blob: db7d92218b3708fd592a403c3223e1831ae81c81 [file] [log] [blame]
Dan Gohmand27a0e02008-11-19 23:18:57 +00001//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
Dan Gohmandd6547d2009-01-15 22:18:12 +000017#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
Dan Gohmand27a0e02008-11-19 23:18:57 +000018#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Support/Debug.h"
Dan Gohmanae548182008-11-20 01:41:34 +000022#include <climits>
Dan Gohmand27a0e02008-11-19 23:18:57 +000023using namespace llvm;
24
Dan Gohman96eb47a2009-01-15 19:20:50 +000025ScheduleDAG::ScheduleDAG(MachineFunction &mf)
26 : DAG(0), BB(0), TM(mf.getTarget()),
27 TII(TM.getInstrInfo()),
28 TRI(TM.getRegisterInfo()),
29 TLI(TM.getTargetLowering()),
30 MF(mf), MRI(mf.getRegInfo()),
Dan Gohmana91eb052009-02-10 23:27:53 +000031 ConstPool(MF.getConstantPool()),
32 EntrySU(), ExitSU() {
Dan Gohmand27a0e02008-11-19 23:18:57 +000033}
34
35ScheduleDAG::~ScheduleDAG() {}
36
Dan Gohmand27a0e02008-11-19 23:18:57 +000037/// dump - dump the schedule.
38void ScheduleDAG::dumpSchedule() const {
39 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
40 if (SUnit *SU = Sequence[i])
41 SU->dump(this);
42 else
43 cerr << "**** NOOP ****\n";
44 }
45}
46
47
48/// Run - perform scheduling.
49///
Dan Gohman14bb9922009-01-16 22:10:20 +000050void ScheduleDAG::Run(SelectionDAG *dag, MachineBasicBlock *bb,
51 MachineBasicBlock::iterator begin,
52 MachineBasicBlock::iterator end) {
53 assert((!dag || begin == end) &&
54 "An instruction range was given for SelectionDAG scheduling!");
55
Dan Gohman96eb47a2009-01-15 19:20:50 +000056 SUnits.clear();
57 Sequence.clear();
58 DAG = dag;
59 BB = bb;
Dan Gohman14bb9922009-01-16 22:10:20 +000060 Begin = begin;
61 End = end;
Dan Gohmana91eb052009-02-10 23:27:53 +000062 EntrySU = SUnit();
63 ExitSU = SUnit();
Dan Gohman96eb47a2009-01-15 19:20:50 +000064
Dan Gohmand27a0e02008-11-19 23:18:57 +000065 Schedule();
66
67 DOUT << "*** Final schedule ***\n";
68 DEBUG(dumpSchedule());
69 DOUT << "\n";
70}
71
Dan Gohman302aee72008-12-16 01:05:52 +000072/// addPred - This adds the specified edge as a pred of the current node if
73/// not already. It also adds the current node as a successor of the
74/// specified node.
75void SUnit::addPred(const SDep &D) {
76 // If this node already has this depenence, don't add a redundant one.
Dan Gohmanb8f1ff32009-02-11 00:12:28 +000077 for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end();
78 I != E; ++I)
79 if (*I == D)
Dan Gohman302aee72008-12-16 01:05:52 +000080 return;
Dan Gohman302aee72008-12-16 01:05:52 +000081 // Now add a corresponding succ to N.
82 SDep P = D;
83 P.setSUnit(this);
84 SUnit *N = D.getSUnit();
Dan Gohman302aee72008-12-16 01:05:52 +000085 // Update the bookkeeping.
86 if (D.getKind() == SDep::Data) {
87 ++NumPreds;
88 ++N->NumSuccs;
89 }
90 if (!N->isScheduled)
91 ++NumPredsLeft;
92 if (!isScheduled)
93 ++N->NumSuccsLeft;
Dan Gohman6b2ee8f2008-12-16 03:25:46 +000094 Preds.push_back(D);
Dan Gohmanb1bfe4e2009-01-13 19:08:45 +000095 N->Succs.push_back(P);
Dan Gohmana44ca332009-01-05 22:40:26 +000096 if (P.getLatency() != 0) {
97 this->setDepthDirty();
98 N->setHeightDirty();
99 }
Dan Gohman302aee72008-12-16 01:05:52 +0000100}
101
102/// removePred - This removes the specified edge as a pred of the current
103/// node if it exists. It also removes the current node as a successor of
104/// the specified node.
