blob: 79c59f374c517e3889202f4e4c68b97485251623 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
Dale Johannesen5981f6b2009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033#include "llvm/Support/Debug.h"
Chris Lattner3bbf2a72009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattner8a6411c2009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
38#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000039#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040using namespace llvm;
41
42STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
46
47namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000048 struct ValueEntry {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 unsigned Rank;
50 Value *Op;
51 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52 };
53 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
55 }
56}
57
Devang Patele93afd52008-11-21 21:00:20 +000058#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +000059/// PrintOps - Print out the expression identified in the Ops list.
60///
61static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
62 Module *M = I->getParent()->getParent()->getParent();
Chris Lattnerb0659d42009-08-23 04:52:46 +000063 errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000064 << *Ops[0].Op->getType() << '\t';
Chris Lattner51216ad2008-08-19 04:45:19 +000065 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000066 errs() << "[ ";
67 WriteAsOperand(errs(), Ops[i].Op, false, M);
68 errs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner51216ad2008-08-19 04:45:19 +000069 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070}
Devang Patel4354f5c2008-11-21 20:00:59 +000071#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +000072
Dan Gohman089efff2008-05-13 00:00:25 +000073namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000074 class Reassociate : public FunctionPass {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000075 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner3bbf2a72009-03-31 22:13:29 +000076 std::map<AssertingVH<>, unsigned> ValueRankMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000077 bool MadeChange;
78 public:
79 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000080 Reassociate() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081
82 bool runOnFunction(Function &F);
83
84 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85 AU.setPreservesCFG();
86 }
87 private:
88 void BuildRankMap(Function &F);
89 unsigned getRank(Value *V);
90 void ReassociateExpression(BinaryOperator *I);
91 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
92 unsigned Idx = 0);
93 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
94 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
95 void LinearizeExpr(BinaryOperator *I);
96 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
97 void ReassociateBB(BasicBlock *BB);
98
99 void RemoveDeadBinaryOp(Value *V);
100 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101}
102
Dan Gohman089efff2008-05-13 00:00:25 +0000103char Reassociate::ID = 0;
104static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
105
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000106// Public interface to the Reassociate pass
107FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
108
109void Reassociate::RemoveDeadBinaryOp(Value *V) {
110 Instruction *Op = dyn_cast<Instruction>(V);
111 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
112 return;
113
114 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
115 RemoveDeadBinaryOp(LHS);
116 RemoveDeadBinaryOp(RHS);
117}
118
119
120static bool isUnmovableInstruction(Instruction *I) {
121 if (I->getOpcode() == Instruction::PHI ||
122 I->getOpcode() == Instruction::Alloca ||
123 I->getOpcode() == Instruction::Load ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen5981f6b2009-03-06 01:41:59 +0000125 (I->getOpcode() == Instruction::Call &&
126 !isa<DbgInfoIntrinsic>(I)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 I->getOpcode() == Instruction::UDiv ||
128 I->getOpcode() == Instruction::SDiv ||
129 I->getOpcode() == Instruction::FDiv ||
130 I->getOpcode() == Instruction::URem ||
131 I->getOpcode() == Instruction::SRem ||
132 I->getOpcode() == Instruction::FRem)
133 return true;
134 return false;
135}
136
137void Reassociate::BuildRankMap(Function &F) {
138 unsigned i = 2;
139
140 // Assign distinct ranks to function arguments
141 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000142 ValueRankMap[&*I] = ++i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000143
144 ReversePostOrderTraversal<Function*> RPOT(&F);
145 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
146 E = RPOT.end(); I != E; ++I) {
147 BasicBlock *BB = *I;
148 unsigned BBRank = RankMap[BB] = ++i << 16;
149
150 // Walk the basic block, adding precomputed ranks for any instructions that
151 // we cannot move. This ensures that the ranks for these instructions are
152 // all different in the block.
153 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
154 if (isUnmovableInstruction(I))
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000155 ValueRankMap[&*I] = ++BBRank;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156 }
157}
158
159unsigned Reassociate::getRank(Value *V) {
160 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
161
162 Instruction *I = dyn_cast<Instruction>(V);
163 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
164
165 unsigned &CachedRank = ValueRankMap[I];
166 if (CachedRank) return CachedRank; // Rank already known?
