Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
Chris Lattner | 081ce94 | 2007-12-29 20:36:04 +0000 | [diff] [blame] | 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This transformation implements the well known scalar replacement of |
| 11 | // aggregates transformation. This xform breaks up alloca instructions of |
| 12 | // aggregate type (structure or array) into individual alloca instructions for |
| 13 | // each member (if possible). Then, if possible, it transforms the individual |
| 14 | // alloca instructions into nice clean scalar SSA form. |
| 15 | // |
| 16 | // This combines a simple SRoA algorithm with the Mem2Reg algorithm because |
| 17 | // often interact, especially for C++ programs. As such, iterating between |
| 18 | // SRoA, then Mem2Reg until we run out of things to promote works well. |
| 19 | // |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #define DEBUG_TYPE "scalarrepl" |
| 23 | #include "llvm/Transforms/Scalar.h" |
| 24 | #include "llvm/Constants.h" |
| 25 | #include "llvm/DerivedTypes.h" |
| 26 | #include "llvm/Function.h" |
| 27 | #include "llvm/GlobalVariable.h" |
| 28 | #include "llvm/Instructions.h" |
| 29 | #include "llvm/IntrinsicInst.h" |
| 30 | #include "llvm/Pass.h" |
| 31 | #include "llvm/Analysis/Dominators.h" |
| 32 | #include "llvm/Target/TargetData.h" |
| 33 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| 34 | #include "llvm/Support/Debug.h" |
| 35 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 36 | #include "llvm/Support/MathExtras.h" |
| 37 | #include "llvm/Support/Compiler.h" |
| 38 | #include "llvm/ADT/SmallVector.h" |
| 39 | #include "llvm/ADT/Statistic.h" |
| 40 | #include "llvm/ADT/StringExtras.h" |
| 41 | using namespace llvm; |
| 42 | |
| 43 | STATISTIC(NumReplaced, "Number of allocas broken up"); |
| 44 | STATISTIC(NumPromoted, "Number of allocas promoted"); |
| 45 | STATISTIC(NumConverted, "Number of aggregates converted to scalar"); |
| 46 | STATISTIC(NumGlobals, "Number of allocas copied from constant global"); |
| 47 | |
| 48 | namespace { |
| 49 | struct VISIBILITY_HIDDEN SROA : public FunctionPass { |
| 50 | static char ID; // Pass identification, replacement for typeid |
Dan Gohman | 26f8c27 | 2008-09-04 17:05:41 +0000 | [diff] [blame] | 51 | explicit SROA(signed T = -1) : FunctionPass(&ID) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 52 | if (T == -1) |
Chris Lattner | 6d7faec | 2007-08-02 21:33:36 +0000 | [diff] [blame] | 53 | SRThreshold = 128; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 54 | else |
| 55 | SRThreshold = T; |
| 56 | } |
| 57 | |
| 58 | bool runOnFunction(Function &F); |
| 59 | |
| 60 | bool performScalarRepl(Function &F); |
| 61 | bool performPromotion(Function &F); |
| 62 | |
| 63 | // getAnalysisUsage - This pass does not require any passes, but we know it |
| 64 | // will not alter the CFG, so say so. |
| 65 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 66 | AU.addRequired<DominatorTree>(); |
| 67 | AU.addRequired<DominanceFrontier>(); |
| 68 | AU.addRequired<TargetData>(); |
| 69 | AU.setPreservesCFG(); |
| 70 | } |
| 71 | |
| 72 | private: |
Chris Lattner | 3fd5936 | 2009-01-07 06:34:28 +0000 | [diff] [blame] | 73 | TargetData *TD; |
| 74 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 75 | /// AllocaInfo - When analyzing uses of an alloca instruction, this captures |
| 76 | /// information about the uses. All these fields are initialized to false |
| 77 | /// and set to true when something is learned. |
| 78 | struct AllocaInfo { |
| 79 | /// isUnsafe - This is set to true if the alloca cannot be SROA'd. |
| 80 | bool isUnsafe : 1; |
| 81 | |
| 82 | /// needsCanon - This is set to true if there is some use of the alloca |
| 83 | /// that requires canonicalization. |
| 84 | bool needsCanon : 1; |
| 85 | |
| 86 | /// isMemCpySrc - This is true if this aggregate is memcpy'd from. |
| 87 | bool isMemCpySrc : 1; |
| 88 | |
| 89 | /// isMemCpyDst - This is true if this aggregate is memcpy'd into. |
| 90 | bool isMemCpyDst : 1; |
| 91 | |
| 92 | AllocaInfo() |
| 93 | : isUnsafe(false), needsCanon(false), |
| 94 | isMemCpySrc(false), isMemCpyDst(false) {} |
| 95 | }; |
| 96 | |
| 97 | unsigned SRThreshold; |
| 98 | |
| 99 | void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; } |
| 100 | |
| 101 | int isSafeAllocaToScalarRepl(AllocationInst *AI); |
| 102 | |
| 103 | void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI, |
| 104 | AllocaInfo &Info); |
| 105 | void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI, |
| 106 | AllocaInfo &Info); |
| 107 | void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI, |
| 108 | unsigned OpNo, AllocaInfo &Info); |
| 109 | void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI, |
| 110 | AllocaInfo &Info); |
| 111 | |
| 112 | void DoScalarReplacement(AllocationInst *AI, |
| 113 | std::vector<AllocationInst*> &WorkList); |
| 114 | void CanonicalizeAllocaUsers(AllocationInst *AI); |
| 115 | AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base); |
| 116 | |
| 117 | void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI, |
| 118 | SmallVector<AllocaInst*, 32> &NewElts); |
| 119 | |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 120 | void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst, |
| 121 | AllocationInst *AI, |
| 122 | SmallVector<AllocaInst*, 32> &NewElts); |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 123 | void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI, |
| 124 | SmallVector<AllocaInst*, 32> &NewElts); |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 125 | void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI, |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 126 | SmallVector<AllocaInst*, 32> &NewElts); |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 127 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 128 | bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&ResTy, |
| 129 | uint64_t Offset); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 130 | void ConvertToScalar(AllocationInst *AI, const Type *Ty); |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 131 | void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset); |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 132 | Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI, |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 133 | uint64_t Offset); |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 134 | Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI, |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 135 | uint64_t Offset); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 136 | static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI); |
| 137 | }; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 138 | } |
| 139 | |
Dan Gohman | 089efff | 2008-05-13 00:00:25 +0000 | [diff] [blame] | 140 | char SROA::ID = 0; |
| 141 | static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates"); |
| 142 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 143 | // Public interface to the ScalarReplAggregates pass |
| 144 | FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) { |
| 145 | return new SROA(Threshold); |
| 146 | } |
| 147 | |
| 148 | |
| 149 | bool SROA::runOnFunction(Function &F) { |
Chris Lattner | 3fd5936 | 2009-01-07 06:34:28 +0000 | [diff] [blame] | 150 | TD = &getAnalysis<TargetData>(); |
| 151 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 152 | bool Changed = performPromotion(F); |
| 153 | while (1) { |
| 154 | bool LocalChange = performScalarRepl(F); |
| 155 | if (!LocalChange) break; // No need to repromote if no scalarrepl |
| 156 | Changed = true; |
| 157 | LocalChange = performPromotion(F); |
| 158 | if (!LocalChange) break; // No need to re-scalarrepl if no promotion |
| 159 | } |
| 160 | |
| 161 | return Changed; |
| 162 | } |
| 163 | |
| 164 | |
| 165 | bool SROA::performPromotion(Function &F) { |
| 166 | std::vector<AllocaInst*> Allocas; |
| 167 | DominatorTree &DT = getAnalysis<DominatorTree>(); |
| 168 | DominanceFrontier &DF = getAnalysis<DominanceFrontier>(); |
| 169 | |
| 170 | BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function |
| 171 | |
| 172 | bool Changed = false; |
| 173 | |
| 174 | while (1) { |
| 175 | Allocas.clear(); |
| 176 | |
| 177 | // Find allocas that are safe to promote, by looking at all instructions in |
| 178 | // the entry node |
| 179 | for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) |
| 180 | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca? |
| 181 | if (isAllocaPromotable(AI)) |
| 182 | Allocas.push_back(AI); |
| 183 | |
| 184 | if (Allocas.empty()) break; |
| 185 | |
| 186 | PromoteMemToReg(Allocas, DT, DF); |
| 187 | NumPromoted += Allocas.size(); |
| 188 | Changed = true; |
| 189 | } |
| 190 | |
| 191 | return Changed; |
| 192 | } |
| 193 | |
Chris Lattner | 0e99e69 | 2008-06-22 17:46:21 +0000 | [diff] [blame] | 194 | /// getNumSAElements - Return the number of elements in the specific struct or |
| 195 | /// array. |
| 196 | static uint64_t getNumSAElements(const Type *T) { |
| 197 | if (const StructType *ST = dyn_cast<StructType>(T)) |
| 198 | return ST->getNumElements(); |
| 199 | return cast<ArrayType>(T)->getNumElements(); |
| 200 | } |
| 201 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 202 | // performScalarRepl - This algorithm is a simple worklist driven algorithm, |
| 203 | // which runs on all of the malloc/alloca instructions in the function, removing |
| 204 | // them if they are only used by getelementptr instructions. |
| 205 | // |
| 206 | bool SROA::performScalarRepl(Function &F) { |
| 207 | std::vector<AllocationInst*> WorkList; |
| 208 | |
| 209 | // Scan the entry basic block, adding any alloca's and mallocs to the worklist |
| 210 | BasicBlock &BB = F.getEntryBlock(); |
| 211 | for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) |
| 212 | if (AllocationInst *A = dyn_cast<AllocationInst>(I)) |
| 213 | WorkList.push_back(A); |
| 214 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 215 | // Process the worklist |
| 216 | bool Changed = false; |
| 217 | while (!WorkList.empty()) { |
| 218 | AllocationInst *AI = WorkList.back(); |
| 219 | WorkList.pop_back(); |
| 220 | |
| 221 | // Handle dead allocas trivially. These can be formed by SROA'ing arrays |
| 222 | // with unused elements. |
| 223 | if (AI->use_empty()) { |
| 224 | AI->eraseFromParent(); |
| 225 | continue; |
| 226 | } |
| 227 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 228 | // Check to see if we can perform the core SROA transformation. We cannot |
| 229 | // transform the allocation instruction if it is an array allocation |
| 230 | // (allocations OF arrays are ok though), and an allocation of a scalar |
| 231 | // value cannot be decomposed at all. |
