 Value *NewFalseOp = NegVal;
8304 if (AddOp != TI)
8305 std::swap(NewTrueOp, NewFalseOp);
8306 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008307 SelectInst::Create(CondVal, NewTrueOp,
8308 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008309
8310 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008311 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008312 }
8313 }
8314 }
8315
8316 // See if we can fold the select into one of our operands.
8317 if (SI.getType()->isInteger()) {
8318 // See the comment above GetSelectFoldableOperands for a description of the
8319 // transformation we are doing here.
8320 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8321 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8322 !isa<Constant>(FalseVal))
8323 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8324 unsigned OpToFold = 0;
8325 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8326 OpToFold = 1;
8327 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8328 OpToFold = 2;
8329 }
8330
8331 if (OpToFold) {
8332 Constant *C = GetSelectFoldableConstant(TVI);
8333 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008334 SelectInst::Create(SI.getCondition(),
8335 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008336 InsertNewInstBefore(NewSel, SI);
8337 NewSel->takeName(TVI);
8338 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008339 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008340 else {
8341 assert(0 && "Unknown instruction!!");
8342 }
8343 }
8344 }
8345
8346 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8347 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8348 !isa<Constant>(TrueVal))
8349 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8350 unsigned OpToFold = 0;
8351 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8352 OpToFold = 1;
8353 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8354 OpToFold = 2;
8355 }
8356
8357 if (OpToFold) {
8358 Constant *C = GetSelectFoldableConstant(FVI);
8359 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008360 SelectInst::Create(SI.getCondition(), C,
8361 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008362 InsertNewInstBefore(NewSel, SI);
8363 NewSel->takeName(FVI);
8364 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008365 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008366 else
8367 assert(0 && "Unknown instruction!!");
8368 }
8369 }
8370 }
8371
8372 if (BinaryOperator::isNot(CondVal)) {
8373 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8374 SI.setOperand(1, FalseVal);
8375 SI.setOperand(2, TrueVal);
8376 return &SI;
8377 }
8378
8379 return 0;
8380}
8381
Dan Gohman2d648bb2008-04-10 18:43:06 +00008382/// EnforceKnownAlignment - If the specified pointer points to an object that
8383/// we control, modify the object's alignment to PrefAlign. This isn't
8384/// often possible though. If alignment is important, a more reliable approach
8385/// is to simply align all global variables and allocation instructions to
8386/// their preferred alignment from the beginning.
8387///
8388static unsigned EnforceKnownAlignment(Value *V,
8389 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00008390
Dan Gohman2d648bb2008-04-10 18:43:06 +00008391 User *U = dyn_cast<User>(V);
8392 if (!U) return Align;
8393
8394 switch (getOpcode(U)) {
8395 default: break;
8396 case Instruction::BitCast:
8397 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8398 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008399 // If all indexes are zero, it is just the alignment of the base pointer.
8400 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00008401 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00008402 if (!isa<Constant>(*i) ||
8403 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008404 AllZeroOperands = false;
8405 break;
8406 }
Chris Lattner47cf3452007-08-09 19:05:49 +00008407
8408 if (AllZeroOperands) {
8409 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008410 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00008411 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008412 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008413 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008414 }
8415
8416 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8417 // If there is a large requested alignment and we can, bump up the alignment
8418 // of the global.
8419 if (!GV->isDeclaration()) {
8420 GV->setAlignment(PrefAlign);
8421 Align = PrefAlign;
8422 }
8423 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8424 // If there is a requested alignment and if this is an alloca, round up. We
8425 // don't do this for malloc, because some systems can't respect the request.
8426 if (isa<AllocaInst>(AI)) {
8427 AI->setAlignment(PrefAlign);
8428 Align = PrefAlign;
8429 }
8430 }
8431
8432 return Align;
8433}
8434
8435/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
8436/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
8437/// and it is more than the alignment of the ultimate object, see if we can
8438/// increase the alignment of the ultimate object, making this check succeed.
8439unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
8440 unsigned PrefAlign) {
8441 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
8442 sizeof(PrefAlign) * CHAR_BIT;
8443 APInt Mask = APInt::getAllOnesValue(BitWidth);
8444 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8445 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
8446 unsigned TrailZ = KnownZero.countTrailingOnes();
8447 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
8448
8449 if (PrefAlign > Align)
8450 Align = EnforceKnownAlignment(V, Align, PrefAlign);
8451
8452 // We don't need to make any adjustment.
8453 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008454}
8455
Chris Lattner00ae5132008-01-13 23:50:23 +00008456Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00008457 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
8458 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00008459 unsigned MinAlign = std::min(DstAlign, SrcAlign);
8460 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
8461
8462 if (CopyAlign < MinAlign) {
8463 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
8464 return MI;
8465 }
8466
8467 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
8468 // load/store.
8469 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
8470 if (MemOpLength == 0) return 0;
8471
Chris Lattnerc669fb62008-01-14 00:28:35 +00008472 // Source and destination pointer types are always "i8*" for intrinsic. See
8473 // if the size is something we can handle with a single primitive load/store.
8474 // A single load+store correctly handles overlapping memory in the memmove
8475 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00008476 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00008477 if (Size == 0) return MI; // Delete this mem transfer.
8478
8479 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00008480 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00008481
Chris Lattnerc669fb62008-01-14 00:28:35 +00008482 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00008483 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00008484
8485 // Memcpy forces the use of i8* for the source and destination. That means
8486 // that if you're using memcpy to move one double around, you'll get a cast
8487 // from double* to i8*. We'd much rather use a double load+store rather than
8488 // an i64 load+store, here because this improves the odds that the source or
8489 // dest address will be promotable. See if we can find a better type than the
8490 // integer datatype.
8491 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
8492 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
8493 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
8494 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
8495 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00008496 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00008497 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
8498 if (STy->getNumElements() == 1)
8499 SrcETy = STy->getElementType(0);
8500 else
8501 break;
8502 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
8503 if (ATy->getNumElements() == 1)
8504 SrcETy = ATy->getElementType();
8505 else
8506 break;
8507 } else
8508 break;
8509 }
8510
Dan Gohmanb8e94f62008-05-23 01:52:21 +00008511 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00008512 NewPtrTy = PointerType::getUnqual(SrcETy);
8513 }
8514 }
8515
8516
Chris Lattner00ae5132008-01-13 23:50:23 +00008517 // If the memcpy/memmove provides better alignment info than we can
8518 // infer, use it.
8519 SrcAlign = std::max(SrcAlign, CopyAlign);
8520 DstAlign = std::max(DstAlign, CopyAlign);
8521
8522 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
8523 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00008524 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
8525 InsertNewInstBefore(L, *MI);
8526 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
8527
8528 // Set the size of the copy to 0, it will be deleted on the next iteration.
8529 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
8530 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00008531}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008532
Chris Lattner5af8a912008-04-30 06:39:11 +00008533Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
8534 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
8535 if (MI->getAlignment()->getZExtValue() < Alignment) {
8536 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
8537 return MI;
8538 }
8539
8540 // Extract the length and alignment and fill if they are constant.
8541 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
8542 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
8543 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
8544 return 0;
8545 uint64_t Len = LenC->getZExtValue();
8546 Alignment = MI->getAlignment()->getZExtValue();
8547
8548 // If the length is zero, this is a no-op
8549 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
8550
8551 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
8552 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
8553 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
8554
8555 Value *Dest = MI->getDest();
8556 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
8557
8558 // Alignment 0 is identity for alignment 1 for memset, but not store.
8559 if (Alignment == 0) Alignment = 1;
8560
8561 // Extract the fill value and store.
8562 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
8563 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
8564 Alignment), *MI);
8565
8566 // Set the size of the copy to 0, it will be deleted on the next iteration.
8567 MI->setLength(Constant::getNullValue(LenC->getType()));
8568 return MI;
8569 }
8570
8571 return 0;
8572}
8573
8574
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008575/// visitCallInst - CallInst simplification. This mostly only handles folding
8576/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
8577/// the heavy lifting.
8578///
8579Instruction *InstCombiner::visitCallInst(CallInst &CI) {
8580 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
8581 if (!II) return visitCallSite(&CI);
8582
8583 // Intrinsics cannot occur in an invoke, so handle them here instead of in
8584 // visitCallSite.
8585 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
8586 bool Changed = false;
8587
8588 // memmove/cpy/set of zero bytes is a noop.
8589 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
8590 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
8591
8592 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
8593 if (CI->getZExtValue() == 1) {
8594 // Replace the instruction with just byte operations. We would
8595 // transform other cases to loads/stores, but we don't know if
8596 // alignment is sufficient.
8597 }
8598 }
8599
8600 // If we have a memmove and the source operation is a constant global,
8601 // then the source and dest pointers can't alias, so we can change this
8602 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00008603 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008604 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
8605 if (GVSrc->isConstant()) {
8606 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008607 Intrinsic::ID MemCpyID;
8608 if (CI.getOperand(3)->getType() == Type::Int32Ty)
8609 MemCpyID = Intrinsic::memcpy_i32;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008610 else
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008611 MemCpyID = Intrinsic::memcpy_i64;
8612 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008613 Changed = true;
8614 }
Chris Lattner59b27d92008-05-28 05:30:41 +00008615
8616 // memmove(x,x,size) -> noop.
8617 if (MMI->getSource() == MMI->getDest())
8618 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008619 }
8620
8621 // If we can determine a pointer alignment that is bigger than currently
8622 // set, update the alignment.
8623 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00008624 if (Instruction *I = SimplifyMemTransfer(MI))
8625 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00008626 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
8627 if (Instruction *I = SimplifyMemSet(MSI))
8628 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008629 }
8630
8631 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00008632 }
8633
8634 switch (II->getIntrinsicID()) {
8635 default: break;
8636 case Intrinsic::bswap:
8637 // bswap(bswap(x)) -> x
8638 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
8639 if (Operand->getIntrinsicID() == Intrinsic::bswap)
8640 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
8641 break;
8642 case Intrinsic::ppc_altivec_lvx:
8643 case Intrinsic::ppc_altivec_lvxl:
8644 case Intrinsic::x86_sse_loadu_ps:
8645 case Intrinsic::x86_sse2_loadu_pd:
8646 case Intrinsic::x86_sse2_loadu_dq:
8647 // Turn PPC lvx -> load if the pointer is known aligned.
8648 // Turn X86 loadups -> load if the pointer is known aligned.
8649 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
8650 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
8651 PointerType::getUnqual(II->getType()),
8652 CI);
8653 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008654 }
Chris Lattner989ba312008-06-18 04:33:20 +00008655 break;
8656 case Intrinsic::ppc_altivec_stvx:
8657 case Intrinsic::ppc_altivec_stvxl:
8658 // Turn stvx -> store if the pointer is known aligned.
8659 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
8660 const Type *OpPtrTy =
8661 PointerType::getUnqual(II->getOperand(1)->getType());
8662 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
8663 return new StoreInst(II->getOperand(1), Ptr);
8664 }
8665 break;
8666 case Intrinsic::x86_sse_storeu_ps:
8667 case Intrinsic::x86_sse2_storeu_pd:
8668 case Intrinsic::x86_sse2_storeu_dq:
8669 case Intrinsic::x86_sse2_storel_dq:
8670 // Turn X86 storeu -> store if the pointer is known aligned.
8671 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
8672 const Type *OpPtrTy =
8673 PointerType::getUnqual(II->getOperand(2)->getType());
8674 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
8675 return new StoreInst(II->getOperand(2), Ptr);
8676 }
8677 break;
8678
8679 case Intrinsic::x86_sse_cvttss2si: {
8680 // These intrinsics only demands the 0th element of its input vector. If
8681 // we can simplify the input based on that, do so now.
8682 uint64_t UndefElts;
8683 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
8684 UndefElts)) {
8685 II->setOperand(1, V);
8686 return II;
8687 }
8688 break;
8689 }
8690
8691 case Intrinsic::ppc_altivec_vperm:
8692 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
8693 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
8694 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008695
Chris Lattner989ba312008-06-18 04:33:20 +00008696 // Check that all of the elements are integer constants or undefs.
8697 bool AllEltsOk = true;
8698 for (unsigned i = 0; i != 16; ++i) {
8699 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
8700 !isa<UndefValue>(Mask->getOperand(i))) {
8701 AllEltsOk = false;
8702 break;
8703 }
8704 }
8705
8706 if (AllEltsOk) {
8707 // Cast the input vectors to byte vectors.
8708 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
8709 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
8710 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008711
Chris Lattner989ba312008-06-18 04:33:20 +00008712 // Only extract each element once.
8713 Value *ExtractedElts[32];
8714 memset(ExtractedElts, 0, sizeof(ExtractedElts));
8715
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008716 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00008717 if (isa<UndefValue>(Mask->getOperand(i)))
8718 continue;
8719 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
8720 Idx &= 31; // Match the hardware behavior.
8721
8722 if (ExtractedElts[Idx] == 0) {
8723 Instruction *Elt =
8724 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
8725 InsertNewInstBefore(Elt, CI);
8726 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008727 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008728
Chris Lattner989ba312008-06-18 04:33:20 +00008729 // Insert this value into the result vector.
