blob: 61830e02d6ceaf7a47728eb09c1e0502130a97c8 [file] [log] [blame]
Chris Lattner12be9362011-01-02 21:47:05 +00001//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs a simple dominator tree walk that eliminates trivially
11// redundant instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "early-cse"
16#include "llvm/Transforms/Scalar.h"
Chris Lattner91139cc2011-01-02 23:19:45 +000017#include "llvm/Instructions.h"
Chris Lattner12be9362011-01-02 21:47:05 +000018#include "llvm/Pass.h"
Chris Lattnercc9eab22011-01-02 23:04:14 +000019#include "llvm/Analysis/Dominators.h"
20#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnercc9eab22011-01-02 23:04:14 +000021#include "llvm/Target/TargetData.h"
22#include "llvm/Transforms/Utils/Local.h"
Chris Lattner91139cc2011-01-02 23:19:45 +000023#include "llvm/Support/Debug.h"
Chris Lattner82dcd5e2011-01-03 01:42:46 +000024#include "llvm/Support/RecyclingAllocator.h"
Chris Lattnercc9eab22011-01-02 23:04:14 +000025#include "llvm/ADT/ScopedHashTable.h"
Chris Lattner91139cc2011-01-02 23:19:45 +000026#include "llvm/ADT/Statistic.h"
Chris Lattner12be9362011-01-02 21:47:05 +000027using namespace llvm;
28
Chris Lattnera60a8b02011-01-03 03:28:23 +000029STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
30STATISTIC(NumCSE, "Number of instructions CSE'd");
Chris Lattner85db6102011-01-03 03:41:27 +000031STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
32STATISTIC(NumCSECall, "Number of call instructions CSE'd");
Chris Lattner75637152011-01-03 04:17:24 +000033STATISTIC(NumDSE, "Number of trivial dead stores removed");
Chris Lattner8e7f0d72011-01-03 03:18:43 +000034
35static unsigned getHash(const void *V) {
36 return DenseMapInfo<const void*>::getHashValue(V);
37}
Chris Lattner91139cc2011-01-02 23:19:45 +000038
Chris Lattnerf1974592011-01-03 02:20:48 +000039//===----------------------------------------------------------------------===//
40// SimpleValue
41//===----------------------------------------------------------------------===//
42
Chris Lattner12be9362011-01-02 21:47:05 +000043namespace {
Chris Lattnerf1974592011-01-03 02:20:48 +000044 /// SimpleValue - Instances of this struct represent available values in the
Chris Lattnercc9eab22011-01-02 23:04:14 +000045 /// scoped hash table.
Chris Lattnerf1974592011-01-03 02:20:48 +000046 struct SimpleValue {
Chris Lattnercc9eab22011-01-02 23:04:14 +000047 Instruction *Inst;
48
Chris Lattnera60a8b02011-01-03 03:28:23 +000049 SimpleValue(Instruction *I) : Inst(I) {
50 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
51 }
52
Chris Lattnercc9eab22011-01-02 23:04:14 +000053 bool isSentinel() const {
54 return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
55 Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
56 }
57
58 static bool canHandle(Instruction *Inst) {
Chris Lattner91139cc2011-01-02 23:19:45 +000059 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
60 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
61 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
62 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
63 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
Chris Lattnercc9eab22011-01-02 23:04:14 +000064 }
Chris Lattnercc9eab22011-01-02 23:04:14 +000065 };
66}
67
68namespace llvm {
Chris Lattnerf1974592011-01-03 02:20:48 +000069// SimpleValue is POD.
70template<> struct isPodLike<SimpleValue> {
Chris Lattnercc9eab22011-01-02 23:04:14 +000071 static const bool value = true;
72};
73
Chris Lattnerf1974592011-01-03 02:20:48 +000074template<> struct DenseMapInfo<SimpleValue> {
75 static inline SimpleValue getEmptyKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +000076 return DenseMapInfo<Instruction*>::getEmptyKey();
Chris Lattnercc9eab22011-01-02 23:04:14 +000077 }
Chris Lattnerf1974592011-01-03 02:20:48 +000078 static inline SimpleValue getTombstoneKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +000079 return DenseMapInfo<Instruction*>::getTombstoneKey();
Chris Lattnercc9eab22011-01-02 23:04:14 +000080 }
Chris Lattnerf1974592011-01-03 02:20:48 +000081 static unsigned getHashValue(SimpleValue Val);
82 static bool isEqual(SimpleValue LHS, SimpleValue RHS);
Chris Lattnercc9eab22011-01-02 23:04:14 +000083};
84}
85
Chris Lattnerf1974592011-01-03 02:20:48 +000086unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
Chris Lattnercc9eab22011-01-02 23:04:14 +000087 Instruction *Inst = Val.Inst;
Chris Lattnercc9eab22011-01-02 23:04:14 +000088
Chris Lattnerd957c712011-01-03 01:10:08 +000089 // Hash in all of the operands as pointers.
