blob: f6e11bc646fef59c44e22d28725ca553054c5aed [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
Dale Johannesen5981f6b2009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Owen Andersonfa089ab2009-07-03 19:42:02 +000030#include "llvm/LLVMContext.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/Pass.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
Chris Lattner3bbf2a72009-03-31 22:13:29 +000036#include "llvm/Support/ValueHandle.h"
Chris Lattner8a6411c2009-08-23 04:37:46 +000037#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038#include "llvm/ADT/PostOrderIterator.h"
39#include "llvm/ADT/Statistic.h"
40#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000041#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000042using namespace llvm;
43
44STATISTIC(NumLinear , "Number of insts linearized");
45STATISTIC(NumChanged, "Number of insts reassociated");
46STATISTIC(NumAnnihil, "Number of expr tree annihilated");
47STATISTIC(NumFactor , "Number of multiplies factored");
48
49namespace {
50 struct VISIBILITY_HIDDEN ValueEntry {
51 unsigned Rank;
52 Value *Op;
53 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
54 };
55 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
56 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
57 }
58}
59
Devang Patele93afd52008-11-21 21:00:20 +000060#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061/// PrintOps - Print out the expression identified in the Ops list.
62///
63static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
64 Module *M = I->getParent()->getParent()->getParent();
65 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner51216ad2008-08-19 04:45:19 +000066 << *Ops[0].Op->getType();
67 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
68 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
69 cerr << "," << Ops[i].Rank;
70 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071}
Devang Patel4354f5c2008-11-21 20:00:59 +000072#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073
Dan Gohman089efff2008-05-13 00:00:25 +000074namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000075 class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
76 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner3bbf2a72009-03-31 22:13:29 +000077 std::map<AssertingVH<>, unsigned> ValueRankMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 bool MadeChange;
79 public:
80 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000081 Reassociate() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082
83 bool runOnFunction(Function &F);
84
85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86 AU.setPreservesCFG();
87 }
88 private:
89 void BuildRankMap(Function &F);
90 unsigned getRank(Value *V);
91 void ReassociateExpression(BinaryOperator *I);
92 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
93 unsigned Idx = 0);
94 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
95 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
96 void LinearizeExpr(BinaryOperator *I);
97 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
98 void ReassociateBB(BasicBlock *BB);
99
100 void RemoveDeadBinaryOp(Value *V);
101 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000102}
103
Dan Gohman089efff2008-05-13 00:00:25 +0000104char Reassociate::ID = 0;
105static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
106
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107// Public interface to the Reassociate pass
108FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
109
110void Reassociate::RemoveDeadBinaryOp(Value *V) {
111 Instruction *Op = dyn_cast<Instruction>(V);
112 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
113 return;
114
115 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
116 RemoveDeadBinaryOp(LHS);
117 RemoveDeadBinaryOp(RHS);
118}
119
120
121static bool isUnmovableInstruction(Instruction *I) {
122 if (I->getOpcode() == Instruction::PHI ||
123 I->getOpcode() == Instruction::Alloca ||
124 I->getOpcode() == Instruction::Load ||
125 I->getOpcode() == Instruction::Malloc ||
126 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen5981f6b2009-03-06 01:41:59 +0000127 (I->getOpcode() == Instruction::Call &&
128 !isa<DbgInfoIntrinsic>(I)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000129 I->getOpcode() == Instruction::UDiv ||
130 I->getOpcode() == Instruction::SDiv ||
131 I->getOpcode() == Instruction::FDiv ||
132 I->getOpcode() == Instruction::URem ||
133 I->getOpcode() == Instruction::SRem ||
134 I->getOpcode() == Instruction::FRem)
135 return true;
136 return false;
137}
138
139void Reassociate::BuildRankMap(Function &F) {
140 unsigned i = 2;
141
142 // Assign distinct ranks to function arguments
143 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000144 ValueRankMap[&*I] = ++i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145
146 ReversePostOrderTraversal<Function*> RPOT(&F);
147 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
148 E = RPOT.end(); I != E; ++I) {
149 BasicBlock *BB = *I;
150 unsigned BBRank = RankMap[BB] = ++i << 16;
151
152 // Walk the basic block, adding precomputed ranks for any instructions that
153 // we cannot move. This ensures that the ranks for these instructions are
154 // all different in the block.