105void SUnit::removePred(const SDep &D) {
106 // Find the matching predecessor.
107 for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
108 I != E; ++I)
109 if (*I == D) {
110 bool FoundSucc = false;
111 // Find the corresponding successor in N.
112 SDep P = D;
113 P.setSUnit(this);
114 SUnit *N = D.getSUnit();
115 for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
116 EE = N->Succs.end(); II != EE; ++II)
117 if (*II == P) {
118 FoundSucc = true;
119 N->Succs.erase(II);
120 break;
121 }
122 assert(FoundSucc && "Mismatching preds / succs lists!");
123 Preds.erase(I);
Dan Gohmanb1bfe4e2009-01-13 19:08:45 +0000124 // Update the bookkeeping.
125 if (P.getKind() == SDep::Data) {
Dan Gohman302aee72008-12-16 01:05:52 +0000126 --NumPreds;
127 --N->NumSuccs;
128 }
129 if (!N->isScheduled)
130 --NumPredsLeft;
131 if (!isScheduled)
132 --N->NumSuccsLeft;
Dan Gohmana44ca332009-01-05 22:40:26 +0000133 if (P.getLatency() != 0) {
134 this->setDepthDirty();
135 N->setHeightDirty();
136 }
Dan Gohman302aee72008-12-16 01:05:52 +0000137 return;
138 }
139}
140
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000141void SUnit::setDepthDirty() {
Dan Gohman5dc982e2008-12-22 21:11:33 +0000142 if (!isDepthCurrent) return;
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000143 SmallVector<SUnit*, 8> WorkList;
144 WorkList.push_back(this);
Dan Gohman5dc982e2008-12-22 21:11:33 +0000145 do {
Dan Gohman9c6928d2008-12-20 16:42:33 +0000146 SUnit *SU = WorkList.pop_back_val();
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000147 SU->isDepthCurrent = false;
Dan Gohman406621c2008-12-20 16:34:57 +0000148 for (SUnit::const_succ_iterator I = SU->Succs.begin(),
Dan Gohman5dc982e2008-12-22 21:11:33 +0000149 E = SU->Succs.end(); I != E; ++I) {
150 SUnit *SuccSU = I->getSUnit();
151 if (SuccSU->isDepthCurrent)
152 WorkList.push_back(SuccSU);
153 }
154 } while (!WorkList.empty());
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000155}
156
157void SUnit::setHeightDirty() {
Dan Gohman5dc982e2008-12-22 21:11:33 +0000158 if (!isHeightCurrent) return;
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000159 SmallVector<SUnit*, 8> WorkList;
160 WorkList.push_back(this);
Dan Gohman5dc982e2008-12-22 21:11:33 +0000161 do {
Dan Gohman9c6928d2008-12-20 16:42:33 +0000162 SUnit *SU = WorkList.pop_back_val();
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000163 SU->isHeightCurrent = false;
Dan Gohman406621c2008-12-20 16:34:57 +0000164 for (SUnit::const_pred_iterator I = SU->Preds.begin(),
Dan Gohman5dc982e2008-12-22 21:11:33 +0000165 E = SU->Preds.end(); I != E; ++I) {
166 SUnit *PredSU = I->getSUnit();
167 if (PredSU->isHeightCurrent)
168 WorkList.push_back(PredSU);
169 }
170 } while (!WorkList.empty());
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000171}
172
173/// setDepthToAtLeast - Update this node's successors to reflect the
174/// fact that this node's depth just increased.
175///
176void SUnit::setDepthToAtLeast(unsigned NewDepth) {
Dan Gohman7a9397b2008-12-17 04:25:52 +0000177 if (NewDepth <= getDepth())
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000178 return;
179 setDepthDirty();
180 Depth = NewDepth;
181 isDepthCurrent = true;
182}
183
184/// setHeightToAtLeast - Update this node's predecessors to reflect the
185/// fact that this node's height just increased.
186///
187void SUnit::setHeightToAtLeast(unsigned NewHeight) {
Dan Gohman7a9397b2008-12-17 04:25:52 +0000188 if (NewHeight <= getHeight())
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000189 return;
190 setHeightDirty();
191 Height = NewHeight;
192 isHeightCurrent = true;
193}
194
195/// ComputeDepth - Calculate the maximal path from the node to the exit.
