blob: 2955ca1ab522684690ea3e7f155a9b8c4b33c564 [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Owen Anderson1e356102010-08-30 22:07:52 +000019#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner9819ef72009-11-09 23:00:14 +000020#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnercc4d3b22009-11-11 02:08:33 +000021#include "llvm/Analysis/LazyValueInfo.h"
Dan Gohmandd9344f2010-05-28 16:19:17 +000022#include "llvm/Analysis/Loads.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000023#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000024#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000025#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000026#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000027#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000032#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000033#include "llvm/Support/Debug.h"
Chris Lattner56608462009-12-28 08:20:46 +000034#include "llvm/Support/ValueHandle.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000035#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000036using namespace llvm;
37
Chris Lattnerbd3401f2008-04-20 22:39:42 +000038STATISTIC(NumThreads, "Number of jumps threaded");
39STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000040STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000041
Chris Lattner177480b2008-04-20 21:13:06 +000042static cl::opt<unsigned>
43Threshold("jump-threading-threshold",
44 cl::desc("Max block size to duplicate for jump threading"),
45 cl::init(6), cl::Hidden);
46
Chris Lattnercc4d3b22009-11-11 02:08:33 +000047// Turn on use of LazyValueInfo.
48static cl::opt<bool>
Owen Andersonf35b08d2010-08-05 22:11:31 +000049EnableLVI("enable-jump-threading-lvi",
50 cl::desc("Use LVI for jump threading"),
Owen Anderson53c36c42010-08-24 17:21:18 +000051 cl::init(true),
Owen Andersonf35b08d2010-08-05 22:11:31 +000052 cl::ReallyHidden);
Chris Lattnercc4d3b22009-11-11 02:08:33 +000053
54
55
Chris Lattner8383a7b2008-04-20 20:35:01 +000056namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000057 /// This pass performs 'jump threading', which looks at blocks that have
58 /// multiple predecessors and multiple successors. If one or more of the
59 /// predecessors of the block can be proven to always jump to one of the
60 /// successors, we forward the edge from the predecessor to the successor by
61 /// duplicating the contents of this block.
62 ///
63 /// An example of when this can occur is code like this:
64 ///
65 /// if () { ...
66 /// X = 4;
67 /// }
68 /// if (X < 3) {
69 ///
70 /// In this case, the unconditional branch at the end of the first if can be
71 /// revectored to the false side of the second if.
72 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000073 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000074 TargetData *TD;
Chris Lattnercc4d3b22009-11-11 02:08:33 +000075 LazyValueInfo *LVI;
Mike Stumpfe095f32009-05-04 18:40:41 +000076#ifdef NDEBUG
77 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
78#else
79 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
80#endif
Chris Lattner8383a7b2008-04-20 20:35:01 +000081 public:
82 static char ID; // Pass identification
Owen Anderson90c579d2010-08-06 18:33:48 +000083 JumpThreading() : FunctionPass(ID) {}
Chris Lattner8383a7b2008-04-20 20:35:01 +000084
85 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000086
Chris Lattnercc4d3b22009-11-11 02:08:33 +000087 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
88 if (EnableLVI)
89 AU.addRequired<LazyValueInfo>();
Owen Anderson1e356102010-08-30 22:07:52 +000090 AU.addPreserved<LazyValueInfo>();
Chris Lattnercc4d3b22009-11-11 02:08:33 +000091 }
92
93 void FindLoopHeaders(Function &F);
Chris Lattnerc7bcbf62008-11-27 07:20:04 +000094 bool ProcessBlock(BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000095 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
96 BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +000097 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
Chris Lattner2249a0b2010-01-12 02:07:17 +000098 const SmallVectorImpl<BasicBlock *> &PredBBs);
Chris Lattner5729d382009-11-07 08:05:03 +000099
100 typedef SmallVectorImpl<std::pair<ConstantInt*,
101 BasicBlock*> > PredValueInfo;
102
103 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
104 PredValueInfo &Result);
Chris Lattner1c96b412009-11-12 01:37:43 +0000105 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +0000106
107
Chris Lattner421fa9e2008-12-03 07:48:08 +0000108 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000109 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +0000110
Chris Lattner77beb472010-01-11 23:41:09 +0000111 bool ProcessBranchOnPHI(PHINode *PN);
Chris Lattner2249a0b2010-01-12 02:07:17 +0000112 bool ProcessBranchOnXOR(BinaryOperator *BO);
Chris Lattner69e067f2008-11-27 05:07:53 +0000113
114 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +0000115 };
Chris Lattner8383a7b2008-04-20 20:35:01 +0000116}
117
Dan Gohman844731a2008-05-13 00:00:25 +0000118char JumpThreading::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000119INITIALIZE_PASS(JumpThreading, "jump-threading",
120 "Jump Threading", false, false);
Dan Gohman844731a2008-05-13 00:00:25 +0000121
Chris Lattner8383a7b2008-04-20 20:35:01 +0000122// Public interface to the Jump Threading pass
123FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
124
125/// runOnFunction - Top level algorithm.
126///
127bool JumpThreading::runOnFunction(Function &F) {
David Greenefe7fe662010-01-05 01:27:19 +0000128 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000129 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000130 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000131
Mike Stumpfe095f32009-05-04 18:40:41 +0000132 FindLoopHeaders(F);
133
Benjamin Kramer66b581e2010-01-07 13:50:07 +0000134 bool Changed, EverChanged = false;
135 do {
136 Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000137 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
138 BasicBlock *BB = I;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000139 // Thread all of the branches we can over this block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000140 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000141 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000142
143 ++I;
144
145 // If the block is trivially dead, zap it. This eliminates the successor
146 // edges which simplifies the CFG.
147 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000148 BB != &BB->getParent()->getEntryBlock()) {
David Greenefe7fe662010-01-05 01:27:19 +0000149 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000150 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000151 LoopHeaders.erase(BB);
Owen Anderson00ac77e2010-08-18 18:39:01 +0000152 if (LVI) LVI->eraseBlock(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000153 DeleteDeadBlock(BB);
154 Changed = true;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000155 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
156 // Can't thread an unconditional jump, but if the block is "almost
157 // empty", we can replace uses of it with uses of the successor and make
158 // this dead.
159 if (BI->isUnconditional() &&
160 BB != &BB->getParent()->getEntryBlock()) {
161 BasicBlock::iterator BBI = BB->getFirstNonPHI();
162 // Ignore dbg intrinsics.
163 while (isa<DbgInfoIntrinsic>(BBI))
164 ++BBI;
165 // If the terminator is the only non-phi instruction, try to nuke it.
166 if (BBI->isTerminator()) {
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000167 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
168 // block, we have to make sure it isn't in the LoopHeaders set. We
Chris Lattner46875c02009-12-01 06:04:43 +0000169 // reinsert afterward if needed.
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000170 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
Chris Lattner46875c02009-12-01 06:04:43 +0000171 BasicBlock *Succ = BI->getSuccessor(0);
Chris Lattnerf3183f62009-11-10 21:40:01 +0000172
Owen Anderson00ac77e2010-08-18 18:39:01 +0000173 // FIXME: It is always conservatively correct to drop the info
174 // for a block even if it doesn't get erased. This isn't totally
175 // awesome, but it allows us to use AssertingVH to prevent nasty
176 // dangling pointer issues within LazyValueInfo.
177 if (LVI) LVI->eraseBlock(BB);
Chris Lattner46875c02009-12-01 06:04:43 +0000178 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
Chris Lattnerf3183f62009-11-10 21:40:01 +0000179 Changed = true;
Chris Lattner46875c02009-12-01 06:04:43 +0000180 // If we deleted BB and BB was the header of a loop, then the
181 // successor is now the header of the loop.
182 BB = Succ;
183 }
184
185 if (ErasedFromLoopHeaders)
Chris Lattnerf3183f62009-11-10 21:40:01 +0000186 LoopHeaders.insert(BB);
187 }
188 }
Chris Lattner421fa9e2008-12-03 07:48:08 +0000189 }
190 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000191 EverChanged |= Changed;
Benjamin Kramer66b581e2010-01-07 13:50:07 +0000192 } while (Changed);
Mike Stumpfe095f32009-05-04 18:40:41 +0000193
194 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000195 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000196}
Chris Lattner177480b2008-04-20 21:13:06 +0000197
Chris Lattner78c552e2009-10-11 07:24:57 +0000198/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
199/// thread across it.
200static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
201 /// Ignore PHI nodes, these will be flattened when duplication happens.
202 BasicBlock::const_iterator I = BB->getFirstNonPHI();
203
Chris Lattnerb14b88a2009-11-11 00:21:58 +0000204 // FIXME: THREADING will delete values that are just used to compute the
205 // branch, so they shouldn't count against the duplication cost.