8730 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
8731 i, "tmp");
8732 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008733 }
Chris Lattner989ba312008-06-18 04:33:20 +00008734 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008735 }
Chris Lattner989ba312008-06-18 04:33:20 +00008736 }
8737 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008738
Chris Lattner989ba312008-06-18 04:33:20 +00008739 case Intrinsic::stackrestore: {
8740 // If the save is right next to the restore, remove the restore. This can
8741 // happen when variable allocas are DCE'd.
8742 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
8743 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
8744 BasicBlock::iterator BI = SS;
8745 if (&*++BI == II)
8746 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008747 }
Chris Lattner989ba312008-06-18 04:33:20 +00008748 }
8749
8750 // Scan down this block to see if there is another stack restore in the
8751 // same block without an intervening call/alloca.
8752 BasicBlock::iterator BI = II;
8753 TerminatorInst *TI = II->getParent()->getTerminator();
8754 bool CannotRemove = false;
8755 for (++BI; &*BI != TI; ++BI) {
8756 if (isa<AllocaInst>(BI)) {
8757 CannotRemove = true;
8758 break;
8759 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00008760 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
8761 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
8762 // If there is a stackrestore below this one, remove this one.
8763 if (II->getIntrinsicID() == Intrinsic::stackrestore)
8764 return EraseInstFromFunction(CI);
8765 // Otherwise, ignore the intrinsic.
8766 } else {
8767 // If we found a non-intrinsic call, we can't remove the stack
8768 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00008769 CannotRemove = true;
8770 break;
8771 }
Chris Lattner989ba312008-06-18 04:33:20 +00008772 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008773 }
Chris Lattner989ba312008-06-18 04:33:20 +00008774
8775 // If the stack restore is in a return/unwind block and if there are no
8776 // allocas or calls between the restore and the return, nuke the restore.
8777 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
8778 return EraseInstFromFunction(CI);
8779 break;
8780 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008781 }
8782
8783 return visitCallSite(II);
8784}
8785
8786// InvokeInst simplification
8787//
8788Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
8789 return visitCallSite(&II);
8790}
8791
Dale Johannesen96021832008-04-25 21:16:07 +00008792/// isSafeToEliminateVarargsCast - If this cast does not affect the value
8793/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00008794static bool isSafeToEliminateVarargsCast(const CallSite CS,
8795 const CastInst * const CI,
8796 const TargetData * const TD,
8797 const int ix) {
8798 if (!CI->isLosslessCast())
8799 return false;
8800
8801 // The size of ByVal arguments is derived from the type, so we
8802 // can't change to a type with a different size. If the size were
8803 // passed explicitly we could avoid this check.
8804 if (!CS.paramHasAttr(ix, ParamAttr::ByVal))
8805 return true;
8806
8807 const Type* SrcTy =
8808 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
8809 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
8810 if (!SrcTy->isSized() || !DstTy->isSized())
8811 return false;
8812 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
8813 return false;
8814 return true;
8815}
8816
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008817// visitCallSite - Improvements for call and invoke instructions.
8818//
8819Instruction *InstCombiner::visitCallSite(CallSite CS) {
8820 bool Changed = false;
8821
8822 // If the callee is a constexpr cast of a function, attempt to move the cast
8823 // to the arguments of the call/invoke.
8824 if (transformConstExprCastCall(CS)) return 0;
8825
8826 Value *Callee = CS.getCalledValue();
8827
8828 if (Function *CalleeF = dyn_cast<Function>(Callee))
8829 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
8830 Instruction *OldCall = CS.getInstruction();
8831 // If the call and callee calling conventions don't match, this call must
8832 // be unreachable, as the call is undefined.
8833 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00008834 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
8835 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008836 if (!OldCall->use_empty())
8837 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
8838 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
8839 return EraseInstFromFunction(*OldCall);
8840 return 0;
8841 }
8842
8843 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
8844 // This instruction is not reachable, just remove it. We insert a store to
8845 // undef so that we know that this code is not reachable, despite the fact
8846 // that we can't modify the CFG here.
8847 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00008848 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008849 CS.getInstruction());
8850
8851 if (!CS.getInstruction()->use_empty())
8852 CS.getInstruction()->
8853 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
8854
8855 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
8856 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008857 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
8858 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008859 }
8860 return EraseInstFromFunction(*CS.getInstruction());
8861 }
8862
Duncan Sands74833f22007-09-17 10:26:40 +00008863 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
8864 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
8865 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
8866 return transformCallThroughTrampoline(CS);
8867
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008868 const PointerType *PTy = cast<PointerType>(Callee->getType());
8869 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
8870 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00008871 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008872 // See if we can optimize any arguments passed through the varargs area of
8873 // the call.
8874 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00008875 E = CS.arg_end(); I != E; ++I, ++ix) {
8876 CastInst *CI = dyn_cast<CastInst>(*I);
8877 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
8878 *I = CI->getOperand(0);
8879 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008880 }
Dale Johannesen35615462008-04-23 18:34:37 +00008881 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008882 }
8883
Duncan Sands2937e352007-12-19 21:13:37 +00008884 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00008885 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00008886 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00008887 Changed = true;
8888 }
8889
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008890 return Changed ? CS.getInstruction() : 0;
8891}
8892
8893// transformConstExprCastCall - If the callee is a constexpr cast of a function,
8894// attempt to move the cast to the arguments of the call/invoke.
8895//
8896bool InstCombiner::transformConstExprCastCall(CallSite CS) {
8897 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
8898 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
8899 if (CE->getOpcode() != Instruction::BitCast ||
8900 !isa<Function>(CE->getOperand(0)))
8901 return false;
8902 Function *Callee = cast<Function>(CE->getOperand(0));
8903 Instruction *Caller = CS.getInstruction();
Chris Lattner1c8733e2008-03-12 17:45:29 +00008904 const PAListPtr &CallerPAL = CS.getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008905
8906 // Okay, this is a cast from a function to a different type. Unless doing so
8907 // would cause a type conversion of one of our arguments, change this call to
8908 // be a direct call with arguments casted to the appropriate types.
8909 //
8910 const FunctionType *FT = Callee->getFunctionType();
8911 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00008912 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008913
Duncan Sands7901ce12008-06-01 07:38:42 +00008914 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00008915 return false; // TODO: Handle multiple return values.
8916
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008917 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00008918 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00008919 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00008920 // Conversion is ok if changing from one pointer type to another or from
8921 // a pointer to an integer of the same size.
8922 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00008923 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008924 return false; // Cannot transform this return value.
8925
Duncan Sands5c489582008-01-06 10:12:28 +00008926 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00008927 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00008928 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00008929 return false; // Cannot transform this return value.
8930
Chris Lattner1c8733e2008-03-12 17:45:29 +00008931 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
8932 ParameterAttributes RAttrs = CallerPAL.getParamAttrs(0);
Duncan Sands7901ce12008-06-01 07:38:42 +00008933 if (RAttrs & ParamAttr::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00008934 return false; // Attribute not compatible with transformed value.
8935 }
Duncan Sandsc849e662008-01-06 18:27:01 +00008936
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008937 // If the callsite is an invoke instruction, and the return value is used by
8938 // a PHI node in a successor, we cannot change the return type of the call
8939 // because there is no place to put the cast instruction (without breaking
8940 // the critical edge). Bail out in this case.
8941 if (!Caller->use_empty())
8942 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
8943 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
8944 UI != E; ++UI)
8945 if (PHINode *PN = dyn_cast<PHINode>(*UI))
8946 if (PN->getParent() == II->getNormalDest() ||
8947 PN->getParent() == II->getUnwindDest())
8948 return false;
8949 }
8950
8951 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
8952 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
8953
8954 CallSite::arg_iterator AI = CS.arg_begin();
8955 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
8956 const Type *ParamTy = FT->getParamType(i);
8957 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00008958
8959 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00008960 return false; // Cannot transform this parameter value.
8961
Chris Lattner1c8733e2008-03-12 17:45:29 +00008962 if (CallerPAL.getParamAttrs(i + 1) & ParamAttr::typeIncompatible(ParamTy))
8963 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00008964
Duncan Sands7901ce12008-06-01 07:38:42 +00008965 // Converting from one pointer type to another or between a pointer and an
8966 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008967 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00008968 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
8969 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008970 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008971 }
8972
8973 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
8974 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00008975 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008976
Chris Lattner1c8733e2008-03-12 17:45:29 +00008977 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
8978 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00008979 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00008980 // won't be dropping them. Check that these extra arguments have attributes
8981 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00008982 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
8983 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00008984 break;
Chris Lattner1c8733e2008-03-12 17:45:29 +00008985 ParameterAttributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Duncan Sands4ced1f82008-01-13 08:02:44 +00008986 if (PAttrs & ParamAttr::VarArgsIncompatible)
8987 return false;
8988 }
Duncan Sandsc849e662008-01-06 18:27:01 +00008989
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008990 // Okay, we decided that this is a safe thing to do: go ahead and start
8991 // inserting cast instructions as necessary...
8992 std::vector<Value*> Args;
8993 Args.reserve(NumActualArgs);
Chris Lattner1c8733e2008-03-12 17:45:29 +00008994 SmallVector<ParamAttrsWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00008995 attrVec.reserve(NumCommonArgs);
8996
8997 // Get any return attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00008998 ParameterAttributes RAttrs = CallerPAL.getParamAttrs(0);
Duncan Sandsc849e662008-01-06 18:27:01 +00008999
9000 // If the return value is not being used, the type may not be compatible
9001 // with the existing attributes. Wipe out any problematic attributes.
Duncan Sands7901ce12008-06-01 07:38:42 +00009002 RAttrs &= ~ParamAttr::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009003
9004 // Add the new return attributes.
9005 if (RAttrs)
9006 attrVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009007
9008 AI = CS.arg_begin();
9009 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9010 const Type *ParamTy = FT->getParamType(i);
9011 if ((*AI)->getType() == ParamTy) {
9012 Args.push_back(*AI);
9013 } else {
9014 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9015 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009016 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009017 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9018 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009019
9020 // Add any parameter attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009021 if (ParameterAttributes PAttrs = CallerPAL.getParamAttrs(i + 1))
Duncan Sandsc849e662008-01-06 18:27:01 +00009022 attrVec.push_back(ParamAttrsWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009023 }
9024
9025 // If the function takes more arguments than the call was taking, add them
9026 // now...
9027 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9028 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9029
9030 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009031 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009032 if (!FT->isVarArg()) {
9033 cerr << "WARNING: While resolving call to function '"
9034 << Callee->getName() << "' arguments were dropped!\n";
9035 } else {
9036 // Add all of the arguments in their promoted form to the arg list...
9037 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9038 const Type *PTy = getPromotedType((*AI)->getType());
9039 if (PTy != (*AI)->getType()) {
9040 // Must promote to pass through va_arg area!
9041 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9042 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009043 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009044 InsertNewInstBefore(Cast, *Caller);
9045 Args.push_back(Cast);
9046 } else {
9047 Args.push_back(*AI);
9048 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009049
Duncan Sands4ced1f82008-01-13 08:02:44 +00009050 // Add any parameter attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009051 if (ParameterAttributes PAttrs = CallerPAL.getParamAttrs(i + 1))
Duncan Sands4ced1f82008-01-13 08:02:44 +00009052 attrVec.push_back(ParamAttrsWithIndex::get(i + 1, PAttrs));
9053 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009054 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009055 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009056
Duncan Sands7901ce12008-06-01 07:38:42 +00009057 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009058 Caller->setName(""); // Void type should not have a name.
9059
Chris Lattner1c8733e2008-03-12 17:45:29 +00009060 const PAListPtr &NewCallerPAL = PAListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009061
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009062 Instruction *NC;
9063 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009064 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009065 Args.begin(), Args.end(),
9066 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009067 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Duncan Sandsc849e662008-01-06 18:27:01 +00009068 cast<InvokeInst>(NC)->setParamAttrs(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009069 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009070 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9071 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009072 CallInst *CI = cast<CallInst>(Caller);
9073 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009074 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009075 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Duncan Sandsc849e662008-01-06 18:27:01 +00009076 cast<CallInst>(NC)->setParamAttrs(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009077 }
9078
9079 // Insert a cast of the return type as necessary.
9080 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009081 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009082 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009083 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009084 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009085 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009086
9087 // If this is an invoke instruction, we should insert it after the first
9088 // non-phi, instruction in the normal successor block.
