blob: ef3f8b2cbc1aee4eb1acfcaeb73abe1376eaad6b [file] [log] [blame]
Chris Lattnered7b41e2003-05-27 15:45:27 +00001//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnered7b41e2003-05-27 15:45:27 +00009//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation. This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
Chris Lattner38aec322003-09-11 16:45:55 +000013// each member (if possible). Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs. As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
Chris Lattnered7b41e2003-05-27 15:45:27 +000019//
20//===----------------------------------------------------------------------===//
21
Chris Lattner0e5f4992006-12-19 21:40:18 +000022#define DEBUG_TYPE "scalarrepl"
Chris Lattnered7b41e2003-05-27 15:45:27 +000023#include "llvm/Transforms/Scalar.h"
Chris Lattner38aec322003-09-11 16:45:55 +000024#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
Chris Lattnered7b41e2003-05-27 15:45:27 +000026#include "llvm/Function.h"
Chris Lattner79b3bd32007-04-25 06:40:51 +000027#include "llvm/GlobalVariable.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattner372dda82007-03-05 07:52:57 +000029#include "llvm/IntrinsicInst.h"
Owen Andersonfa5cbd62009-07-03 19:42:02 +000030#include "llvm/LLVMContext.h"
Chris Lattner72eaa0e2010-09-01 23:09:27 +000031#include "llvm/Module.h"
Chris Lattner372dda82007-03-05 07:52:57 +000032#include "llvm/Pass.h"
Cameron Zwarichb1686c32011-01-18 03:53:26 +000033#include "llvm/Analysis/Dominators.h"
Chris Lattnerc87c50a2011-01-23 22:04:55 +000034#include "llvm/Analysis/Loads.h"
Dan Gohman5034dd32010-12-15 20:02:24 +000035#include "llvm/Analysis/ValueTracking.h"
Chris Lattner38aec322003-09-11 16:45:55 +000036#include "llvm/Target/TargetData.h"
37#include "llvm/Transforms/Utils/PromoteMemToReg.h"
Devang Patel4afc90d2009-02-10 07:00:59 +000038#include "llvm/Transforms/Utils/Local.h"
Chris Lattnere0a1a5b2011-01-14 07:50:47 +000039#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattnera9be1df2010-11-18 06:26:49 +000040#include "llvm/Support/CallSite.h"
Chris Lattner95255282006-06-28 23:17:24 +000041#include "llvm/Support/Debug.h"
Torok Edwin7d696d82009-07-11 13:10:19 +000042#include "llvm/Support/ErrorHandling.h"
Chris Lattnera1888942005-12-12 07:19:13 +000043#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner65a65022009-02-03 19:41:50 +000044#include "llvm/Support/IRBuilder.h"
Chris Lattnera1888942005-12-12 07:19:13 +000045#include "llvm/Support/MathExtras.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000046#include "llvm/Support/raw_ostream.h"
Chris Lattnerc87c50a2011-01-23 22:04:55 +000047#include "llvm/ADT/SetVector.h"
Chris Lattner1ccd1852007-02-12 22:56:41 +000048#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000049#include "llvm/ADT/Statistic.h"
Chris Lattnerd8664732003-12-02 17:43:55 +000050using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000051
Chris Lattner0e5f4992006-12-19 21:40:18 +000052STATISTIC(NumReplaced, "Number of allocas broken up");
53STATISTIC(NumPromoted, "Number of allocas promoted");