| 232 | if (!AI->isArrayAllocation() && |
| 233 | (isa<StructType>(AI->getAllocatedType()) || |
| 234 | isa<ArrayType>(AI->getAllocatedType())) && |
| 235 | AI->getAllocatedType()->isSized() && |
Chris Lattner | 0e99e69 | 2008-06-22 17:46:21 +0000 | [diff] [blame] | 236 | // Do not promote any struct whose size is larger than "128" bytes. |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 237 | TD->getTypePaddedSize(AI->getAllocatedType()) < SRThreshold && |
Chris Lattner | 0e99e69 | 2008-06-22 17:46:21 +0000 | [diff] [blame] | 238 | // Do not promote any struct into more than "32" separate vars. |
| 239 | getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 240 | // Check that all of the users of the allocation are capable of being |
| 241 | // transformed. |
| 242 | switch (isSafeAllocaToScalarRepl(AI)) { |
| 243 | default: assert(0 && "Unexpected value!"); |
| 244 | case 0: // Not safe to scalar replace. |
| 245 | break; |
| 246 | case 1: // Safe, but requires cleanup/canonicalizations first |
| 247 | CanonicalizeAllocaUsers(AI); |
| 248 | // FALL THROUGH. |
| 249 | case 3: // Safe to scalar replace. |
| 250 | DoScalarReplacement(AI, WorkList); |
| 251 | Changed = true; |
| 252 | continue; |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | // Check to see if this allocation is only modified by a memcpy/memmove from |
| 257 | // a constant global. If this is the case, we can change all users to use |
| 258 | // the constant global instead. This is commonly produced by the CFE by |
| 259 | // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' |
| 260 | // is only subsequently read. |
| 261 | if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) { |
| 262 | DOUT << "Found alloca equal to global: " << *AI; |
| 263 | DOUT << " memcpy = " << *TheCopy; |
| 264 | Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2)); |
| 265 | AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType())); |
| 266 | TheCopy->eraseFromParent(); // Don't mutate the global. |
| 267 | AI->eraseFromParent(); |
| 268 | ++NumGlobals; |
| 269 | Changed = true; |
| 270 | continue; |
| 271 | } |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 272 | |
| 273 | // If we can turn this aggregate value (potentially with casts) into a |
| 274 | // simple scalar value that can be mem2reg'd into a register value. |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 275 | // IsNotTrivial tracks whether this is something that mem2reg could have |
| 276 | // promoted itself. If so, we don't want to transform it needlessly. Note |
| 277 | // that we can't just check based on the type: the alloca may be of an i32 |
| 278 | // but that has pointer arithmetic to set byte 3 of it or something. |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 279 | bool IsNotTrivial = false; |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 280 | const Type *ActualType = 0; |
| 281 | if (CanConvertToScalar(AI, IsNotTrivial, ActualType, 0)) |
| 282 | if (IsNotTrivial && ActualType && |
| 283 | TD->getTypeSizeInBits(ActualType) < SRThreshold*8) { |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 284 | ConvertToScalar(AI, ActualType); |
| 285 | Changed = true; |
| 286 | continue; |
| 287 | } |
| 288 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 289 | // Otherwise, couldn't process this. |
| 290 | } |
| 291 | |
| 292 | return Changed; |
| 293 | } |
| 294 | |
| 295 | /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl |
| 296 | /// predicate, do SROA now. |
| 297 | void SROA::DoScalarReplacement(AllocationInst *AI, |
| 298 | std::vector<AllocationInst*> &WorkList) { |
| 299 | DOUT << "Found inst to SROA: " << *AI; |
| 300 | SmallVector<AllocaInst*, 32> ElementAllocas; |
| 301 | if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { |
| 302 | ElementAllocas.reserve(ST->getNumContainedTypes()); |
| 303 | for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) { |
| 304 | AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, |
| 305 | AI->getAlignment(), |
| 306 | AI->getName() + "." + utostr(i), AI); |
| 307 | ElementAllocas.push_back(NA); |
| 308 | WorkList.push_back(NA); // Add to worklist for recursive processing |
| 309 | } |
| 310 | } else { |
| 311 | const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType()); |
| 312 | ElementAllocas.reserve(AT->getNumElements()); |
| 313 | const Type *ElTy = AT->getElementType(); |
| 314 | for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { |
| 315 | AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(), |
| 316 | AI->getName() + "." + utostr(i), AI); |
| 317 | ElementAllocas.push_back(NA); |
| 318 | WorkList.push_back(NA); // Add to worklist for recursive processing |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | // Now that we have created the alloca instructions that we want to use, |
| 323 | // expand the getelementptr instructions to use them. |
| 324 | // |
| 325 | while (!AI->use_empty()) { |
| 326 | Instruction *User = cast<Instruction>(AI->use_back()); |
| 327 | if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) { |
| 328 | RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas); |
| 329 | BCInst->eraseFromParent(); |
| 330 | continue; |
| 331 | } |
| 332 | |
Chris Lattner | 19e61a4 | 2008-06-23 17:11:23 +0000 | [diff] [blame] | 333 | // Replace: |
| 334 | // %res = load { i32, i32 }* %alloc |
| 335 | // with: |
| 336 | // %load.0 = load i32* %alloc.0 |
| 337 | // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0 |
| 338 | // %load.1 = load i32* %alloc.1 |
| 339 | // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1 |
Matthijs Kooijman | 001006a | 2008-06-05 12:51:53 +0000 | [diff] [blame] | 340 | // (Also works for arrays instead of structs) |
| 341 | if (LoadInst *LI = dyn_cast<LoadInst>(User)) { |
| 342 | Value *Insert = UndefValue::get(LI->getType()); |
| 343 | for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) { |
| 344 | Value *Load = new LoadInst(ElementAllocas[i], "load", LI); |
| 345 | Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI); |
| 346 | } |
| 347 | LI->replaceAllUsesWith(Insert); |
| 348 | LI->eraseFromParent(); |
| 349 | continue; |
| 350 | } |
| 351 | |
Chris Lattner | 19e61a4 | 2008-06-23 17:11:23 +0000 | [diff] [blame] | 352 | // Replace: |
| 353 | // store { i32, i32 } %val, { i32, i32 }* %alloc |
| 354 | // with: |
| 355 | // %val.0 = extractvalue { i32, i32 } %val, 0 |
| 356 | // store i32 %val.0, i32* %alloc.0 |
| 357 | // %val.1 = extractvalue { i32, i32 } %val, 1 |
| 358 | // store i32 %val.1, i32* %alloc.1 |
Matthijs Kooijman | 001006a | 2008-06-05 12:51:53 +0000 | [diff] [blame] | 359 | // (Also works for arrays instead of structs) |
| 360 | if (StoreInst *SI = dyn_cast<StoreInst>(User)) { |
| 361 | Value *Val = SI->getOperand(0); |
| 362 | for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) { |
| 363 | Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI); |
| 364 | new StoreInst(Extract, ElementAllocas[i], SI); |
| 365 | } |
| 366 | SI->eraseFromParent(); |
| 367 | continue; |
| 368 | } |
| 369 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 370 | GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User); |
| 371 | // We now know that the GEP is of the form: GEP <ptr>, 0, <cst> |
| 372 | unsigned Idx = |
| 373 | (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); |
| 374 | |
| 375 | assert(Idx < ElementAllocas.size() && "Index out of range?"); |
| 376 | AllocaInst *AllocaToUse = ElementAllocas[Idx]; |
| 377 | |
| 378 | Value *RepValue; |
| 379 | if (GEPI->getNumOperands() == 3) { |
| 380 | // Do not insert a new getelementptr instruction with zero indices, only |
| 381 | // to have it optimized out later. |
| 382 | RepValue = AllocaToUse; |
| 383 | } else { |
| 384 | // We are indexing deeply into the structure, so we still need a |
| 385 | // getelement ptr instruction to finish the indexing. This may be |
| 386 | // expanded itself once the worklist is rerun. |
| 387 | // |
| 388 | SmallVector<Value*, 8> NewArgs; |
| 389 | NewArgs.push_back(Constant::getNullValue(Type::Int32Ty)); |
| 390 | NewArgs.append(GEPI->op_begin()+3, GEPI->op_end()); |
Gabor Greif | d6da1d0 | 2008-04-06 20:25:17 +0000 | [diff] [blame] | 391 | RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(), |
| 392 | NewArgs.end(), "", GEPI); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 393 | RepValue->takeName(GEPI); |
| 394 | } |
| 395 | |
| 396 | // If this GEP is to the start of the aggregate, check for memcpys. |
Chris Lattner | 85591c6 | 2009-01-07 06:25:07 +0000 | [diff] [blame] | 397 | if (Idx == 0 && GEPI->hasAllZeroIndices()) |
| 398 | RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 399 | |
| 400 | // Move all of the users over to the new GEP. |
| 401 | GEPI->replaceAllUsesWith(RepValue); |
| 402 | // Delete the old GEP |
| 403 | GEPI->eraseFromParent(); |
| 404 | } |
| 405 | |
| 406 | // Finally, delete the Alloca instruction |
| 407 | AI->eraseFromParent(); |
| 408 | NumReplaced++; |
| 409 | } |
| 410 | |
| 411 | |
| 412 | /// isSafeElementUse - Check to see if this use is an allowed use for a |
| 413 | /// getelementptr instruction of an array aggregate allocation. isFirstElt |
| 414 | /// indicates whether Ptr is known to the start of the aggregate. |
| 415 | /// |
| 416 | void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI, |
| 417 | AllocaInfo &Info) { |
| 418 | for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end(); |
| 419 | I != E; ++I) { |
| 420 | Instruction *User = cast<Instruction>(*I); |
| 421 | switch (User->getOpcode()) { |
| 422 | case Instruction::Load: break; |
| 423 | case Instruction::Store: |
| 424 | // Store is ok if storing INTO the pointer, not storing the pointer |
| 425 | if (User->getOperand(0) == Ptr) return MarkUnsafe(Info); |
| 426 | break; |
| 427 | case Instruction::GetElementPtr: { |
| 428 | GetElementPtrInst *GEP = cast<GetElementPtrInst>(User); |
| 429 | bool AreAllZeroIndices = isFirstElt; |
| 430 | if (GEP->getNumOperands() > 1) { |
| 431 | if (!isa<ConstantInt>(GEP->getOperand(1)) || |
| 432 | !cast<ConstantInt>(GEP->getOperand(1))->isZero()) |
| 433 | // Using pointer arithmetic to navigate the array. |
| 434 | return MarkUnsafe(Info); |
| 435 | |
Chris Lattner | 85591c6 | 2009-01-07 06:25:07 +0000 | [diff] [blame] | 436 | if (AreAllZeroIndices) |
| 437 | AreAllZeroIndices = GEP->hasAllZeroIndices(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 438 | } |
| 439 | isSafeElementUse(GEP, AreAllZeroIndices, AI, Info); |
| 440 | if (Info.isUnsafe) return; |
| 441 | break; |
| 442 | } |
| 443 | case Instruction::BitCast: |
| 444 | if (isFirstElt) { |
| 445 | isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info); |
| 446 | if (Info.isUnsafe) return; |
| 447 | break; |
| 448 | } |
| 449 | DOUT << " Transformation preventing inst: " << *User; |