9089 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009090 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009091 InsertNewInstBefore(NC, *I);
9092 } else {
9093 // Otherwise, it's a call, just insert cast right after the call instr
9094 InsertNewInstBefore(NC, *Caller);
9095 }
9096 AddUsersToWorkList(*Caller);
9097 } else {
9098 NV = UndefValue::get(Caller->getType());
9099 }
9100 }
9101
9102 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9103 Caller->replaceAllUsesWith(NV);
9104 Caller->eraseFromParent();
9105 RemoveFromWorkList(Caller);
9106 return true;
9107}
9108
Duncan Sands74833f22007-09-17 10:26:40 +00009109// transformCallThroughTrampoline - Turn a call to a function created by the
9110// init_trampoline intrinsic into a direct call to the underlying function.
9111//
9112Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9113 Value *Callee = CS.getCalledValue();
9114 const PointerType *PTy = cast<PointerType>(Callee->getType());
9115 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00009116 const PAListPtr &Attrs = CS.getParamAttrs();
Duncan Sands48b81112008-01-14 19:52:09 +00009117
9118 // If the call already has the 'nest' attribute somewhere then give up -
9119 // otherwise 'nest' would occur twice after splicing in the chain.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009120 if (Attrs.hasAttrSomewhere(ParamAttr::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009121 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009122
9123 IntrinsicInst *Tramp =
9124 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9125
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009126 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009127 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9128 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9129
Chris Lattner1c8733e2008-03-12 17:45:29 +00009130 const PAListPtr &NestAttrs = NestF->getParamAttrs();
9131 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009132 unsigned NestIdx = 1;
9133 const Type *NestTy = 0;
Dale Johannesenf4666f52008-02-19 21:38:47 +00009134 ParameterAttributes NestAttr = ParamAttr::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009135
9136 // Look for a parameter marked with the 'nest' attribute.
9137 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9138 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Chris Lattner1c8733e2008-03-12 17:45:29 +00009139 if (NestAttrs.paramHasAttr(NestIdx, ParamAttr::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009140 // Record the parameter type and any other attributes.
9141 NestTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009142 NestAttr = NestAttrs.getParamAttrs(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009143 break;
9144 }
9145
9146 if (NestTy) {
9147 Instruction *Caller = CS.getInstruction();
9148 std::vector<Value*> NewArgs;
9149 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9150
Chris Lattner1c8733e2008-03-12 17:45:29 +00009151 SmallVector<ParamAttrsWithIndex, 8> NewAttrs;
9152 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009153
Duncan Sands74833f22007-09-17 10:26:40 +00009154 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009155 // mean appending it. Likewise for attributes.
9156
9157 // Add any function result attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009158 if (ParameterAttributes Attr = Attrs.getParamAttrs(0))
9159 NewAttrs.push_back(ParamAttrsWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009160
Duncan Sands74833f22007-09-17 10:26:40 +00009161 {
9162 unsigned Idx = 1;
9163 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9164 do {
9165 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009166 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009167 Value *NestVal = Tramp->getOperand(3);
9168 if (NestVal->getType() != NestTy)
9169 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9170 NewArgs.push_back(NestVal);
Duncan Sands48b81112008-01-14 19:52:09 +00009171 NewAttrs.push_back(ParamAttrsWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009172 }
9173
9174 if (I == E)
9175 break;
9176
Duncan Sands48b81112008-01-14 19:52:09 +00009177 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009178 NewArgs.push_back(*I);
Chris Lattner1c8733e2008-03-12 17:45:29 +00009179 if (ParameterAttributes Attr = Attrs.getParamAttrs(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009180 NewAttrs.push_back
9181 (ParamAttrsWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009182
9183 ++Idx, ++I;
9184 } while (1);
9185 }
9186
9187 // The trampoline may have been bitcast to a bogus type (FTy).
9188 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009189 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009190
Duncan Sands74833f22007-09-17 10:26:40 +00009191 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009192 NewTypes.reserve(FTy->getNumParams()+1);
9193
Duncan Sands74833f22007-09-17 10:26:40 +00009194 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009195 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009196 {
9197 unsigned Idx = 1;
9198 FunctionType::param_iterator I = FTy->param_begin(),
9199 E = FTy->param_end();
9200
9201 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009202 if (Idx == NestIdx)
9203 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009204 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009205
9206 if (I == E)
9207 break;
9208
Duncan Sands48b81112008-01-14 19:52:09 +00009209 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009210 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009211
9212 ++Idx, ++I;
9213 } while (1);
9214 }
9215
9216 // Replace the trampoline call with a direct call. Let the generic
9217 // code sort out any function type mismatches.
9218 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009219 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009220 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9221 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Chris Lattner1c8733e2008-03-12 17:45:29 +00009222 const PAListPtr &NewPAL = PAListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009223
9224 Instruction *NewCaller;
9225 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009226 NewCaller = InvokeInst::Create(NewCallee,
9227 II->getNormalDest(), II->getUnwindDest(),
9228 NewArgs.begin(), NewArgs.end(),
9229 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009230 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009231 cast<InvokeInst>(NewCaller)->setParamAttrs(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009232 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009233 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9234 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009235 if (cast<CallInst>(Caller)->isTailCall())
9236 cast<CallInst>(NewCaller)->setTailCall();
9237 cast<CallInst>(NewCaller)->
9238 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009239 cast<CallInst>(NewCaller)->setParamAttrs(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009240 }
9241 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9242 Caller->replaceAllUsesWith(NewCaller);
9243 Caller->eraseFromParent();
9244 RemoveFromWorkList(Caller);
9245 return 0;
9246 }
9247 }
9248
9249 // Replace the trampoline call with a direct call. Since there is no 'nest'
9250 // parameter, there is no need to adjust the argument list. Let the generic
9251 // code sort out any function type mismatches.
9252 Constant *NewCallee =
9253 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9254 CS.setCalledFunction(NewCallee);
9255 return CS.getInstruction();
9256}
9257
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009258/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9259/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9260/// and a single binop.
9261Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9262 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9263 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9264 isa<CmpInst>(FirstInst));
9265 unsigned Opc = FirstInst->getOpcode();
9266 Value *LHSVal = FirstInst->getOperand(0);
9267 Value *RHSVal = FirstInst->getOperand(1);
9268
9269 const Type *LHSType = LHSVal->getType();
9270 const Type *RHSType = RHSVal->getType();
9271
9272 // Scan to see if all operands are the same opcode, all have one use, and all
9273 // kill their operands (i.e. the operands have one use).
9274 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9275 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9276 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9277 // Verify type of the LHS matches so we don't fold cmp's of different
9278 // types or GEP's with different index types.
9279 I->getOperand(0)->getType() != LHSType ||
9280 I->getOperand(1)->getType() != RHSType)
9281 return 0;
9282
9283 // If they are CmpInst instructions, check their predicates
9284 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9285 if (cast<CmpInst>(I)->getPredicate() !=
9286 cast<CmpInst>(FirstInst)->getPredicate())
9287 return 0;
9288
9289 // Keep track of which operand needs a phi node.
9290 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9291 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9292 }
9293
9294 // Otherwise, this is safe to transform, determine if it is profitable.
9295
9296 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9297 // Indexes are often folded into load/store instructions, so we don't want to
9298 // hide them behind a phi.
9299 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9300 return 0;
9301
9302 Value *InLHS = FirstInst->getOperand(0);
9303 Value *InRHS = FirstInst->getOperand(1);
9304 PHINode *NewLHS = 0, *NewRHS = 0;
9305 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009306 NewLHS = PHINode::Create(LHSType,
9307 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009308 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9309 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9310 InsertNewInstBefore(NewLHS, PN);
9311 LHSVal = NewLHS;
9312 }
9313
9314 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009315 NewRHS = PHINode::Create(RHSType,
9316 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009317 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9318 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9319 InsertNewInstBefore(NewRHS, PN);
9320 RHSVal = NewRHS;
9321 }
9322
9323 // Add all operands to the new PHIs.
9324 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9325 if (NewLHS) {
9326 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9327 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9328 }
9329 if (NewRHS) {
9330 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9331 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9332 }
9333 }
9334
9335 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009336 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009337 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009338 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009339 RHSVal);
9340 else {
9341 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greifd6da1d02008-04-06 20:25:17 +00009342 return GetElementPtrInst::Create(LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009343 }
9344}
9345
9346/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9347/// of the block that defines it. This means that it must be obvious the value
9348/// of the load is not changed from the point of the load to the end of the
9349/// block it is in.
9350///
9351/// Finally, it is safe, but not profitable, to sink a load targetting a
9352/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9353/// to a register.
9354static bool isSafeToSinkLoad(LoadInst *L) {
9355 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9356
9357 for (++BBI; BBI != E; ++BBI)
9358 if (BBI->mayWriteToMemory())
9359 return false;
9360
9361 // Check for non-address taken alloca. If not address-taken already, it isn't
9362 // profitable to do this xform.
9363 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9364 bool isAddressTaken = false;
9365 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9366 UI != E; ++UI) {
9367 if (isa<LoadInst>(UI)) continue;
9368 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9369 // If storing TO the alloca, then the address isn't taken.
9370 if (SI->getOperand(1) == AI) continue;
9371 }
9372 isAddressTaken = true;
9373 break;
9374 }
9375
9376 if (!isAddressTaken)
9377 return false;
9378 }
9379
9380 return true;
9381}
9382
9383
9384// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9385// operator and they all are only used by the PHI, PHI together their
9386// inputs, and do the operation once, to the result of the PHI.
9387Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9388 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9389
9390 // Scan the instruction, looking for input operations that can be folded away.
9391 // If all input operands to the phi are the same instruction (e.g. a cast from
9392 // the same type or "+42") we can pull the operation through the PHI, reducing
9393 // code size and simplifying code.
9394 Constant *ConstantOp = 0;
9395 const Type *CastSrcTy = 0;
9396 bool isVolatile = false;
9397 if (isa<CastInst>(FirstInst)) {
9398 CastSrcTy = FirstInst->getOperand(0)->getType();
9399 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9400 // Can fold binop, compare or shift here if the RHS is a constant,
9401 // otherwise call FoldPHIArgBinOpIntoPHI.
9402 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9403 if (ConstantOp == 0)
9404 return FoldPHIArgBinOpIntoPHI(PN);
9405 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9406 isVolatile = LI->isVolatile();
9407 // We can't sink the load if the loaded value could be modified between the
9408 // load and the PHI.
9409 if (LI->getParent() != PN.getIncomingBlock(0) ||
9410 !isSafeToSinkLoad(LI))
9411 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009412
9413 // If the PHI is of volatile loads and the load block has multiple
9414 // successors, sinking it would remove a load of the volatile value from
9415 // the path through the other successor.
9416 if (isVolatile &&
9417 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9418 return 0;
9419
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009420 } else if (isa<GetElementPtrInst>(FirstInst)) {
9421 if (FirstInst->getNumOperands() == 2)
9422 return FoldPHIArgBinOpIntoPHI(PN);
9423 // Can't handle general GEPs yet.
9424 return 0;
9425 } else {
9426 return 0; // Cannot fold this operation.
9427 }
9428
9429 // Check to see if all arguments are the same operation.
9430 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9431 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
9432 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
9433 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
9434 return 0;
9435 if (CastSrcTy) {
9436 if (I->getOperand(0)->getType() != CastSrcTy)
9437 return 0; // Cast operation must match.
9438 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9439 // We can't sink the load if the loaded value could be modified between
9440 // the load and the PHI.
9441 if (LI->isVolatile() != isVolatile ||
9442 LI->getParent() != PN.getIncomingBlock(i) ||
9443 !isSafeToSinkLoad(LI))
9444 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +00009445
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009446 // If the PHI is of volatile loads and the load block has multiple
9447 // successors, sinking it would remove a load of the volatile value from
9448 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +00009449 if (isVolatile &&
9450 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9451 return 0;
9452
9453
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009454 } else if (I->getOperand(1) != ConstantOp) {
9455 return 0;
9456 }
9457 }
9458
9459 // Okay, they are all the same operation. Create a new PHI node of the
9460 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009461 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
9462 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009463 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
9464
9465 Value *InVal = FirstInst->getOperand(0);
9466 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
9467
9468 // Add all operands to the new PHI.
9469 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9470 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9471 if (NewInVal != InVal)
9472 InVal = 0;
9473 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
9474 }
9475
9476 Value *PhiVal;
9477 if (InVal) {
9478 // The new PHI unions all of the same values together. This is really
9479 // common, so we handle it intelligently here for compile-time speed.
9480 PhiVal = InVal;
9481 delete NewPN;
9482 } else {
9483 InsertNewInstBefore(NewPN, PN);
9484 PhiVal = NewPN;
9485 }
9486
9487 // Insert and return the new operation.
9488 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009489 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +00009490 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009491 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +00009492 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009493 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009494 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +00009495 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
9496
9497 // If this was a volatile load that we are merging, make sure to loop through
9498 // and mark all the input loads as non-volatile. If we don't do this, we will
9499 // insert a new volatile load and the old ones will not be deletable.