206
207
Chris Lattner78c552e2009-10-11 07:24:57 +0000208 // Sum up the cost of each instruction until we get to the terminator. Don't
209 // include the terminator because the copy won't include it.
210 unsigned Size = 0;
211 for (; !isa<TerminatorInst>(I); ++I) {
212 // Debugger intrinsics don't incur code size.
213 if (isa<DbgInfoIntrinsic>(I)) continue;
214
215 // If this is a pointer->pointer bitcast, it is free.
Duncan Sands1df98592010-02-16 11:11:14 +0000216 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
Chris Lattner78c552e2009-10-11 07:24:57 +0000217 continue;
218
219 // All other instructions count for at least one unit.
220 ++Size;
221
222 // Calls are more expensive. If they are non-intrinsic calls, we model them
223 // as having cost of 4. If they are a non-vector intrinsic, we model them
224 // as having cost of 2 total, and if they are a vector intrinsic, we model
225 // them as having cost 1.
226 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
227 if (!isa<IntrinsicInst>(CI))
228 Size += 3;
Duncan Sands1df98592010-02-16 11:11:14 +0000229 else if (!CI->getType()->isVectorTy())
Chris Lattner78c552e2009-10-11 07:24:57 +0000230 Size += 1;
231 }
232 }
233
234 // Threading through a switch statement is particularly profitable. If this
235 // block ends in a switch, decrease its cost to make it more likely to happen.
236 if (isa<SwitchInst>(I))
237 Size = Size > 6 ? Size-6 : 0;
238
239 return Size;
240}
241
Mike Stumpfe095f32009-05-04 18:40:41 +0000242/// FindLoopHeaders - We do not want jump threading to turn proper loop
243/// structures into irreducible loops. Doing this breaks up the loop nesting
244/// hierarchy and pessimizes later transformations. To prevent this from
245/// happening, we first have to find the loop headers. Here we approximate this
246/// by finding targets of backedges in the CFG.
247///
248/// Note that there definitely are cases when we want to allow threading of
249/// edges across a loop header. For example, threading a jump from outside the
250/// loop (the preheader) to an exit block of the loop is definitely profitable.
251/// It is also almost always profitable to thread backedges from within the loop
252/// to exit blocks, and is often profitable to thread backedges to other blocks
253/// within the loop (forming a nested loop). This simple analysis is not rich
254/// enough to track all of these properties and keep it up-to-date as the CFG
255/// mutates, so we don't allow any of these transformations.
256///
257void JumpThreading::FindLoopHeaders(Function &F) {
258 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
259 FindFunctionBackedges(F, Edges);
260
261 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
262 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
263}
264
Chris Lattner5729d382009-11-07 08:05:03 +0000265/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
266/// if we can infer that the value is a known ConstantInt in any of our
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000267/// predecessors. If so, return the known list of value and pred BB in the
Chris Lattner5729d382009-11-07 08:05:03 +0000268/// result vector. If a value is known to be undef, it is returned as null.
269///
Chris Lattner5729d382009-11-07 08:05:03 +0000270/// This returns true if there were any known values.
271///
Chris Lattner5729d382009-11-07 08:05:03 +0000272bool JumpThreading::
273ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
Chris Lattner5729d382009-11-07 08:05:03 +0000274 // If V is a constantint, then it is known in all predecessors.
275 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
276 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000277
278 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
279 Result.push_back(std::make_pair(CI, *PI));
Chris Lattner5729d382009-11-07 08:05:03 +0000280 return true;
281 }
282
283 // If V is a non-instruction value, or an instruction in a different block,
284 // then it can't be derived from a PHI.
285 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000286 if (I == 0 || I->getParent() != BB) {
287
288 // Okay, if this is a live-in value, see if it has a known value at the end
289 // of any of our predecessors.
290 //
291 // FIXME: This should be an edge property, not a block end property.
292 /// TODO: Per PR2563, we could infer value range information about a
293 /// predecessor based on its terminator.
294 //
295 if (LVI) {
Chris Lattnerf496e792009-11-12 04:57:13 +0000296 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
297 // "I" is a non-local compare-with-a-constant instruction. This would be
298 // able to handle value inequalities better, for example if the compare is
299 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
300 // Perhaps getConstantOnEdge should be smart enough to do this?
301
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000302 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
Gabor Greifee1f44f2010-07-12 14:10:24 +0000303 BasicBlock *P = *PI;
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000304 // If the value is known by LazyValueInfo to be a constant in a
305 // predecessor, use that information to try to thread this block.
Gabor Greifee1f44f2010-07-12 14:10:24 +0000306 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000307 if (PredCst == 0 ||
308 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
309 continue;
310
Gabor Greifee1f44f2010-07-12 14:10:24 +0000311 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000312 }
313
314 return !Result.empty();
315 }
316
Chris Lattner5729d382009-11-07 08:05:03 +0000317 return false;
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000318 }
Chris Lattner5729d382009-11-07 08:05:03 +0000319
320 /// If I is a PHI node, then we know the incoming values for any constants.
321 if (PHINode *PN = dyn_cast<PHINode>(I)) {
322 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
323 Value *InVal = PN->getIncomingValue(i);
324 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
325 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
326 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
Owen Anderson62efd3b2010-08-26 17:40:24 +0000327 } else if (LVI) {
328 Constant *CI = LVI->getConstantOnEdge(InVal,
329 PN->getIncomingBlock(i), BB);
Owen Anderson1e356102010-08-30 22:07:52 +0000330 // LVI returns null is no value could be determined.
331 if (!CI) continue;
332 ConstantInt *CInt = dyn_cast<ConstantInt>(CI);
333 Result.push_back(std::make_pair(CInt, PN->getIncomingBlock(i)));
Chris Lattner5729d382009-11-07 08:05:03 +0000334 }
335 }
336 return !Result.empty();
337 }
338
339 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
340
341 // Handle some boolean conditions.
342 if (I->getType()->getPrimitiveSizeInBits() == 1) {
343 // X | true -> true
344 // X & false -> false
345 if (I->getOpcode() == Instruction::Or ||
346 I->getOpcode() == Instruction::And) {
347 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
348 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
349
350 if (LHSVals.empty() && RHSVals.empty())
351 return false;
352
353 ConstantInt *InterestingVal;
354 if (I->getOpcode() == Instruction::Or)
355 InterestingVal = ConstantInt::getTrue(I->getContext());
356 else
357 InterestingVal = ConstantInt::getFalse(I->getContext());
358
Chris Lattner2fa7b48e2010-08-18 03:14:36 +0000359 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
360
Chris Lattner1e452652010-02-11 04:40:44 +0000361 // Scan for the sentinel. If we find an undef, force it to the
362 // interesting value: x|undef -> true and x&undef -> false.
Chris Lattner5729d382009-11-07 08:05:03 +0000363 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
Chris Lattner1e452652010-02-11 04:40:44 +0000364 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
Chris Lattner5729d382009-11-07 08:05:03 +0000365 Result.push_back(LHSVals[i]);
Chris Lattner1e452652010-02-11 04:40:44 +0000366 Result.back().first = InterestingVal;
Chris Lattner2fa7b48e2010-08-18 03:14:36 +0000367 LHSKnownBBs.insert(LHSVals[i].second);
Chris Lattner1e452652010-02-11 04:40:44 +0000368 }
Chris Lattner5729d382009-11-07 08:05:03 +0000369 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
Chris Lattner1e452652010-02-11 04:40:44 +0000370 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
Chris Lattner0a961442010-07-12 00:47:34 +0000371 // If we already inferred a value for this block on the LHS, don't
372 // re-add it.
Chris Lattner2fa7b48e2010-08-18 03:14:36 +0000373 if (!LHSKnownBBs.count(RHSVals[i].second)) {
Chris Lattner0a961442010-07-12 00:47:34 +0000374 Result.push_back(RHSVals[i]);
375 Result.back().first = InterestingVal;
376 }
Chris Lattner1e452652010-02-11 04:40:44 +0000377 }
Chris Lattner5729d382009-11-07 08:05:03 +0000378 return !Result.empty();
379 }
380
Chris Lattner055d0462009-11-10 22:39:16 +0000381 // Handle the NOT form of XOR.
382 if (I->getOpcode() == Instruction::Xor &&
383 isa<ConstantInt>(I->getOperand(1)) &&
384 cast<ConstantInt>(I->getOperand(1))->isOne()) {
385 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
386 if (Result.empty())
387 return false;
388
389 // Invert the known values.
390 for (unsigned i = 0, e = Result.size(); i != e; ++i)
Chris Lattner1fb56302009-11-15 19:57:43 +0000391 if (Result[i].first)
392 Result[i].first =
393 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
Chris Lattner055d0462009-11-10 22:39:16 +0000394 return true;
395 }
Owen Anderson62efd3b2010-08-26 17:40:24 +0000396
397 // Try to simplify some other binary operator values.