| 450 | return MarkUnsafe(Info); |
| 451 | case Instruction::Call: |
| 452 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { |
| 453 | if (isFirstElt) { |
| 454 | isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info); |
| 455 | if (Info.isUnsafe) return; |
| 456 | break; |
| 457 | } |
| 458 | } |
| 459 | DOUT << " Transformation preventing inst: " << *User; |
| 460 | return MarkUnsafe(Info); |
| 461 | default: |
| 462 | DOUT << " Transformation preventing inst: " << *User; |
| 463 | return MarkUnsafe(Info); |
| 464 | } |
| 465 | } |
| 466 | return; // All users look ok :) |
| 467 | } |
| 468 | |
| 469 | /// AllUsersAreLoads - Return true if all users of this value are loads. |
| 470 | static bool AllUsersAreLoads(Value *Ptr) { |
| 471 | for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end(); |
| 472 | I != E; ++I) |
| 473 | if (cast<Instruction>(*I)->getOpcode() != Instruction::Load) |
| 474 | return false; |
| 475 | return true; |
| 476 | } |
| 477 | |
| 478 | /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an |
| 479 | /// aggregate allocation. |
| 480 | /// |
| 481 | void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI, |
| 482 | AllocaInfo &Info) { |
| 483 | if (BitCastInst *C = dyn_cast<BitCastInst>(User)) |
| 484 | return isSafeUseOfBitCastedAllocation(C, AI, Info); |
| 485 | |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 486 | if (LoadInst *LI = dyn_cast<LoadInst>(User)) |
| 487 | if (!LI->isVolatile()) |
| 488 | return;// Loads (returning a first class aggregrate) are always rewritable |
Matthijs Kooijman | 001006a | 2008-06-05 12:51:53 +0000 | [diff] [blame] | 489 | |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 490 | if (StoreInst *SI = dyn_cast<StoreInst>(User)) |
| 491 | if (!SI->isVolatile() && SI->getOperand(0) != AI) |
| 492 | return;// Store is ok if storing INTO the pointer, not storing the pointer |
Matthijs Kooijman | 001006a | 2008-06-05 12:51:53 +0000 | [diff] [blame] | 493 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 494 | GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User); |
| 495 | if (GEPI == 0) |
| 496 | return MarkUnsafe(Info); |
| 497 | |
| 498 | gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI); |
| 499 | |
| 500 | // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>". |
| 501 | if (I == E || |
| 502 | I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) { |
| 503 | return MarkUnsafe(Info); |
| 504 | } |
| 505 | |
| 506 | ++I; |
| 507 | if (I == E) return MarkUnsafe(Info); // ran out of GEP indices?? |
| 508 | |
| 509 | bool IsAllZeroIndices = true; |
| 510 | |
Chris Lattner | d324da0 | 2008-08-23 05:21:06 +0000 | [diff] [blame] | 511 | // If the first index is a non-constant index into an array, see if we can |
| 512 | // handle it as a special case. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 513 | if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) { |
Chris Lattner | d324da0 | 2008-08-23 05:21:06 +0000 | [diff] [blame] | 514 | if (!isa<ConstantInt>(I.getOperand())) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 515 | IsAllZeroIndices = 0; |
Chris Lattner | d324da0 | 2008-08-23 05:21:06 +0000 | [diff] [blame] | 516 | uint64_t NumElements = AT->getNumElements(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 517 | |
| 518 | // If this is an array index and the index is not constant, we cannot |
| 519 | // promote... that is unless the array has exactly one or two elements in |
| 520 | // it, in which case we CAN promote it, but we have to canonicalize this |
| 521 | // out if this is the only problem. |
| 522 | if ((NumElements == 1 || NumElements == 2) && |
| 523 | AllUsersAreLoads(GEPI)) { |
| 524 | Info.needsCanon = true; |
| 525 | return; // Canonicalization required! |
| 526 | } |
| 527 | return MarkUnsafe(Info); |
| 528 | } |
| 529 | } |
Matthijs Kooijman | 87ea563 | 2008-10-06 16:23:31 +0000 | [diff] [blame] | 530 | |
Chris Lattner | d324da0 | 2008-08-23 05:21:06 +0000 | [diff] [blame] | 531 | // Walk through the GEP type indices, checking the types that this indexes |
| 532 | // into. |
| 533 | for (; I != E; ++I) { |
| 534 | // Ignore struct elements, no extra checking needed for these. |
| 535 | if (isa<StructType>(*I)) |
| 536 | continue; |
| 537 | |
Chris Lattner | d324da0 | 2008-08-23 05:21:06 +0000 | [diff] [blame] | 538 | ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand()); |
| 539 | if (!IdxVal) return MarkUnsafe(Info); |
Matthijs Kooijman | 87ea563 | 2008-10-06 16:23:31 +0000 | [diff] [blame] | 540 | |
| 541 | // Are all indices still zero? |
Chris Lattner | d324da0 | 2008-08-23 05:21:06 +0000 | [diff] [blame] | 542 | IsAllZeroIndices &= IdxVal->isZero(); |
Matthijs Kooijman | 87ea563 | 2008-10-06 16:23:31 +0000 | [diff] [blame] | 543 | |
| 544 | if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) { |
| 545 | // This GEP indexes an array. Verify that this is an in-range constant |
| 546 | // integer. Specifically, consider A[0][i]. We cannot know that the user |
| 547 | // isn't doing invalid things like allowing i to index an out-of-range |
| 548 | // subscript that accesses A[1]. Because of this, we have to reject SROA |
Dale Johannesen | 1f9b186 | 2008-11-04 20:54:03 +0000 | [diff] [blame] | 549 | // of any accesses into structs where any of the components are variables. |
Matthijs Kooijman | 87ea563 | 2008-10-06 16:23:31 +0000 | [diff] [blame] | 550 | if (IdxVal->getZExtValue() >= AT->getNumElements()) |
| 551 | return MarkUnsafe(Info); |
Dale Johannesen | 1f9b186 | 2008-11-04 20:54:03 +0000 | [diff] [blame] | 552 | } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) { |
| 553 | if (IdxVal->getZExtValue() >= VT->getNumElements()) |
| 554 | return MarkUnsafe(Info); |
Matthijs Kooijman | 87ea563 | 2008-10-06 16:23:31 +0000 | [diff] [blame] | 555 | } |
Chris Lattner | d324da0 | 2008-08-23 05:21:06 +0000 | [diff] [blame] | 556 | } |
| 557 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 558 | // If there are any non-simple uses of this getelementptr, make sure to reject |
| 559 | // them. |
| 560 | return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info); |
| 561 | } |
| 562 | |
| 563 | /// isSafeMemIntrinsicOnAllocation - Return true if the specified memory |
| 564 | /// intrinsic can be promoted by SROA. At this point, we know that the operand |
| 565 | /// of the memintrinsic is a pointer to the beginning of the allocation. |
| 566 | void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI, |
| 567 | unsigned OpNo, AllocaInfo &Info) { |
| 568 | // If not constant length, give up. |
| 569 | ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); |
| 570 | if (!Length) return MarkUnsafe(Info); |
| 571 | |
| 572 | // If not the whole aggregate, give up. |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame] | 573 | if (Length->getZExtValue() != |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 574 | TD->getTypePaddedSize(AI->getType()->getElementType())) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 575 | return MarkUnsafe(Info); |
| 576 | |
| 577 | // We only know about memcpy/memset/memmove. |
| 578 | if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI)) |
| 579 | return MarkUnsafe(Info); |
| 580 | |
| 581 | // Otherwise, we can transform it. Determine whether this is a memcpy/set |
| 582 | // into or out of the aggregate. |
| 583 | if (OpNo == 1) |
| 584 | Info.isMemCpyDst = true; |
| 585 | else { |
| 586 | assert(OpNo == 2); |
| 587 | Info.isMemCpySrc = true; |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast |
| 592 | /// are |
| 593 | void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI, |
| 594 | AllocaInfo &Info) { |
| 595 | for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end(); |
| 596 | UI != E; ++UI) { |
| 597 | if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) { |
| 598 | isSafeUseOfBitCastedAllocation(BCU, AI, Info); |
| 599 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) { |
| 600 | isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info); |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 601 | } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 602 | if (SI->isVolatile()) |
| 603 | return MarkUnsafe(Info); |
| 604 | |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 605 | // If storing the entire alloca in one chunk through a bitcasted pointer |
| 606 | // to integer, we can transform it. This happens (for example) when you |
| 607 | // cast a {i32,i32}* to i64* and store through it. This is similar to the |
| 608 | // memcpy case and occurs in various "byval" cases and emulated memcpys. |
| 609 | if (isa<IntegerType>(SI->getOperand(0)->getType()) && |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 610 | TD->getTypePaddedSize(SI->getOperand(0)->getType()) == |
| 611 | TD->getTypePaddedSize(AI->getType()->getElementType())) { |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 612 | Info.isMemCpyDst = true; |
| 613 | continue; |
| 614 | } |
| 615 | return MarkUnsafe(Info); |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 616 | } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 617 | if (LI->isVolatile()) |
| 618 | return MarkUnsafe(Info); |
| 619 | |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 620 | // If loading the entire alloca in one chunk through a bitcasted pointer |
| 621 | // to integer, we can transform it. This happens (for example) when you |
| 622 | // cast a {i32,i32}* to i64* and load through it. This is similar to the |
| 623 | // memcpy case and occurs in various "byval" cases and emulated memcpys. |
| 624 | if (isa<IntegerType>(LI->getType()) && |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 625 | TD->getTypePaddedSize(LI->getType()) == |
| 626 | TD->getTypePaddedSize(AI->getType()->getElementType())) { |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 627 | Info.isMemCpySrc = true; |
| 628 | continue; |
| 629 | } |
| 630 | return MarkUnsafe(Info); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 631 | } else { |
| 632 | return MarkUnsafe(Info); |
| 633 | } |
| 634 | if (Info.isUnsafe) return; |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | /// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes |
| 639 | /// to its first element. Transform users of the cast to use the new values |
| 640 | /// instead. |
| 641 | void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI, |
| 642 | SmallVector<AllocaInst*, 32> &NewElts) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 643 | Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end(); |
| 644 | while (UI != UE) { |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 645 | Instruction *User = cast<Instruction>(*UI++); |