9500 if (isVolatile)
9501 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
9502 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
9503
9504 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009505}
9506
9507/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
9508/// that is dead.
9509static bool DeadPHICycle(PHINode *PN,
9510 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
9511 if (PN->use_empty()) return true;
9512 if (!PN->hasOneUse()) return false;
9513
9514 // Remember this node, and if we find the cycle, return.
9515 if (!PotentiallyDeadPHIs.insert(PN))
9516 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +00009517
9518 // Don't scan crazily complex things.
9519 if (PotentiallyDeadPHIs.size() == 16)
9520 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009521
9522 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
9523 return DeadPHICycle(PU, PotentiallyDeadPHIs);
9524
9525 return false;
9526}
9527
Chris Lattner27b695d2007-11-06 21:52:06 +00009528/// PHIsEqualValue - Return true if this phi node is always equal to
9529/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
9530/// z = some value; x = phi (y, z); y = phi (x, z)
9531static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
9532 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
9533 // See if we already saw this PHI node.
9534 if (!ValueEqualPHIs.insert(PN))
9535 return true;
9536
9537 // Don't scan crazily complex things.
9538 if (ValueEqualPHIs.size() == 16)
9539 return false;
9540
9541 // Scan the operands to see if they are either phi nodes or are equal to
9542 // the value.
9543 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9544 Value *Op = PN->getIncomingValue(i);
9545 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
9546 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
9547 return false;
9548 } else if (Op != NonPhiInVal)
9549 return false;
9550 }
9551
9552 return true;
9553}
9554
9555
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009556// PHINode simplification
9557//
9558Instruction *InstCombiner::visitPHINode(PHINode &PN) {
9559 // If LCSSA is around, don't mess with Phi nodes
9560 if (MustPreserveLCSSA) return 0;
9561
9562 if (Value *V = PN.hasConstantValue())
9563 return ReplaceInstUsesWith(PN, V);
9564
9565 // If all PHI operands are the same operation, pull them through the PHI,
9566 // reducing code size.
9567 if (isa<Instruction>(PN.getIncomingValue(0)) &&
9568 PN.getIncomingValue(0)->hasOneUse())
9569 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
9570 return Result;
9571
9572 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
9573 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
9574 // PHI)... break the cycle.
9575 if (PN.hasOneUse()) {
9576 Instruction *PHIUser = cast<Instruction>(PN.use_back());
9577 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
9578 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
9579 PotentiallyDeadPHIs.insert(&PN);
9580 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
9581 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9582 }
9583
9584 // If this phi has a single use, and if that use just computes a value for
9585 // the next iteration of a loop, delete the phi. This occurs with unused
9586 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
9587 // common case here is good because the only other things that catch this
9588 // are induction variable analysis (sometimes) and ADCE, which is only run
9589 // late.
9590 if (PHIUser->hasOneUse() &&
9591 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
9592 PHIUser->use_back() == &PN) {
9593 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9594 }
9595 }
9596
Chris Lattner27b695d2007-11-06 21:52:06 +00009597 // We sometimes end up with phi cycles that non-obviously end up being the
9598 // same value, for example:
9599 // z = some value; x = phi (y, z); y = phi (x, z)
9600 // where the phi nodes don't necessarily need to be in the same block. Do a
9601 // quick check to see if the PHI node only contains a single non-phi value, if
9602 // so, scan to see if the phi cycle is actually equal to that value.
9603 {
9604 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
9605 // Scan for the first non-phi operand.
9606 while (InValNo != NumOperandVals &&
9607 isa<PHINode>(PN.getIncomingValue(InValNo)))
9608 ++InValNo;
9609
9610 if (InValNo != NumOperandVals) {
9611 Value *NonPhiInVal = PN.getOperand(InValNo);
9612
9613 // Scan the rest of the operands to see if there are any conflicts, if so
9614 // there is no need to recursively scan other phis.
9615 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
9616 Value *OpVal = PN.getIncomingValue(InValNo);
9617 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
9618 break;
9619 }
9620
9621 // If we scanned over all operands, then we have one unique value plus
9622 // phi values. Scan PHI nodes to see if they all merge in each other or
9623 // the value.
9624 if (InValNo == NumOperandVals) {
9625 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
9626 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
9627 return ReplaceInstUsesWith(PN, NonPhiInVal);
9628 }
9629 }
9630 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009631 return 0;
9632}
9633
9634static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
9635 Instruction *InsertPoint,
9636 InstCombiner *IC) {
9637 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
9638 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
9639 // We must cast correctly to the pointer type. Ensure that we
9640 // sign extend the integer value if it is smaller as this is
9641 // used for address computation.
9642 Instruction::CastOps opcode =
9643 (VTySize < PtrSize ? Instruction::SExt :
9644 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
9645 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
9646}
9647
9648
9649Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
9650 Value *PtrOp = GEP.getOperand(0);
9651 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
9652 // If so, eliminate the noop.
9653 if (GEP.getNumOperands() == 1)
9654 return ReplaceInstUsesWith(GEP, PtrOp);
9655
9656 if (isa<UndefValue>(GEP.getOperand(0)))
9657 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
9658
9659 bool HasZeroPointerIndex = false;
9660 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
9661 HasZeroPointerIndex = C->isNullValue();
9662
9663 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
9664 return ReplaceInstUsesWith(GEP, PtrOp);
9665
9666 // Eliminate unneeded casts for indices.
9667 bool MadeChange = false;
9668
9669 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +00009670 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
9671 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009672 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +00009673 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009674 if (CI->getOpcode() == Instruction::ZExt ||
9675 CI->getOpcode() == Instruction::SExt) {
9676 const Type *SrcTy = CI->getOperand(0)->getType();
9677 // We can eliminate a cast from i32 to i64 iff the target
9678 // is a 32-bit pointer target.
9679 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
9680 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +00009681 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009682 }
9683 }
9684 }
9685 // If we are using a wider index than needed for this platform, shrink it
9686 // to what we need. If the incoming value needs a cast instruction,
9687 // insert it. This explicit cast can make subsequent optimizations more
9688 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +00009689 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009690 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009691 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +00009692 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009693 MadeChange = true;
9694 } else {
9695 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
9696 GEP);
Gabor Greif17396002008-06-12 21:37:33 +00009697 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009698 MadeChange = true;
9699 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009700 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009701 }
9702 }
9703 if (MadeChange) return &GEP;
9704
9705 // If this GEP instruction doesn't move the pointer, and if the input operand
9706 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
9707 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +00009708 if (GEP.hasAllZeroIndices()) {
9709 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
9710 // If the bitcast is of an allocation, and the allocation will be
9711 // converted to match the type of the cast, don't touch this.
9712 if (isa<AllocationInst>(BCI->getOperand(0))) {
9713 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +00009714 if (Instruction *I = visitBitCast(*BCI)) {
9715 if (I != BCI) {
9716 I->takeName(BCI);
9717 BCI->getParent()->getInstList().insert(BCI, I);
9718 ReplaceInstUsesWith(*BCI, I);
9719 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00009720 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +00009721 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00009722 }
9723 return new BitCastInst(BCI->getOperand(0), GEP.getType());
9724 }
9725 }
9726
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009727 // Combine Indices - If the source pointer to this getelementptr instruction
9728 // is a getelementptr instruction, combine the indices of the two
9729 // getelementptr instructions into a single instruction.
9730 //
9731 SmallVector<Value*, 8> SrcGEPOperands;
9732 if (User *Src = dyn_castGetElementPtr(PtrOp))
9733 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
9734
9735 if (!SrcGEPOperands.empty()) {
9736 // Note that if our source is a gep chain itself that we wait for that
9737 // chain to be resolved before we perform this transformation. This
9738 // avoids us creating a TON of code in some cases.
9739 //
9740 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
9741 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
9742 return 0; // Wait until our source is folded to completion.
9743
9744 SmallVector<Value*, 8> Indices;
9745
9746 // Find out whether the last index in the source GEP is a sequential idx.
9747 bool EndsWithSequential = false;
9748 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
9749 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
9750 EndsWithSequential = !isa<StructType>(*I);
9751
9752 // Can we combine the two pointer arithmetics offsets?
9753 if (EndsWithSequential) {
9754 // Replace: gep (gep %P, long B), long A, ...
9755 // With: T = long A+B; gep %P, T, ...
9756 //
9757 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
9758 if (SO1 == Constant::getNullValue(SO1->getType())) {
9759 Sum = GO1;
9760 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
9761 Sum = SO1;
9762 } else {
9763 // If they aren't the same type, convert both to an integer of the
9764 // target's pointer size.
9765 if (SO1->getType() != GO1->getType()) {
9766 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
9767 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
9768 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
9769 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
9770 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009771 unsigned PS = TD->getPointerSizeInBits();
9772 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009773 // Convert GO1 to SO1's type.
9774 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
9775
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009776 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009777 // Convert SO1 to GO1's type.
9778 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
9779 } else {
9780 const Type *PT = TD->getIntPtrType();
9781 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
9782 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
9783 }
9784 }
9785 }
9786 if (isa<Constant>(SO1) && isa<Constant>(GO1))
9787 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
9788 else {
Gabor Greifa645dd32008-05-16 19:29:10 +00009789 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009790 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
9791 }
9792 }
9793
9794 // Recycle the GEP we already have if possible.
9795 if (SrcGEPOperands.size() == 2) {
9796 GEP.setOperand(0, SrcGEPOperands[0]);
9797 GEP.setOperand(1, Sum);
9798 return &GEP;
9799 } else {
9800 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
9801 SrcGEPOperands.end()-1);
9802 Indices.push_back(Sum);
9803 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
9804 }
9805 } else if (isa<Constant>(*GEP.idx_begin()) &&
9806 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
9807 SrcGEPOperands.size() != 1) {
9808 // Otherwise we can do the fold if the first index of the GEP is a zero
9809 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
9810 SrcGEPOperands.end());
9811 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
9812 }
9813
9814 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +00009815 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
9816 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009817
9818 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
9819 // GEP of global variable. If all of the indices for this GEP are
9820 // constants, we can promote this to a constexpr instead of an instruction.
9821
9822 // Scan for nonconstants...
9823 SmallVector<Constant*, 8> Indices;
9824 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
9825 for (; I != E && isa<Constant>(*I); ++I)
9826 Indices.push_back(cast<Constant>(*I));
9827
9828 if (I == E) { // If they are all constants...
9829 Constant *CE = ConstantExpr::getGetElementPtr(GV,
9830 &Indices[0],Indices.size());
9831
9832 // Replace all uses of the GEP with the new constexpr...
9833 return ReplaceInstUsesWith(GEP, CE);
9834 }
9835 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
9836 if (!isa<PointerType>(X->getType())) {
9837 // Not interesting. Source pointer must be a cast from pointer.
9838 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009839 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
9840 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009841 //
9842 // This occurs when the program declares an array extern like "int X[];"
9843 //
9844 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
9845 const PointerType *XTy = cast<PointerType>(X->getType());
9846 if (const ArrayType *XATy =
9847 dyn_cast<ArrayType>(XTy->getElementType()))
9848 if (const ArrayType *CATy =
9849 dyn_cast<ArrayType>(CPTy->getElementType()))
9850 if (CATy->getElementType() == XATy->getElementType()) {
9851 // At this point, we know that the cast source type is a pointer
9852 // to an array of the same type as the destination pointer
9853 // array. Because the array type is never stepped over (there
9854 // is a leading zero) we can fold the cast into this GEP.
9855 GEP.setOperand(0, X);
9856 return &GEP;
9857 }
9858 } else if (GEP.getNumOperands() == 2) {
9859 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009860 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
9861 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009862 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
9863 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
9864 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009865 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
9866 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +00009867 Value *Idx[2];
9868 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9869 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009870 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +00009871 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009872 // V and GEP are both pointer types --> BitCast
9873 return new BitCastInst(V, GEP.getType());
9874 }
9875
9876 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009877 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009878 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009879 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009880
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009881 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009882 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009883 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009884
9885 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
9886 // allow either a mul, shift, or constant here.
9887 Value *NewIdx = 0;
9888 ConstantInt *Scale = 0;
9889 if (ArrayEltSize == 1) {
9890 NewIdx = GEP.getOperand(1);
9891 Scale = ConstantInt::get(NewIdx->getType(), 1);
9892 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
9893 NewIdx = ConstantInt::get(CI->getType(), 1);
9894 Scale = CI;
9895 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
9896 if (Inst->getOpcode() == Instruction::Shl &&
9897 isa<ConstantInt>(Inst->getOperand(1))) {
9898 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
9899 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
9900 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
9901 NewIdx = Inst->getOperand(0);
9902 } else if (Inst->getOpcode() == Instruction::Mul &&
9903 isa<ConstantInt>(Inst->getOperand(1))) {
9904 Scale = cast<ConstantInt>(Inst->getOperand(1));
9905 NewIdx = Inst->getOperand(0);
9906 }
9907 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009908
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009909 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009910 // out, perform the transformation. Note, we don't know whether Scale is
9911 // signed or not. We'll use unsigned version of division/modulo
9912 // operation after making sure Scale doesn't have the sign bit set.