155 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
156 if (isUnmovableInstruction(I))
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000157 ValueRankMap[&*I] = ++BBRank;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000158 }
159}
160
161unsigned Reassociate::getRank(Value *V) {
162 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
163
164 Instruction *I = dyn_cast<Instruction>(V);
165 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
166
167 unsigned &CachedRank = ValueRankMap[I];
168 if (CachedRank) return CachedRank; // Rank already known?
169
170 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
171 // we can reassociate expressions for code motion! Since we do not recurse
172 // for PHI nodes, we cannot have infinite recursion here, because there
173 // cannot be loops in the value graph that do not go through PHI nodes.
174 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
175 for (unsigned i = 0, e = I->getNumOperands();
176 i != e && Rank != MaxRank; ++i)
177 Rank = std::max(Rank, getRank(I->getOperand(i)));
178
179 // If this is a not or neg instruction, do not count it for rank. This
180 // assures us that X and ~X will have the same rank.
181 if (!I->getType()->isInteger() ||
Owen Anderson76f49252009-07-13 22:18:28 +0000182 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000183 ++Rank;
184
Chris Lattner8a6411c2009-08-23 04:37:46 +0000185 //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
186 // << Rank << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187
188 return CachedRank = Rank;
189}
190
191/// isReassociableOp - Return true if V is an instruction of the specified
192/// opcode and if it only has one use.
193static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
194 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
195 cast<Instruction>(V)->getOpcode() == Opcode)
196 return cast<BinaryOperator>(V);
197 return 0;
198}
199
200/// LowerNegateToMultiply - Replace 0-X with X*-1.
201///
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000202static Instruction *LowerNegateToMultiply(Instruction *Neg,
Owen Andersonfa089ab2009-07-03 19:42:02 +0000203 std::map<AssertingVH<>, unsigned> &ValueRankMap,
Owen Anderson175b6542009-07-22 00:24:57 +0000204 LLVMContext &Context) {
Owen Andersonaac28372009-07-31 20:28:14 +0000205 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206
Gabor Greifa645dd32008-05-16 19:29:10 +0000207 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000208 ValueRankMap.erase(Neg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000209 Res->takeName(Neg);
210 Neg->replaceAllUsesWith(Res);
211 Neg->eraseFromParent();
212 return Res;
213}
214
215// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
216// Note that if D is also part of the expression tree that we recurse to
217// linearize it as well. Besides that case, this does not recurse into A,B, or
218// C.
219void Reassociate::LinearizeExpr(BinaryOperator *I) {
220 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
221 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
222 assert(isReassociableOp(LHS, I->getOpcode()) &&
223 isReassociableOp(RHS, I->getOpcode()) &&
224 "Not an expression that needs linearization?");
225
Chris Lattner8a6411c2009-08-23 04:37:46 +0000226 DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000227
228 // Move the RHS instruction to live immediately before I, avoiding breaking
229 // dominator properties.
230 RHS->moveBefore(I);
231
232 // Move operands around to do the linearization.
233 I->setOperand(1, RHS->getOperand(0));
234 RHS->setOperand(0, LHS);
235 I->setOperand(0, RHS);
236
237 ++NumLinear;
238 MadeChange = true;
Chris Lattner8a6411c2009-08-23 04:37:46 +0000239 DEBUG(errs() << "Linearized: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240
241 // If D is part of this expression tree, tail recurse.