| 646 | if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 647 | RewriteBitCastUserOfAlloca(BCU, AI, NewElts); |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 648 | if (BCU->use_empty()) BCU->eraseFromParent(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 649 | continue; |
| 650 | } |
| 651 | |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 652 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { |
| 653 | // This must be memcpy/memmove/memset of the entire aggregate. |
| 654 | // Split into one per element. |
| 655 | RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 656 | continue; |
| 657 | } |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 658 | |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 659 | if (StoreInst *SI = dyn_cast<StoreInst>(User)) { |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 660 | // If this is a store of the entire alloca from an integer, rewrite it. |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 661 | RewriteStoreUserOfWholeAlloca(SI, AI, NewElts); |
| 662 | continue; |
| 663 | } |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 664 | |
| 665 | if (LoadInst *LI = dyn_cast<LoadInst>(User)) { |
| 666 | // If this is a load of the entire alloca to an integer, rewrite it. |
| 667 | RewriteLoadUserOfWholeAlloca(LI, AI, NewElts); |
| 668 | continue; |
| 669 | } |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 670 | |
| 671 | // Otherwise it must be some other user of a gep of the first pointer. Just |
| 672 | // leave these alone. |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 673 | continue; |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 674 | } |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 675 | } |
| 676 | |
| 677 | /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI. |
| 678 | /// Rewrite it to copy or set the elements of the scalarized memory. |
| 679 | void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst, |
| 680 | AllocationInst *AI, |
| 681 | SmallVector<AllocaInst*, 32> &NewElts) { |
| 682 | |
| 683 | // If this is a memcpy/memmove, construct the other pointer as the |
| 684 | // appropriate type. |
| 685 | Value *OtherPtr = 0; |
| 686 | if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) { |
| 687 | if (BCInst == MCI->getRawDest()) |
| 688 | OtherPtr = MCI->getRawSource(); |
| 689 | else { |
| 690 | assert(BCInst == MCI->getRawSource()); |
| 691 | OtherPtr = MCI->getRawDest(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 692 | } |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 693 | } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { |
| 694 | if (BCInst == MMI->getRawDest()) |
| 695 | OtherPtr = MMI->getRawSource(); |
| 696 | else { |
| 697 | assert(BCInst == MMI->getRawSource()); |
| 698 | OtherPtr = MMI->getRawDest(); |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | // If there is an other pointer, we want to convert it to the same pointer |
| 703 | // type as AI has, so we can GEP through it safely. |
| 704 | if (OtherPtr) { |
| 705 | // It is likely that OtherPtr is a bitcast, if so, remove it. |
| 706 | if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) |
| 707 | OtherPtr = BC->getOperand(0); |
| 708 | // All zero GEPs are effectively bitcasts. |
| 709 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) |
| 710 | if (GEP->hasAllZeroIndices()) |
| 711 | OtherPtr = GEP->getOperand(0); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 712 | |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 713 | if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr)) |
| 714 | if (BCE->getOpcode() == Instruction::BitCast) |
| 715 | OtherPtr = BCE->getOperand(0); |
| 716 | |
| 717 | // If the pointer is not the right type, insert a bitcast to the right |
| 718 | // type. |
| 719 | if (OtherPtr->getType() != AI->getType()) |
| 720 | OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(), |
| 721 | MI); |
| 722 | } |
| 723 | |
| 724 | // Process each element of the aggregate. |
| 725 | Value *TheFn = MI->getOperand(0); |
| 726 | const Type *BytePtrTy = MI->getRawDest()->getType(); |
| 727 | bool SROADest = MI->getRawDest() == BCInst; |
| 728 | |
| 729 | Constant *Zero = Constant::getNullValue(Type::Int32Ty); |
| 730 | |
| 731 | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { |
| 732 | // If this is a memcpy/memmove, emit a GEP of the other element address. |
| 733 | Value *OtherElt = 0; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 734 | if (OtherPtr) { |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 735 | Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) }; |
| 736 | OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2, |
Chris Lattner | 0e99e69 | 2008-06-22 17:46:21 +0000 | [diff] [blame] | 737 | OtherPtr->getNameStr()+"."+utostr(i), |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 738 | MI); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 739 | } |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 740 | |
| 741 | Value *EltPtr = NewElts[i]; |
| 742 | const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType(); |
| 743 | |
| 744 | // If we got down to a scalar, insert a load or store as appropriate. |
| 745 | if (EltTy->isSingleValueType()) { |
| 746 | if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) { |
| 747 | Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp", |
| 748 | MI); |
| 749 | new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI); |
| 750 | continue; |
| 751 | } |
| 752 | assert(isa<MemSetInst>(MI)); |
| 753 | |
| 754 | // If the stored element is zero (common case), just store a null |
| 755 | // constant. |
| 756 | Constant *StoreVal; |
| 757 | if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) { |
| 758 | if (CI->isZero()) { |
| 759 | StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0> |
| 760 | } else { |
| 761 | // If EltTy is a vector type, get the element type. |
| 762 | const Type *ValTy = EltTy; |
| 763 | if (const VectorType *VTy = dyn_cast<VectorType>(ValTy)) |
| 764 | ValTy = VTy->getElementType(); |
| 765 | |
| 766 | // Construct an integer with the right value. |
| 767 | unsigned EltSize = TD->getTypeSizeInBits(ValTy); |
| 768 | APInt OneVal(EltSize, CI->getZExtValue()); |
| 769 | APInt TotalVal(OneVal); |
| 770 | // Set each byte. |
| 771 | for (unsigned i = 0; 8*i < EltSize; ++i) { |
| 772 | TotalVal = TotalVal.shl(8); |
| 773 | TotalVal |= OneVal; |
| 774 | } |
| 775 | |
| 776 | // Convert the integer value to the appropriate type. |
| 777 | StoreVal = ConstantInt::get(TotalVal); |
| 778 | if (isa<PointerType>(ValTy)) |
| 779 | StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy); |
| 780 | else if (ValTy->isFloatingPoint()) |
| 781 | StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy); |
| 782 | assert(StoreVal->getType() == ValTy && "Type mismatch!"); |
| 783 | |
| 784 | // If the requested value was a vector constant, create it. |
| 785 | if (EltTy != ValTy) { |
| 786 | unsigned NumElts = cast<VectorType>(ValTy)->getNumElements(); |
| 787 | SmallVector<Constant*, 16> Elts(NumElts, StoreVal); |
| 788 | StoreVal = ConstantVector::get(&Elts[0], NumElts); |
| 789 | } |
| 790 | } |
| 791 | new StoreInst(StoreVal, EltPtr, MI); |
| 792 | continue; |
| 793 | } |
| 794 | // Otherwise, if we're storing a byte variable, use a memset call for |
| 795 | // this element. |
| 796 | } |
| 797 | |
| 798 | // Cast the element pointer to BytePtrTy. |
| 799 | if (EltPtr->getType() != BytePtrTy) |
| 800 | EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI); |
| 801 | |
| 802 | // Cast the other pointer (if we have one) to BytePtrTy. |
| 803 | if (OtherElt && OtherElt->getType() != BytePtrTy) |
| 804 | OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(), |
| 805 | MI); |
| 806 | |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 807 | unsigned EltSize = TD->getTypePaddedSize(EltTy); |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 808 | |
| 809 | // Finally, insert the meminst for this element. |
| 810 | if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) { |
| 811 | Value *Ops[] = { |
| 812 | SROADest ? EltPtr : OtherElt, // Dest ptr |
| 813 | SROADest ? OtherElt : EltPtr, // Src ptr |
| 814 | ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size |
| 815 | Zero // Align |
| 816 | }; |
| 817 | CallInst::Create(TheFn, Ops, Ops + 4, "", MI); |
| 818 | } else { |
| 819 | assert(isa<MemSetInst>(MI)); |
| 820 | Value *Ops[] = { |
| 821 | EltPtr, MI->getOperand(2), // Dest, Value, |
| 822 | ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size |
| 823 | Zero // Align |
| 824 | }; |
| 825 | CallInst::Create(TheFn, Ops, Ops + 4, "", MI); |
| 826 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 827 | } |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 828 | MI->eraseFromParent(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 829 | } |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 830 | |
| 831 | /// RewriteStoreUserOfWholeAlloca - We found an store of an integer that |
| 832 | /// overwrites the entire allocation. Extract out the pieces of the stored |
| 833 | /// integer and store them individually. |
| 834 | void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, |
| 835 | AllocationInst *AI, |
| 836 | SmallVector<AllocaInst*, 32> &NewElts){ |
| 837 | // Extract each element out of the integer according to its structure offset |
| 838 | // and store the element value to the individual alloca. |
| 839 | Value *SrcVal = SI->getOperand(0); |
| 840 | const Type *AllocaEltTy = AI->getType()->getElementType(); |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 841 | uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy); |
Chris Lattner | 51f9e0b | 2009-01-07 07:18:45 +0000 | [diff] [blame] | 842 | |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 843 | // If this isn't a store of an integer to the whole alloca, it may be a store |
| 844 | // to the first element. Just ignore the store in this case and normal SROA |
| 845 | // will handle it. |
| 846 | if (!isa<IntegerType>(SrcVal->getType()) || |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 847 | TD->getTypePaddedSizeInBits(SrcVal->getType()) != AllocaSizeBits) |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 848 | return; |
| 849 | |
| 850 | DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI; |
| 851 | |
| 852 | // There are two forms here: AI could be an array or struct. Both cases |
| 853 | // have different ways to compute the element offset. |
| 854 | if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { |
| 855 | const StructLayout *Layout = TD->getStructLayout(EltSTy); |
| 856 | |
| 857 | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { |
| 858 | // Get the number of bits to shift SrcVal to get the value. |
| 859 | const Type *FieldTy = EltSTy->getElementType(i); |
| 860 | uint64_t Shift = Layout->getElementOffsetInBits(i); |
| 861 | |