9913 if (Scale && Scale->getSExtValue() >= 0LL &&
9914 Scale->getZExtValue() % ArrayEltSize == 0) {
9915 Scale = ConstantInt::get(Scale->getType(),
9916 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009917 if (Scale->getZExtValue() != 1) {
9918 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009919 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +00009920 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009921 NewIdx = InsertNewInstBefore(Sc, GEP);
9922 }
9923
9924 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +00009925 Value *Idx[2];
9926 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9927 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009928 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +00009929 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009930 NewGEP = InsertNewInstBefore(NewGEP, GEP);
9931 // The NewGEP must be pointer typed, so must the old one -> BitCast
9932 return new BitCastInst(NewGEP, GEP.getType());
9933 }
9934 }
9935 }
9936 }
9937
9938 return 0;
9939}
9940
9941Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
9942 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009943 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009944 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
9945 const Type *NewTy =
9946 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
9947 AllocationInst *New = 0;
9948
9949 // Create and insert the replacement instruction...
9950 if (isa<MallocInst>(AI))
9951 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
9952 else {
9953 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
9954 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
9955 }
9956
9957 InsertNewInstBefore(New, AI);
9958
9959 // Scan to the end of the allocation instructions, to skip over a block of
9960 // allocas if possible...
9961 //
9962 BasicBlock::iterator It = New;
9963 while (isa<AllocationInst>(*It)) ++It;
9964
9965 // Now that I is pointing to the first non-allocation-inst in the block,
9966 // insert our getelementptr instruction...
9967 //
9968 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +00009969 Value *Idx[2];
9970 Idx[0] = NullIdx;
9971 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +00009972 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
9973 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009974
9975 // Now make everything use the getelementptr instead of the original
9976 // allocation.
9977 return ReplaceInstUsesWith(AI, V);
9978 } else if (isa<UndefValue>(AI.getArraySize())) {
9979 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
9980 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009981 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009982
9983 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
9984 // Note that we only do this for alloca's, because malloc should allocate and
9985 // return a unique pointer, even for a zero byte allocation.
9986 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009987 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009988 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
9989
9990 return 0;
9991}
9992
9993Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
9994 Value *Op = FI.getOperand(0);
9995
9996 // free undef -> unreachable.
9997 if (isa<UndefValue>(Op)) {
9998 // Insert a new store to null because we cannot modify the CFG here.
9999 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010000 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010001 return EraseInstFromFunction(FI);
10002 }
10003
10004 // If we have 'free null' delete the instruction. This can happen in stl code
10005 // when lots of inlining happens.
10006 if (isa<ConstantPointerNull>(Op))
10007 return EraseInstFromFunction(FI);
10008
10009 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10010 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10011 FI.setOperand(0, CI->getOperand(0));
10012 return &FI;
10013 }
10014
10015 // Change free (gep X, 0,0,0,0) into free(X)
10016 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10017 if (GEPI->hasAllZeroIndices()) {
10018 AddToWorkList(GEPI);
10019 FI.setOperand(0, GEPI->getOperand(0));
10020 return &FI;
10021 }
10022 }
10023
10024 // Change free(malloc) into nothing, if the malloc has a single use.
10025 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10026 if (MI->hasOneUse()) {
10027 EraseInstFromFunction(FI);
10028 return EraseInstFromFunction(*MI);
10029 }
10030
10031 return 0;
10032}
10033
10034
10035/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010036static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010037 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010038 User *CI = cast<User>(LI.getOperand(0));
10039 Value *CastOp = CI->getOperand(0);
10040
Devang Patela0f8ea82007-10-18 19:52:32 +000010041 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10042 // Instead of loading constant c string, use corresponding integer value
10043 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010044 std::string Str;
10045 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010046 unsigned len = Str.length();
10047 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10048 unsigned numBits = Ty->getPrimitiveSizeInBits();
10049 // Replace LI with immediate integer store.
10050 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010051 APInt StrVal(numBits, 0);
10052 APInt SingleChar(numBits, 0);
10053 if (TD->isLittleEndian()) {
10054 for (signed i = len-1; i >= 0; i--) {
10055 SingleChar = (uint64_t) Str[i];
10056 StrVal = (StrVal << 8) | SingleChar;
10057 }
10058 } else {
10059 for (unsigned i = 0; i < len; i++) {
10060 SingleChar = (uint64_t) Str[i];
10061 StrVal = (StrVal << 8) | SingleChar;
10062 }
10063 // Append NULL at the end.
10064 SingleChar = 0;
10065 StrVal = (StrVal << 8) | SingleChar;
10066 }
10067 Value *NL = ConstantInt::get(StrVal);
10068 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010069 }
10070 }
10071 }
10072
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010073 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10074 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10075 const Type *SrcPTy = SrcTy->getElementType();
10076
10077 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10078 isa<VectorType>(DestPTy)) {
10079 // If the source is an array, the code below will not succeed. Check to
10080 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10081 // constants.
10082 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10083 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10084 if (ASrcTy->getNumElements() != 0) {
10085 Value *Idxs[2];
10086 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10087 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10088 SrcTy = cast<PointerType>(CastOp->getType());
10089 SrcPTy = SrcTy->getElementType();
10090 }
10091
10092 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10093 isa<VectorType>(SrcPTy)) &&
10094 // Do not allow turning this into a load of an integer, which is then
10095 // casted to a pointer, this pessimizes pointer analysis a lot.
10096 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10097 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10098 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10099
10100 // Okay, we are casting from one integer or pointer type to another of
10101 // the same size. Instead of casting the pointer before the load, cast
10102 // the result of the loaded value.
10103 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10104 CI->getName(),
10105 LI.isVolatile()),LI);
10106 // Now cast the result of the load.
10107 return new BitCastInst(NewLoad, LI.getType());
10108 }
10109 }
10110 }
10111 return 0;
10112}
10113
10114/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10115/// from this value cannot trap. If it is not obviously safe to load from the
10116/// specified pointer, we do a quick local scan of the basic block containing
10117/// ScanFrom, to determine if the address is already accessed.
10118static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010119 // If it is an alloca it is always safe to load from.
10120 if (isa<AllocaInst>(V)) return true;
10121
Duncan Sandse40a94a2007-09-19 10:25:38 +000010122 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010123 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010124 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010125 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010126
10127 // Otherwise, be a little bit agressive by scanning the local block where we
10128 // want to check to see if the pointer is already being loaded or stored
10129 // from/to. If so, the previous load or store would have already trapped,
10130 // so there is no harm doing an extra load (also, CSE will later eliminate
10131 // the load entirely).
10132 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10133
10134 while (BBI != E) {
10135 --BBI;
10136
Chris Lattner476983a2008-06-20 05:12:56 +000010137 // If we see a free or a call (which might do a free) the pointer could be
10138 // marked invalid.
10139 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10140 return false;
10141
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010142 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10143 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010144 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010145 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010146 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010147
10148 }
10149 return false;
10150}
10151
Chris Lattner0270a112007-08-11 18:48:48 +000010152/// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts
10153/// until we find the underlying object a pointer is referring to or something
10154/// we don't understand. Note that the returned pointer may be offset from the
10155/// input, because we ignore GEP indices.
10156static Value *GetUnderlyingObject(Value *Ptr) {
10157 while (1) {
10158 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
10159 if (CE->getOpcode() == Instruction::BitCast ||
10160 CE->getOpcode() == Instruction::GetElementPtr)
10161 Ptr = CE->getOperand(0);
10162 else
10163 return Ptr;
10164 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) {
10165 Ptr = BCI->getOperand(0);
10166 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
10167 Ptr = GEP->getOperand(0);
10168 } else {
10169 return Ptr;
10170 }
10171 }
10172}
10173
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010174Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10175 Value *Op = LI.getOperand(0);
10176
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010177 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010178 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10179 if (KnownAlign >
10180 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10181 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010182 LI.setAlignment(KnownAlign);
10183
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010184 // load (cast X) --> cast (load X) iff safe
10185 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010186 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010187 return Res;
10188
10189 // None of the following transforms are legal for volatile loads.
10190 if (LI.isVolatile()) return 0;
10191
10192 if (&LI.getParent()->front() != &LI) {
10193 BasicBlock::iterator BBI = &LI; --BBI;
10194 // If the instruction immediately before this is a store to the same
10195 // address, do a simple form of store->load forwarding.
10196 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10197 if (SI->getOperand(1) == LI.getOperand(0))
10198 return ReplaceInstUsesWith(LI, SI->getOperand(0));
10199 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
10200 if (LIB->getOperand(0) == LI.getOperand(0))
10201 return ReplaceInstUsesWith(LI, LIB);
10202 }
10203
Christopher Lamb2c175392007-12-29 07:56:53 +000010204 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10205 const Value *GEPI0 = GEPI->getOperand(0);
10206 // TODO: Consider a target hook for valid address spaces for this xform.
10207 if (isa<ConstantPointerNull>(GEPI0) &&
10208 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010209 // Insert a new store to null instruction before the load to indicate
10210 // that this code is not reachable. We do this instead of inserting
10211 // an unreachable instruction directly because we cannot modify the
10212 // CFG.
10213 new StoreInst(UndefValue::get(LI.getType()),
10214 Constant::getNullValue(Op->getType()), &LI);
10215 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10216 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010217 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010218
10219 if (Constant *C = dyn_cast<Constant>(Op)) {
10220 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010221 // TODO: Consider a target hook for valid address spaces for this xform.
10222 if (isa<UndefValue>(C) || (C->isNullValue() &&
10223 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010224 // Insert a new store to null instruction before the load to indicate that
10225 // this code is not reachable. We do this instead of inserting an
10226 // unreachable instruction directly because we cannot modify the CFG.
10227 new StoreInst(UndefValue::get(LI.getType()),
10228 Constant::getNullValue(Op->getType()), &LI);
10229 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10230 }
10231
10232 // Instcombine load (constant global) into the value loaded.
10233 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10234 if (GV->isConstant() && !GV->isDeclaration())
10235 return ReplaceInstUsesWith(LI, GV->getInitializer());
10236
10237 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010238 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010239 if (CE->getOpcode() == Instruction::GetElementPtr) {
10240 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10241 if (GV->isConstant() && !GV->isDeclaration())
10242 if (Constant *V =
10243 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10244 return ReplaceInstUsesWith(LI, V);
10245 if (CE->getOperand(0)->isNullValue()) {
10246 // Insert a new store to null instruction before the load to indicate
10247 // that this code is not reachable. We do this instead of inserting
10248 // an unreachable instruction directly because we cannot modify the
10249 // CFG.
10250 new StoreInst(UndefValue::get(LI.getType()),
10251 Constant::getNullValue(Op->getType()), &LI);
10252 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10253 }
10254
10255 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010256 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010257 return Res;
10258 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010259 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010260 }
Chris Lattner0270a112007-08-11 18:48:48 +000010261
10262 // If this load comes from anywhere in a constant global, and if the global
10263 // is all undef or zero, we know what it loads.
10264 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Op))) {
10265 if (GV->isConstant() && GV->hasInitializer()) {
10266 if (GV->getInitializer()->isNullValue())
10267 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10268 else if (isa<UndefValue>(GV->getInitializer()))
10269 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10270 }
10271 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010272
10273 if (Op->hasOneUse()) {
10274 // Change select and PHI nodes to select values instead of addresses: this
10275 // helps alias analysis out a lot, allows many others simplifications, and
10276 // exposes redundancy in the code.
10277 //
10278 // Note that we cannot do the transformation unless we know that the
10279 // introduced loads cannot trap! Something like this is valid as long as
10280 // the condition is always false: load (select bool %C, int* null, int* %G),
10281 // but it would not be valid if we transformed it to load from null
10282 // unconditionally.
10283 //
10284 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10285 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10286 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10287 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10288 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10289 SI->getOperand(1)->getName()+".val"), LI);
10290 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10291 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000010292 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010293 }
10294
10295 // load (select (cond, null, P)) -> load P
10296 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10297 if (C->isNullValue()) {
10298 LI.setOperand(0, SI->getOperand(2));
10299 return &LI;
10300 }
10301
10302 // load (select (cond, P, null)) -> load P
10303 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10304 if (C->isNullValue()) {
10305 LI.setOperand(0, SI->getOperand(1));
10306 return &LI;
10307 }
10308 }
10309 }
10310 return 0;
10311}
10312
10313/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10314/// when possible.
10315static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10316 User *CI = cast<User>(SI.getOperand(1));
10317 Value *CastOp = CI->getOperand(0);
10318
10319 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10320 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10321 const Type *SrcPTy = SrcTy->getElementType();
10322
10323 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10324 // If the source is an array, the code below will not succeed. Check to
10325 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10326 // constants.