90 unsigned Res = 0;
91 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
92 Res ^= getHash(Inst->getOperand(i)) << i;
93
94 if (CastInst *CI = dyn_cast<CastInst>(Inst))
95 Res ^= getHash(CI->getType());
96 else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
97 Res ^= CI->getPredicate();
98 else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
99 for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
100 E = EVI->idx_end(); I != E; ++I)
101 Res ^= *I;
102 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
103 for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
104 E = IVI->idx_end(); I != E; ++I)
105 Res ^= *I;
106 } else {
107 // nothing extra to hash in.
108 assert((isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
109 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
110 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
111 "Invalid/unknown instruction");
112 }
113
114 // Mix in the opcode.
Chris Lattnercc9eab22011-01-02 23:04:14 +0000115 return (Res << 1) ^ Inst->getOpcode();
116}
117
Chris Lattnerf1974592011-01-03 02:20:48 +0000118bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
Chris Lattnercc9eab22011-01-02 23:04:14 +0000119 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
120
121 if (LHS.isSentinel() || RHS.isSentinel())
122 return LHSI == RHSI;
123
124 if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
125 return LHSI->isIdenticalTo(RHSI);
126}
127
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000128//===----------------------------------------------------------------------===//
Chris Lattner85db6102011-01-03 03:41:27 +0000129// CallValue
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000130//===----------------------------------------------------------------------===//
131
132namespace {
Chris Lattner85db6102011-01-03 03:41:27 +0000133 /// CallValue - Instances of this struct represent available call values in
134 /// the scoped hash table.
135 struct CallValue {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000136 Instruction *Inst;
137
Chris Lattner85db6102011-01-03 03:41:27 +0000138 CallValue(Instruction *I) : Inst(I) {
Chris Lattnera60a8b02011-01-03 03:28:23 +0000139 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
140 }
141
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000142 bool isSentinel() const {
143 return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
144 Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
145 }
146
147 static bool canHandle(Instruction *Inst) {
Chris Lattnera12ba392011-01-03 18:28:15 +0000148 CallInst *CI = dyn_cast<CallInst>(Inst);
149 if (CI == 0 || !CI->onlyReadsMemory())
150 return false;
151
152 // Check that there are no metadata operands.
153 for (unsigned i = 0, e = CI->getNumOperands(); i != e; ++i)
154 if (CI->getOperand(i)->getType()->isMetadataTy())
155 return false;
156 return true;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000157 }
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000158 };
159}
160
161namespace llvm {
Chris Lattner85db6102011-01-03 03:41:27 +0000162 // CallValue is POD.
163 template<> struct isPodLike<CallValue> {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000164 static const bool value = true;
165 };
166
Chris Lattner85db6102011-01-03 03:41:27 +0000167 template<> struct DenseMapInfo<CallValue> {
168 static inline CallValue getEmptyKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +0000169 return DenseMapInfo<Instruction*>::getEmptyKey();
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000170 }
Chris Lattner85db6102011-01-03 03:41:27 +0000171 static inline CallValue getTombstoneKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +0000172 return DenseMapInfo<Instruction*>::getTombstoneKey();
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000173 }
Chris Lattner85db6102011-01-03 03:41:27 +0000174 static unsigned getHashValue(CallValue Val);
175 static bool isEqual(CallValue LHS, CallValue RHS);
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000176 };
177}
Chris Lattner85db6102011-01-03 03:41:27 +0000178unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000179 Instruction *Inst = Val.Inst;
180 // Hash in all of the operands as pointers.
181 unsigned Res = 0;
182 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
183 Res ^= getHash(Inst->getOperand(i)) << i;
184 // Mix in the opcode.
185 return (Res << 1) ^ Inst->getOpcode();
186}
187
Chris Lattner85db6102011-01-03 03:41:27 +0000188bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000189 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000190 if (LHS.isSentinel() || RHS.isSentinel())
191 return LHSI == RHSI;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000192 return LHSI->isIdenticalTo(RHSI);
193}
194
Chris Lattnercc9eab22011-01-02 23:04:14 +0000195
Chris Lattnerf1974592011-01-03 02:20:48 +0000196//===----------------------------------------------------------------------===//
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000197// EarlyCSE pass.