196///
197void SUnit::ComputeDepth() {
198 SmallVector<SUnit*, 8> WorkList;
199 WorkList.push_back(this);
Dan Gohmand138ff42008-12-23 17:22:32 +0000200 do {
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000201 SUnit *Cur = WorkList.back();
202
203 bool Done = true;
204 unsigned MaxPredDepth = 0;
205 for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
206 E = Cur->Preds.end(); I != E; ++I) {
207 SUnit *PredSU = I->getSUnit();
208 if (PredSU->isDepthCurrent)
209 MaxPredDepth = std::max(MaxPredDepth,
210 PredSU->Depth + I->getLatency());
211 else {
212 Done = false;
213 WorkList.push_back(PredSU);
214 }
215 }
216
217 if (Done) {
218 WorkList.pop_back();
219 if (MaxPredDepth != Cur->Depth) {
220 Cur->setDepthDirty();
221 Cur->Depth = MaxPredDepth;
222 }
223 Cur->isDepthCurrent = true;
224 }
Dan Gohmand138ff42008-12-23 17:22:32 +0000225 } while (!WorkList.empty());
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000226}
227
228/// ComputeHeight - Calculate the maximal path from the node to the entry.
229///
230void SUnit::ComputeHeight() {
231 SmallVector<SUnit*, 8> WorkList;
232 WorkList.push_back(this);
Dan Gohmand138ff42008-12-23 17:22:32 +0000233 do {
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000234 SUnit *Cur = WorkList.back();
235
236 bool Done = true;
237 unsigned MaxSuccHeight = 0;
238 for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
239 E = Cur->Succs.end(); I != E; ++I) {
240 SUnit *SuccSU = I->getSUnit();
241 if (SuccSU->isHeightCurrent)
242 MaxSuccHeight = std::max(MaxSuccHeight,
243 SuccSU->Height + I->getLatency());
244 else {
245 Done = false;
246 WorkList.push_back(SuccSU);
247 }
248 }
249
250 if (Done) {
251 WorkList.pop_back();
252 if (MaxSuccHeight != Cur->Height) {
253 Cur->setHeightDirty();
254 Cur->Height = MaxSuccHeight;
255 }
256 Cur->isHeightCurrent = true;
257 }
Dan Gohmand138ff42008-12-23 17:22:32 +0000258 } while (!WorkList.empty());
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000259}
260
Dan Gohmand27a0e02008-11-19 23:18:57 +0000261/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
262/// a group of nodes flagged together.
263void SUnit::dump(const ScheduleDAG *G) const {
264 cerr << "SU(" << NodeNum << "): ";
265 G->dumpNode(this);
266}
267
268void SUnit::dumpAll(const ScheduleDAG *G) const {
269 dump(G);
270
271 cerr << " # preds left : " << NumPredsLeft << "\n";
272 cerr << " # succs left : " << NumSuccsLeft << "\n";
273 cerr << " Latency : " << Latency << "\n";
274 cerr << " Depth : " << Depth << "\n";
275 cerr << " Height : " << Height << "\n";
276
277 if (Preds.size() != 0) {
278 cerr << " Predecessors:\n";
279 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
280 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000281 cerr << " ";
282 switch (I->getKind()) {
283 case SDep::Data: cerr << "val "; break;
284 case SDep::Anti: cerr << "anti"; break;
285 case SDep::Output: cerr << "out "; break;
286 case SDep::Order: cerr << "ch "; break;
287 }
288 cerr << "#";
289 cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
290 if (I->isArtificial())
Dan Gohmand27a0e02008-11-19 23:18:57 +0000291 cerr << " *";
292 cerr << "\n";
293 }
294 }
295 if (Succs.size() != 0) {
296 cerr << " Successors:\n";
297 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
298 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000299 cerr << " ";
300 switch (I->getKind()) {
301 case SDep::Data: cerr << "val "; break;
302 case SDep::Anti: cerr << "anti"; break;
303 case SDep::Output: cerr << "out "; break;
304 case SDep::Order: cerr << "ch "; break;
305 }
306 cerr << "#";
307 cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
308 if (I->isArtificial())
Dan Gohmand27a0e02008-11-19 23:18:57 +0000309 cerr << " *";
310 cerr << "\n";
311 }
312 }
313 cerr << "\n";
314}
Dan Gohmanf6e4a002008-11-20 01:26:25 +0000315
316#ifndef NDEBUG
317/// VerifySchedule - Verify that all SUnits were scheduled and that
318/// their state is consistent.