| 862 | if (TD->isBigEndian()) |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 863 | Shift = AllocaSizeBits-Shift-TD->getTypePaddedSizeInBits(FieldTy); |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 864 | |
| 865 | Value *EltVal = SrcVal; |
| 866 | if (Shift) { |
| 867 | Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); |
| 868 | EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal, |
| 869 | "sroa.store.elt", SI); |
| 870 | } |
| 871 | |
| 872 | // Truncate down to an integer of the right size. |
| 873 | uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy); |
Chris Lattner | f7a2f09 | 2009-01-09 18:18:43 +0000 | [diff] [blame] | 874 | |
| 875 | // Ignore zero sized fields like {}, they obviously contain no data. |
| 876 | if (FieldSizeBits == 0) continue; |
| 877 | |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 878 | if (FieldSizeBits != AllocaSizeBits) |
| 879 | EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI); |
| 880 | Value *DestField = NewElts[i]; |
| 881 | if (EltVal->getType() == FieldTy) { |
| 882 | // Storing to an integer field of this size, just do it. |
| 883 | } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) { |
| 884 | // Bitcast to the right element type (for fp/vector values). |
| 885 | EltVal = new BitCastInst(EltVal, FieldTy, "", SI); |
| 886 | } else { |
| 887 | // Otherwise, bitcast the dest pointer (for aggregates). |
| 888 | DestField = new BitCastInst(DestField, |
| 889 | PointerType::getUnqual(EltVal->getType()), |
| 890 | "", SI); |
| 891 | } |
| 892 | new StoreInst(EltVal, DestField, SI); |
| 893 | } |
| 894 | |
| 895 | } else { |
| 896 | const ArrayType *ATy = cast<ArrayType>(AllocaEltTy); |
| 897 | const Type *ArrayEltTy = ATy->getElementType(); |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 898 | uint64_t ElementOffset = TD->getTypePaddedSizeInBits(ArrayEltTy); |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 899 | uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy); |
| 900 | |
| 901 | uint64_t Shift; |
| 902 | |
| 903 | if (TD->isBigEndian()) |
| 904 | Shift = AllocaSizeBits-ElementOffset; |
| 905 | else |
| 906 | Shift = 0; |
| 907 | |
| 908 | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { |
Chris Lattner | f7a2f09 | 2009-01-09 18:18:43 +0000 | [diff] [blame] | 909 | // Ignore zero sized fields like {}, they obviously contain no data. |
| 910 | if (ElementSizeBits == 0) continue; |
Chris Lattner | 71c7534 | 2009-01-07 08:11:13 +0000 | [diff] [blame] | 911 | |
| 912 | Value *EltVal = SrcVal; |
| 913 | if (Shift) { |
| 914 | Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); |
| 915 | EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal, |
| 916 | "sroa.store.elt", SI); |
| 917 | } |
| 918 | |
| 919 | // Truncate down to an integer of the right size. |
| 920 | if (ElementSizeBits != AllocaSizeBits) |
| 921 | EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI); |
| 922 | Value *DestField = NewElts[i]; |
| 923 | if (EltVal->getType() == ArrayEltTy) { |
| 924 | // Storing to an integer field of this size, just do it. |
| 925 | } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) { |
| 926 | // Bitcast to the right element type (for fp/vector values). |
| 927 | EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI); |
| 928 | } else { |
| 929 | // Otherwise, bitcast the dest pointer (for aggregates). |
| 930 | DestField = new BitCastInst(DestField, |
| 931 | PointerType::getUnqual(EltVal->getType()), |
| 932 | "", SI); |
| 933 | } |
| 934 | new StoreInst(EltVal, DestField, SI); |
| 935 | |
| 936 | if (TD->isBigEndian()) |
| 937 | Shift -= ElementOffset; |
| 938 | else |
| 939 | Shift += ElementOffset; |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | SI->eraseFromParent(); |
| 944 | } |
| 945 | |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 946 | /// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to |
| 947 | /// an integer. Load the individual pieces to form the aggregate value. |
| 948 | void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI, |
| 949 | SmallVector<AllocaInst*, 32> &NewElts) { |
| 950 | // Extract each element out of the NewElts according to its structure offset |
| 951 | // and form the result value. |
| 952 | const Type *AllocaEltTy = AI->getType()->getElementType(); |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 953 | uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy); |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 954 | |
| 955 | // If this isn't a load of the whole alloca to an integer, it may be a load |
| 956 | // of the first element. Just ignore the load in this case and normal SROA |
| 957 | // will handle it. |
| 958 | if (!isa<IntegerType>(LI->getType()) || |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 959 | TD->getTypePaddedSizeInBits(LI->getType()) != AllocaSizeBits) |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 960 | return; |
| 961 | |
| 962 | DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI; |
| 963 | |
| 964 | // There are two forms here: AI could be an array or struct. Both cases |
| 965 | // have different ways to compute the element offset. |
| 966 | const StructLayout *Layout = 0; |
| 967 | uint64_t ArrayEltBitOffset = 0; |
| 968 | if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { |
| 969 | Layout = TD->getStructLayout(EltSTy); |
| 970 | } else { |
| 971 | const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType(); |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 972 | ArrayEltBitOffset = TD->getTypePaddedSizeInBits(ArrayEltTy); |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 973 | } |
| 974 | |
| 975 | Value *ResultVal = Constant::getNullValue(LI->getType()); |
| 976 | |
| 977 | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { |
| 978 | // Load the value from the alloca. If the NewElt is an aggregate, cast |
| 979 | // the pointer to an integer of the same size before doing the load. |
| 980 | Value *SrcField = NewElts[i]; |
| 981 | const Type *FieldTy = |
| 982 | cast<PointerType>(SrcField->getType())->getElementType(); |
Chris Lattner | f7a2f09 | 2009-01-09 18:18:43 +0000 | [diff] [blame] | 983 | uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy); |
| 984 | |
| 985 | // Ignore zero sized fields like {}, they obviously contain no data. |
| 986 | if (FieldSizeBits == 0) continue; |
| 987 | |
| 988 | const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits); |
Chris Lattner | 28401db | 2009-01-08 05:42:05 +0000 | [diff] [blame] | 989 | if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() && |
| 990 | !isa<VectorType>(FieldTy)) |
| 991 | SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy), |
| 992 | "", LI); |
| 993 | SrcField = new LoadInst(SrcField, "sroa.load.elt", LI); |
| 994 | |
| 995 | // If SrcField is a fp or vector of the right size but that isn't an |
| 996 | // integer type, bitcast to an integer so we can shift it. |
| 997 | if (SrcField->getType() != FieldIntTy) |
| 998 | SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI); |
| 999 | |
| 1000 | // Zero extend the field to be the same size as the final alloca so that |
| 1001 | // we can shift and insert it. |
| 1002 | if (SrcField->getType() != ResultVal->getType()) |
| 1003 | SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI); |
| 1004 | |
| 1005 | // Determine the number of bits to shift SrcField. |
| 1006 | uint64_t Shift; |
| 1007 | if (Layout) // Struct case. |
| 1008 | Shift = Layout->getElementOffsetInBits(i); |
| 1009 | else // Array case. |
| 1010 | Shift = i*ArrayEltBitOffset; |
| 1011 | |
| 1012 | if (TD->isBigEndian()) |
| 1013 | Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth(); |
| 1014 | |
| 1015 | if (Shift) { |
| 1016 | Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift); |
| 1017 | SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI); |
| 1018 | } |
| 1019 | |
| 1020 | ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI); |
| 1021 | } |
| 1022 | |
| 1023 | LI->replaceAllUsesWith(ResultVal); |
| 1024 | LI->eraseFromParent(); |
| 1025 | } |
| 1026 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1027 | |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame] | 1028 | /// HasPadding - Return true if the specified type has any structure or |
| 1029 | /// alignment padding, false otherwise. |
Duncan Sands | 4afc575 | 2008-06-04 08:21:45 +0000 | [diff] [blame] | 1030 | static bool HasPadding(const Type *Ty, const TargetData &TD) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1031 | if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| 1032 | const StructLayout *SL = TD.getStructLayout(STy); |
| 1033 | unsigned PrevFieldBitOffset = 0; |
| 1034 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame] | 1035 | unsigned FieldBitOffset = SL->getElementOffsetInBits(i); |
| 1036 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1037 | // Padding in sub-elements? |
Duncan Sands | 4afc575 | 2008-06-04 08:21:45 +0000 | [diff] [blame] | 1038 | if (HasPadding(STy->getElementType(i), TD)) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1039 | return true; |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame] | 1040 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1041 | // Check to see if there is any padding between this element and the |
| 1042 | // previous one. |
| 1043 | if (i) { |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame] | 1044 | unsigned PrevFieldEnd = |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1045 | PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1)); |
| 1046 | if (PrevFieldEnd < FieldBitOffset) |
| 1047 | return true; |
| 1048 | } |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame] | 1049 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1050 | PrevFieldBitOffset = FieldBitOffset; |
| 1051 | } |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame] | 1052 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1053 | // Check for tail padding. |
| 1054 | if (unsigned EltCount = STy->getNumElements()) { |
| 1055 | unsigned PrevFieldEnd = PrevFieldBitOffset + |
| 1056 | TD.getTypeSizeInBits(STy->getElementType(EltCount-1)); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame] | 1057 | if (PrevFieldEnd < SL->getSizeInBits()) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1058 | return true; |
| 1059 | } |
| 1060 | |
| 1061 | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
Duncan Sands | 4afc575 | 2008-06-04 08:21:45 +0000 | [diff] [blame] | 1062 | return HasPadding(ATy->getElementType(), TD); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame] | 1063 | } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { |
Duncan Sands | 4afc575 | 2008-06-04 08:21:45 +0000 | [diff] [blame] | 1064 | return HasPadding(VTy->getElementType(), TD); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1065 | } |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 1066 | return TD.getTypeSizeInBits(Ty) != TD.getTypePaddedSizeInBits(Ty); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1067 | } |
| 1068 | |
| 1069 | /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of |
| 1070 | /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe, |
| 1071 | /// or 1 if safe after canonicalization has been performed. |
| 1072 | /// |
| 1073 | int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) { |
| 1074 | // Loop over the use list of the alloca. We can only transform it if all of |
| 1075 | // the users are safe to transform. |
| 1076 | AllocaInfo Info; |
| 1077 | |
| 1078 | for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); |
| 1079 | I != E; ++I) { |
| 1080 | isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info); |
| 1081 | if (Info.isUnsafe) { |
| 1082 | DOUT << "Cannot transform: " << *AI << " due to user: " << **I; |
| 1083 | return 0; |
| 1084 | } |
| 1085 | } |
| 1086 | |
| 1087 | // Okay, we know all the users are promotable. If the aggregate is a memcpy |
| 1088 | // source and destination, we have to be careful. In particular, the memcpy |
| 1089 | // could be moving around elements that live in structure padding of the LLVM |
| 1090 | // types, but may actually be used. In these cases, we refuse to promote the |
| 1091 | // struct. |
| 1092 | if (Info.isMemCpySrc && Info.isMemCpyDst && |
Chris Lattner | 3fd5936 | 2009-01-07 06:34:28 +0000 | [diff] [blame] | 1093 | HasPadding(AI->getType()->getElementType(), *TD)) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1094 | return 0; |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame] | 1095 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1096 | // If we require cleanup, return 1, otherwise return 3. |
| 1097 | return Info.needsCanon ? 1 : 3; |
| 1098 | } |
| 1099 | |
| 1100 | /// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified |
| 1101 | /// allocation, but only if cleaned up, perform the cleanups required. |
| 1102 | void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) { |
| 1103 | // At this point, we know that the end result will be SROA'd and promoted, so |
| 1104 | // we can insert ugly code if required so long as sroa+mem2reg will clean it |
| 1105 | // up. |
| 1106 | for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); |
| 1107 | UI != E; ) { |
| 1108 | GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++); |
| 1109 | if (!GEPI) continue; |
| 1110 | gep_type_iterator I = gep_type_begin(GEPI); |
| 1111 | ++I; |
| 1112 | |
| 1113 | if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) { |
| 1114 | uint64_t NumElements = AT->getNumElements(); |
| 1115 | |
| 1116 | if (!isa<ConstantInt>(I.getOperand())) { |
| 1117 | if (NumElements == 1) { |
| 1118 | GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty)); |
| 1119 | } else { |
| 1120 | assert(NumElements == 2 && "Unhandled case!"); |
| 1121 | // All users of the GEP must be loads. At each use of the GEP, insert |
| 1122 | // two loads of the appropriate indexed GEP and select between them. |
| 1123 | Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(), |
| 1124 | Constant::getNullValue(I.getOperand()->getType()), |
| 1125 | "isone", GEPI); |
| 1126 | // Insert the new GEP instructions, which are properly indexed. |
| 1127 | SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end()); |
| 1128 | Indices[1] = Constant::getNullValue(Type::Int32Ty); |
Gabor Greif | d6da1d0 | 2008-04-06 20:25:17 +0000 | [diff] [blame] | 1129 | Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0), |
| 1130 | Indices.begin(), |
| 1131 | Indices.end(), |
| 1132 | GEPI->getName()+".0", GEPI); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1133 | Indices[1] = ConstantInt::get(Type::Int32Ty, 1); |
Gabor Greif | d6da1d0 | 2008-04-06 20:25:17 +0000 | [diff] [blame] | 1134 | Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0), |
| 1135 | Indices.begin(), |
| 1136 | Indices.end(), |
| 1137 | GEPI->getName()+".1", GEPI); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1138 | // Replace all loads of the variable index GEP with loads from both |
| 1139 | // indexes and a select. |
| 1140 | while (!GEPI->use_empty()) { |
| 1141 | LoadInst *LI = cast<LoadInst>(GEPI->use_back()); |
| 1142 | Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI); |
| 1143 | Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI); |
Gabor Greif | d6da1d0 | 2008-04-06 20:25:17 +0000 | [diff] [blame] | 1144 | Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1145 | LI->replaceAllUsesWith(R); |
| 1146 | LI->eraseFromParent(); |
| 1147 | } |
| 1148 | GEPI->eraseFromParent(); |
| 1149 | } |
| 1150 | } |
| 1151 | } |
| 1152 | } |
| 1153 | } |
| 1154 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1155 | /// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at |
| 1156 | /// the offset specified by Offset (which is specified in bytes). |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1157 | /// |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1158 | /// There are two cases we handle here: |
| 1159 | /// 1) A union of vector types of the same size and potentially its elements. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1160 | /// Here we turn element accesses into insert/extract element operations. |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1161 | /// This promotes a <4 x float> with a store of float to the third element |
| 1162 | /// into a <4 x float> that uses insert element. |
| 1163 | /// 2) A fully general blob of memory, which we turn into some (potentially |
| 1164 | /// large) integer type with extract and insert operations where the loads |
| 1165 | /// and stores would mutate the memory. |
| 1166 | static void MergeInType(const Type *In, uint64_t Offset, const Type *&Accum, |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1167 | const TargetData &TD) { |
| 1168 | // If this is our first type, just use it. |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1169 | if (Accum == 0 || In == Type::VoidTy || |
| 1170 | // Or if this is a same type, keep it. |
| 1171 | (In == Accum && Offset == 0)) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1172 | Accum = In; |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1173 | return; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1174 | } |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1175 | |
| 1176 | if (const VectorType *VATy = dyn_cast<VectorType>(Accum)) { |
| 1177 | if (VATy->getElementType() == In && |
| 1178 | Offset % TD.getTypePaddedSize(In) == 0 && |
| 1179 | Offset < TD.getTypePaddedSize(VATy)) |
| 1180 | return; // Accum is a vector, and we are accessing an element: ok. |
| 1181 | if (const VectorType *VInTy = dyn_cast<VectorType>(In)) |
| 1182 | if (VInTy->getBitWidth() == VATy->getBitWidth() && Offset == 0) |
| 1183 | return; // Two vectors of the same size: keep either one of them. |
| 1184 | } |
| 1185 | |
| 1186 | if (const VectorType *VInTy = dyn_cast<VectorType>(In)) { |
| 1187 | // In is a vector, and we are accessing an element: keep V. |
| 1188 | if (VInTy->getElementType() == Accum && |
| 1189 | Offset % TD.getTypePaddedSize(Accum) == 0 && |
| 1190 | Offset < TD.getTypePaddedSize(VInTy)) { |
| 1191 | Accum = VInTy; |
| 1192 | return; |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | // Otherwise, we have a case that we can't handle with an optimized form. |
| 1197 | // Convert the alloca to an integer that is as large as the largest store size |
| 1198 | // of the value values. |
| 1199 | uint64_t InSize = TD.getTypeStoreSizeInBits(In)+8*Offset; |
| 1200 | uint64_t ASize = TD.getTypeStoreSizeInBits(Accum); |
| 1201 | if (InSize > ASize) ASize = InSize; |
| 1202 | Accum = IntegerType::get(ASize); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1203 | } |
| 1204 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1205 | /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all |
| 1206 | /// its accesses to use a to single scalar type, return true, and set ResTy to |
| 1207 | /// the new type. Further, if the use is not a completely trivial use that |
| 1208 | /// mem2reg could promote, set IsNotTrivial. Offset is the current offset from |
| 1209 | /// the base of the alloca being analyzed. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1210 | /// |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1211 | bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, |
| 1212 | const Type *&ResTy, uint64_t Offset) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1213 | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) { |
| 1214 | Instruction *User = cast<Instruction>(*UI); |
| 1215 | |
| 1216 | if (LoadInst *LI = dyn_cast<LoadInst>(User)) { |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1217 | // Don't break volatile loads. |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 1218 | if (LI->isVolatile()) |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1219 | return false; |
| 1220 | MergeInType(LI->getType(), Offset, ResTy, *TD); |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1221 | continue; |
| 1222 | } |
| 1223 | |
| 1224 | if (StoreInst *SI = dyn_cast<StoreInst>(User)) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1225 | // Storing the pointer, not into the value? |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 1226 | if (SI->getOperand(0) == V || SI->isVolatile()) return 0; |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1227 | MergeInType(SI->getOperand(0)->getType(), Offset, ResTy, *TD); |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1228 | continue; |
| 1229 | } |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1230 | |
| 1231 | if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { |
| 1232 | if (!CanConvertToScalar(BCI, IsNotTrivial, ResTy, Offset)) |
| 1233 | return false; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1234 | IsNotTrivial = true; |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1235 | continue; |
| 1236 | } |
| 1237 | |
| 1238 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1239 | // If this is a GEP with a variable indices, we can't handle it. |
| 1240 | if (!GEP->hasAllConstantIndices()) |
| 1241 | return false; |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1242 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1243 | // Compute the offset that this GEP adds to the pointer. |
| 1244 | SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); |
| 1245 | uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(), |
| 1246 | &Indices[0], Indices.size()); |
| 1247 | // See if all uses can be converted. |
| 1248 | if (!CanConvertToScalar(GEP, IsNotTrivial, ResTy, Offset+GEPOffset)) |
| 1249 | return false; |