Chris Lattnerf1974592011-01-03 02:20:48 +0000198//===----------------------------------------------------------------------===//
199
Chris Lattnercc9eab22011-01-02 23:04:14 +0000200namespace {
201
Chris Lattner12be9362011-01-02 21:47:05 +0000202/// EarlyCSE - This pass does a simple depth-first walk over the dominator
203/// tree, eliminating trivially redundant instructions and using instsimplify
204/// to canonicalize things as it goes. It is intended to be fast and catch
205/// obvious cases so that instcombine and other passes are more effective. It
206/// is expected that a later pass of GVN will catch the interesting/hard
207/// cases.
208class EarlyCSE : public FunctionPass {
209public:
Chris Lattnercc9eab22011-01-02 23:04:14 +0000210 const TargetData *TD;
211 DominatorTree *DT;
Chris Lattner82dcd5e2011-01-03 01:42:46 +0000212 typedef RecyclingAllocator<BumpPtrAllocator,
Chris Lattnerf1974592011-01-03 02:20:48 +0000213 ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
214 typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
Chris Lattner82dcd5e2011-01-03 01:42:46 +0000215 AllocatorTy> ScopedHTType;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000216
Chris Lattnerf1974592011-01-03 02:20:48 +0000217 /// AvailableValues - This scoped hash table contains the current values of
218 /// all of our simple scalar expressions. As we walk down the domtree, we
219 /// look to see if instructions are in this: if so, we replace them with what
220 /// we find, otherwise we insert them so that dominated values can succeed in
221 /// their lookup.
222 ScopedHTType *AvailableValues;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000223
Chris Lattner85db6102011-01-03 03:41:27 +0000224 /// AvailableLoads - This scoped hash table contains the current values
225 /// of loads. This allows us to get efficient access to dominating loads when
226 /// we have a fully redundant load. In addition to the most recent load, we
227 /// keep track of a generation count of the read, which is compared against
228 /// the current generation count. The current generation count is
229 /// incremented after every possibly writing memory operation, which ensures
230 /// that we only CSE loads with other loads that have no intervening store.
Chris Lattner71230ac2011-01-03 03:53:50 +0000231 typedef RecyclingAllocator<BumpPtrAllocator,
232 ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
233 typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
234 DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
Chris Lattner85db6102011-01-03 03:41:27 +0000235 LoadHTType *AvailableLoads;
236
237 /// AvailableCalls - This scoped hash table contains the current values
238 /// of read-only call values. It uses the same generation count as loads.
239 typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
240 CallHTType *AvailableCalls;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000241
242 /// CurrentGeneration - This is the current generation of the memory value.
243 unsigned CurrentGeneration;
244
Chris Lattner12be9362011-01-02 21:47:05 +0000245 static char ID;
Chris Lattnerf1974592011-01-03 02:20:48 +0000246 explicit EarlyCSE() : FunctionPass(ID) {
Chris Lattner12be9362011-01-02 21:47:05 +0000247 initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
248 }
249
250 bool runOnFunction(Function &F);
251
252private:
Chris Lattnercc9eab22011-01-02 23:04:14 +0000253
254 bool processNode(DomTreeNode *Node);
255
Chris Lattner12be9362011-01-02 21:47:05 +0000256 // This transformation requires dominator postdominator info
257 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
258 AU.addRequired<DominatorTree>();
259 AU.setPreservesCFG();
260 }
261};
262}
263
264char EarlyCSE::ID = 0;
265
266// createEarlyCSEPass - The public interface to this file.
267FunctionPass *llvm::createEarlyCSEPass() {
268 return new EarlyCSE();
269}
270
271INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
272INITIALIZE_PASS_DEPENDENCY(DominatorTree)
273INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
274
Chris Lattnercc9eab22011-01-02 23:04:14 +0000275bool EarlyCSE::processNode(DomTreeNode *Node) {
Chris Lattnerf1974592011-01-03 02:20:48 +0000276 // Define a scope in the scoped hash table. When we are done processing this
277 // domtree node and recurse back up to our parent domtree node, this will pop
278 // off all the values we install.
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000279 ScopedHTType::ScopeTy Scope(*AvailableValues);
280
Chris Lattner85db6102011-01-03 03:41:27 +0000281 // Define a scope for the load values so that anything we add will get
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000282 // popped when we recurse back up to our parent domtree node.