167
168 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
169 // we can reassociate expressions for code motion! Since we do not recurse
170 // for PHI nodes, we cannot have infinite recursion here, because there
171 // cannot be loops in the value graph that do not go through PHI nodes.
172 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
173 for (unsigned i = 0, e = I->getNumOperands();
174 i != e && Rank != MaxRank; ++i)
175 Rank = std::max(Rank, getRank(I->getOperand(i)));
176
177 // If this is a not or neg instruction, do not count it for rank. This
178 // assures us that X and ~X will have the same rank.
179 if (!I->getType()->isInteger() ||
Owen Anderson76f49252009-07-13 22:18:28 +0000180 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000181 ++Rank;
182
Chris Lattner8a6411c2009-08-23 04:37:46 +0000183 //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
184 // << Rank << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000185
186 return CachedRank = Rank;
187}
188
189/// isReassociableOp - Return true if V is an instruction of the specified
190/// opcode and if it only has one use.
191static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
192 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
193 cast<Instruction>(V)->getOpcode() == Opcode)
194 return cast<BinaryOperator>(V);
195 return 0;
196}
197
198/// LowerNegateToMultiply - Replace 0-X with X*-1.
199///
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000200static Instruction *LowerNegateToMultiply(Instruction *Neg,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000201 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersonaac28372009-07-31 20:28:14 +0000202 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203
Gabor Greifa645dd32008-05-16 19:29:10 +0000204 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000205 ValueRankMap.erase(Neg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206 Res->takeName(Neg);
207 Neg->replaceAllUsesWith(Res);
208 Neg->eraseFromParent();
209 return Res;
210}
211
212// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
213// Note that if D is also part of the expression tree that we recurse to
214// linearize it as well. Besides that case, this does not recurse into A,B, or
215// C.
216void Reassociate::LinearizeExpr(BinaryOperator *I) {
217 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
218 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
219 assert(isReassociableOp(LHS, I->getOpcode()) &&
220 isReassociableOp(RHS, I->getOpcode()) &&
221 "Not an expression that needs linearization?");
222
Chris Lattner8a6411c2009-08-23 04:37:46 +0000223 DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224
225 // Move the RHS instruction to live immediately before I, avoiding breaking
226 // dominator properties.
227 RHS->moveBefore(I);
228
229 // Move operands around to do the linearization.
230 I->setOperand(1, RHS->getOperand(0));
231 RHS->setOperand(0, LHS);
232 I->setOperand(0, RHS);
233
234 ++NumLinear;
235 MadeChange = true;
Chris Lattner8a6411c2009-08-23 04:37:46 +0000236 DEBUG(errs() << "Linearized: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237
238 // If D is part of this expression tree, tail recurse.
239 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
240 LinearizeExpr(I);
241}
242
243
244/// LinearizeExprTree - Given an associative binary expression tree, traverse
245/// all of the uses putting it into canonical form. This forces a left-linear
246/// form of the the expression (((a+b)+c)+d), and collects information about the
247/// rank of the non-tree operands.
248///
249/// NOTE: These intentionally destroys the expression tree operands (turning
250/// them into undef values) to reduce #uses of the values. This means that the
251/// caller MUST use something like RewriteExprTree to put the values back in.
252///
253void Reassociate::LinearizeExprTree(BinaryOperator *I,
254 std::vector<ValueEntry> &Ops) {
255 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
256 unsigned Opcode = I->getOpcode();
257
258 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
259 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
260 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
261
262 // If this is a multiply expression tree and it contains internal negations,
263 // transform them into multiplies by -1 so they can be reassociated.
264 if (I->getOpcode() == Instruction::Mul) {
Owen Anderson76f49252009-07-13 22:18:28 +0000265 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000266 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267 LHSBO = isReassociableOp(LHS, Opcode);
268 }
Owen Anderson76f49252009-07-13 22:18:28 +0000269 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000270 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000271 RHSBO = isReassociableOp(RHS, Opcode);
272 }
273 }
274
275 if (!LHSBO) {
276 if (!RHSBO) {
277 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
278 // such, just remember these operands and their rank.