| 1250 | IsNotTrivial = true; |
| 1251 | continue; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1252 | } |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1253 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1254 | // Otherwise, we cannot handle this! |
| 1255 | return false; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1256 | } |
| 1257 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1258 | return true; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1259 | } |
| 1260 | |
| 1261 | /// ConvertToScalar - The specified alloca passes the CanConvertToScalar |
| 1262 | /// predicate and is non-trivial. Convert it to something that can be trivially |
| 1263 | /// promoted into a register by mem2reg. |
| 1264 | void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) { |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1265 | DOUT << "CONVERT TO SCALAR: " << *AI << " TYPE = " << *ActualTy << "\n"; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1266 | ++NumConverted; |
| 1267 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1268 | // Create and insert the alloca. |
| 1269 | AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(), |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1270 | AI->getParent()->begin()); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1271 | ConvertUsesToScalar(AI, NewAI, 0); |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1272 | AI->eraseFromParent(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1273 | } |
| 1274 | |
| 1275 | |
| 1276 | /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca |
| 1277 | /// directly. This happens when we are converting an "integer union" to a |
| 1278 | /// single integer scalar, or when we are converting a "vector union" to a |
| 1279 | /// vector with insert/extractelement instructions. |
| 1280 | /// |
| 1281 | /// Offset is an offset from the original alloca, in bits that need to be |
| 1282 | /// shifted to the right. By the end of this, there should be no uses of Ptr. |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1283 | void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1284 | while (!Ptr->use_empty()) { |
| 1285 | Instruction *User = cast<Instruction>(Ptr->use_back()); |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1286 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1287 | if (LoadInst *LI = dyn_cast<LoadInst>(User)) { |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1288 | LI->replaceAllUsesWith(ConvertUsesOfLoadToScalar(LI, NewAI, Offset)); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1289 | LI->eraseFromParent(); |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1290 | continue; |
| 1291 | } |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1292 | |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1293 | if (StoreInst *SI = dyn_cast<StoreInst>(User)) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1294 | assert(SI->getOperand(0) != Ptr && "Consistency error!"); |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1295 | new StoreInst(ConvertUsesOfStoreToScalar(SI, NewAI, Offset), NewAI, SI); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1296 | SI->eraseFromParent(); |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1297 | continue; |
| 1298 | } |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1299 | |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1300 | if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) { |
Chris Lattner | b153453 | 2008-01-30 00:39:15 +0000 | [diff] [blame] | 1301 | ConvertUsesToScalar(CI, NewAI, Offset); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1302 | CI->eraseFromParent(); |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1303 | continue; |
| 1304 | } |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1305 | |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1306 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1307 | // Compute the offset that this GEP adds to the pointer. |
| 1308 | SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); |
| 1309 | uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(), |
| 1310 | &Indices[0], Indices.size()); |
| 1311 | ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1312 | GEP->eraseFromParent(); |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1313 | continue; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1314 | } |
Chris Lattner | 7cc9771 | 2009-01-07 06:39:58 +0000 | [diff] [blame] | 1315 | assert(0 && "Unsupported operation!"); |
| 1316 | abort(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1317 | } |
| 1318 | } |
| 1319 | |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1320 | /// ConvertUsesOfLoadToScalar - Convert all of the users of the specified load |
| 1321 | /// to use the new alloca directly, returning the value that should replace the |
| 1322 | /// load. This happens when we are converting an "integer union" to a single |
| 1323 | /// integer scalar, or when we are converting a "vector union" to a vector with |
| 1324 | /// insert/extractelement instructions. |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1325 | /// |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1326 | /// Offset is an offset from the original alloca, in bits that need to be |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1327 | /// shifted to the right. By the end of this, there should be no uses of Ptr. |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1328 | Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI, |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1329 | uint64_t Offset) { |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1330 | // The load is a bit extract from NewAI shifted right by Offset bits. |
| 1331 | Value *NV = new LoadInst(NewAI, LI->getName(), LI); |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1332 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1333 | // If the load is of the whole new alloca, no conversion is needed. |
| 1334 | if (NV->getType() == LI->getType() && Offset == 0) |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1335 | return NV; |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1336 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1337 | // If the result alloca is a vector type, this is either an element |
| 1338 | // access or a bitcast to another vector type of the same size. |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1339 | if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) { |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1340 | if (isa<VectorType>(LI->getType())) |
| 1341 | return new BitCastInst(NV, LI->getType(), LI->getName(), LI); |
| 1342 | |
| 1343 | // Otherwise it must be an element access. |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1344 | unsigned Elt = 0; |
| 1345 | if (Offset) { |
Duncan Sands | d68f13b | 2009-01-12 20:38:59 +0000 | [diff] [blame] | 1346 | unsigned EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType()); |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1347 | Elt = Offset/EltSize; |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1348 | assert(EltSize*Elt == Offset && "Invalid modulus in validity checking"); |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1349 | } |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1350 | // Return the element extracted out of it. |
| 1351 | return new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt), |
| 1352 | "tmp", LI); |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1353 | } |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1354 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1355 | // Otherwise, this must be a union that was converted to an integer value. |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1356 | const IntegerType *NTy = cast<IntegerType>(NV->getType()); |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1357 | |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1358 | // If this is a big-endian system and the load is narrower than the |
| 1359 | // full alloca type, we need to do a shift to get the right bits. |
| 1360 | int ShAmt = 0; |
Chris Lattner | 3fd5936 | 2009-01-07 06:34:28 +0000 | [diff] [blame] | 1361 | if (TD->isBigEndian()) { |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1362 | // On big-endian machines, the lowest bit is stored at the bit offset |
| 1363 | // from the pointer given by getTypeStoreSizeInBits. This matters for |
| 1364 | // integers with a bitwidth that is not a multiple of 8. |
Chris Lattner | 3fd5936 | 2009-01-07 06:34:28 +0000 | [diff] [blame] | 1365 | ShAmt = TD->getTypeStoreSizeInBits(NTy) - |
| 1366 | TD->getTypeStoreSizeInBits(LI->getType()) - Offset; |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1367 | } else { |
| 1368 | ShAmt = Offset; |
| 1369 | } |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1370 | |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1371 | // Note: we support negative bitwidths (with shl) which are not defined. |
| 1372 | // We do this to support (f.e.) loads off the end of a structure where |
| 1373 | // only some bits are used. |
| 1374 | if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth()) |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1375 | NV = BinaryOperator::CreateLShr(NV, |
| 1376 | ConstantInt::get(NV->getType(), ShAmt), |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1377 | LI->getName(), LI); |
| 1378 | else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth()) |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1379 | NV = BinaryOperator::CreateShl(NV, |
| 1380 | ConstantInt::get(NV->getType(), -ShAmt), |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1381 | LI->getName(), LI); |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1382 | |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1383 | // Finally, unconditionally truncate the integer to the right width. |
Chris Lattner | 3fd5936 | 2009-01-07 06:34:28 +0000 | [diff] [blame] | 1384 | unsigned LIBitWidth = TD->getTypeSizeInBits(LI->getType()); |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1385 | if (LIBitWidth < NTy->getBitWidth()) |
| 1386 | NV = new TruncInst(NV, IntegerType::get(LIBitWidth), |
| 1387 | LI->getName(), LI); |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1388 | |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1389 | // If the result is an integer, this is a trunc or bitcast. |
| 1390 | if (isa<IntegerType>(LI->getType())) { |
| 1391 | // Should be done. |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1392 | } else if (LI->getType()->isFloatingPoint() || |
| 1393 | isa<VectorType>(LI->getType())) { |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1394 | // Just do a bitcast, we know the sizes match up. |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1395 | NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI); |