Chris Lattner85db6102011-01-03 03:41:27 +0000283 LoadHTType::ScopeTy LoadScope(*AvailableLoads);
284
285 // Define a scope for the call values so that anything we add will get
286 // popped when we recurse back up to our parent domtree node.
287 CallHTType::ScopeTy CallScope(*AvailableCalls);
Chris Lattnercc9eab22011-01-02 23:04:14 +0000288
289 BasicBlock *BB = Node->getBlock();
290
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000291 // If this block has a single predecessor, then the predecessor is the parent
292 // of the domtree node and all of the live out memory values are still current
293 // in this block. If this block has multiple predecessors, then they could
294 // have invalidated the live-out memory values of our parent value. For now,
295 // just be conservative and invalidate memory if this block has multiple
296 // predecessors.
297 if (BB->getSinglePredecessor() == 0)
298 ++CurrentGeneration;
299
Chris Lattner75637152011-01-03 04:17:24 +0000300 /// LastStore - Keep track of the last non-volatile store that we saw... for
301 /// as long as there in no instruction that reads memory. If we see a store
302 /// to the same location, we delete the dead store. This zaps trivial dead
303 /// stores which can occur in bitfield code among other things.
304 StoreInst *LastStore = 0;
305
Chris Lattnercc9eab22011-01-02 23:04:14 +0000306 bool Changed = false;
307
308 // See if any instructions in the block can be eliminated. If so, do it. If
309 // not, add them to AvailableValues.
310 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
311 Instruction *Inst = I++;
312
313 // Dead instructions should just be removed.
314 if (isInstructionTriviallyDead(Inst)) {
Chris Lattner91139cc2011-01-02 23:19:45 +0000315 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
Chris Lattnercc9eab22011-01-02 23:04:14 +0000316 Inst->eraseFromParent();
317 Changed = true;
Chris Lattner91139cc2011-01-02 23:19:45 +0000318 ++NumSimplify;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000319 continue;
320 }
321
322 // If the instruction can be simplified (e.g. X+0 = X) then replace it with
323 // its simpler value.
324 if (Value *V = SimplifyInstruction(Inst, TD, DT)) {
Chris Lattner91139cc2011-01-02 23:19:45 +0000325 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
Chris Lattnercc9eab22011-01-02 23:04:14 +0000326 Inst->replaceAllUsesWith(V);
327 Inst->eraseFromParent();
328 Changed = true;
Chris Lattner91139cc2011-01-02 23:19:45 +0000329 ++NumSimplify;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000330 continue;
331 }
332
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000333 // If this is a simple instruction that we can value number, process it.
334 if (SimpleValue::canHandle(Inst)) {
335 // See if the instruction has an available value. If so, use it.
Chris Lattnera60a8b02011-01-03 03:28:23 +0000336 if (Value *V = AvailableValues->lookup(Inst)) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000337 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
338 Inst->replaceAllUsesWith(V);
339 Inst->eraseFromParent();
340 Changed = true;
341 ++NumCSE;
342 continue;
343 }
344
345 // Otherwise, just remember that this value is available.
Chris Lattnera60a8b02011-01-03 03:28:23 +0000346 AvailableValues->insert(Inst, Inst);
Chris Lattnercc9eab22011-01-02 23:04:14 +0000347 continue;
348 }
349
Chris Lattner85db6102011-01-03 03:41:27 +0000350 // If this is a non-volatile load, process it.
351 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
352 // Ignore volatile loads.
Chris Lattner75637152011-01-03 04:17:24 +0000353 if (LI->isVolatile()) {
354 LastStore = 0;
355 continue;
356 }
Chris Lattner85db6102011-01-03 03:41:27 +0000357
358 // If we have an available version of this load, and if it is the right
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000359 // generation, replace this instruction.
Chris Lattner85db6102011-01-03 03:41:27 +0000360 std::pair<Value*, unsigned> InVal =
361 AvailableLoads->lookup(Inst->getOperand(0));
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000362 if (InVal.first != 0 && InVal.second == CurrentGeneration) {
Chris Lattner85db6102011-01-03 03:41:27 +0000363 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: "
364 << *InVal.first << '\n');
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000365 if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
366 Inst->eraseFromParent();
367 Changed = true;
Chris Lattner85db6102011-01-03 03:41:27 +0000368 ++NumCSELoad;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000369 continue;
370 }
371
372 // Otherwise, remember that we have this instruction.