279 Ops.push_back(ValueEntry(getRank(LHS), LHS));
280 Ops.push_back(ValueEntry(getRank(RHS), RHS));
281
282 // Clear the leaves out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000283 I->setOperand(0, UndefValue::get(I->getType()));
284 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000285 return;
286 } else {
287 // Turn X+(Y+Z) -> (Y+Z)+X
288 std::swap(LHSBO, RHSBO);
289 std::swap(LHS, RHS);
290 bool Success = !I->swapOperands();
291 assert(Success && "swapOperands failed");
Devang Patel4354f5c2008-11-21 20:00:59 +0000292 Success = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000293 MadeChange = true;
294 }
295 } else if (RHSBO) {
296 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
297 // part of the expression tree.
298 LinearizeExpr(I);
299 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
300 RHS = I->getOperand(1);
301 RHSBO = 0;
302 }
303
304 // Okay, now we know that the LHS is a nested expression and that the RHS is
305 // not. Perform reassociation.
306 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
307
308 // Move LHS right before I to make sure that the tree expression dominates all
309 // values.
310 LHSBO->moveBefore(I);
311
312 // Linearize the expression tree on the LHS.
313 LinearizeExprTree(LHSBO, Ops);
314
315 // Remember the RHS operand and its rank.
316 Ops.push_back(ValueEntry(getRank(RHS), RHS));
317
318 // Clear the RHS leaf out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000319 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000320}
321
322// RewriteExprTree - Now that the operands for this expression tree are
323// linearized and optimized, emit them in-order. This function is written to be
324// tail recursive.
325void Reassociate::RewriteExprTree(BinaryOperator *I,
326 std::vector<ValueEntry> &Ops,
327 unsigned i) {
328 if (i+2 == Ops.size()) {
329 if (I->getOperand(0) != Ops[i].Op ||
330 I->getOperand(1) != Ops[i+1].Op) {
331 Value *OldLHS = I->getOperand(0);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000332 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000333 I->setOperand(0, Ops[i].Op);
334 I->setOperand(1, Ops[i+1].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000335 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336 MadeChange = true;
337 ++NumChanged;
338
339 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
340 // delete the extra, now dead, nodes.
341 RemoveDeadBinaryOp(OldLHS);
342 }
343 return;
344 }
345 assert(i+2 < Ops.size() && "Ops index out of range!");
346
347 if (I->getOperand(1) != Ops[i].Op) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000348 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 I->setOperand(1, Ops[i].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000350 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351 MadeChange = true;
352 ++NumChanged;
353 }
354
355 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
356 assert(LHS->getOpcode() == I->getOpcode() &&
357 "Improper expression tree!");
358
359 // Compactify the tree instructions together with each other to guarantee
360 // that the expression tree is dominated by all of Ops.
361 LHS->moveBefore(I);
362 RewriteExprTree(LHS, Ops, i+1);
363}
364
365
366
367// NegateValue - Insert instructions before the instruction pointed to by BI,
368// that computes the negative version of the value specified. The negative
369// version of the value is returned, and BI is left pointing at the instruction
370// that should be processed next by the reassociation pass.
371//
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000372static Value *NegateValue(Value *V, Instruction *BI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000373 // We are trying to expose opportunity for reassociation. One of the things
374 // that we want to do to achieve this is to push a negation as deep into an
375 // expression chain as possible, to expose the add instructions. In practice,
376 // this means that we turn this:
377 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
378 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
379 // the constants. We assume that instcombine will clean up the mess later if
380 // we introduce tons of unnecessary negation instructions...
381 //
382 if (Instruction *I = dyn_cast<Instruction>(V))
383 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
384 // Push the negates through the add.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000385 I->setOperand(0, NegateValue(I->getOperand(0), BI));
386 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000387
388 // We must move the add instruction here, because the neg instructions do
389 // not dominate the old add instruction in general. By moving it, we are
390 // assured that the neg instructions we just inserted dominate the
391 // instruction we are about to insert after them.