242 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
243 LinearizeExpr(I);
244}
245
246
247/// LinearizeExprTree - Given an associative binary expression tree, traverse
248/// all of the uses putting it into canonical form. This forces a left-linear
249/// form of the the expression (((a+b)+c)+d), and collects information about the
250/// rank of the non-tree operands.
251///
252/// NOTE: These intentionally destroys the expression tree operands (turning
253/// them into undef values) to reduce #uses of the values. This means that the
254/// caller MUST use something like RewriteExprTree to put the values back in.
255///
256void Reassociate::LinearizeExprTree(BinaryOperator *I,
257 std::vector<ValueEntry> &Ops) {
258 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
259 unsigned Opcode = I->getOpcode();
Owen Anderson175b6542009-07-22 00:24:57 +0000260 LLVMContext &Context = I->getContext();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000261
262 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
263 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
264 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
265
266 // If this is a multiply expression tree and it contains internal negations,
267 // transform them into multiplies by -1 so they can be reassociated.
268 if (I->getOpcode() == Instruction::Mul) {
Owen Anderson76f49252009-07-13 22:18:28 +0000269 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Owen Andersonfa089ab2009-07-03 19:42:02 +0000270 LHS = LowerNegateToMultiply(cast<Instruction>(LHS),
271 ValueRankMap, Context);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000272 LHSBO = isReassociableOp(LHS, Opcode);
273 }
Owen Anderson76f49252009-07-13 22:18:28 +0000274 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Owen Andersonfa089ab2009-07-03 19:42:02 +0000275 RHS = LowerNegateToMultiply(cast<Instruction>(RHS),
276 ValueRankMap, Context);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000277 RHSBO = isReassociableOp(RHS, Opcode);
278 }
279 }
280
281 if (!LHSBO) {
282 if (!RHSBO) {
283 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
284 // such, just remember these operands and their rank.
285 Ops.push_back(ValueEntry(getRank(LHS), LHS));
286 Ops.push_back(ValueEntry(getRank(RHS), RHS));
287
288 // Clear the leaves out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000289 I->setOperand(0, UndefValue::get(I->getType()));
290 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 return;
292 } else {
293 // Turn X+(Y+Z) -> (Y+Z)+X
294 std::swap(LHSBO, RHSBO);
295 std::swap(LHS, RHS);
296 bool Success = !I->swapOperands();
297 assert(Success && "swapOperands failed");
Devang Patel4354f5c2008-11-21 20:00:59 +0000298 Success = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000299 MadeChange = true;
300 }
301 } else if (RHSBO) {
302 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
303 // part of the expression tree.
304 LinearizeExpr(I);
305 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306 RHS = I->getOperand(1);
307 RHSBO = 0;
308 }
309
310 // Okay, now we know that the LHS is a nested expression and that the RHS is
311 // not. Perform reassociation.
312 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
313
314 // Move LHS right before I to make sure that the tree expression dominates all
315 // values.
316 LHSBO->moveBefore(I);
317
318 // Linearize the expression tree on the LHS.
319 LinearizeExprTree(LHSBO, Ops);
320
321 // Remember the RHS operand and its rank.
322 Ops.push_back(ValueEntry(getRank(RHS), RHS));
323
324 // Clear the RHS leaf out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000325 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326}
327
328// RewriteExprTree - Now that the operands for this expression tree are
329// linearized and optimized, emit them in-order. This function is written to be
330// tail recursive.
331void Reassociate::RewriteExprTree(BinaryOperator *I,
332 std::vector<ValueEntry> &Ops,
333 unsigned i) {
334 if (i+2 == Ops.size()) {
335 if (I->getOperand(0) != Ops[i].Op ||
336 I->getOperand(1) != Ops[i+1].Op) {
337 Value *OldLHS = I->getOperand(0);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000338 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339 I->setOperand(0, Ops[i].Op);
340 I->setOperand(1, Ops[i+1].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000341 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000342 MadeChange = true;
343 ++NumChanged;
344
345 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346 // delete the extra, now dead, nodes.