10327 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10328 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10329 if (ASrcTy->getNumElements() != 0) {
10330 Value* Idxs[2];
10331 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10332 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10333 SrcTy = cast<PointerType>(CastOp->getType());
10334 SrcPTy = SrcTy->getElementType();
10335 }
10336
10337 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10338 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10339 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10340
10341 // Okay, we are casting from one integer or pointer type to another of
10342 // the same size. Instead of casting the pointer before
10343 // the store, cast the value to be stored.
10344 Value *NewCast;
10345 Value *SIOp0 = SI.getOperand(0);
10346 Instruction::CastOps opcode = Instruction::BitCast;
10347 const Type* CastSrcTy = SIOp0->getType();
10348 const Type* CastDstTy = SrcPTy;
10349 if (isa<PointerType>(CastDstTy)) {
10350 if (CastSrcTy->isInteger())
10351 opcode = Instruction::IntToPtr;
10352 } else if (isa<IntegerType>(CastDstTy)) {
10353 if (isa<PointerType>(SIOp0->getType()))
10354 opcode = Instruction::PtrToInt;
10355 }
10356 if (Constant *C = dyn_cast<Constant>(SIOp0))
10357 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10358 else
10359 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000010360 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010361 SI);
10362 return new StoreInst(NewCast, CastOp);
10363 }
10364 }
10365 }
10366 return 0;
10367}
10368
10369Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10370 Value *Val = SI.getOperand(0);
10371 Value *Ptr = SI.getOperand(1);
10372
10373 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10374 EraseInstFromFunction(SI);
10375 ++NumCombined;
10376 return 0;
10377 }
10378
10379 // If the RHS is an alloca with a single use, zapify the store, making the
10380 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000010381 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010382 if (isa<AllocaInst>(Ptr)) {
10383 EraseInstFromFunction(SI);
10384 ++NumCombined;
10385 return 0;
10386 }
10387
10388 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10389 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10390 GEP->getOperand(0)->hasOneUse()) {
10391 EraseInstFromFunction(SI);
10392 ++NumCombined;
10393 return 0;
10394 }
10395 }
10396
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010397 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010398 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
10399 if (KnownAlign >
10400 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
10401 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010402 SI.setAlignment(KnownAlign);
10403
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010404 // Do really simple DSE, to catch cases where there are several consequtive
10405 // stores to the same location, separated by a few arithmetic operations. This
10406 // situation often occurs with bitfield accesses.
10407 BasicBlock::iterator BBI = &SI;
10408 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
10409 --ScanInsts) {
10410 --BBI;
10411
10412 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
10413 // Prev store isn't volatile, and stores to the same location?
10414 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
10415 ++NumDeadStore;
10416 ++BBI;
10417 EraseInstFromFunction(*PrevSI);
10418 continue;
10419 }
10420 break;
10421 }
10422
10423 // If this is a load, we have to stop. However, if the loaded value is from
10424 // the pointer we're loading and is producing the pointer we're storing,
10425 // then *this* store is dead (X = load P; store X -> P).
10426 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Chris Lattner24905f72007-09-07 05:33:03 +000010427 if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010428 EraseInstFromFunction(SI);
10429 ++NumCombined;
10430 return 0;
10431 }
10432 // Otherwise, this is a load from some other location. Stores before it
10433 // may not be dead.
10434 break;
10435 }
10436
10437 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000010438 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010439 break;
10440 }
10441
10442
10443 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
10444
10445 // store X, null -> turns into 'unreachable' in SimplifyCFG
10446 if (isa<ConstantPointerNull>(Ptr)) {
10447 if (!isa<UndefValue>(Val)) {
10448 SI.setOperand(0, UndefValue::get(Val->getType()));
10449 if (Instruction *U = dyn_cast<Instruction>(Val))
10450 AddToWorkList(U); // Dropped a use.
10451 ++NumCombined;
10452 }
10453 return 0; // Do not modify these!
10454 }
10455
10456 // store undef, Ptr -> noop
10457 if (isa<UndefValue>(Val)) {
10458 EraseInstFromFunction(SI);
10459 ++NumCombined;
10460 return 0;
10461 }
10462
10463 // If the pointer destination is a cast, see if we can fold the cast into the
10464 // source instead.
10465 if (isa<CastInst>(Ptr))
10466 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10467 return Res;
10468 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
10469 if (CE->isCast())
10470 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10471 return Res;
10472
10473
10474 // If this store is the last instruction in the basic block, and if the block
10475 // ends with an unconditional branch, try to move it to the successor block.
10476 BBI = &SI; ++BBI;
10477 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
10478 if (BI->isUnconditional())
10479 if (SimplifyStoreAtEndOfBlock(SI))
10480 return 0; // xform done!
10481
10482 return 0;
10483}
10484
10485/// SimplifyStoreAtEndOfBlock - Turn things like:
10486/// if () { *P = v1; } else { *P = v2 }
10487/// into a phi node with a store in the successor.
10488///
10489/// Simplify things like:
10490/// *P = v1; if () { *P = v2; }
10491/// into a phi node with a store in the successor.
10492///
10493bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
10494 BasicBlock *StoreBB = SI.getParent();
10495
10496 // Check to see if the successor block has exactly two incoming edges. If
10497 // so, see if the other predecessor contains a store to the same location.
10498 // if so, insert a PHI node (if needed) and move the stores down.
10499 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
10500
10501 // Determine whether Dest has exactly two predecessors and, if so, compute
10502 // the other predecessor.
10503 pred_iterator PI = pred_begin(DestBB);
10504 BasicBlock *OtherBB = 0;
10505 if (*PI != StoreBB)
10506 OtherBB = *PI;
10507 ++PI;
10508 if (PI == pred_end(DestBB))
10509 return false;
10510
10511 if (*PI != StoreBB) {
10512 if (OtherBB)
10513 return false;
10514 OtherBB = *PI;
10515 }
10516 if (++PI != pred_end(DestBB))
10517 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000010518
10519 // Bail out if all the relevant blocks aren't distinct (this can happen,
10520 // for example, if SI is in an infinite loop)
10521 if (StoreBB == DestBB || OtherBB == DestBB)
10522 return false;
10523
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010524 // Verify that the other block ends in a branch and is not otherwise empty.
10525 BasicBlock::iterator BBI = OtherBB->getTerminator();
10526 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
10527 if (!OtherBr || BBI == OtherBB->begin())
10528 return false;
10529
10530 // If the other block ends in an unconditional branch, check for the 'if then
10531 // else' case. there is an instruction before the branch.
10532 StoreInst *OtherStore = 0;
10533 if (OtherBr->isUnconditional()) {
10534 // If this isn't a store, or isn't a store to the same location, bail out.
10535 --BBI;
10536 OtherStore = dyn_cast<StoreInst>(BBI);
10537 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
10538 return false;
10539 } else {
10540 // Otherwise, the other block ended with a conditional branch. If one of the
10541 // destinations is StoreBB, then we have the if/then case.
10542 if (OtherBr->getSuccessor(0) != StoreBB &&
10543 OtherBr->getSuccessor(1) != StoreBB)
10544 return false;
10545
10546 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
10547 // if/then triangle. See if there is a store to the same ptr as SI that
10548 // lives in OtherBB.
10549 for (;; --BBI) {
10550 // Check to see if we find the matching store.
10551 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
10552 if (OtherStore->getOperand(1) != SI.getOperand(1))
10553 return false;
10554 break;
10555 }
Eli Friedman3a311d52008-06-13 22:02:12 +000010556 // If we find something that may be using or overwriting the stored
10557 // value, or if we run out of instructions, we can't do the xform.
10558 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010559 BBI == OtherBB->begin())
10560 return false;
10561 }
10562
10563 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000010564 // make sure nothing reads or overwrites the stored value in
10565 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010566 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
10567 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000010568 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010569 return false;
10570 }
10571 }
10572
10573 // Insert a PHI node now if we need it.
10574 Value *MergedVal = OtherStore->getOperand(0);
10575 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000010576 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010577 PN->reserveOperandSpace(2);
10578 PN->addIncoming(SI.getOperand(0), SI.getParent());
10579 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
10580 MergedVal = InsertNewInstBefore(PN, DestBB->front());
10581 }
10582
10583 // Advance to a place where it is safe to insert the new store and
10584 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000010585 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010586 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
10587 OtherStore->isVolatile()), *BBI);
10588
10589 // Nuke the old stores.
10590 EraseInstFromFunction(SI);
10591 EraseInstFromFunction(*OtherStore);
10592 ++NumCombined;
10593 return true;
10594}
10595
10596
10597Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
10598 // Change br (not X), label True, label False to: br X, label False, True
10599 Value *X = 0;
10600 BasicBlock *TrueDest;
10601 BasicBlock *FalseDest;
10602 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
10603 !isa<Constant>(X)) {
10604 // Swap Destinations and condition...
10605 BI.setCondition(X);
10606 BI.setSuccessor(0, FalseDest);
10607 BI.setSuccessor(1, TrueDest);
10608 return &BI;
10609 }
10610
10611 // Cannonicalize fcmp_one -> fcmp_oeq
10612 FCmpInst::Predicate FPred; Value *Y;
10613 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
10614 TrueDest, FalseDest)))
10615 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
10616 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
10617 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
10618 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
10619 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
10620 NewSCC->takeName(I);
10621 // Swap Destinations and condition...
10622 BI.setCondition(NewSCC);
10623 BI.setSuccessor(0, FalseDest);
10624 BI.setSuccessor(1, TrueDest);
10625 RemoveFromWorkList(I);
10626 I->eraseFromParent();
10627 AddToWorkList(NewSCC);
10628 return &BI;
10629 }
10630
10631 // Cannonicalize icmp_ne -> icmp_eq
10632 ICmpInst::Predicate IPred;
10633 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
10634 TrueDest, FalseDest)))
10635 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
10636 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
10637 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
10638 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
10639 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
10640 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
10641 NewSCC->takeName(I);
10642 // Swap Destinations and condition...
10643 BI.setCondition(NewSCC);
10644 BI.setSuccessor(0, FalseDest);
10645 BI.setSuccessor(1, TrueDest);
10646 RemoveFromWorkList(I);
10647 I->eraseFromParent();;
10648 AddToWorkList(NewSCC);
10649 return &BI;
10650 }
10651
10652 return 0;
10653}
10654
10655Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
10656 Value *Cond = SI.getCondition();
10657 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
10658 if (I->getOpcode() == Instruction::Add)
10659 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
10660 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
10661 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
10662 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
10663 AddRHS));
10664 SI.setOperand(0, I->getOperand(0));
10665 AddToWorkList(I);
10666 return &SI;
10667 }
10668 }
10669 return 0;
10670}
10671
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000010672Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
10673 // See if we are trying to extract a known value. If so, use that instead.
Matthijs Kooijman3d328112008-06-16 12:57:37 +000010674 if (Value *Elt = FindInsertedValue(EV.getOperand(0), EV.idx_begin(),
Matthijs Kooijman4138edb2008-06-16 13:13:08 +000010675 EV.idx_end(), &EV))
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000010676 return ReplaceInstUsesWith(EV, Elt);
10677
10678 // No changes
10679 return 0;
10680}
10681
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010682/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
10683/// is to leave as a vector operation.
10684static bool CheapToScalarize(Value *V, bool isConstant) {
10685 if (isa<ConstantAggregateZero>(V))
10686 return true;
10687 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
10688 if (isConstant) return true;
10689 // If all elts are the same, we can extract.
10690 Constant *Op0 = C->getOperand(0);
10691 for (unsigned i = 1; i < C->getNumOperands(); ++i)
10692 if (C->getOperand(i) != Op0)
10693 return false;
10694 return true;
10695 }
10696 Instruction *I = dyn_cast<Instruction>(V);
10697 if (!I) return false;
10698
10699 // Insert element gets simplified to the inserted element or is deleted if
10700 // this is constant idx extract element and its a constant idx insertelt.
10701 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
10702 isa<ConstantInt>(I->getOperand(2)))
10703 return true;
10704 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
10705 return true;
10706 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
10707 if (BO->hasOneUse() &&
10708 (CheapToScalarize(BO->getOperand(0), isConstant) ||
10709 CheapToScalarize(BO->getOperand(1), isConstant)))
10710 return true;
10711 if (CmpInst *CI = dyn_cast<CmpInst>(I))
10712 if (CI->hasOneUse() &&
10713 (CheapToScalarize(CI->getOperand(0), isConstant) ||
10714 CheapToScalarize(CI->getOperand(1), isConstant)))
10715 return true;
10716
10717 return false;
10718}
10719
10720/// Read and decode a shufflevector mask.
10721///
10722/// It turns undef elements into values that are larger than the number of
10723/// elements in the input.