392 //
393 I->moveBefore(BI);
394 I->setName(I->getName()+".neg");
395 return I;
396 }
397
398 // Insert a 'neg' instruction that subtracts the value from zero to get the
399 // negation.
400 //
Dan Gohmancdff2122009-08-12 16:23:25 +0000401 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402}
403
Chris Lattner6cf17172008-02-17 20:44:51 +0000404/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
405/// X-Y into (X + -Y).
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000406static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000407 // If this is a negation, we can't split it up!
Owen Anderson76f49252009-07-13 22:18:28 +0000408 if (BinaryOperator::isNeg(Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000409 return false;
410
411 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner4846b312008-02-17 20:51:26 +0000412 // subtract or if this is only used by one.
413 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
414 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000415 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000416 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner720f2ba2008-02-17 20:54:40 +0000417 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000418 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000419 if (Sub->hasOneUse() &&
420 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
421 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner6cf17172008-02-17 20:44:51 +0000422 return true;
423
424 return false;
425}
426
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000427/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
428/// only used by an add, transform this into (X+(0-Y)) to promote better
429/// reassociation.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000430static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000431 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 // Convert a subtract into an add and a neg instruction... so that sub
433 // instructions can be commuted with other add instructions...
434 //
435 // Calculate the negative value of Operand 1 of the sub instruction...
436 // and set it as the RHS of the add instruction we just made...
437 //
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000438 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000439 Instruction *New =
Gabor Greifa645dd32008-05-16 19:29:10 +0000440 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441 New->takeName(Sub);
442
443 // Everyone now refers to the add instruction.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000444 ValueRankMap.erase(Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 Sub->replaceAllUsesWith(New);
446 Sub->eraseFromParent();
447
Chris Lattner8a6411c2009-08-23 04:37:46 +0000448 DEBUG(errs() << "Negated: " << *New << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 return New;
450}
451
452/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
453/// by one, change this into a multiply by a constant to assist with further
454/// reassociation.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000455static Instruction *ConvertShiftToMul(Instruction *Shl,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000456 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000457 // If an operand of this shift is a reassociable multiply, or if the shift
458 // is used by a reassociable multiply or add, turn into a multiply.
459 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
460 (Shl->hasOneUse() &&
461 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
462 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneacb44d2009-07-24 23:12:02 +0000463 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Owen Andersonfa089ab2009-07-03 19:42:02 +0000464 MulCst =
Owen Anderson02b48c32009-07-29 18:55:55 +0000465 ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000466
Gabor Greifa645dd32008-05-16 19:29:10 +0000467 Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468 "", Shl);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000469 ValueRankMap.erase(Shl);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000470 Mul->takeName(Shl);
471 Shl->replaceAllUsesWith(Mul);
472 Shl->eraseFromParent();
473 return Mul;
474 }
475 return 0;
476}
477
478// Scan backwards and forwards among values with the same rank as element i to
479// see if X exists. If X does not exist, return i.
480static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
481 Value *X) {
482 unsigned XRank = Ops[i].Rank;
483 unsigned e = Ops.size();
484 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
485 if (Ops[j].Op == X)
486 return j;
487 // Scan backwards
488 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
489 if (Ops[j].Op == X)
490 return j;
491 return i;
492}
493
494/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
495/// and returning the result. Insert the tree before I.
496static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
497 if (Ops.size() == 1) return Ops.back();
498
499 Value *V1 = Ops.back();
500 Ops.pop_back();
501 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greifa645dd32008-05-16 19:29:10 +0000502 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000503}
504
505/// RemoveFactorFromExpression - If V is an expression tree that is a
506/// multiplication sequence, and if this sequence contains a multiply by Factor,
507/// remove Factor from the tree and return the new tree.
508Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
509 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
510 if (!BO) return 0;
511
512 std::vector<ValueEntry> Factors;
513 LinearizeExprTree(BO, Factors);
514
515 bool FoundFactor = false;
516 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
517 if (Factors[i].Op == Factor) {
518 FoundFactor = true;
519 Factors.erase(Factors.begin()+i);
520 break;
521 }
522 if (!FoundFactor) {
523 // Make sure to restore the operands to the expression tree.