398 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
399 // AND or OR of a value with itself is that value.
400 ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1));
401 if (CI && (BO->getOpcode() == Instruction::And ||
Owen Anderson1e356102010-08-30 22:07:52 +0000402 BO->getOpcode() == Instruction::Or)) {
Owen Anderson62efd3b2010-08-26 17:40:24 +0000403 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
404 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
Owen Anderson1e356102010-08-30 22:07:52 +0000405 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
406 if (LHSVals[i].first == 0)
407 Result.push_back(std::make_pair((ConstantInt*)0, LHSVals[i].second));
408 else if (LHSVals[i].first == CI)
409 Result.push_back(std::make_pair(CI, LHSVals[i].second));
Owen Anderson62efd3b2010-08-26 17:40:24 +0000410
411 return !Result.empty();
412 }
Chris Lattner5729d382009-11-07 08:05:03 +0000413 }
414
415 // Handle compare with phi operand, where the PHI is defined in this block.
416 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
417 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
418 if (PN && PN->getParent() == BB) {
419 // We can do this simplification if any comparisons fold to true or false.
420 // See if any do.
421 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
422 BasicBlock *PredBB = PN->getIncomingBlock(i);
423 Value *LHS = PN->getIncomingValue(i);
424 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
425
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000426 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
Chris Lattner66c04c42009-11-12 05:24:05 +0000427 if (Res == 0) {
428 if (!LVI || !isa<Constant>(RHS))
429 continue;
430
431 LazyValueInfo::Tristate
432 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
433 cast<Constant>(RHS), PredBB, BB);
434 if (ResT == LazyValueInfo::Unknown)
435 continue;
436 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
437 }
Chris Lattner5729d382009-11-07 08:05:03 +0000438
439 if (isa<UndefValue>(Res))
440 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
441 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
442 Result.push_back(std::make_pair(CI, PredBB));
443 }
444
445 return !Result.empty();
446 }
447
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000448
449 // If comparing a live-in value against a constant, see if we know the
450 // live-in value on any predecessors.
451 if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
Owen Anderson62efd3b2010-08-26 17:40:24 +0000452 Cmp->getType()->isIntegerTy()) {
453 if (!isa<Instruction>(Cmp->getOperand(0)) ||
Owen Anderson1e356102010-08-30 22:07:52 +0000454 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
Owen Anderson62efd3b2010-08-26 17:40:24 +0000455 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
Gabor Greifee1f44f2010-07-12 14:10:24 +0000456
Owen Anderson62efd3b2010-08-26 17:40:24 +0000457 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
458 BasicBlock *P = *PI;
459 // If the value is known by LazyValueInfo to be a constant in a
460 // predecessor, use that information to try to thread this block.
461 LazyValueInfo::Tristate Res =
462 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
463 RHSCst, P, BB);
464 if (Res == LazyValueInfo::Unknown)
465 continue;
Chris Lattner0e0ff292009-11-12 04:37:50 +0000466
Owen Anderson62efd3b2010-08-26 17:40:24 +0000467 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
468 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
469 }
470
471 return !Result.empty();
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000472 }
Owen Anderson62efd3b2010-08-26 17:40:24 +0000473
474 // Try to find a constant value for the LHS of an equality comparison,
475 // and evaluate it statically if we can.
Owen Anderson1e356102010-08-30 22:07:52 +0000476 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
Owen Anderson62efd3b2010-08-26 17:40:24 +0000477 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
478 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
479
480 ConstantInt *True = ConstantInt::getTrue(I->getContext());
481 ConstantInt *False = ConstantInt::getFalse(I->getContext());
Owen Anderson62efd3b2010-08-26 17:40:24 +0000482
483 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
Owen Anderson1e356102010-08-30 22:07:52 +0000484 if (LHSVals[i].first == 0)
485 Result.push_back(std::make_pair((ConstantInt*)0,
486 LHSVals[i].second));
487 else if (ConstantFoldCompareInstOperands(Cmp->getPredicate(),
488 LHSVals[i].first,
489 CmpConst))
Owen Anderson62efd3b2010-08-26 17:40:24 +0000490 Result.push_back(std::make_pair(True, LHSVals[i].second));
491 else
492 Result.push_back(std::make_pair(False, LHSVals[i].second));
493 }
494
495 return !Result.empty();
496 }
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000497 }
Chris Lattner5729d382009-11-07 08:05:03 +0000498 }
Owen Anderson62efd3b2010-08-26 17:40:24 +0000499
500 if (LVI) {
501 // If all else fails, see if LVI can figure out a constant value for us.
502 Constant *CI = LVI->getConstant(V, BB);
503 ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
504 if (CInt) {
505 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
506 Result.push_back(std::make_pair(CInt, *PI));
507 }
508
509 return !Result.empty();
510 }
511
Chris Lattner5729d382009-11-07 08:05:03 +0000512 return false;
513}
514
515
Chris Lattner6bf77502008-04-22 07:05:46 +0000516
Chris Lattnere33583b2009-10-11 04:18:15 +0000517/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
518/// in an undefined jump, decide which block is best to revector to.
519///
520/// Since we can pick an arbitrary destination, we pick the successor with the
521/// fewest predecessors. This should reduce the in-degree of the others.
522///
523static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
524 TerminatorInst *BBTerm = BB->getTerminator();
525 unsigned MinSucc = 0;
526 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
527 // Compute the successor with the minimum number of predecessors.
528 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
529 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
530 TestBB = BBTerm->getSuccessor(i);
531 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
532 if (NumPreds < MinNumPreds)
533 MinSucc = i;
534 }
535
536 return MinSucc;
537}
538
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000539/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000540/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000541bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner8231fd12010-01-23 18:56:07 +0000542 // If the block is trivially dead, just return and let the caller nuke it.
543 // This simplifies other transformations.
544 if (pred_begin(BB) == pred_end(BB) &&
545 BB != &BB->getParent()->getEntryBlock())
546 return false;
547
Chris Lattner69e067f2008-11-27 05:07:53 +0000548 // If this block has a single predecessor, and if that pred has a single
549 // successor, merge the blocks. This encourages recursive jump threading
550 // because now the condition in this block can be threaded through
551 // predecessors of our predecessor block.
Chris Lattner5729d382009-11-07 08:05:03 +0000552 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000553 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
554 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000555 // If SinglePred was a loop header, BB becomes one.
556 if (LoopHeaders.erase(SinglePred))
557 LoopHeaders.insert(BB);
558
Chris Lattner3d86d242008-11-27 19:25:19 +0000559 // Remember if SinglePred was the entry block of the function. If so, we
560 // will need to move BB back to the entry position.
561 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Owen Anderson00ac77e2010-08-18 18:39:01 +0000562 if (LVI) LVI->eraseBlock(SinglePred);
Chris Lattner69e067f2008-11-27 05:07:53 +0000563 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000564
565 if (isEntry && BB != &BB->getParent()->getEntryBlock())
566 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000567 return true;
568 }
Chris Lattner5729d382009-11-07 08:05:03 +0000569 }
570
571 // Look to see if the terminator is a branch of switch, if not we can't thread
572 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000573 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000574 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
575 // Can't thread an unconditional jump.
576 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000577 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000578 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000579 Condition = SI->getCondition();
580 else
581 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000582
583 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000584 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000585 // other blocks.
586 if (isa<ConstantInt>(Condition)) {
David Greenefe7fe662010-01-05 01:27:19 +0000587 DEBUG(dbgs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000588 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000589 ++NumFolds;
590 ConstantFoldTerminator(BB);
591 return true;
592 }
593
Chris Lattner421fa9e2008-12-03 07:48:08 +0000594 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000595 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000596 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000597 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000598
599 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000600 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000601 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000602 if (i == BestSucc) continue;
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000603 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000604 }
605
David Greenefe7fe662010-01-05 01:27:19 +0000606 DEBUG(dbgs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000607 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000608 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000609 BBTerm->eraseFromParent();
610 return true;
611 }
612
613 Instruction *CondInst = dyn_cast<Instruction>(Condition);
614
615 // If the condition is an instruction defined in another block, see if a
616 // predecessor has the same condition:
617 // br COND, BBX, BBY
618 // BBX:
619 // br COND, BBZ, BBW
Chris Lattner0e0ff292009-11-12 04:37:50 +0000620 if (!LVI &&
621 !Condition->hasOneUse() && // Multiple uses.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000622 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
623 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
624 if (isa<BranchInst>(BB->getTerminator())) {
Gabor Greifee1f44f2010-07-12 14:10:24 +0000625 for (; PI != E; ++PI) {
626 BasicBlock *P = *PI;
627 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
Chris Lattner421fa9e2008-12-03 07:48:08 +0000628 if (PBI->isConditional() && PBI->getCondition() == Condition &&
Gabor Greifee1f44f2010-07-12 14:10:24 +0000629 ProcessBranchOnDuplicateCond(P, BB))
Chris Lattner421fa9e2008-12-03 07:48:08 +0000630 return true;
Gabor Greifee1f44f2010-07-12 14:10:24 +0000631 }
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000632 } else {
633 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
Gabor Greifee1f44f2010-07-12 14:10:24 +0000634 for (; PI != E; ++PI) {
635 BasicBlock *P = *PI;
636 if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator()))
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000637 if (PSI->getCondition() == Condition &&
Gabor Greifee1f44f2010-07-12 14:10:24 +0000638 ProcessSwitchOnDuplicateCond(P, BB))
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000639 return true;
Gabor Greifee1f44f2010-07-12 14:10:24 +0000640 }
Chris Lattner421fa9e2008-12-03 07:48:08 +0000641 }
642 }
643
Chris Lattner421fa9e2008-12-03 07:48:08 +0000644 // All the rest of our checks depend on the condition being an instruction.