319///
320void ScheduleDAG::VerifySchedule(bool isBottomUp) {
321 bool AnyNotSched = false;
322 unsigned DeadNodes = 0;
323 unsigned Noops = 0;
324 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
325 if (!SUnits[i].isScheduled) {
326 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
327 ++DeadNodes;
328 continue;
329 }
330 if (!AnyNotSched)
331 cerr << "*** Scheduling failed! ***\n";
332 SUnits[i].dump(this);
333 cerr << "has not been scheduled!\n";
334 AnyNotSched = true;
335 }
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000336 if (SUnits[i].isScheduled &&
337 (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
338 unsigned(INT_MAX)) {
Dan Gohmanf6e4a002008-11-20 01:26:25 +0000339 if (!AnyNotSched)
340 cerr << "*** Scheduling failed! ***\n";
341 SUnits[i].dump(this);
Dan Gohman6b2ee8f2008-12-16 03:25:46 +0000342 cerr << "has an unexpected "
343 << (isBottomUp ? "Height" : "Depth") << " value!\n";
Dan Gohmanf6e4a002008-11-20 01:26:25 +0000344 AnyNotSched = true;
345 }
346 if (isBottomUp) {
347 if (SUnits[i].NumSuccsLeft != 0) {
348 if (!AnyNotSched)
349 cerr << "*** Scheduling failed! ***\n";
350 SUnits[i].dump(this);
351 cerr << "has successors left!\n";
352 AnyNotSched = true;
353 }
354 } else {
355 if (SUnits[i].NumPredsLeft != 0) {
356 if (!AnyNotSched)
357 cerr << "*** Scheduling failed! ***\n";
358 SUnits[i].dump(this);
359 cerr << "has predecessors left!\n";
360 AnyNotSched = true;
361 }
362 }
363 }
364 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
365 if (!Sequence[i])
366 ++Noops;
367 assert(!AnyNotSched);
368 assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
369 "The number of nodes scheduled doesn't match the expected number!");
370}
371#endif
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000372
373/// InitDAGTopologicalSorting - create the initial topological
374/// ordering from the DAG to be scheduled.
375///
376/// The idea of the algorithm is taken from
377/// "Online algorithms for managing the topological order of
378/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
379/// This is the MNR algorithm, which was first introduced by
380/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
381/// "Maintaining a topological order under edge insertions".
382///
383/// Short description of the algorithm:
384///
385/// Topological ordering, ord, of a DAG maps each node to a topological
386/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
387///
388/// This means that if there is a path from the node X to the node Z,
389/// then ord(X) < ord(Z).
390///
391/// This property can be used to check for reachability of nodes:
392/// if Z is reachable from X, then an insertion of the edge Z->X would
393/// create a cycle.
394///
395/// The algorithm first computes a topological ordering for the DAG by
396/// initializing the Index2Node and Node2Index arrays and then tries to keep
397/// the ordering up-to-date after edge insertions by reordering the DAG.
398///
399/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
400/// the nodes reachable from Y, and then shifts them using Shift to lie
401/// immediately after X in Index2Node.
402void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
403 unsigned DAGSize = SUnits.size();
404 std::vector<SUnit*> WorkList;
405 WorkList.reserve(DAGSize);
406
407 Index2Node.resize(DAGSize);
408 Node2Index.resize(DAGSize);
409
410 // Initialize the data structures.
411 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
412 SUnit *SU = &SUnits[i];
413 int NodeNum = SU->NodeNum;
414 unsigned Degree = SU->Succs.size();
415 // Temporarily use the Node2Index array as scratch space for degree counts.
416 Node2Index[NodeNum] = Degree;
417
418 // Is it a node without dependencies?
419 if (Degree == 0) {
420 assert(SU->Succs.empty() && "SUnit should have no successors");
421 // Collect leaf nodes.
422 WorkList.push_back(SU);
423 }
424 }
425
426 int Id = DAGSize;
427 while (!WorkList.empty()) {
428 SUnit *SU = WorkList.back();
429 WorkList.pop_back();
430 Allocate(SU->NodeNum, --Id);
431 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
432 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000433 SUnit *SU = I->getSUnit();
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000434 if (!--Node2Index[SU->NodeNum])
435 // If all dependencies of the node are processed already,
436 // then the node can be computed now.
437 WorkList.push_back(SU);
438 }
439 }
440
441 Visited.resize(DAGSize);
442
443#ifndef NDEBUG
444 // Check correctness of the ordering
445 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
446 SUnit *SU = &SUnits[i];
447 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
448 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000449 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000450 "Wrong topological sorting");
451 }
452 }
453#endif
454}
455
456/// AddPred - Updates the topological ordering to accomodate an edge
457/// to be added from SUnit X to SUnit Y.