Chris Lattnerc87c50a2011-01-23 22:04:55 +000054STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
Chris Lattner0e5f4992006-12-19 21:40:18 +000055STATISTIC(NumConverted, "Number of aggregates converted to scalar");
Chris Lattner79b3bd32007-04-25 06:40:51 +000056STATISTIC(NumGlobals, "Number of allocas copied from constant global");
Chris Lattnered7b41e2003-05-27 15:45:27 +000057
Chris Lattner0e5f4992006-12-19 21:40:18 +000058namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000059 struct SROA : public FunctionPass {
Cameron Zwarichb1686c32011-01-18 03:53:26 +000060 SROA(int T, bool hasDT, char &ID)
61 : FunctionPass(ID), HasDomTree(hasDT) {
Devang Patelff366852007-07-09 21:19:23 +000062 if (T == -1)
Chris Lattnerb0e71ed2007-08-02 21:33:36 +000063 SRThreshold = 128;
Devang Patelff366852007-07-09 21:19:23 +000064 else
65 SRThreshold = T;
66 }
Devang Patel794fd752007-05-01 21:15:47 +000067
Chris Lattnered7b41e2003-05-27 15:45:27 +000068 bool runOnFunction(Function &F);
69
Chris Lattner38aec322003-09-11 16:45:55 +000070 bool performScalarRepl(Function &F);
71 bool performPromotion(Function &F);
72
Chris Lattnered7b41e2003-05-27 15:45:27 +000073 private:
Cameron Zwarichb1686c32011-01-18 03:53:26 +000074 bool HasDomTree;
Chris Lattner56c38522009-01-07 06:34:28 +000075 TargetData *TD;
Bob Wilson69743022011-01-13 20:59:44 +000076
Bob Wilsonb742def2009-12-18 20:14:40 +000077 /// DeadInsts - Keep track of instructions we have made dead, so that
78 /// we can remove them after we are done working.
79 SmallVector<Value*, 32> DeadInsts;
80
Chris Lattner39a1c042007-05-30 06:11:23 +000081 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82 /// information about the uses. All these fields are initialized to false
83 /// and set to true when something is learned.
84 struct AllocaInfo {
Chris Lattner6c95d242011-01-23 07:29:29 +000085 /// The alloca to promote.
86 AllocaInst *AI;
87
Chris Lattner145c5322011-01-23 08:27:54 +000088 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89 /// looping and avoid redundant work.
90 SmallPtrSet<PHINode*, 8> CheckedPHIs;
91
Chris Lattner39a1c042007-05-30 06:11:23 +000092 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
93 bool isUnsafe : 1;
Bob Wilson69743022011-01-13 20:59:44 +000094
Chris Lattner39a1c042007-05-30 06:11:23 +000095 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
96 bool isMemCpySrc : 1;
97
Zhou Sheng33b0b8d2007-07-06 06:01:16 +000098 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
Chris Lattner39a1c042007-05-30 06:11:23 +000099 bool isMemCpyDst : 1;
100
Chris Lattner7e9b4272011-01-16 06:18:28 +0000101 /// hasSubelementAccess - This is true if a subelement of the alloca is
102 /// ever accessed, or false if the alloca is only accessed with mem
103 /// intrinsics or load/store that only access the entire alloca at once.
104 bool hasSubelementAccess : 1;
105
106 /// hasALoadOrStore - This is true if there are any loads or stores to it.
107 /// The alloca may just be accessed with memcpy, for example, which would
108 /// not set this.