524 RewriteExprTree(BO, Factors);
525 return 0;
526 }
527
528 if (Factors.size() == 1) return Factors[0].Op;
529
530 RewriteExprTree(BO, Factors);
531 return BO;
532}
533
534/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
535/// add its operands as factors, otherwise add V to the list of factors.
536static void FindSingleUseMultiplyFactors(Value *V,
537 std::vector<Value*> &Factors) {
538 BinaryOperator *BO;
539 if ((!V->hasOneUse() && !V->use_empty()) ||
540 !(BO = dyn_cast<BinaryOperator>(V)) ||
541 BO->getOpcode() != Instruction::Mul) {
542 Factors.push_back(V);
543 return;
544 }
545
546 // Otherwise, add the LHS and RHS to the list of factors.
547 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
548 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
549}
550
551
552
553Value *Reassociate::OptimizeExpression(BinaryOperator *I,
554 std::vector<ValueEntry> &Ops) {
555 // Now that we have the linearized expression tree, try to optimize it.
556 // Start by folding any constants that we found.
557 bool IterateOptimization = false;
558 if (Ops.size() == 1) return Ops[0].Op;
559
560 unsigned Opcode = I->getOpcode();
561
562 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
563 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
564 Ops.pop_back();
Owen Anderson02b48c32009-07-29 18:55:55 +0000565 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000566 return OptimizeExpression(I, Ops);
567 }
568
569 // Check for destructive annihilation due to a constant being used.
570 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
571 switch (Opcode) {
572 default: break;
573 case Instruction::And:
574 if (CstVal->isZero()) { // ... & 0 -> 0
575 ++NumAnnihil;
576 return CstVal;
577 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
578 Ops.pop_back();
579 }
580 break;
581 case Instruction::Mul:
582 if (CstVal->isZero()) { // ... * 0 -> 0
583 ++NumAnnihil;
584 return CstVal;
585 } else if (cast<ConstantInt>(CstVal)->isOne()) {
586 Ops.pop_back(); // ... * 1 -> ...
587 }
588 break;
589 case Instruction::Or:
590 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
591 ++NumAnnihil;
592 return CstVal;
593 }
594 // FALLTHROUGH!
595 case Instruction::Add:
596 case Instruction::Xor:
597 if (CstVal->isZero()) // ... [|^+] 0 -> ...
598 Ops.pop_back();
599 break;
600 }
601 if (Ops.size() == 1) return Ops[0].Op;
602
603 // Handle destructive annihilation do to identities between elements in the
604 // argument list here.
605 switch (Opcode) {
606 default: break;
607 case Instruction::And:
608 case Instruction::Or:
609 case Instruction::Xor:
610 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
611 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
612 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
613 // First, check for X and ~X in the operand list.
614 assert(i < Ops.size());
615 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
616 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
617 unsigned FoundX = FindInOperandList(Ops, i, X);
618 if (FoundX != i) {
619 if (Opcode == Instruction::And) { // ...&X&~X = 0
620 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000621 return Constant::getNullValue(X->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000622 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
623 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000624 return Constant::getAllOnesValue(X->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000625 }
626 }
627 }
628
629 // Next, check for duplicate pairs of values, which we assume are next to
630 // each other, due to our sorting criteria.
631 assert(i < Ops.size());
632 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
633 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
634 // Drop duplicate values.
635 Ops.erase(Ops.begin()+i);
636 --i; --e;
637 IterateOptimization = true;
638 ++NumAnnihil;
639 } else {
640 assert(Opcode == Instruction::Xor);
641 if (e == 2) {
642 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000643 return Constant::getNullValue(Ops[0].Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000644 }
645 // ... X^X -> ...
646 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
647 i -= 1; e -= 2;
648 IterateOptimization = true;
649 ++NumAnnihil;
650 }
651 }
652 }
653 break;
654
655 case Instruction::Add:
656 // Scan the operand lists looking for X and -X pairs. If we find any, we
657 // can simplify the expression. X+-X == 0.