347 RemoveDeadBinaryOp(OldLHS);
348 }
349 return;
350 }
351 assert(i+2 < Ops.size() && "Ops index out of range!");
352
353 if (I->getOperand(1) != Ops[i].Op) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000354 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000355 I->setOperand(1, Ops[i].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000356 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 MadeChange = true;
358 ++NumChanged;
359 }
360
361 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362 assert(LHS->getOpcode() == I->getOpcode() &&
363 "Improper expression tree!");
364
365 // Compactify the tree instructions together with each other to guarantee
366 // that the expression tree is dominated by all of Ops.
367 LHS->moveBefore(I);
368 RewriteExprTree(LHS, Ops, i+1);
369}
370
371
372
373// NegateValue - Insert instructions before the instruction pointed to by BI,
374// that computes the negative version of the value specified. The negative
375// version of the value is returned, and BI is left pointing at the instruction
376// that should be processed next by the reassociation pass.
377//
Owen Anderson175b6542009-07-22 00:24:57 +0000378static Value *NegateValue(LLVMContext &Context, Value *V, Instruction *BI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 // We are trying to expose opportunity for reassociation. One of the things
380 // that we want to do to achieve this is to push a negation as deep into an
381 // expression chain as possible, to expose the add instructions. In practice,
382 // this means that we turn this:
383 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
384 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
385 // the constants. We assume that instcombine will clean up the mess later if
386 // we introduce tons of unnecessary negation instructions...
387 //
388 if (Instruction *I = dyn_cast<Instruction>(V))
389 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
390 // Push the negates through the add.
Owen Anderson15b39322009-07-13 04:09:18 +0000391 I->setOperand(0, NegateValue(Context, I->getOperand(0), BI));
392 I->setOperand(1, NegateValue(Context, I->getOperand(1), BI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393
394 // We must move the add instruction here, because the neg instructions do
395 // not dominate the old add instruction in general. By moving it, we are
396 // assured that the neg instructions we just inserted dominate the
397 // instruction we are about to insert after them.
398 //
399 I->moveBefore(BI);
400 I->setName(I->getName()+".neg");
401 return I;
402 }
403
404 // Insert a 'neg' instruction that subtracts the value from zero to get the
405 // negation.
406 //
Dan Gohmancdff2122009-08-12 16:23:25 +0000407 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408}
409
Chris Lattner6cf17172008-02-17 20:44:51 +0000410/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
411/// X-Y into (X + -Y).
Owen Anderson175b6542009-07-22 00:24:57 +0000412static bool ShouldBreakUpSubtract(LLVMContext &Context, Instruction *Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000413 // If this is a negation, we can't split it up!
Owen Anderson76f49252009-07-13 22:18:28 +0000414 if (BinaryOperator::isNeg(Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000415 return false;
416
417 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner4846b312008-02-17 20:51:26 +0000418 // subtract or if this is only used by one.
419 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
420 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000421 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000422 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner720f2ba2008-02-17 20:54:40 +0000423 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000424 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000425 if (Sub->hasOneUse() &&
426 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
427 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner6cf17172008-02-17 20:44:51 +0000428 return true;
429
430 return false;
431}
432
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
434/// only used by an add, transform this into (X+(0-Y)) to promote better
435/// reassociation.
Owen Anderson175b6542009-07-22 00:24:57 +0000436static Instruction *BreakUpSubtract(LLVMContext &Context, Instruction *Sub,
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000437 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000438 // Convert a subtract into an add and a neg instruction... so that sub
439 // instructions can be commuted with other add instructions...
440 //
441 // Calculate the negative value of Operand 1 of the sub instruction...
442 // and set it as the RHS of the add instruction we just made...