Chris Lattner87e9f592009-11-12 01:41:34 +0000645 if (CondInst == 0) {
646 // FIXME: Unify this with code below.
647 if (LVI && ProcessThreadableEdges(Condition, BB))
648 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000649 return false;
Chris Lattner87e9f592009-11-12 01:41:34 +0000650 }
651
Chris Lattner421fa9e2008-12-03 07:48:08 +0000652
Nick Lewycky9683f182009-06-19 04:56:29 +0000653 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
Chris Lattner0e0ff292009-11-12 04:37:50 +0000654 if (!LVI &&
655 (!isa<PHINode>(CondCmp->getOperand(0)) ||
656 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +0000657 // If we have a comparison, loop over the predecessors to see if there is
658 // a condition with a lexically identical value.
659 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
Gabor Greifee1f44f2010-07-12 14:10:24 +0000660 for (; PI != E; ++PI) {
661 BasicBlock *P = *PI;
662 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
663 if (PBI->isConditional() && P != BB) {
Chris Lattner5729d382009-11-07 08:05:03 +0000664 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
665 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
666 CI->getOperand(1) == CondCmp->getOperand(1) &&
667 CI->getPredicate() == CondCmp->getPredicate()) {
668 // TODO: Could handle things like (x != 4) --> (x == 17)
Gabor Greifee1f44f2010-07-12 14:10:24 +0000669 if (ProcessBranchOnDuplicateCond(P, BB))
Chris Lattner5729d382009-11-07 08:05:03 +0000670 return true;
671 }
Chris Lattner79c740f2009-06-19 16:27:56 +0000672 }
673 }
Gabor Greifee1f44f2010-07-12 14:10:24 +0000674 }
Chris Lattner5729d382009-11-07 08:05:03 +0000675 }
Owen Anderson660cab32010-08-27 17:12:29 +0000676
677 // For a comparison where the LHS is outside this block, it's possible
Owen Andersonfc2fb172010-08-27 20:32:56 +0000678 // that we've branched on it before. Used LVI to see if we can simplify
Owen Anderson660cab32010-08-27 17:12:29 +0000679 // the branch based on that.
680 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
681 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
682 if (LVI && CondBr && CondConst && CondBr->isConditional() &&
683 (!isa<Instruction>(CondCmp->getOperand(0)) ||
684 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
685 // For predecessor edge, determine if the comparison is true or false
686 // on that edge. If they're all true or all false, we can simplify the
687 // branch.
688 // FIXME: We could handle mixed true/false by duplicating code.
689 unsigned Trues = 0, Falses = 0, predcount = 0;
690 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);PI != PE; ++PI){
691 ++predcount;
692 LazyValueInfo::Tristate Ret =
693 LVI->getPredicateOnEdge(CondCmp->getPredicate(),
694 CondCmp->getOperand(0), CondConst, *PI, BB);
695 if (Ret == LazyValueInfo::True)
696 ++Trues;
697 else if (Ret == LazyValueInfo::False)
698 ++Falses;
699 }
700
Owen Andersonfc2fb172010-08-27 20:32:56 +0000701 // If we can determine the branch direction statically, convert
Owen Anderson660cab32010-08-27 17:12:29 +0000702 // the conditional branch to an unconditional one.
703 if (Trues && Trues == predcount) {
704 RemovePredecessorAndSimplify(CondBr->getSuccessor(1), BB, TD);
705 BranchInst::Create(CondBr->getSuccessor(0), CondBr);
706 CondBr->eraseFromParent();
707 return true;
708 } else if (Falses && Falses == predcount) {
709 RemovePredecessorAndSimplify(CondBr->getSuccessor(0), BB, TD);
710 BranchInst::Create(CondBr->getSuccessor(1), CondBr);
711 CondBr->eraseFromParent();
712 return true;
713 }
714 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000715 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000716
717 // Check for some cases that are worth simplifying. Right now we want to look
718 // for loads that are used by a switch or by the condition for the branch. If
719 // we see one, check to see if it's partially redundant. If so, insert a PHI
720 // which can then be used to thread the values.
721 //
Chris Lattner421fa9e2008-12-03 07:48:08 +0000722 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000723 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
724 if (isa<Constant>(CondCmp->getOperand(1)))
725 SimplifyValue = CondCmp->getOperand(0);
726
Chris Lattner4e447eb2009-11-15 19:58:31 +0000727 // TODO: There are other places where load PRE would be profitable, such as
728 // more complex comparisons.
Chris Lattner69e067f2008-11-27 05:07:53 +0000729 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
730 if (SimplifyPartiallyRedundantLoad(LI))
731 return true;
732
Chris Lattner5729d382009-11-07 08:05:03 +0000733
734 // Handle a variety of cases where we are branching on something derived from
735 // a PHI node in the current block. If we can prove that any predecessors
736 // compute a predictable value based on a PHI node, thread those predecessors.
737 //
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000738 if (ProcessThreadableEdges(CondInst, BB))
739 return true;
Chris Lattner5729d382009-11-07 08:05:03 +0000740
Chris Lattner77beb472010-01-11 23:41:09 +0000741 // If this is an otherwise-unfoldable branch on a phi node in the current
742 // block, see if we can simplify.
743 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
744 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
745 return ProcessBranchOnPHI(PN);
Chris Lattner5729d382009-11-07 08:05:03 +0000746
Chris Lattner2249a0b2010-01-12 02:07:17 +0000747
748 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
749 if (CondInst->getOpcode() == Instruction::Xor &&
750 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
751 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
752
753
Chris Lattner69e067f2008-11-27 05:07:53 +0000754 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
Chris Lattner77beb472010-01-11 23:41:09 +0000755 // "(X == 4)", thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000756
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000757 return false;
758}
759
Chris Lattner421fa9e2008-12-03 07:48:08 +0000760/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
761/// block that jump on exactly the same condition. This means that we almost
762/// always know the direction of the edge in the DESTBB:
763/// PREDBB:
764/// br COND, DESTBB, BBY
765/// DESTBB:
766/// br COND, BBZ, BBW
767///
768/// If DESTBB has multiple predecessors, we can't just constant fold the branch
769/// in DESTBB, we have to thread over it.
770bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
771 BasicBlock *BB) {
772 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
773
774 // If both successors of PredBB go to DESTBB, we don't know anything. We can
775 // fold the branch to an unconditional one, which allows other recursive
776 // simplifications.
777 bool BranchDir;
778 if (PredBI->getSuccessor(1) != BB)
779 BranchDir = true;
780 else if (PredBI->getSuccessor(0) != BB)
781 BranchDir = false;
782 else {
David Greenefe7fe662010-01-05 01:27:19 +0000783 DEBUG(dbgs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000784 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000785 ++NumFolds;
786 ConstantFoldTerminator(PredBB);
787 return true;
788 }
789
790 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
791
792 // If the dest block has one predecessor, just fix the branch condition to a
793 // constant and fold it.
794 if (BB->getSinglePredecessor()) {
David Greenefe7fe662010-01-05 01:27:19 +0000795 DEBUG(dbgs() << " In block '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000796 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000797 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000798 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000799 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000800 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
801 BranchDir));
Chris Lattner6f285d22010-04-10 18:26:57 +0000802 // Delete dead instructions before we fold the branch. Folding the branch
803 // can eliminate edges from the CFG which can end up deleting OldCond.
Chris Lattner5a06cf62009-10-11 18:39:58 +0000804 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner6f285d22010-04-10 18:26:57 +0000805 ConstantFoldTerminator(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000806 return true;
807 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000808
Chris Lattner421fa9e2008-12-03 07:48:08 +0000809
810 // Next, figure out which successor we are threading to.