10724static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
10725 unsigned NElts = SVI->getType()->getNumElements();
10726 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
10727 return std::vector<unsigned>(NElts, 0);
10728 if (isa<UndefValue>(SVI->getOperand(2)))
10729 return std::vector<unsigned>(NElts, 2*NElts);
10730
10731 std::vector<unsigned> Result;
10732 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000010733 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
10734 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010735 Result.push_back(NElts*2); // undef -> 8
10736 else
Gabor Greif17396002008-06-12 21:37:33 +000010737 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010738 return Result;
10739}
10740
10741/// FindScalarElement - Given a vector and an element number, see if the scalar
10742/// value is already around as a register, for example if it were inserted then
10743/// extracted from the vector.
10744static Value *FindScalarElement(Value *V, unsigned EltNo) {
10745 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
10746 const VectorType *PTy = cast<VectorType>(V->getType());
10747 unsigned Width = PTy->getNumElements();
10748 if (EltNo >= Width) // Out of range access.
10749 return UndefValue::get(PTy->getElementType());
10750
10751 if (isa<UndefValue>(V))
10752 return UndefValue::get(PTy->getElementType());
10753 else if (isa<ConstantAggregateZero>(V))
10754 return Constant::getNullValue(PTy->getElementType());
10755 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
10756 return CP->getOperand(EltNo);
10757 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
10758 // If this is an insert to a variable element, we don't know what it is.
10759 if (!isa<ConstantInt>(III->getOperand(2)))
10760 return 0;
10761 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
10762
10763 // If this is an insert to the element we are looking for, return the
10764 // inserted value.
10765 if (EltNo == IIElt)
10766 return III->getOperand(1);
10767
10768 // Otherwise, the insertelement doesn't modify the value, recurse on its
10769 // vector input.
10770 return FindScalarElement(III->getOperand(0), EltNo);
10771 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
10772 unsigned InEl = getShuffleMask(SVI)[EltNo];
10773 if (InEl < Width)
10774 return FindScalarElement(SVI->getOperand(0), InEl);
10775 else if (InEl < Width*2)
10776 return FindScalarElement(SVI->getOperand(1), InEl - Width);
10777 else
10778 return UndefValue::get(PTy->getElementType());
10779 }
10780
10781 // Otherwise, we don't know.
10782 return 0;
10783}
10784
10785Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010786 // If vector val is undef, replace extract with scalar undef.
10787 if (isa<UndefValue>(EI.getOperand(0)))
10788 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10789
10790 // If vector val is constant 0, replace extract with scalar 0.
10791 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
10792 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
10793
10794 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000010795 // If vector val is constant with all elements the same, replace EI with
10796 // that element. When the elements are not identical, we cannot replace yet
10797 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010798 Constant *op0 = C->getOperand(0);
10799 for (unsigned i = 1; i < C->getNumOperands(); ++i)
10800 if (C->getOperand(i) != op0) {
10801 op0 = 0;
10802 break;
10803 }
10804 if (op0)
10805 return ReplaceInstUsesWith(EI, op0);
10806 }
10807
10808 // If extracting a specified index from the vector, see if we can recursively
10809 // find a previously computed scalar that was inserted into the vector.
10810 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
10811 unsigned IndexVal = IdxC->getZExtValue();
10812 unsigned VectorWidth =
10813 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
10814
10815 // If this is extracting an invalid index, turn this into undef, to avoid
10816 // crashing the code below.
10817 if (IndexVal >= VectorWidth)
10818 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10819
10820 // This instruction only demands the single element from the input vector.
10821 // If the input vector has a single use, simplify it based on this use
10822 // property.
10823 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
10824 uint64_t UndefElts;
10825 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
10826 1 << IndexVal,
10827 UndefElts)) {
10828 EI.setOperand(0, V);
10829 return &EI;
10830 }
10831 }
10832
10833 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
10834 return ReplaceInstUsesWith(EI, Elt);
10835
10836 // If the this extractelement is directly using a bitcast from a vector of
10837 // the same number of elements, see if we can find the source element from
10838 // it. In this case, we will end up needing to bitcast the scalars.
10839 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
10840 if (const VectorType *VT =
10841 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
10842 if (VT->getNumElements() == VectorWidth)
10843 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
10844 return new BitCastInst(Elt, EI.getType());
10845 }
10846 }
10847
10848 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
10849 if (I->hasOneUse()) {
10850 // Push extractelement into predecessor operation if legal and
10851 // profitable to do so
10852 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
10853 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
10854 if (CheapToScalarize(BO, isConstantElt)) {
10855 ExtractElementInst *newEI0 =
10856 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
10857 EI.getName()+".lhs");
10858 ExtractElementInst *newEI1 =
10859 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
10860 EI.getName()+".rhs");
10861 InsertNewInstBefore(newEI0, EI);
10862 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000010863 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010864 }
10865 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000010866 unsigned AS =
10867 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000010868 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
10869 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000010870 GetElementPtrInst *GEP =
10871 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010872 InsertNewInstBefore(GEP, EI);
10873 return new LoadInst(GEP);
10874 }
10875 }
10876 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
10877 // Extracting the inserted element?
10878 if (IE->getOperand(2) == EI.getOperand(1))
10879 return ReplaceInstUsesWith(EI, IE->getOperand(1));
10880 // If the inserted and extracted elements are constants, they must not
10881 // be the same value, extract from the pre-inserted value instead.
10882 if (isa<Constant>(IE->getOperand(2)) &&
10883 isa<Constant>(EI.getOperand(1))) {
10884 AddUsesToWorkList(EI);
10885 EI.setOperand(0, IE->getOperand(0));
10886 return &EI;
10887 }
10888 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
10889 // If this is extracting an element from a shufflevector, figure out where
10890 // it came from and extract from the appropriate input element instead.
10891 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
10892 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
10893 Value *Src;
10894 if (SrcIdx < SVI->getType()->getNumElements())
10895 Src = SVI->getOperand(0);
10896 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
10897 SrcIdx -= SVI->getType()->getNumElements();
10898 Src = SVI->getOperand(1);
10899 } else {
10900 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10901 }
10902 return new ExtractElementInst(Src, SrcIdx);
10903 }
10904 }
10905 }
10906 return 0;
10907}
10908
10909/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
10910/// elements from either LHS or RHS, return the shuffle mask and true.
10911/// Otherwise, return false.
10912static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
10913 std::vector<Constant*> &Mask) {
10914 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
10915 "Invalid CollectSingleShuffleElements");
10916 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
10917
10918 if (isa<UndefValue>(V)) {
10919 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
10920 return true;
10921 } else if (V == LHS) {
10922 for (unsigned i = 0; i != NumElts; ++i)
10923 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
10924 return true;
10925 } else if (V == RHS) {
10926 for (unsigned i = 0; i != NumElts; ++i)
10927 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
10928 return true;
10929 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10930 // If this is an insert of an extract from some other vector, include it.
10931 Value *VecOp = IEI->getOperand(0);
10932 Value *ScalarOp = IEI->getOperand(1);
10933 Value *IdxOp = IEI->getOperand(2);
10934
10935 if (!isa<ConstantInt>(IdxOp))
10936 return false;
10937 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
10938
10939 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
10940 // Okay, we can handle this if the vector we are insertinting into is
10941 // transitively ok.
10942 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10943 // If so, update the mask to reflect the inserted undef.
10944 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
10945 return true;
10946 }
10947 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
10948 if (isa<ConstantInt>(EI->getOperand(1)) &&
10949 EI->getOperand(0)->getType() == V->getType()) {
10950 unsigned ExtractedIdx =
10951 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10952
10953 // This must be extracting from either LHS or RHS.
10954 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
10955 // Okay, we can handle this if the vector we are insertinting into is
10956 // transitively ok.
10957 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10958 // If so, update the mask to reflect the inserted value.
10959 if (EI->getOperand(0) == LHS) {
10960 Mask[InsertedIdx & (NumElts-1)] =
10961 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
10962 } else {
10963 assert(EI->getOperand(0) == RHS);
10964 Mask[InsertedIdx & (NumElts-1)] =
10965 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
10966
10967 }
10968 return true;
10969 }
10970 }
10971 }
10972 }
10973 }
10974 // TODO: Handle shufflevector here!
10975
10976 return false;
10977}
10978
10979/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
10980/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
10981/// that computes V and the LHS value of the shuffle.
10982static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
10983 Value *&RHS) {
10984 assert(isa<VectorType>(V->getType()) &&
10985 (RHS == 0 || V->getType() == RHS->getType()) &&
10986 "Invalid shuffle!");
10987 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
10988
10989 if (isa<UndefValue>(V)) {
10990 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
10991 return V;
10992 } else if (isa<ConstantAggregateZero>(V)) {
10993 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
10994 return V;
10995 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10996 // If this is an insert of an extract from some other vector, include it.
10997 Value *VecOp = IEI->getOperand(0);
10998 Value *ScalarOp = IEI->getOperand(1);
10999 Value *IdxOp = IEI->getOperand(2);
11000
11001 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11002 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11003 EI->getOperand(0)->getType() == V->getType()) {
11004 unsigned ExtractedIdx =
11005 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11006 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11007
11008 // Either the extracted from or inserted into vector must be RHSVec,
11009 // otherwise we'd end up with a shuffle of three inputs.
11010 if (EI->getOperand(0) == RHS || RHS == 0) {
11011 RHS = EI->getOperand(0);
11012 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
11013 Mask[InsertedIdx & (NumElts-1)] =
11014 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11015 return V;
11016 }
11017
11018 if (VecOp == RHS) {
11019 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11020 // Everything but the extracted element is replaced with the RHS.
11021 for (unsigned i = 0; i != NumElts; ++i) {
11022 if (i != InsertedIdx)
11023 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11024 }
11025 return V;
11026 }
11027
11028 // If this insertelement is a chain that comes from exactly these two
11029 // vectors, return the vector and the effective shuffle.
11030 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11031 return EI->getOperand(0);
11032
11033 }
11034 }
11035 }
11036 // TODO: Handle shufflevector here!
11037
11038 // Otherwise, can't do anything fancy. Return an identity vector.
11039 for (unsigned i = 0; i != NumElts; ++i)
11040 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11041 return V;
11042}
11043
11044Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11045 Value *VecOp = IE.getOperand(0);
11046 Value *ScalarOp = IE.getOperand(1);
11047 Value *IdxOp = IE.getOperand(2);
11048
11049 // Inserting an undef or into an undefined place, remove this.
11050 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11051 ReplaceInstUsesWith(IE, VecOp);
11052
11053 // If the inserted element was extracted from some other vector, and if the
11054 // indexes are constant, try to turn this into a shufflevector operation.
11055 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11056 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11057 EI->getOperand(0)->getType() == IE.getType()) {
11058 unsigned NumVectorElts = IE.getType()->getNumElements();
11059 unsigned ExtractedIdx =
11060 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11061 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11062
11063 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11064 return ReplaceInstUsesWith(IE, VecOp);
11065
11066 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11067 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11068
11069 // If we are extracting a value from a vector, then inserting it right
11070 // back into the same place, just use the input vector.
11071 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11072 return ReplaceInstUsesWith(IE, VecOp);
11073
11074 // We could theoretically do this for ANY input. However, doing so could
11075 // turn chains of insertelement instructions into a chain of shufflevector
11076 // instructions, and right now we do not merge shufflevectors. As such,
11077 // only do this in a situation where it is clear that there is benefit.
11078 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11079 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11080 // the values of VecOp, except then one read from EIOp0.
11081 // Build a new shuffle mask.
11082 std::vector<Constant*> Mask;
11083 if (isa<UndefValue>(VecOp))
11084 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11085 else {
11086 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11087 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11088 NumVectorElts));
11089 }
11090 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11091 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11092 ConstantVector::get(Mask));
11093 }
11094
11095 // If this insertelement isn't used by some other insertelement, turn it
11096 // (and any insertelements it points to), into one big shuffle.
11097 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11098 std::vector<Constant*> Mask;
11099 Value *RHS = 0;
11100 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11101 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11102 // We now have a shuffle of LHS, RHS, Mask.
11103 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11104 }
11105 }
11106 }
11107
11108 return 0;
11109}
11110
11111
11112Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11113 Value *LHS = SVI.getOperand(0);
11114 Value *RHS = SVI.getOperand(1);
11115 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11116
11117 bool MadeChange = false;
11118
11119 // Undefined shuffle mask -> undefined value.
11120 if (isa<UndefValue>(SVI.getOperand(2)))
11121 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
11122
11123 // If we have shuffle(x, undef, mask) and any elements of mask refer to
11124 // the undef, change them to undefs.
11125 if (isa<UndefValue>(SVI.getOperand(1))) {
11126 // Scan to see if there are any references to the RHS. If so, replace them
11127 // with undef element refs and set MadeChange to true.
11128 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11129 if (Mask[i] >= e && Mask[i] != 2*e) {
11130 Mask[i] = 2*e;
11131 MadeChange = true;
11132 }
11133 }
11134
11135 if (MadeChange) {
11136 // Remap any references to RHS to use LHS.