443 //
Owen Anderson15b39322009-07-13 04:09:18 +0000444 Value *NegVal = NegateValue(Context, Sub->getOperand(1), Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 Instruction *New =
Gabor Greifa645dd32008-05-16 19:29:10 +0000446 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 New->takeName(Sub);
448
449 // Everyone now refers to the add instruction.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000450 ValueRankMap.erase(Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 Sub->replaceAllUsesWith(New);
452 Sub->eraseFromParent();
453
Chris Lattner8a6411c2009-08-23 04:37:46 +0000454 DEBUG(errs() << "Negated: " << *New << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000455 return New;
456}
457
458/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
459/// by one, change this into a multiply by a constant to assist with further
460/// reassociation.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000461static Instruction *ConvertShiftToMul(Instruction *Shl,
Owen Andersonfa089ab2009-07-03 19:42:02 +0000462 std::map<AssertingVH<>, unsigned> &ValueRankMap,
Owen Anderson175b6542009-07-22 00:24:57 +0000463 LLVMContext &Context) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 // If an operand of this shift is a reassociable multiply, or if the shift
465 // is used by a reassociable multiply or add, turn into a multiply.
466 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
467 (Shl->hasOneUse() &&
468 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
469 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneacb44d2009-07-24 23:12:02 +0000470 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Owen Andersonfa089ab2009-07-03 19:42:02 +0000471 MulCst =
Owen Anderson02b48c32009-07-29 18:55:55 +0000472 ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000473
Gabor Greifa645dd32008-05-16 19:29:10 +0000474 Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000475 "", Shl);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000476 ValueRankMap.erase(Shl);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000477 Mul->takeName(Shl);
478 Shl->replaceAllUsesWith(Mul);
479 Shl->eraseFromParent();
480 return Mul;
481 }
482 return 0;
483}
484
485// Scan backwards and forwards among values with the same rank as element i to
486// see if X exists. If X does not exist, return i.
487static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
488 Value *X) {
489 unsigned XRank = Ops[i].Rank;
490 unsigned e = Ops.size();
491 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
492 if (Ops[j].Op == X)
493 return j;
494 // Scan backwards
495 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
496 if (Ops[j].Op == X)
497 return j;
498 return i;
499}
500
501/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
502/// and returning the result. Insert the tree before I.
503static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
504 if (Ops.size() == 1) return Ops.back();
505
506 Value *V1 = Ops.back();
507 Ops.pop_back();
508 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greifa645dd32008-05-16 19:29:10 +0000509 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000510}
511
512/// RemoveFactorFromExpression - If V is an expression tree that is a
513/// multiplication sequence, and if this sequence contains a multiply by Factor,
514/// remove Factor from the tree and return the new tree.
515Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
516 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
517 if (!BO) return 0;
518
519 std::vector<ValueEntry> Factors;
520 LinearizeExprTree(BO, Factors);
521
522 bool FoundFactor = false;
523 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
524 if (Factors[i].Op == Factor) {
525 FoundFactor = true;
526 Factors.erase(Factors.begin()+i);
527 break;
528 }
529 if (!FoundFactor) {
530 // Make sure to restore the operands to the expression tree.
531 RewriteExprTree(BO, Factors);
532 return 0;
533 }
534
535 if (Factors.size() == 1) return Factors[0].Op;
536
537 RewriteExprTree(BO, Factors);
538 return BO;
539}
540
541/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
542/// add its operands as factors, otherwise add V to the list of factors.
543static void FindSingleUseMultiplyFactors(Value *V,
544 std::vector<Value*> &Factors) {
545 BinaryOperator *BO;
546 if ((!V->hasOneUse() && !V->use_empty()) ||
547 !(BO = dyn_cast<BinaryOperator>(V)) ||
548 BO->getOpcode() != Instruction::Mul) {
549 Factors.push_back(V);
550 return;
551 }
552
553 // Otherwise, add the LHS and RHS to the list of factors.
554 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
555 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
556}
557
558
559
560Value *Reassociate::OptimizeExpression(BinaryOperator *I,
561 std::vector<ValueEntry> &Ops) {
562 // Now that we have the linearized expression tree, try to optimize it.