811 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
812
Chris Lattner5729d382009-11-07 08:05:03 +0000813 SmallVector<BasicBlock*, 2> Preds;
814 Preds.push_back(PredBB);
815
Mike Stumpfe095f32009-05-04 18:40:41 +0000816 // Ok, try to thread it!
Chris Lattner5729d382009-11-07 08:05:03 +0000817 return ThreadEdge(BB, Preds, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000818}
819
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000820/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
821/// block that switch on exactly the same condition. This means that we almost
822/// always know the direction of the edge in the DESTBB:
823/// PREDBB:
824/// switch COND [... DESTBB, BBY ... ]
825/// DESTBB:
826/// switch COND [... BBZ, BBW ]
827///
828/// Optimizing switches like this is very important, because simplifycfg builds
829/// switches out of repeated 'if' conditions.
830bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
831 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000832 // Can't thread edge to self.
833 if (PredBB == DestBB)
834 return false;
835
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000836 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
837 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
838
839 // There are a variety of optimizations that we can potentially do on these
840 // blocks: we order them from most to least preferable.
841
842 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
843 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000844 // growth. Skip debug info first.
845 BasicBlock::iterator BBI = DestBB->begin();
846 while (isa<DbgInfoIntrinsic>(BBI))
847 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000848
849 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000850 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000851 bool MadeChange = false;
852 // Ignore the default edge for now.
853 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
854 ConstantInt *DestVal = DestSI->getCaseValue(i);
855 BasicBlock *DestSucc = DestSI->getSuccessor(i);
856
857 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
858 // PredSI has an explicit case for it. If so, forward. If it is covered
859 // by the default case, we can't update PredSI.
860 unsigned PredCase = PredSI->findCaseValue(DestVal);
861 if (PredCase == 0) continue;
862
863 // If PredSI doesn't go to DestBB on this value, then it won't reach the
864 // case on this condition.
865 if (PredSI->getSuccessor(PredCase) != DestBB &&
866 DestSI->getSuccessor(i) != DestBB)
867 continue;
Chris Lattner08bc2702009-12-06 17:17:23 +0000868
869 // Do not forward this if it already goes to this destination, this would
870 // be an infinite loop.
871 if (PredSI->getSuccessor(PredCase) == DestSucc)
872 continue;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000873
874 // Otherwise, we're safe to make the change. Make sure that the edge from
875 // DestSI to DestSucc is not critical and has no PHI nodes.
David Greenefe7fe662010-01-05 01:27:19 +0000876 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
877 DEBUG(dbgs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000878
879 // If the destination has PHI nodes, just split the edge for updating
880 // simplicity.
881 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
882 SplitCriticalEdge(DestSI, i, this);
883 DestSucc = DestSI->getSuccessor(i);
884 }
885 FoldSingleEntryPHINodes(DestSucc);
886 PredSI->setSuccessor(PredCase, DestSucc);
887 MadeChange = true;
888 }
889
890 if (MadeChange)
891 return true;
892 }
893
894 return false;
895}
896
897
Chris Lattner69e067f2008-11-27 05:07:53 +0000898/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
899/// load instruction, eliminate it by replacing it with a PHI node. This is an
900/// important optimization that encourages jump threading, and needs to be run
901/// interlaced with other jump threading tasks.
902bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
903 // Don't hack volatile loads.
904 if (LI->isVolatile()) return false;
905
906 // If the load is defined in a block with exactly one predecessor, it can't be
907 // partially redundant.
908 BasicBlock *LoadBB = LI->getParent();
909 if (LoadBB->getSinglePredecessor())
910 return false;
911
912 Value *LoadedPtr = LI->getOperand(0);
913
914 // If the loaded operand is defined in the LoadBB, it can't be available.
Chris Lattner4e447eb2009-11-15 19:58:31 +0000915 // TODO: Could do simple PHI translation, that would be fun :)
Chris Lattner69e067f2008-11-27 05:07:53 +0000916 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
917 if (PtrOp->getParent() == LoadBB)
918 return false;
919
920 // Scan a few instructions up from the load, to see if it is obviously live at
921 // the entry to its block.
922 BasicBlock::iterator BBIt = LI;
923
Chris Lattner4e447eb2009-11-15 19:58:31 +0000924 if (Value *AvailableVal =
925 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000926 // If the value if the load is locally available within the block, just use
927 // it. This frequently occurs for reg2mem'd allocas.
928 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000929
930 // If the returned value is the load itself, replace with an undef. This can
931 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000932 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000933 LI->replaceAllUsesWith(AvailableVal);
934 LI->eraseFromParent();
935 return true;
936 }
937
938 // Otherwise, if we scanned the whole block and got to the top of the block,
939 // we know the block is locally transparent to the load. If not, something
940 // might clobber its value.
941 if (BBIt != LoadBB->begin())
942 return false;
943
944
945 SmallPtrSet<BasicBlock*, 8> PredsScanned;
946 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
947 AvailablePredsTy AvailablePreds;
948 BasicBlock *OneUnavailablePred = 0;
949
950 // If we got here, the loaded value is transparent through to the start of the
951 // block. Check to see if it is available in any of the predecessor blocks.
952 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
953 PI != PE; ++PI) {
954 BasicBlock *PredBB = *PI;
955
956 // If we already scanned this predecessor, skip it.
957 if (!PredsScanned.insert(PredBB))
958 continue;
959
960 // Scan the predecessor to see if the value is available in the pred.
961 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000962 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000963 if (!PredAvailable) {
964 OneUnavailablePred = PredBB;
965 continue;
966 }
967
968 // If so, this load is partially redundant. Remember this info so that we
969 // can create a PHI node.
970 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
971 }
972
973 // If the loaded value isn't available in any predecessor, it isn't partially
974 // redundant.
975 if (AvailablePreds.empty()) return false;
976
977 // Okay, the loaded value is available in at least one (and maybe all!)
978 // predecessors. If the value is unavailable in more than one unique
979 // predecessor, we want to insert a merge block for those common predecessors.
980 // This ensures that we only have to insert one reload, thus not increasing
981 // code size.
982 BasicBlock *UnavailablePred = 0;
983
984 // If there is exactly one predecessor where the value is unavailable, the
985 // already computed 'OneUnavailablePred' block is it. If it ends in an
986 // unconditional branch, we know that it isn't a critical edge.
987 if (PredsScanned.size() == AvailablePreds.size()+1 &&
988 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
989 UnavailablePred = OneUnavailablePred;
990 } else if (PredsScanned.size() != AvailablePreds.size()) {
991 // Otherwise, we had multiple unavailable predecessors or we had a critical
992 // edge from the one.
993 SmallVector<BasicBlock*, 8> PredsToSplit;
994 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
995
996 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
997 AvailablePredSet.insert(AvailablePreds[i].first);
998
999 // Add all the unavailable predecessors to the PredsToSplit list.
1000 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
Chris Lattnere58867e2010-06-14 19:45:43 +00001001 PI != PE; ++PI) {
Gabor Greifee1f44f2010-07-12 14:10:24 +00001002 BasicBlock *P = *PI;
Chris Lattnere58867e2010-06-14 19:45:43 +00001003 // If the predecessor is an indirect goto, we can't split the edge.
Gabor Greifee1f44f2010-07-12 14:10:24 +00001004 if (isa<IndirectBrInst>(P->getTerminator()))
Chris Lattnere58867e2010-06-14 19:45:43 +00001005 return false;
1006
Gabor Greifee1f44f2010-07-12 14:10:24 +00001007 if (!AvailablePredSet.count(P))
1008 PredsToSplit.push_back(P);
Chris Lattnere58867e2010-06-14 19:45:43 +00001009 }
Chris Lattner69e067f2008-11-27 05:07:53 +00001010
1011 // Split them out to their own block.
1012 UnavailablePred =
1013 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
Chris Lattner4e447eb2009-11-15 19:58:31 +00001014 "thread-pre-split", this);
Chris Lattner69e067f2008-11-27 05:07:53 +00001015 }
1016
1017 // If the value isn't available in all predecessors, then there will be
1018 // exactly one where it isn't available. Insert a load on that edge and add
1019 // it to the AvailablePreds list.
1020 if (UnavailablePred) {
1021 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1022 "Can't handle critical edge here!");
Chris Lattner4e447eb2009-11-15 19:58:31 +00001023 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1024 LI->getAlignment(),
Chris Lattner69e067f2008-11-27 05:07:53 +00001025 UnavailablePred->getTerminator());
1026 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1027 }
1028
1029 // Now we know that each predecessor of this block has a value in
1030 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +00001031 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +00001032
1033 // Create a PHI node at the start of the block for the PRE'd load value.