109 bool hasALoadOrStore : 1;
110
Chris Lattner6c95d242011-01-23 07:29:29 +0000111 explicit AllocaInfo(AllocaInst *ai)
112 : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
Chris Lattner7e9b4272011-01-16 06:18:28 +0000113 hasSubelementAccess(false), hasALoadOrStore(false) {}
Chris Lattner39a1c042007-05-30 06:11:23 +0000114 };
Bob Wilson69743022011-01-13 20:59:44 +0000115
Devang Patelff366852007-07-09 21:19:23 +0000116 unsigned SRThreshold;
117
Chris Lattnerd01a0da2011-01-23 07:05:44 +0000118 void MarkUnsafe(AllocaInfo &I, Instruction *User) {
119 I.isUnsafe = true;
120 DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n');
121 }
Chris Lattner39a1c042007-05-30 06:11:23 +0000122
Victor Hernandez6c146ee2010-01-21 23:05:53 +0000123 bool isSafeAllocaToScalarRepl(AllocaInst *AI);
Chris Lattner39a1c042007-05-30 06:11:23 +0000124
Chris Lattner6c95d242011-01-23 07:29:29 +0000125 void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
Chris Lattner145c5322011-01-23 08:27:54 +0000126 void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
127 AllocaInfo &Info);
Chris Lattner6c95d242011-01-23 07:29:29 +0000128 void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
129 void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Chris Lattnerd01a0da2011-01-23 07:05:44 +0000130 const Type *MemOpType, bool isStore, AllocaInfo &Info,
Chris Lattner145c5322011-01-23 08:27:54 +0000131 Instruction *TheAccess, bool AllowWholeAccess);
Bob Wilsonb742def2009-12-18 20:14:40 +0000132 bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
Bob Wilsone88728d2009-12-19 06:53:17 +0000133 uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
134 const Type *&IdxTy);
Bob Wilson69743022011-01-13 20:59:44 +0000135
136 void DoScalarReplacement(AllocaInst *AI,
Victor Hernandez7b929da2009-10-23 21:09:37 +0000137 std::vector<AllocaInst*> &WorkList);
Bob Wilsonb742def2009-12-18 20:14:40 +0000138 void DeleteDeadInstructions();
Bob Wilson69743022011-01-13 20:59:44 +0000139
Bob Wilsonb742def2009-12-18 20:14:40 +0000140 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
141 SmallVector<AllocaInst*, 32> &NewElts);
142 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
143 SmallVector<AllocaInst*, 32> &NewElts);
144 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
145 SmallVector<AllocaInst*, 32> &NewElts);
146 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Victor Hernandez7b929da2009-10-23 21:09:37 +0000147 AllocaInst *AI,
Chris Lattnerd93afec2009-01-07 07:18:45 +0000148 SmallVector<AllocaInst*, 32> &NewElts);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000149 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
Chris Lattnerd2fa7812009-01-07 08:11:13 +0000150 SmallVector<AllocaInst*, 32> &NewElts);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000151 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Chris Lattner6e733d32009-01-28 20:16:43 +0000152 SmallVector<AllocaInst*, 32> &NewElts);
Bob Wilson69743022011-01-13 20:59:44 +0000153
Chris Lattner31d80102010-04-15 21:59:20 +0000154 static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
Chris Lattnered7b41e2003-05-27 15:45:27 +0000155 };
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000156
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000157 // SROA_DT - SROA that uses DominatorTree.
158 struct SROA_DT : public SROA {
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000159 static char ID;
160 public:
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000161 SROA_DT(int T = -1) : SROA(T, true, ID) {
162 initializeSROA_DTPass(*PassRegistry::getPassRegistry());
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000163 }
164
165 // getAnalysisUsage - This pass does not require any passes, but we know it
166 // will not alter the CFG, so say so.
167 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168 AU.addRequired<DominatorTree>();
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000169 AU.setPreservesCFG();
170 }
171 };
172
173 // SROA_SSAUp - SROA that uses SSAUpdater.
174 struct SROA_SSAUp : public SROA {
175 static char ID;
176 public:
177 SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
178 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
179 }
180
181 // getAnalysisUsage - This pass does not require any passes, but we know it
182 // will not alter the CFG, so say so.
183 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
184 AU.setPreservesCFG();
185 }
186 };
187
Chris Lattnered7b41e2003-05-27 15:45:27 +0000188}
189
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000190char SROA_DT::ID = 0;
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000191char SROA_SSAUp::ID = 0;
192
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000193INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
194 "Scalar Replacement of Aggregates (DT)", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000195INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000196INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
197 "Scalar Replacement of Aggregates (DT)", false, false)
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000198
199INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
200 "Scalar Replacement of Aggregates (SSAUp)", false, false)
201INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
202 "Scalar Replacement of Aggregates (SSAUp)", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000203
Brian Gaeked0fde302003-11-11 22:41:34 +0000204// Public interface to the ScalarReplAggregates pass
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000205FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000206 bool UseDomTree) {
207 if (UseDomTree)
208 return new SROA_DT(Threshold);
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000209 return new SROA_SSAUp(Threshold);
Devang Patelff366852007-07-09 21:19:23 +0000210}
Chris Lattnered7b41e2003-05-27 15:45:27 +0000211
212
Chris Lattner4cc576b2010-04-16 00:24:57 +0000213//===----------------------------------------------------------------------===//
214// Convert To Scalar Optimization.