11137 std::vector<Constant*> Elts;
11138 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11139 if (Mask[i] == 2*e)
11140 Elts.push_back(UndefValue::get(Type::Int32Ty));
11141 else
11142 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11143 }
11144 SVI.setOperand(2, ConstantVector::get(Elts));
11145 }
11146 }
11147
11148 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11149 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11150 if (LHS == RHS || isa<UndefValue>(LHS)) {
11151 if (isa<UndefValue>(LHS) && LHS == RHS) {
11152 // shuffle(undef,undef,mask) -> undef.
11153 return ReplaceInstUsesWith(SVI, LHS);
11154 }
11155
11156 // Remap any references to RHS to use LHS.
11157 std::vector<Constant*> Elts;
11158 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11159 if (Mask[i] >= 2*e)
11160 Elts.push_back(UndefValue::get(Type::Int32Ty));
11161 else {
11162 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
11163 (Mask[i] < e && isa<UndefValue>(LHS)))
11164 Mask[i] = 2*e; // Turn into undef.
11165 else
11166 Mask[i] &= (e-1); // Force to LHS.
11167 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11168 }
11169 }
11170 SVI.setOperand(0, SVI.getOperand(1));
11171 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11172 SVI.setOperand(2, ConstantVector::get(Elts));
11173 LHS = SVI.getOperand(0);
11174 RHS = SVI.getOperand(1);
11175 MadeChange = true;
11176 }
11177
11178 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11179 bool isLHSID = true, isRHSID = true;
11180
11181 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11182 if (Mask[i] >= e*2) continue; // Ignore undef values.
11183 // Is this an identity shuffle of the LHS value?
11184 isLHSID &= (Mask[i] == i);
11185
11186 // Is this an identity shuffle of the RHS value?
11187 isRHSID &= (Mask[i]-e == i);
11188 }
11189
11190 // Eliminate identity shuffles.
11191 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11192 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11193
11194 // If the LHS is a shufflevector itself, see if we can combine it with this
11195 // one without producing an unusual shuffle. Here we are really conservative:
11196 // we are absolutely afraid of producing a shuffle mask not in the input
11197 // program, because the code gen may not be smart enough to turn a merged
11198 // shuffle into two specific shuffles: it may produce worse code. As such,
11199 // we only merge two shuffles if the result is one of the two input shuffle
11200 // masks. In this case, merging the shuffles just removes one instruction,
11201 // which we know is safe. This is good for things like turning:
11202 // (splat(splat)) -> splat.
11203 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11204 if (isa<UndefValue>(RHS)) {
11205 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11206
11207 std::vector<unsigned> NewMask;
11208 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11209 if (Mask[i] >= 2*e)
11210 NewMask.push_back(2*e);
11211 else
11212 NewMask.push_back(LHSMask[Mask[i]]);
11213
11214 // If the result mask is equal to the src shuffle or this shuffle mask, do
11215 // the replacement.
11216 if (NewMask == LHSMask || NewMask == Mask) {
11217 std::vector<Constant*> Elts;
11218 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11219 if (NewMask[i] >= e*2) {
11220 Elts.push_back(UndefValue::get(Type::Int32Ty));
11221 } else {
11222 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11223 }
11224 }
11225 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11226 LHSSVI->getOperand(1),
11227 ConstantVector::get(Elts));
11228 }
11229 }
11230 }
11231
11232 return MadeChange ? &SVI : 0;
11233}
11234
11235
11236
11237
11238/// TryToSinkInstruction - Try to move the specified instruction from its
11239/// current block into the beginning of DestBlock, which can only happen if it's
11240/// safe to move the instruction past all of the instructions between it and the
11241/// end of its block.
11242static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11243 assert(I->hasOneUse() && "Invariants didn't hold!");
11244
11245 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000011246 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
11247 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011248
11249 // Do not sink alloca instructions out of the entry block.
11250 if (isa<AllocaInst>(I) && I->getParent() ==
11251 &DestBlock->getParent()->getEntryBlock())
11252 return false;
11253
11254 // We can only sink load instructions if there is nothing between the load and
11255 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000011256 if (I->mayReadFromMemory()) {
11257 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011258 Scan != E; ++Scan)
11259 if (Scan->mayWriteToMemory())
11260 return false;
11261 }
11262
Dan Gohman514277c2008-05-23 21:05:58 +000011263 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011264
11265 I->moveBefore(InsertPos);
11266 ++NumSunkInst;
11267 return true;
11268}
11269
11270
11271/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11272/// all reachable code to the worklist.
11273///
11274/// This has a couple of tricks to make the code faster and more powerful. In
11275/// particular, we constant fold and DCE instructions as we go, to avoid adding
11276/// them to the worklist (this significantly speeds up instcombine on code where
11277/// many instructions are dead or constant). Additionally, if we find a branch
11278/// whose condition is a known constant, we only visit the reachable successors.
11279///
11280static void AddReachableCodeToWorklist(BasicBlock *BB,
11281 SmallPtrSet<BasicBlock*, 64> &Visited,
11282 InstCombiner &IC,
11283 const TargetData *TD) {
11284 std::vector<BasicBlock*> Worklist;
11285 Worklist.push_back(BB);
11286
11287 while (!Worklist.empty()) {
11288 BB = Worklist.back();
11289 Worklist.pop_back();
11290
11291 // We have now visited this block! If we've already been here, ignore it.
11292 if (!Visited.insert(BB)) continue;
11293
11294 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11295 Instruction *Inst = BBI++;
11296
11297 // DCE instruction if trivially dead.
11298 if (isInstructionTriviallyDead(Inst)) {
11299 ++NumDeadInst;
11300 DOUT << "IC: DCE: " << *Inst;
11301 Inst->eraseFromParent();
11302 continue;
11303 }
11304
11305 // ConstantProp instruction if trivially constant.
11306 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11307 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11308 Inst->replaceAllUsesWith(C);
11309 ++NumConstProp;
11310 Inst->eraseFromParent();
11311 continue;
11312 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000011313
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011314 IC.AddToWorkList(Inst);
11315 }
11316
11317 // Recursively visit successors. If this is a branch or switch on a
11318 // constant, only visit the reachable successor.
11319 TerminatorInst *TI = BB->getTerminator();
11320 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
11321 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
11322 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011323 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011324 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011325 continue;
11326 }
11327 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
11328 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
11329 // See if this is an explicit destination.
11330 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
11331 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011332 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011333 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011334 continue;
11335 }
11336
11337 // Otherwise it is the default destination.
11338 Worklist.push_back(SI->getSuccessor(0));
11339 continue;
11340 }
11341 }
11342
11343 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
11344 Worklist.push_back(TI->getSuccessor(i));
11345 }
11346}
11347
11348bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
11349 bool Changed = false;
11350 TD = &getAnalysis<TargetData>();
11351
11352 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
11353 << F.getNameStr() << "\n");
11354
11355 {
11356 // Do a depth-first traversal of the function, populate the worklist with
11357 // the reachable instructions. Ignore blocks that are not reachable. Keep
11358 // track of which blocks we visit.
11359 SmallPtrSet<BasicBlock*, 64> Visited;
11360 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
11361
11362 // Do a quick scan over the function. If we find any blocks that are
11363 // unreachable, remove any instructions inside of them. This prevents
11364 // the instcombine code from having to deal with some bad special cases.
11365 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
11366 if (!Visited.count(BB)) {
11367 Instruction *Term = BB->getTerminator();
11368 while (Term != BB->begin()) { // Remove instrs bottom-up
11369 BasicBlock::iterator I = Term; --I;
11370
11371 DOUT << "IC: DCE: " << *I;
11372 ++NumDeadInst;
11373
11374 if (!I->use_empty())
11375 I->replaceAllUsesWith(UndefValue::get(I->getType()));
11376 I->eraseFromParent();
11377 }
11378 }
11379 }
11380
11381 while (!Worklist.empty()) {
11382 Instruction *I = RemoveOneFromWorkList();
11383 if (I == 0) continue; // skip null values.
11384
11385 // Check to see if we can DCE the instruction.
11386 if (isInstructionTriviallyDead(I)) {
11387 // Add operands to the worklist.
11388 if (I->getNumOperands() < 4)
11389 AddUsesToWorkList(*I);
11390 ++NumDeadInst;
11391
11392 DOUT << "IC: DCE: " << *I;
11393
11394 I->eraseFromParent();
11395 RemoveFromWorkList(I);
11396 continue;
11397 }
11398
11399 // Instruction isn't dead, see if we can constant propagate it.
11400 if (Constant *C = ConstantFoldInstruction(I, TD)) {
11401 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
11402
11403 // Add operands to the worklist.
11404 AddUsesToWorkList(*I);
11405 ReplaceInstUsesWith(*I, C);
11406
11407 ++NumConstProp;
11408 I->eraseFromParent();
11409 RemoveFromWorkList(I);
11410 continue;
11411 }
11412
Nick Lewyckyadb67922008-05-25 20:56:15 +000011413 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
11414 // See if we can constant fold its operands.
11415 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
11416 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
11417 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
11418 i->set(NewC);
11419 }
11420 }
11421 }
11422
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011423 // See if we can trivially sink this instruction to a successor basic block.
Chris Lattner0db40a62008-05-08 17:37:37 +000011424 // FIXME: Remove GetResultInst test when first class support for aggregates
11425 // is implemented.
Devang Patela0a6cae2008-05-03 00:36:30 +000011426 if (I->hasOneUse() && !isa<GetResultInst>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011427 BasicBlock *BB = I->getParent();
11428 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
11429 if (UserParent != BB) {
11430 bool UserIsSuccessor = false;
11431 // See if the user is one of our successors.
11432 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
11433 if (*SI == UserParent) {
11434 UserIsSuccessor = true;
11435 break;
11436 }
11437
11438 // If the user is one of our immediate successors, and if that successor
11439 // only has us as a predecessors (we'd have to split the critical edge
11440 // otherwise), we can keep going.
11441 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
11442 next(pred_begin(UserParent)) == pred_end(UserParent))
11443 // Okay, the CFG is simple enough, try to sink this instruction.
11444 Changed |= TryToSinkInstruction(I, UserParent);
11445 }
11446 }
11447
11448 // Now that we have an instruction, try combining it to simplify it...
11449#ifndef NDEBUG
11450 std::string OrigI;
11451#endif
11452 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
11453 if (Instruction *Result = visit(*I)) {
11454 ++NumCombined;
11455 // Should we replace the old instruction with a new one?
11456 if (Result != I) {
11457 DOUT << "IC: Old = " << *I
11458 << " New = " << *Result;
11459
11460 // Everything uses the new instruction now.
11461 I->replaceAllUsesWith(Result);
11462
11463 // Push the new instruction and any users onto the worklist.
11464 AddToWorkList(Result);
11465 AddUsersToWorkList(*Result);
11466
11467 // Move the name to the new instruction first.
11468 Result->takeName(I);
11469
11470 // Insert the new instruction into the basic block...
11471 BasicBlock *InstParent = I->getParent();
11472 BasicBlock::iterator InsertPos = I;
11473
11474 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
11475 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
11476 ++InsertPos;
11477
11478 InstParent->getInstList().insert(InsertPos, Result);
11479
11480 // Make sure that we reprocess all operands now that we reduced their
11481 // use counts.
11482 AddUsesToWorkList(*I);
11483
11484 // Instructions can end up on the worklist more than once. Make sure
11485 // we do not process an instruction that has been deleted.
11486 RemoveFromWorkList(I);
11487
11488 // Erase the old instruction.
11489 InstParent->getInstList().erase(I);
11490 } else {
11491#ifndef NDEBUG
11492 DOUT << "IC: Mod = " << OrigI
11493 << " New = " << *I;
11494#endif
11495
11496 // If the instruction was modified, it's possible that it is now dead.
11497 // if so, remove it.
11498 if (isInstructionTriviallyDead(I)) {
11499 // Make sure we process all operands now that we are reducing their
11500 // use counts.
11501 AddUsesToWorkList(*I);
11502
11503 // Instructions may end up in the worklist more than once. Erase all
11504 // occurrences of this instruction.
11505 RemoveFromWorkList(I);
11506 I->eraseFromParent();
11507 } else {
11508 AddToWorkList(I);
11509 AddUsersToWorkList(*I);
11510 }
11511 }
11512 Changed = true;
11513 }
11514 }
11515
11516 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000011517
11518 // Do an explicit clear, this shrinks the map if needed.
11519 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011520 return Changed;
11521}
11522
11523
11524bool InstCombiner::runOnFunction(Function &F) {
11525 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
11526
11527 bool EverMadeChange = false;
11528
11529 // Iterate while there is work to do.
11530 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000011531 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011532 EverMadeChange = true;
11533 return EverMadeChange;
11534}
11535
11536FunctionPass *llvm::createInstructionCombiningPass() {
11537 return new InstCombiner();
11538}
11539