1034 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
1035 PN->takeName(LI);
1036
1037 // Insert new entries into the PHI for each predecessor. A single block may
1038 // have multiple entries here.
1039 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
1040 ++PI) {
Gabor Greifee1f44f2010-07-12 14:10:24 +00001041 BasicBlock *P = *PI;
Chris Lattner69e067f2008-11-27 05:07:53 +00001042 AvailablePredsTy::iterator I =
1043 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
Gabor Greifee1f44f2010-07-12 14:10:24 +00001044 std::make_pair(P, (Value*)0));
Chris Lattner69e067f2008-11-27 05:07:53 +00001045
Gabor Greifee1f44f2010-07-12 14:10:24 +00001046 assert(I != AvailablePreds.end() && I->first == P &&
Chris Lattner69e067f2008-11-27 05:07:53 +00001047 "Didn't find entry for predecessor!");
1048
1049 PN->addIncoming(I->second, I->first);
1050 }
1051
1052 //cerr << "PRE: " << *LI << *PN << "\n";
1053
1054 LI->replaceAllUsesWith(PN);
1055 LI->eraseFromParent();
1056
1057 return true;
1058}
1059
Chris Lattner5729d382009-11-07 08:05:03 +00001060/// FindMostPopularDest - The specified list contains multiple possible
1061/// threadable destinations. Pick the one that occurs the most frequently in
1062/// the list.
1063static BasicBlock *
1064FindMostPopularDest(BasicBlock *BB,
1065 const SmallVectorImpl<std::pair<BasicBlock*,
1066 BasicBlock*> > &PredToDestList) {
1067 assert(!PredToDestList.empty());
1068
1069 // Determine popularity. If there are multiple possible destinations, we
1070 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1071 // blocks with known and real destinations to threading undef. We'll handle
1072 // them later if interesting.
1073 DenseMap<BasicBlock*, unsigned> DestPopularity;
1074 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1075 if (PredToDestList[i].second)
1076 DestPopularity[PredToDestList[i].second]++;
1077
1078 // Find the most popular dest.
1079 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1080 BasicBlock *MostPopularDest = DPI->first;
1081 unsigned Popularity = DPI->second;
1082 SmallVector<BasicBlock*, 4> SamePopularity;
1083
1084 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1085 // If the popularity of this entry isn't higher than the popularity we've
1086 // seen so far, ignore it.
1087 if (DPI->second < Popularity)
1088 ; // ignore.
1089 else if (DPI->second == Popularity) {
1090 // If it is the same as what we've seen so far, keep track of it.
1091 SamePopularity.push_back(DPI->first);
1092 } else {
1093 // If it is more popular, remember it.
1094 SamePopularity.clear();
1095 MostPopularDest = DPI->first;
1096 Popularity = DPI->second;
1097 }
1098 }
1099
1100 // Okay, now we know the most popular destination. If there is more than
1101 // destination, we need to determine one. This is arbitrary, but we need
1102 // to make a deterministic decision. Pick the first one that appears in the
1103 // successor list.
1104 if (!SamePopularity.empty()) {
1105 SamePopularity.push_back(MostPopularDest);
1106 TerminatorInst *TI = BB->getTerminator();
1107 for (unsigned i = 0; ; ++i) {
1108 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1109
1110 if (std::find(SamePopularity.begin(), SamePopularity.end(),
1111 TI->getSuccessor(i)) == SamePopularity.end())
1112 continue;
1113
1114 MostPopularDest = TI->getSuccessor(i);
1115 break;
1116 }
1117 }
1118
1119 // Okay, we have finally picked the most popular destination.
1120 return MostPopularDest;
1121}
1122
Chris Lattner1c96b412009-11-12 01:37:43 +00001123bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
Chris Lattner5729d382009-11-07 08:05:03 +00001124 // If threading this would thread across a loop header, don't even try to
1125 // thread the edge.
1126 if (LoopHeaders.count(BB))
1127 return false;
1128
Chris Lattner5729d382009-11-07 08:05:03 +00001129 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
Chris Lattner1c96b412009-11-12 01:37:43 +00001130 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
Chris Lattner5729d382009-11-07 08:05:03 +00001131 return false;
1132 assert(!PredValues.empty() &&
1133 "ComputeValueKnownInPredecessors returned true with no values");
1134
David Greenefe7fe662010-01-05 01:27:19 +00001135 DEBUG(dbgs() << "IN BB: " << *BB;
Chris Lattner5729d382009-11-07 08:05:03 +00001136 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
David Greenefe7fe662010-01-05 01:27:19 +00001137 dbgs() << " BB '" << BB->getName() << "': FOUND condition = ";
Chris Lattner5729d382009-11-07 08:05:03 +00001138 if (PredValues[i].first)
David Greenefe7fe662010-01-05 01:27:19 +00001139 dbgs() << *PredValues[i].first;
Chris Lattner5729d382009-11-07 08:05:03 +00001140 else
David Greenefe7fe662010-01-05 01:27:19 +00001141 dbgs() << "UNDEF";
1142 dbgs() << " for pred '" << PredValues[i].second->getName()
Chris Lattner5729d382009-11-07 08:05:03 +00001143 << "'.\n";
1144 });
1145
1146 // Decide what we want to thread through. Convert our list of known values to
1147 // a list of known destinations for each pred. This also discards duplicate
1148 // predecessors and keeps track of the undefined inputs (which are represented
Chris Lattnere7e63fe2009-11-09 00:41:49 +00001149 // as a null dest in the PredToDestList).
Chris Lattner5729d382009-11-07 08:05:03 +00001150 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1151 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1152
1153 BasicBlock *OnlyDest = 0;
1154 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1155
1156 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1157 BasicBlock *Pred = PredValues[i].second;
1158 if (!SeenPreds.insert(Pred))
1159 continue; // Duplicate predecessor entry.
1160
1161 // If the predecessor ends with an indirect goto, we can't change its
1162 // destination.
1163 if (isa<IndirectBrInst>(Pred->getTerminator()))
1164 continue;
1165
1166 ConstantInt *Val = PredValues[i].first;
1167
1168 BasicBlock *DestBB;
1169 if (Val == 0) // Undef.
1170 DestBB = 0;
1171 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1172 DestBB = BI->getSuccessor(Val->isZero());
1173 else {
1174 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1175 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1176 }
1177
1178 // If we have exactly one destination, remember it for efficiency below.
1179 if (i == 0)
1180 OnlyDest = DestBB;
1181 else if (OnlyDest != DestBB)
1182 OnlyDest = MultipleDestSentinel;
1183
1184 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1185 }
1186
1187 // If all edges were unthreadable, we fail.
1188 if (PredToDestList.empty())
1189 return false;
1190
1191 // Determine which is the most common successor. If we have many inputs and
1192 // this block is a switch, we want to start by threading the batch that goes
1193 // to the most popular destination first. If we only know about one
1194 // threadable destination (the common case) we can avoid this.
1195 BasicBlock *MostPopularDest = OnlyDest;
1196
1197 if (MostPopularDest == MultipleDestSentinel)
1198 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1199
1200 // Now that we know what the most popular destination is, factor all
1201 // predecessors that will jump to it into a single predecessor.
1202 SmallVector<BasicBlock*, 16> PredsToFactor;
1203 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1204 if (PredToDestList[i].second == MostPopularDest) {
1205 BasicBlock *Pred = PredToDestList[i].first;
1206
1207 // This predecessor may be a switch or something else that has multiple
1208 // edges to the block. Factor each of these edges by listing them
1209 // according to # occurrences in PredsToFactor.
1210 TerminatorInst *PredTI = Pred->getTerminator();
1211 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1212 if (PredTI->getSuccessor(i) == BB)
1213 PredsToFactor.push_back(Pred);
1214 }
1215
1216 // If the threadable edges are branching on an undefined value, we get to pick
1217 // the destination that these predecessors should get to.
1218 if (MostPopularDest == 0)
1219 MostPopularDest = BB->getTerminator()->
1220 getSuccessor(GetBestDestForJumpOnUndef(BB));
1221
1222 // Ok, try to thread it!
1223 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1224}
Chris Lattner69e067f2008-11-27 05:07:53 +00001225
Chris Lattner77beb472010-01-11 23:41:09 +00001226/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1227/// a PHI node in the current block. See if there are any simplifications we
1228/// can do based on inputs to the phi node.
Chris Lattnerd38c14e2008-04-22 06:36:15 +00001229///
Chris Lattner77beb472010-01-11 23:41:09 +00001230bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +00001231 BasicBlock *BB = PN->getParent();
1232
Chris Lattner2249a0b2010-01-12 02:07:17 +00001233 // TODO: We could make use of this to do it once for blocks with common PHI
1234 // values.