Chris Lattner85db6102011-01-03 03:41:27 +0000373 AvailableLoads->insert(Inst->getOperand(0),
374 std::pair<Value*, unsigned>(Inst, CurrentGeneration));
Chris Lattner75637152011-01-03 04:17:24 +0000375 LastStore = 0;
Chris Lattner85db6102011-01-03 03:41:27 +0000376 continue;
377 }
378
Chris Lattner75637152011-01-03 04:17:24 +0000379 // If this instruction may read from memory, forget LastStore.
380 if (Inst->mayReadFromMemory())
381 LastStore = 0;
382
Chris Lattner85db6102011-01-03 03:41:27 +0000383 // If this is a read-only call, process it.
384 if (CallValue::canHandle(Inst)) {
385 // If we have an available version of this call, and if it is the right
386 // generation, replace this instruction.
387 std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
388 if (InVal.first != 0 && InVal.second == CurrentGeneration) {
389 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: "
390 << *InVal.first << '\n');
391 if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
392 Inst->eraseFromParent();
393 Changed = true;
394 ++NumCSECall;
395 continue;
396 }
397
398 // Otherwise, remember that we have this instruction.
399 AvailableCalls->insert(Inst,
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000400 std::pair<Value*, unsigned>(Inst, CurrentGeneration));
401 continue;
402 }
403
404 // Okay, this isn't something we can CSE at all. Check to see if it is
405 // something that could modify memory. If so, our available memory values
406 // cannot be used so bump the generation count.
Chris Lattneref87fc22011-01-03 03:46:34 +0000407 if (Inst->mayWriteToMemory()) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000408 ++CurrentGeneration;
Chris Lattneref87fc22011-01-03 03:46:34 +0000409
Chris Lattneref87fc22011-01-03 03:46:34 +0000410 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
Chris Lattner75637152011-01-03 04:17:24 +0000411 // We do a trivial form of DSE if there are two stores to the same
412 // location with no intervening loads. Delete the earlier store.
413 if (LastStore &&
414 LastStore->getPointerOperand() == SI->getPointerOperand()) {
415 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: "
Chris Lattnera12ba392011-01-03 18:28:15 +0000416 << *Inst << '\n');
Chris Lattner75637152011-01-03 04:17:24 +0000417 LastStore->eraseFromParent();
418 Changed = true;
419 ++NumDSE;
420 LastStore = 0;
421 continue;
422 }
423
424 // Okay, we just invalidated anything we knew about loaded values. Try
425 // to salvage *something* by remembering that the stored value is a live
426 // version of the pointer. It is safe to forward from volatile stores
427 // to non-volatile loads, so we don't have to check for volatility of
428 // the store.
Chris Lattneref87fc22011-01-03 03:46:34 +0000429 AvailableLoads->insert(SI->getPointerOperand(),
430 std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
Chris Lattner75637152011-01-03 04:17:24 +0000431
432 // Remember that this was the last store we saw for DSE.
433 if (!SI->isVolatile())
434 LastStore = SI;
Chris Lattneref87fc22011-01-03 03:46:34 +0000435 }
436 }
Chris Lattnercc9eab22011-01-02 23:04:14 +0000437 }
438
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000439 unsigned LiveOutGeneration = CurrentGeneration;
440 for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
Chris Lattnercc9eab22011-01-02 23:04:14 +0000441 Changed |= processNode(*I);
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000442 // Pop any generation changes off the stack from the recursive walk.
443 CurrentGeneration = LiveOutGeneration;
444 }
Chris Lattnercc9eab22011-01-02 23:04:14 +0000445 return Changed;
Chris Lattner12be9362011-01-02 21:47:05 +0000446}
Chris Lattnercc9eab22011-01-02 23:04:14 +0000447
448
449bool EarlyCSE::runOnFunction(Function &F) {
450 TD = getAnalysisIfAvailable<TargetData>();
451 DT = &getAnalysis<DominatorTree>();
Chris Lattner85db6102011-01-03 03:41:27 +0000452
453 // Tables that the pass uses when walking the domtree.
Chris Lattner82dcd5e2011-01-03 01:42:46 +0000454 ScopedHTType AVTable;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000455 AvailableValues = &AVTable;
Chris Lattner85db6102011-01-03 03:41:27 +0000456 LoadHTType LoadTable;
457 AvailableLoads = &LoadTable;
458 CallHTType CallTable;
459 AvailableCalls = &CallTable;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000460
461 CurrentGeneration = 0;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000462 return processNode(DT->getRootNode());
463}