658 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
659 assert(i < Ops.size());
660 // Check for X and -X in the operand list.
Owen Anderson76f49252009-07-13 22:18:28 +0000661 if (BinaryOperator::isNeg(Ops[i].Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000662 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
663 unsigned FoundX = FindInOperandList(Ops, i, X);
664 if (FoundX != i) {
665 // Remove X and -X from the operand list.
666 if (Ops.size() == 2) {
667 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000668 return Constant::getNullValue(X->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000669 } else {
670 Ops.erase(Ops.begin()+i);
671 if (i < FoundX)
672 --FoundX;
673 else
674 --i; // Need to back up an extra one.
675 Ops.erase(Ops.begin()+FoundX);
676 IterateOptimization = true;
677 ++NumAnnihil;
678 --i; // Revisit element.
679 e -= 2; // Removed two elements.
680 }
681 }
682 }
683 }
684
685
686 // Scan the operand list, checking to see if there are any common factors
687 // between operands. Consider something like A*A+A*B*C+D. We would like to
688 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
689 // To efficiently find this, we count the number of times a factor occurs
690 // for any ADD operands that are MULs.
691 std::map<Value*, unsigned> FactorOccurrences;
692 unsigned MaxOcc = 0;
693 Value *MaxOccVal = 0;
694 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
695 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
696 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
697 // Compute all of the factors of this added value.
698 std::vector<Value*> Factors;
699 FindSingleUseMultiplyFactors(BOp, Factors);
700 assert(Factors.size() > 1 && "Bad linearize!");
701
702 // Add one to FactorOccurrences for each unique factor in this op.
703 if (Factors.size() == 2) {
704 unsigned Occ = ++FactorOccurrences[Factors[0]];
705 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
706 if (Factors[0] != Factors[1]) { // Don't double count A*A.
707 Occ = ++FactorOccurrences[Factors[1]];
708 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
709 }
710 } else {
711 std::set<Value*> Duplicates;
712 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
713 if (Duplicates.insert(Factors[i]).second) {
714 unsigned Occ = ++FactorOccurrences[Factors[i]];
715 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
716 }
717 }
718 }
719 }
720 }
721 }
722
723 // If any factor occurred more than one time, we can pull it out.
724 if (MaxOcc > 1) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000725 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000726
727 // Create a new instruction that uses the MaxOccVal twice. If we don't do
728 // this, we could otherwise run into situations where removing a factor
729 // from an expression will drop a use of maxocc, and this can cause
730 // RemoveFactorFromExpression on successive values to behave differently.
Gabor Greifa645dd32008-05-16 19:29:10 +0000731 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000732 std::vector<Value*> NewMulOps;
733 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
734 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
735 NewMulOps.push_back(V);
736 Ops.erase(Ops.begin()+i);
737 --i; --e;
738 }
739 }
740
741 // No need for extra uses anymore.
742 delete DummyInst;
743
744 unsigned NumAddedValues = NewMulOps.size();
745 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Gabor Greifa645dd32008-05-16 19:29:10 +0000746 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747
748 // Now that we have inserted V and its sole use, optimize it. This allows
749 // us to handle cases that require multiple factoring steps, such as this:
750 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
751 if (NumAddedValues > 1)
752 ReassociateExpression(cast<BinaryOperator>(V));
753
754 ++NumFactor;
755
Dan Gohman301f4052008-01-29 13:02:09 +0000756 if (Ops.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757 return V2;
758
759 // Add the new value to the list of things being added.
760 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
761
762 // Rewrite the tree so that there is now a use of V.
763 RewriteExprTree(I, Ops);
764 return OptimizeExpression(I, Ops);
765 }
766 break;
767 //case Instruction::Mul:
768 }
769
770 if (IterateOptimization)
771 return OptimizeExpression(I, Ops);
772 return 0;
773}
774
775
776/// ReassociateBB - Inspect all of the instructions in this basic block,
777/// reassociating them as we go.