563 // Start by folding any constants that we found.
564 bool IterateOptimization = false;
565 if (Ops.size() == 1) return Ops[0].Op;
566
567 unsigned Opcode = I->getOpcode();
568
569 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
570 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
571 Ops.pop_back();
Owen Anderson02b48c32009-07-29 18:55:55 +0000572 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000573 return OptimizeExpression(I, Ops);
574 }
575
576 // Check for destructive annihilation due to a constant being used.
577 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
578 switch (Opcode) {
579 default: break;
580 case Instruction::And:
581 if (CstVal->isZero()) { // ... & 0 -> 0
582 ++NumAnnihil;
583 return CstVal;
584 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
585 Ops.pop_back();
586 }
587 break;
588 case Instruction::Mul:
589 if (CstVal->isZero()) { // ... * 0 -> 0
590 ++NumAnnihil;
591 return CstVal;
592 } else if (cast<ConstantInt>(CstVal)->isOne()) {
593 Ops.pop_back(); // ... * 1 -> ...
594 }
595 break;
596 case Instruction::Or:
597 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
598 ++NumAnnihil;
599 return CstVal;
600 }
601 // FALLTHROUGH!
602 case Instruction::Add:
603 case Instruction::Xor:
604 if (CstVal->isZero()) // ... [|^+] 0 -> ...
605 Ops.pop_back();
606 break;
607 }
608 if (Ops.size() == 1) return Ops[0].Op;
609
610 // Handle destructive annihilation do to identities between elements in the
611 // argument list here.
612 switch (Opcode) {
613 default: break;
614 case Instruction::And:
615 case Instruction::Or:
616 case Instruction::Xor:
617 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
618 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
619 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
620 // First, check for X and ~X in the operand list.
621 assert(i < Ops.size());
622 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
623 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
624 unsigned FoundX = FindInOperandList(Ops, i, X);
625 if (FoundX != i) {
626 if (Opcode == Instruction::And) { // ...&X&~X = 0
627 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000628 return Constant::getNullValue(X->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000629 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
630 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000631 return Constant::getAllOnesValue(X->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000632 }
633 }
634 }
635
636 // Next, check for duplicate pairs of values, which we assume are next to
637 // each other, due to our sorting criteria.
638 assert(i < Ops.size());
639 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
640 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
641 // Drop duplicate values.
642 Ops.erase(Ops.begin()+i);
643 --i; --e;
644 IterateOptimization = true;
645 ++NumAnnihil;
646 } else {
647 assert(Opcode == Instruction::Xor);
648 if (e == 2) {
649 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000650 return Constant::getNullValue(Ops[0].Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000651 }
652 // ... X^X -> ...
653 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
654 i -= 1; e -= 2;
655 IterateOptimization = true;
656 ++NumAnnihil;
657 }
658 }
659 }
660 break;
661
662 case Instruction::Add:
663 // Scan the operand lists looking for X and -X pairs. If we find any, we
664 // can simplify the expression. X+-X == 0.
665 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
666 assert(i < Ops.size());
667 // Check for X and -X in the operand list.
Owen Anderson76f49252009-07-13 22:18:28 +0000668 if (BinaryOperator::isNeg(Ops[i].Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000669 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
670 unsigned FoundX = FindInOperandList(Ops, i, X);
671 if (FoundX != i) {
672 // Remove X and -X from the operand list.
673 if (Ops.size() == 2) {
674 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000675 return Constant::getNullValue(X->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000676 } else {
677 Ops.erase(Ops.begin()+i);
678 if (i < FoundX)
679 --FoundX;
680 else
681 --i; // Need to back up an extra one.
682 Ops.erase(Ops.begin()+FoundX);
683 IterateOptimization = true;
684 ++NumAnnihil;
685 --i; // Revisit element.
686 e -= 2; // Removed two elements.