1235 SmallVector<BasicBlock*, 1> PredBBs;
1236 PredBBs.resize(1);
1237
Chris Lattner5729d382009-11-07 08:05:03 +00001238 // If any of the predecessor blocks end in an unconditional branch, we can
Chris Lattner77beb472010-01-11 23:41:09 +00001239 // *duplicate* the conditional branch into that block in order to further
1240 // encourage jump threading and to eliminate cases where we have branch on a
1241 // phi of an icmp (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +00001242 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1243 BasicBlock *PredBB = PN->getIncomingBlock(i);
1244 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
Chris Lattner2249a0b2010-01-12 02:07:17 +00001245 if (PredBr->isUnconditional()) {
1246 PredBBs[0] = PredBB;
1247 // Try to duplicate BB into PredBB.
1248 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1249 return true;
1250 }
Chris Lattner78c552e2009-10-11 07:24:57 +00001251 }
1252
Chris Lattner6b65f472009-10-11 04:40:21 +00001253 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001254}
1255
Chris Lattner2249a0b2010-01-12 02:07:17 +00001256/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1257/// a xor instruction in the current block. See if there are any
1258/// simplifications we can do based on inputs to the xor.
1259///
1260bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1261 BasicBlock *BB = BO->getParent();
1262
1263 // If either the LHS or RHS of the xor is a constant, don't do this
1264 // optimization.
1265 if (isa<ConstantInt>(BO->getOperand(0)) ||
1266 isa<ConstantInt>(BO->getOperand(1)))
1267 return false;
1268
Chris Lattner2dd76572010-01-23 19:16:25 +00001269 // If the first instruction in BB isn't a phi, we won't be able to infer
1270 // anything special about any particular predecessor.
1271 if (!isa<PHINode>(BB->front()))
1272 return false;
1273
Chris Lattner2249a0b2010-01-12 02:07:17 +00001274 // If we have a xor as the branch input to this block, and we know that the
1275 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1276 // the condition into the predecessor and fix that value to true, saving some
1277 // logical ops on that path and encouraging other paths to simplify.
1278 //
1279 // This copies something like this:
1280 //
1281 // BB:
1282 // %X = phi i1 [1], [%X']
1283 // %Y = icmp eq i32 %A, %B
1284 // %Z = xor i1 %X, %Y
1285 // br i1 %Z, ...
1286 //
1287 // Into:
1288 // BB':
1289 // %Y = icmp ne i32 %A, %B
1290 // br i1 %Z, ...
1291
1292 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1293 bool isLHS = true;
1294 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1295 assert(XorOpValues.empty());
1296 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1297 return false;
1298 isLHS = false;
1299 }
1300
1301 assert(!XorOpValues.empty() &&
1302 "ComputeValueKnownInPredecessors returned true with no values");
1303
1304 // Scan the information to see which is most popular: true or false. The
1305 // predecessors can be of the set true, false, or undef.
1306 unsigned NumTrue = 0, NumFalse = 0;
1307 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1308 if (!XorOpValues[i].first) continue; // Ignore undefs for the count.
1309 if (XorOpValues[i].first->isZero())
1310 ++NumFalse;
1311 else
1312 ++NumTrue;
1313 }
1314
1315 // Determine which value to split on, true, false, or undef if neither.
1316 ConstantInt *SplitVal = 0;
1317 if (NumTrue > NumFalse)
1318 SplitVal = ConstantInt::getTrue(BB->getContext());
1319 else if (NumTrue != 0 || NumFalse != 0)
1320 SplitVal = ConstantInt::getFalse(BB->getContext());
1321
1322 // Collect all of the blocks that this can be folded into so that we can
1323 // factor this once and clone it once.
1324 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1325 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1326 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1327
1328 BlocksToFoldInto.push_back(XorOpValues[i].second);
1329 }
1330
Chris Lattner2dd76572010-01-23 19:16:25 +00001331 // If we inferred a value for all of the predecessors, then duplication won't
1332 // help us. However, we can just replace the LHS or RHS with the constant.
1333 if (BlocksToFoldInto.size() ==
1334 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1335 if (SplitVal == 0) {
1336 // If all preds provide undef, just nuke the xor, because it is undef too.
1337 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1338 BO->eraseFromParent();
1339 } else if (SplitVal->isZero()) {
1340 // If all preds provide 0, replace the xor with the other input.
1341 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1342 BO->eraseFromParent();
1343 } else {
1344 // If all preds provide 1, set the computed value to 1.
1345 BO->setOperand(!isLHS, SplitVal);
1346 }
1347
1348 return true;
1349 }
1350
Chris Lattner2249a0b2010-01-12 02:07:17 +00001351 // Try to duplicate BB into PredBB.
Chris Lattner797c4402010-01-12 02:07:50 +00001352 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
Chris Lattner2249a0b2010-01-12 02:07:17 +00001353}
1354
1355
Chris Lattner78c552e2009-10-11 07:24:57 +00001356/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1357/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1358/// NewPred using the entries from OldPred (suitably mapped).
1359static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1360 BasicBlock *OldPred,
1361 BasicBlock *NewPred,
1362 DenseMap<Instruction*, Value*> &ValueMap) {
1363 for (BasicBlock::iterator PNI = PHIBB->begin();
1364 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1365 // Ok, we have a PHI node. Figure out what the incoming value was for the
1366 // DestBlock.
1367 Value *IV = PN->getIncomingValueForBlock(OldPred);
1368
1369 // Remap the value if necessary.
1370 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1371 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1372 if (I != ValueMap.end())
1373 IV = I->second;
1374 }
1375
1376 PN->addIncoming(IV, NewPred);
1377 }
1378}
Chris Lattner6bf77502008-04-22 07:05:46 +00001379
Chris Lattner5729d382009-11-07 08:05:03 +00001380/// ThreadEdge - We have decided that it is safe and profitable to factor the
1381/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1382/// across BB. Transform the IR to reflect this change.
1383bool JumpThreading::ThreadEdge(BasicBlock *BB,
1384 const SmallVectorImpl<BasicBlock*> &PredBBs,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001385 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001386 // If threading to the same block as we come from, we would infinite loop.
1387 if (SuccBB == BB) {
David Greenefe7fe662010-01-05 01:27:19 +00001388 DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001389 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001390 return false;
1391 }
1392
1393 // If threading this would thread across a loop header, don't thread the edge.
1394 // See the comments above FindLoopHeaders for justifications and caveats.
1395 if (LoopHeaders.count(BB)) {
David Greenefe7fe662010-01-05 01:27:19 +00001396 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001397 << "' to dest BB '" << SuccBB->getName()
1398 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001399 return false;
1400 }
1401
Chris Lattner78c552e2009-10-11 07:24:57 +00001402 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1403 if (JumpThreadCost > Threshold) {
David Greenefe7fe662010-01-05 01:27:19 +00001404 DEBUG(dbgs() << " Not threading BB '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001405 << "' - Cost is too high: " << JumpThreadCost << "\n");
1406 return false;
1407 }
1408
Chris Lattner5729d382009-11-07 08:05:03 +00001409 // And finally, do it! Start by factoring the predecessors is needed.
1410 BasicBlock *PredBB;
1411 if (PredBBs.size() == 1)
1412 PredBB = PredBBs[0];
1413 else {
David Greenefe7fe662010-01-05 01:27:19 +00001414 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
Chris Lattner5729d382009-11-07 08:05:03 +00001415 << " common predecessors.\n");
1416 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1417 ".thr_comm", this);
1418 }
1419
Mike Stumpfe095f32009-05-04 18:40:41 +00001420 // And finally, do it!
David Greenefe7fe662010-01-05 01:27:19 +00001421 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001422 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001423 << ", across block:\n "
1424 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001425
Owen Andersoncfa7fb62010-07-26 18:48:03 +00001426 if (LVI)
1427 LVI->threadEdge(PredBB, BB, SuccBB);
1428
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001429 // We are going to have to map operands from the original BB block to the new
1430 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1431 // account for entry from PredBB.
1432 DenseMap<Instruction*, Value*> ValueMapping;
1433
Owen Anderson1d0be152009-08-13 21:58:54 +00001434 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1435 BB->getName()+".thread",
1436 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001437 NewBB->moveAfter(PredBB);
1438
1439 BasicBlock::iterator BI = BB->begin();
1440 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1441 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1442
1443 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1444 // mapping and using it to remap operands in the cloned instructions.
1445 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001446 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001447 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001448 NewBB->getInstList().push_back(New);
1449 ValueMapping[BI] = New;
1450
1451 // Remap operands to patch up intra-block references.
1452 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001453 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1454 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1455 if (I != ValueMapping.end())
1456 New->setOperand(i, I->second);
1457 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001458 }
1459
1460 // We didn't copy the terminator from BB over to NewBB, because there is now
1461 // an unconditional jump to SuccBB. Insert the unconditional jump.