458void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
459 int UpperBound, LowerBound;
460 LowerBound = Node2Index[Y->NodeNum];
461 UpperBound = Node2Index[X->NodeNum];
462 bool HasLoop = false;
463 // Is Ord(X) < Ord(Y) ?
464 if (LowerBound < UpperBound) {
465 // Update the topological order.
466 Visited.reset();
467 DFS(Y, UpperBound, HasLoop);
468 assert(!HasLoop && "Inserted edge creates a loop!");
469 // Recompute topological indexes.
470 Shift(Visited, LowerBound, UpperBound);
471 }
472}
473
474/// RemovePred - Updates the topological ordering to accomodate an
475/// an edge to be removed from the specified node N from the predecessors
476/// of the current node M.
477void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
478 // InitDAGTopologicalSorting();
479}
480
481/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
482/// all nodes affected by the edge insertion. These nodes will later get new
483/// topological indexes by means of the Shift method.
Dan Gohmane07f4c02008-12-09 16:37:48 +0000484void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
485 bool& HasLoop) {
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000486 std::vector<const SUnit*> WorkList;
487 WorkList.reserve(SUnits.size());
488
489 WorkList.push_back(SU);
Dan Gohmand138ff42008-12-23 17:22:32 +0000490 do {
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000491 SU = WorkList.back();
492 WorkList.pop_back();
493 Visited.set(SU->NodeNum);
494 for (int I = SU->Succs.size()-1; I >= 0; --I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000495 int s = SU->Succs[I].getSUnit()->NodeNum;
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000496 if (Node2Index[s] == UpperBound) {
497 HasLoop = true;
498 return;
499 }
500 // Visit successors if not already and in affected region.
501 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
Dan Gohman604394b2008-12-09 22:54:47 +0000502 WorkList.push_back(SU->Succs[I].getSUnit());
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000503 }
504 }
Dan Gohmand138ff42008-12-23 17:22:32 +0000505 } while (!WorkList.empty());
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000506}
507
508/// Shift - Renumber the nodes so that the topological ordering is
509/// preserved.
510void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
Dan Gohmane07f4c02008-12-09 16:37:48 +0000511 int UpperBound) {
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000512 std::vector<int> L;
513 int shift = 0;
514 int i;
515
516 for (i = LowerBound; i <= UpperBound; ++i) {
517 // w is node at topological index i.
518 int w = Index2Node[i];
519 if (Visited.test(w)) {
520 // Unmark.
521 Visited.reset(w);
522 L.push_back(w);
523 shift = shift + 1;
524 } else {
525 Allocate(w, i - shift);
526 }
527 }
528
529 for (unsigned j = 0; j < L.size(); ++j) {
530 Allocate(L[j], i - shift);
531 i = i + 1;
532 }
533}
534
535
536/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
537/// create a cycle.
538bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
539 if (IsReachable(TargetSU, SU))
540 return true;
541 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
542 I != E; ++I)
Dan Gohman604394b2008-12-09 22:54:47 +0000543 if (I->isAssignedRegDep() &&
544 IsReachable(TargetSU, I->getSUnit()))
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000545 return true;
546 return false;
547}
548
549/// IsReachable - Checks if SU is reachable from TargetSU.
Dan Gohmane07f4c02008-12-09 16:37:48 +0000550bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
551 const SUnit *TargetSU) {
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000552 // If insertion of the edge SU->TargetSU would create a cycle
553 // then there is a path from TargetSU to SU.
554 int UpperBound, LowerBound;
555 LowerBound = Node2Index[TargetSU->NodeNum];
556 UpperBound = Node2Index[SU->NodeNum];
557 bool HasLoop = false;
558 // Is Ord(TargetSU) < Ord(SU) ?
559 if (LowerBound < UpperBound) {
560 Visited.reset();
561 // There may be a path from TargetSU to SU. Check for it.
562 DFS(TargetSU, UpperBound, HasLoop);
563 }
564 return HasLoop;
565}
566
567/// Allocate - assign the topological index to the node n.
568void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
569 Node2Index[n] = index;
570 Index2Node[index] = n;
571}
572
573ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
574 std::vector<SUnit> &sunits)
575 : SUnits(sunits) {}
Dan Gohmandd6547d2009-01-15 22:18:12 +0000576
577ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}