687 }
688 }
689 }
690 }
691
692
693 // Scan the operand list, checking to see if there are any common factors
694 // between operands. Consider something like A*A+A*B*C+D. We would like to
695 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
696 // To efficiently find this, we count the number of times a factor occurs
697 // for any ADD operands that are MULs.
698 std::map<Value*, unsigned> FactorOccurrences;
699 unsigned MaxOcc = 0;
700 Value *MaxOccVal = 0;
701 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
702 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
703 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
704 // Compute all of the factors of this added value.
705 std::vector<Value*> Factors;
706 FindSingleUseMultiplyFactors(BOp, Factors);
707 assert(Factors.size() > 1 && "Bad linearize!");
708
709 // Add one to FactorOccurrences for each unique factor in this op.
710 if (Factors.size() == 2) {
711 unsigned Occ = ++FactorOccurrences[Factors[0]];
712 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
713 if (Factors[0] != Factors[1]) { // Don't double count A*A.
714 Occ = ++FactorOccurrences[Factors[1]];
715 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
716 }
717 } else {
718 std::set<Value*> Duplicates;
719 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
720 if (Duplicates.insert(Factors[i]).second) {
721 unsigned Occ = ++FactorOccurrences[Factors[i]];
722 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
723 }
724 }
725 }
726 }
727 }
728 }
729
730 // If any factor occurred more than one time, we can pull it out.
731 if (MaxOcc > 1) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000732 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000733
734 // Create a new instruction that uses the MaxOccVal twice. If we don't do
735 // this, we could otherwise run into situations where removing a factor
736 // from an expression will drop a use of maxocc, and this can cause
737 // RemoveFactorFromExpression on successive values to behave differently.
Gabor Greifa645dd32008-05-16 19:29:10 +0000738 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000739 std::vector<Value*> NewMulOps;
740 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
741 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
742 NewMulOps.push_back(V);
743 Ops.erase(Ops.begin()+i);
744 --i; --e;
745 }
746 }
747
748 // No need for extra uses anymore.
749 delete DummyInst;
750
751 unsigned NumAddedValues = NewMulOps.size();
752 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Gabor Greifa645dd32008-05-16 19:29:10 +0000753 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000754
755 // Now that we have inserted V and its sole use, optimize it. This allows
756 // us to handle cases that require multiple factoring steps, such as this:
757 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
758 if (NumAddedValues > 1)
759 ReassociateExpression(cast<BinaryOperator>(V));
760
761 ++NumFactor;
762
Dan Gohman301f4052008-01-29 13:02:09 +0000763 if (Ops.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764 return V2;
765
766 // Add the new value to the list of things being added.
767 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
768
769 // Rewrite the tree so that there is now a use of V.
770 RewriteExprTree(I, Ops);
771 return OptimizeExpression(I, Ops);
772 }
773 break;
774 //case Instruction::Mul:
775 }
776
777 if (IterateOptimization)
778 return OptimizeExpression(I, Ops);
779 return 0;
780}
781
782
783/// ReassociateBB - Inspect all of the instructions in this basic block,
784/// reassociating them as we go.
785void Reassociate::ReassociateBB(BasicBlock *BB) {
Owen Anderson175b6542009-07-22 00:24:57 +0000786 LLVMContext &Context = BB->getContext();
787
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
789 Instruction *BI = BBI++;
790 if (BI->getOpcode() == Instruction::Shl &&
791 isa<ConstantInt>(BI->getOperand(1)))
Owen Andersonfa089ab2009-07-03 19:42:02 +0000792 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap, Context)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000793 MadeChange = true;
794 BI = NI;
795 }
796
797 // Reject cases where it is pointless to do this.
798 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
799 isa<VectorType>(BI->getType()))
800 continue; // Floating point ops are not associative.
801
802 // If this is a subtract instruction which is not already in negate form,
803 // see if we can convert it to X+-Y.