778void Reassociate::ReassociateBB(BasicBlock *BB) {
779 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
780 Instruction *BI = BBI++;
781 if (BI->getOpcode() == Instruction::Shl &&
782 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000783 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000784 MadeChange = true;
785 BI = NI;
786 }
787
788 // Reject cases where it is pointless to do this.
789 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
790 isa<VectorType>(BI->getType()))
791 continue; // Floating point ops are not associative.
792
793 // If this is a subtract instruction which is not already in negate form,
794 // see if we can convert it to X+-Y.
795 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000796 if (ShouldBreakUpSubtract(BI)) {
797 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattnerb0cd25e2008-02-18 02:18:25 +0000798 MadeChange = true;
Owen Anderson76f49252009-07-13 22:18:28 +0000799 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000800 // Otherwise, this is a negation. See if the operand is a multiply tree
801 // and if this is not an inner node of a multiply tree.
802 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
803 (!BI->hasOneUse() ||
804 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000805 BI = LowerNegateToMultiply(BI, ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000806 MadeChange = true;
807 }
808 }
809 }
810
811 // If this instruction is a commutative binary operator, process it.
812 if (!BI->isAssociative()) continue;
813 BinaryOperator *I = cast<BinaryOperator>(BI);
814
815 // If this is an interior node of a reassociable tree, ignore it until we
816 // get to the root of the tree, to avoid N^2 analysis.
817 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
818 continue;
819
820 // If this is an add tree that is used by a sub instruction, ignore it
821 // until we process the subtract.
822 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
823 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
824 continue;
825
826 ReassociateExpression(I);
827 }
828}
829
830void Reassociate::ReassociateExpression(BinaryOperator *I) {
831
832 // First, walk the expression tree, linearizing the tree, collecting
833 std::vector<ValueEntry> Ops;
834 LinearizeExprTree(I, Ops);
835
Chris Lattner8a6411c2009-08-23 04:37:46 +0000836 DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000837
838 // Now that we have linearized the tree to a list and have gathered all of
839 // the operands and their ranks, sort the operands by their rank. Use a
840 // stable_sort so that values with equal ranks will have their relative
841 // positions maintained (and so the compiler is deterministic). Note that
842 // this sorts so that the highest ranking values end up at the beginning of
843 // the vector.
844 std::stable_sort(Ops.begin(), Ops.end());
845
846 // OptimizeExpression - Now that we have the expression tree in a convenient
847 // sorted form, optimize it globally if possible.
848 if (Value *V = OptimizeExpression(I, Ops)) {
849 // This expression tree simplified to something that isn't a tree,
850 // eliminate it.
Chris Lattner8a6411c2009-08-23 04:37:46 +0000851 DEBUG(errs() << "Reassoc to scalar: " << *V << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000852 I->replaceAllUsesWith(V);
853 RemoveDeadBinaryOp(I);
854 return;
855 }
856
857 // We want to sink immediates as deeply as possible except in the case where
858 // this is a multiply tree used only by an add, and the immediate is a -1.
859 // In this case we reassociate to put the negation on the outside so that we
860 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
861 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
862 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
863 isa<ConstantInt>(Ops.back().Op) &&
864 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
865 Ops.insert(Ops.begin(), Ops.back());
866 Ops.pop_back();
867 }
868
Chris Lattner8a6411c2009-08-23 04:37:46 +0000869 DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000870
871 if (Ops.size() == 1) {
872 // This expression tree simplified to something that isn't a tree,
873 // eliminate it.
874 I->replaceAllUsesWith(Ops[0].Op);
875 RemoveDeadBinaryOp(I);
876 } else {
877 // Now that we ordered and optimized the expressions, splat them back into
878 // the expression tree, removing any unneeded nodes.
879 RewriteExprTree(I, Ops);
880 }
881}
882
883
884bool Reassociate::runOnFunction(Function &F) {
885 // Recalculate the rank map for F
886 BuildRankMap(F);
887
888 MadeChange = false;
889 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
890 ReassociateBB(FI);
891
892 // We are done with the rank map...
893 RankMap.clear();
894 ValueRankMap.clear();
895 return MadeChange;
896}
897