| 1396 | } else { |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1397 | // Otherwise must be a pointer. |
| 1398 | NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI); |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1399 | } |
Chris Lattner | 5f06254 | 2008-02-29 07:12:06 +0000 | [diff] [blame] | 1400 | assert(NV->getType() == LI->getType() && "Didn't convert right?"); |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1401 | return NV; |
| 1402 | } |
| 1403 | |
| 1404 | |
| 1405 | /// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store |
| 1406 | /// pair of the new alloca directly, returning the value that should be stored |
| 1407 | /// to the alloca. This happens when we are converting an "integer union" to a |
| 1408 | /// single integer scalar, or when we are converting a "vector union" to a |
| 1409 | /// vector with insert/extractelement instructions. |
| 1410 | /// |
| 1411 | /// Offset is an offset from the original alloca, in bits that need to be |
| 1412 | /// shifted to the right. By the end of this, there should be no uses of Ptr. |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1413 | Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI, |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1414 | uint64_t Offset) { |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1415 | |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1416 | // Convert the stored type to the actual type, shift it left to insert |
| 1417 | // then 'or' into place. |
| 1418 | Value *SV = SI->getOperand(0); |
| 1419 | const Type *AllocaType = NewAI->getType()->getElementType(); |
| 1420 | if (SV->getType() == AllocaType && Offset == 0) { |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1421 | return SV; |
| 1422 | } |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1423 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1424 | if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) { |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1425 | Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI); |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1426 | |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1427 | // If the result alloca is a vector type, this is either an element |
| 1428 | // access or a bitcast to another vector type. |
| 1429 | if (isa<VectorType>(SV->getType())) { |
| 1430 | SV = new BitCastInst(SV, AllocaType, SV->getName(), SI); |
| 1431 | } else { |
| 1432 | // Must be an element insertion. |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1433 | unsigned Elt = Offset/TD->getTypePaddedSizeInBits(VTy->getElementType()); |
Gabor Greif | d6da1d0 | 2008-04-06 20:25:17 +0000 | [diff] [blame] | 1434 | SV = InsertElementInst::Create(Old, SV, |
| 1435 | ConstantInt::get(Type::Int32Ty, Elt), |
| 1436 | "tmp", SI); |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1437 | } |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1438 | return SV; |
| 1439 | } |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1440 | |
| 1441 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1442 | Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI); |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1443 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1444 | // If SV is a float, convert it to the appropriate integer type. |
| 1445 | // If it is a pointer, do the same, and also handle ptr->ptr casts |
| 1446 | // here. |
| 1447 | unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType()); |
| 1448 | unsigned DestWidth = TD->getTypeSizeInBits(AllocaType); |
| 1449 | unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType()); |
| 1450 | unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType); |
| 1451 | if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType())) |
| 1452 | SV = new BitCastInst(SV, IntegerType::get(SrcWidth), SV->getName(), SI); |
| 1453 | else if (isa<PointerType>(SV->getType())) |
| 1454 | SV = new PtrToIntInst(SV, TD->getIntPtrType(), SV->getName(), SI); |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1455 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1456 | // Always zero extend the value if needed. |
| 1457 | if (SV->getType() != AllocaType) |
| 1458 | SV = new ZExtInst(SV, AllocaType, SV->getName(), SI); |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1459 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1460 | // If this is a big-endian system and the store is narrower than the |
| 1461 | // full alloca type, we need to do a shift to get the right bits. |
| 1462 | int ShAmt = 0; |
| 1463 | if (TD->isBigEndian()) { |
| 1464 | // On big-endian machines, the lowest bit is stored at the bit offset |
| 1465 | // from the pointer given by getTypeStoreSizeInBits. This matters for |
| 1466 | // integers with a bitwidth that is not a multiple of 8. |
| 1467 | ShAmt = DestStoreWidth - SrcStoreWidth - Offset; |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1468 | } else { |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1469 | ShAmt = Offset; |
| 1470 | } |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1471 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1472 | // Note: we support negative bitwidths (with shr) which are not defined. |
| 1473 | // We do this to support (f.e.) stores off the end of a structure where |
| 1474 | // only some bits in the structure are set. |
| 1475 | APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth)); |
| 1476 | if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) { |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1477 | SV = BinaryOperator::CreateShl(SV, |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1478 | ConstantInt::get(SV->getType(), ShAmt), |
| 1479 | SV->getName(), SI); |
| 1480 | Mask <<= ShAmt; |
| 1481 | } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) { |
| 1482 | SV = BinaryOperator::CreateLShr(SV, |
| 1483 | ConstantInt::get(SV->getType(),-ShAmt), |
| 1484 | SV->getName(), SI); |
Duncan Sands | ced2963 | 2009-02-02 09:53:14 +0000 | [diff] [blame] | 1485 | Mask = Mask.lshr(-ShAmt); |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1486 | } |
Duncan Sands | 641f12c | 2009-02-02 10:06:20 +0000 | [diff] [blame] | 1487 | |
Chris Lattner | 4b9c8b7 | 2009-01-31 02:28:54 +0000 | [diff] [blame] | 1488 | // Mask out the bits we are about to insert from the old value, and or |
| 1489 | // in the new bits. |
| 1490 | if (SrcWidth != DestWidth) { |
| 1491 | assert(DestWidth > SrcWidth); |
| 1492 | Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask), |
| 1493 | Old->getName()+".mask", SI); |
| 1494 | SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI); |
Chris Lattner | 41d5865 | 2008-02-29 07:03:13 +0000 | [diff] [blame] | 1495 | } |
| 1496 | return SV; |
| 1497 | } |
| 1498 | |
| 1499 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1500 | |
| 1501 | /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to |
| 1502 | /// some part of a constant global variable. This intentionally only accepts |
| 1503 | /// constant expressions because we don't can't rewrite arbitrary instructions. |
| 1504 | static bool PointsToConstantGlobal(Value *V) { |
| 1505 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) |
| 1506 | return GV->isConstant(); |
| 1507 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| 1508 | if (CE->getOpcode() == Instruction::BitCast || |
| 1509 | CE->getOpcode() == Instruction::GetElementPtr) |
| 1510 | return PointsToConstantGlobal(CE->getOperand(0)); |
| 1511 | return false; |
| 1512 | } |
| 1513 | |
| 1514 | /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) |
| 1515 | /// pointer to an alloca. Ignore any reads of the pointer, return false if we |
| 1516 | /// see any stores or other unknown uses. If we see pointer arithmetic, keep |
| 1517 | /// track of whether it moves the pointer (with isOffset) but otherwise traverse |
| 1518 | /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to |
| 1519 | /// the alloca, and if the source pointer is a pointer to a constant global, we |
| 1520 | /// can optimize this. |
| 1521 | static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy, |
| 1522 | bool isOffset) { |
| 1523 | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) { |
Chris Lattner | 70ffe57 | 2009-01-28 20:16:43 +0000 | [diff] [blame] | 1524 | if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) |
| 1525 | // Ignore non-volatile loads, they are always ok. |
| 1526 | if (!LI->isVolatile()) |
| 1527 | continue; |
| 1528 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1529 | if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) { |
| 1530 | // If uses of the bitcast are ok, we are ok. |
| 1531 | if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset)) |
| 1532 | return false; |
| 1533 | continue; |
| 1534 | } |
| 1535 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) { |
| 1536 | // If the GEP has all zero indices, it doesn't offset the pointer. If it |
| 1537 | // doesn't, it does. |
| 1538 | if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy, |
| 1539 | isOffset || !GEP->hasAllZeroIndices())) |
| 1540 | return false; |
| 1541 | continue; |
| 1542 | } |
| 1543 | |
| 1544 | // If this is isn't our memcpy/memmove, reject it as something we can't |
| 1545 | // handle. |
| 1546 | if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI)) |
| 1547 | return false; |
| 1548 | |
| 1549 | // If we already have seen a copy, reject the second one. |
| 1550 | if (TheCopy) return false; |
| 1551 | |
| 1552 | // If the pointer has been offset from the start of the alloca, we can't |
| 1553 | // safely handle this. |
| 1554 | if (isOffset) return false; |
| 1555 | |
| 1556 | // If the memintrinsic isn't using the alloca as the dest, reject it. |
| 1557 | if (UI.getOperandNo() != 1) return false; |
| 1558 | |
| 1559 | MemIntrinsic *MI = cast<MemIntrinsic>(*UI); |
| 1560 | |
| 1561 | // If the source of the memcpy/move is not a constant global, reject it. |
| 1562 | if (!PointsToConstantGlobal(MI->getOperand(2))) |
| 1563 | return false; |
| 1564 | |
| 1565 | // Otherwise, the transform is safe. Remember the copy instruction. |
| 1566 | TheCopy = MI; |
| 1567 | } |
| 1568 | return true; |
| 1569 | } |
| 1570 | |
| 1571 | /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only |
| 1572 | /// modified by a copy from a constant global. If we can prove this, we can |
| 1573 | /// replace any uses of the alloca with uses of the global directly. |
| 1574 | Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) { |
| 1575 | Instruction *TheCopy = 0; |
| 1576 | if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false)) |
| 1577 | return TheCopy; |
| 1578 | return 0; |
| 1579 | } |