804 if (BI->getOpcode() == Instruction::Sub) {
Owen Anderson15b39322009-07-13 04:09:18 +0000805 if (ShouldBreakUpSubtract(Context, BI)) {
806 BI = BreakUpSubtract(Context, BI, ValueRankMap);
Chris Lattnerb0cd25e2008-02-18 02:18:25 +0000807 MadeChange = true;
Owen Anderson76f49252009-07-13 22:18:28 +0000808 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000809 // Otherwise, this is a negation. See if the operand is a multiply tree
810 // and if this is not an inner node of a multiply tree.
811 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
812 (!BI->hasOneUse() ||
813 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Owen Andersonfa089ab2009-07-03 19:42:02 +0000814 BI = LowerNegateToMultiply(BI, ValueRankMap, Context);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000815 MadeChange = true;
816 }
817 }
818 }
819
820 // If this instruction is a commutative binary operator, process it.
821 if (!BI->isAssociative()) continue;
822 BinaryOperator *I = cast<BinaryOperator>(BI);
823
824 // If this is an interior node of a reassociable tree, ignore it until we
825 // get to the root of the tree, to avoid N^2 analysis.
826 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
827 continue;
828
829 // If this is an add tree that is used by a sub instruction, ignore it
830 // until we process the subtract.
831 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
832 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
833 continue;
834
835 ReassociateExpression(I);
836 }
837}
838
839void Reassociate::ReassociateExpression(BinaryOperator *I) {
840
841 // First, walk the expression tree, linearizing the tree, collecting
842 std::vector<ValueEntry> Ops;
843 LinearizeExprTree(I, Ops);
844
Chris Lattner8a6411c2009-08-23 04:37:46 +0000845 DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000846
847 // Now that we have linearized the tree to a list and have gathered all of
848 // the operands and their ranks, sort the operands by their rank. Use a
849 // stable_sort so that values with equal ranks will have their relative
850 // positions maintained (and so the compiler is deterministic). Note that
851 // this sorts so that the highest ranking values end up at the beginning of
852 // the vector.
853 std::stable_sort(Ops.begin(), Ops.end());
854
855 // OptimizeExpression - Now that we have the expression tree in a convenient
856 // sorted form, optimize it globally if possible.
857 if (Value *V = OptimizeExpression(I, Ops)) {
858 // This expression tree simplified to something that isn't a tree,
859 // eliminate it.
Chris Lattner8a6411c2009-08-23 04:37:46 +0000860 DEBUG(errs() << "Reassoc to scalar: " << *V << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000861 I->replaceAllUsesWith(V);
862 RemoveDeadBinaryOp(I);
863 return;
864 }
865
866 // We want to sink immediates as deeply as possible except in the case where
867 // this is a multiply tree used only by an add, and the immediate is a -1.
868 // In this case we reassociate to put the negation on the outside so that we
869 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
870 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
871 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
872 isa<ConstantInt>(Ops.back().Op) &&
873 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
874 Ops.insert(Ops.begin(), Ops.back());
875 Ops.pop_back();
876 }
877
Chris Lattner8a6411c2009-08-23 04:37:46 +0000878 DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879
880 if (Ops.size() == 1) {
881 // This expression tree simplified to something that isn't a tree,
882 // eliminate it.
883 I->replaceAllUsesWith(Ops[0].Op);
884 RemoveDeadBinaryOp(I);
885 } else {
886 // Now that we ordered and optimized the expressions, splat them back into
887 // the expression tree, removing any unneeded nodes.
888 RewriteExprTree(I, Ops);
889 }
890}
891
892
893bool Reassociate::runOnFunction(Function &F) {
894 // Recalculate the rank map for F
895 BuildRankMap(F);
896
897 MadeChange = false;
898 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
899 ReassociateBB(FI);
900
901 // We are done with the rank map...
902 RankMap.clear();
903 ValueRankMap.clear();
904 return MadeChange;
905}
906