1462 BranchInst::Create(SuccBB, NewBB);
1463
1464 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1465 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001466 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001467
Chris Lattner433a0db2009-10-10 09:05:58 +00001468 // If there were values defined in BB that are used outside the block, then we
1469 // now have to update all uses of the value to use either the original value,
1470 // the cloned value, or some PHI derived value. This can require arbitrary
1471 // PHI insertion, of which we are prepared to do, clean these up now.
1472 SSAUpdater SSAUpdate;
1473 SmallVector<Use*, 16> UsesToRename;
1474 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1475 // Scan all uses of this instruction to see if it is used outside of its
1476 // block, and if so, record them in UsesToRename.
1477 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1478 ++UI) {
1479 Instruction *User = cast<Instruction>(*UI);
1480 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1481 if (UserPN->getIncomingBlock(UI) == BB)
1482 continue;
1483 } else if (User->getParent() == BB)
1484 continue;
1485
1486 UsesToRename.push_back(&UI.getUse());
1487 }
1488
1489 // If there are no uses outside the block, we're done with this instruction.
1490 if (UsesToRename.empty())
1491 continue;
1492
David Greenefe7fe662010-01-05 01:27:19 +00001493 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
Chris Lattner433a0db2009-10-10 09:05:58 +00001494
1495 // We found a use of I outside of BB. Rename all uses of I that are outside
1496 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1497 // with the two values we know.
1498 SSAUpdate.Initialize(I);
1499 SSAUpdate.AddAvailableValue(BB, I);
1500 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1501
1502 while (!UsesToRename.empty())
1503 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
David Greenefe7fe662010-01-05 01:27:19 +00001504 DEBUG(dbgs() << "\n");
Chris Lattner433a0db2009-10-10 09:05:58 +00001505 }
1506
1507
Chris Lattneref0c6742008-12-01 04:48:07 +00001508 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001509 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1510 // us to simplify any PHI nodes in BB.
1511 TerminatorInst *PredTerm = PredBB->getTerminator();
1512 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1513 if (PredTerm->getSuccessor(i) == BB) {
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001514 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001515 PredTerm->setSuccessor(i, NewBB);
1516 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001517
1518 // At this point, the IR is fully up to date and consistent. Do a quick scan
1519 // over the new instructions and zap any that are constants or dead. This
1520 // frequently happens because of phi translation.
Chris Lattner972a46c2010-01-12 20:41:47 +00001521 SimplifyInstructionsInBlock(NewBB, TD);
Mike Stumpfe095f32009-05-04 18:40:41 +00001522
1523 // Threaded an edge!
1524 ++NumThreads;
1525 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001526}
Chris Lattner78c552e2009-10-11 07:24:57 +00001527
1528/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1529/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1530/// If we can duplicate the contents of BB up into PredBB do so now, this
1531/// improves the odds that the branch will be on an analyzable instruction like
1532/// a compare.
1533bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
Chris Lattner2249a0b2010-01-12 02:07:17 +00001534 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1535 assert(!PredBBs.empty() && "Can't handle an empty set");
1536
Chris Lattner78c552e2009-10-11 07:24:57 +00001537 // If BB is a loop header, then duplicating this block outside the loop would
1538 // cause us to transform this into an irreducible loop, don't do this.
1539 // See the comments above FindLoopHeaders for justifications and caveats.
1540 if (LoopHeaders.count(BB)) {
David Greenefe7fe662010-01-05 01:27:19 +00001541 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
Chris Lattner2249a0b2010-01-12 02:07:17 +00001542 << "' into predecessor block '" << PredBBs[0]->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001543 << "' - it might create an irreducible loop!\n");
1544 return false;
1545 }
1546
1547 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1548 if (DuplicationCost > Threshold) {
David Greenefe7fe662010-01-05 01:27:19 +00001549 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001550 << "' - Cost is too high: " << DuplicationCost << "\n");
1551 return false;
1552 }
1553
Chris Lattner2249a0b2010-01-12 02:07:17 +00001554 // And finally, do it! Start by factoring the predecessors is needed.
1555 BasicBlock *PredBB;
1556 if (PredBBs.size() == 1)
1557 PredBB = PredBBs[0];
1558 else {
1559 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1560 << " common predecessors.\n");
1561 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1562 ".thr_comm", this);
1563 }
1564
Chris Lattner78c552e2009-10-11 07:24:57 +00001565 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1566 // of PredBB.
David Greenefe7fe662010-01-05 01:27:19 +00001567 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
Chris Lattner78c552e2009-10-11 07:24:57 +00001568 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1569 << DuplicationCost << " block is:" << *BB << "\n");
1570
Chris Lattner2249a0b2010-01-12 02:07:17 +00001571 // Unless PredBB ends with an unconditional branch, split the edge so that we
1572 // can just clone the bits from BB into the end of the new PredBB.
Chris Lattnerd6688392010-01-23 19:21:31 +00001573 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
Chris Lattner2249a0b2010-01-12 02:07:17 +00001574
Chris Lattnerd6688392010-01-23 19:21:31 +00001575 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
Chris Lattner2249a0b2010-01-12 02:07:17 +00001576 PredBB = SplitEdge(PredBB, BB, this);
1577 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1578 }
1579
Chris Lattner78c552e2009-10-11 07:24:57 +00001580 // We are going to have to map operands from the original BB block into the
1581 // PredBB block. Evaluate PHI nodes in BB.
1582 DenseMap<Instruction*, Value*> ValueMapping;
1583
1584 BasicBlock::iterator BI = BB->begin();
1585 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1586 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1587
Chris Lattner78c552e2009-10-11 07:24:57 +00001588 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1589 // mapping and using it to remap operands in the cloned instructions.
1590 for (; BI != BB->end(); ++BI) {
1591 Instruction *New = BI->clone();
Chris Lattner78c552e2009-10-11 07:24:57 +00001592
1593 // Remap operands to patch up intra-block references.
1594 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1595 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1596 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1597 if (I != ValueMapping.end())
1598 New->setOperand(i, I->second);
1599 }
Chris Lattner972a46c2010-01-12 20:41:47 +00001600
1601 // If this instruction can be simplified after the operands are updated,
1602 // just use the simplified value instead. This frequently happens due to
1603 // phi translation.
1604 if (Value *IV = SimplifyInstruction(New, TD)) {
1605 delete New;
1606 ValueMapping[BI] = IV;
1607 } else {
1608 // Otherwise, insert the new instruction into the block.
1609 New->setName(BI->getName());
1610 PredBB->getInstList().insert(OldPredBranch, New);
1611 ValueMapping[BI] = New;
1612 }
Chris Lattner78c552e2009-10-11 07:24:57 +00001613 }
1614
1615 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1616 // add entries to the PHI nodes for branch from PredBB now.
1617 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1618 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1619 ValueMapping);
1620 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1621 ValueMapping);
1622
1623 // If there were values defined in BB that are used outside the block, then we
1624 // now have to update all uses of the value to use either the original value,
1625 // the cloned value, or some PHI derived value. This can require arbitrary
1626 // PHI insertion, of which we are prepared to do, clean these up now.
1627 SSAUpdater SSAUpdate;
1628 SmallVector<Use*, 16> UsesToRename;
1629 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1630 // Scan all uses of this instruction to see if it is used outside of its
1631 // block, and if so, record them in UsesToRename.
1632 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1633 ++UI) {
1634 Instruction *User = cast<Instruction>(*UI);
1635 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1636 if (UserPN->getIncomingBlock(UI) == BB)
1637 continue;
1638 } else if (User->getParent() == BB)
1639 continue;
1640
1641 UsesToRename.push_back(&UI.getUse());
1642 }
1643
1644 // If there are no uses outside the block, we're done with this instruction.
1645 if (UsesToRename.empty())
1646 continue;
1647
David Greenefe7fe662010-01-05 01:27:19 +00001648 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
Chris Lattner78c552e2009-10-11 07:24:57 +00001649
1650 // We found a use of I outside of BB. Rename all uses of I that are outside
1651 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1652 // with the two values we know.
1653 SSAUpdate.Initialize(I);
1654 SSAUpdate.AddAvailableValue(BB, I);
1655 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1656
1657 while (!UsesToRename.empty())
1658 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
David Greenefe7fe662010-01-05 01:27:19 +00001659 DEBUG(dbgs() << "\n");
Chris Lattner78c552e2009-10-11 07:24:57 +00001660 }
1661
1662 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1663 // that we nuked.
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001664 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattner78c552e2009-10-11 07:24:57 +00001665
1666 // Remove the unconditional branch at the end of the PredBB block.
1667 OldPredBranch->eraseFromParent();
1668
1669 ++NumDupes;
1670 return true;
1671}
1672
1673