215//===----------------------------------------------------------------------===//
216
217namespace {
Chris Lattnera001b662010-04-16 00:38:19 +0000218/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219/// optimization, which scans the uses of an alloca and determines if it can
220/// rewrite it in terms of a single new alloca that can be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000221class ConvertToScalarInfo {
Cameron Zwarichd4c9c3e2011-03-16 00:13:35 +0000222 /// AllocaSize - The size of the alloca being considered in bytes.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000223 unsigned AllocaSize;
224 const TargetData &TD;
Bob Wilson69743022011-01-13 20:59:44 +0000225
Chris Lattnera0bada72010-04-16 02:32:17 +0000226 /// IsNotTrivial - This is set to true if there is some access to the object
Chris Lattnera001b662010-04-16 00:38:19 +0000227 /// which means that mem2reg can't promote it.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000228 bool IsNotTrivial;
Bob Wilson69743022011-01-13 20:59:44 +0000229
Chris Lattnera001b662010-04-16 00:38:19 +0000230 /// VectorTy - This tracks the type that we should promote the vector to if
231 /// it is possible to turn it into a vector. This starts out null, and if it
232 /// isn't possible to turn into a vector type, it gets set to VoidTy.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000233 const Type *VectorTy;
Bob Wilson69743022011-01-13 20:59:44 +0000234
Chris Lattnera001b662010-04-16 00:38:19 +0000235 /// HadAVector - True if there is at least one vector access to the alloca.
236 /// We don't want to turn random arrays into vectors and use vector element
237 /// insert/extract, but if there are element accesses to something that is
238 /// also declared as a vector, we do want to promote to a vector.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000239 bool HadAVector;
240
Cameron Zwarich1bcdb6f2011-03-16 08:13:42 +0000241 /// HadNonMemTransferAccess - True if there is at least one access to the
242 /// alloca that is not a MemTransferInst. We don't want to turn structs into
243 /// large integers unless there is some potential for optimization.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000244 bool HadNonMemTransferAccess;
245
Chris Lattner4cc576b2010-04-16 00:24:57 +0000246public:
247 explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
Cameron Zwarichdeac2682011-03-16 00:13:37 +0000248 : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000249 HadAVector(false), HadNonMemTransferAccess(false) { }
Bob Wilson69743022011-01-13 20:59:44 +0000250
Chris Lattnera001b662010-04-16 00:38:19 +0000251 AllocaInst *TryConvert(AllocaInst *AI);
Bob Wilson69743022011-01-13 20:59:44 +0000252
Chris Lattner4cc576b2010-04-16 00:24:57 +0000253private:
254 bool CanConvertToScalar(Value *V, uint64_t Offset);
Cameron Zwarich9827b782011-03-29 05:19:52 +0000255 void MergeInType(const Type *In, uint64_t Offset, bool IsLoadOrStore);
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000256 bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000257 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
Bob Wilson69743022011-01-13 20:59:44 +0000258
Chris Lattner4cc576b2010-04-16 00:24:57 +0000259 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
260 uint64_t Offset, IRBuilder<> &Builder);
261 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
262 uint64_t Offset, IRBuilder<> &Builder);
263};
264} // end anonymous namespace.
265
Chris Lattner91abace2010-09-01 05:14:33 +0000266
Chris Lattnera001b662010-04-16 00:38:19 +0000267/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
268/// rewrite it to be a new alloca which is mem2reg'able. This returns the new
269/// alloca if possible or null if not.
270AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
271 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
272 // out.
273 if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
274 return 0;
Bob Wilson69743022011-01-13 20:59:44 +0000275
Chris Lattnera001b662010-04-16 00:38:19 +0000276 // If we were able to find a vector type that can handle this with
277 // insert/extract elements, and if there was at least one use that had
278 // a vector type, promote this to a vector. We don't want to promote
279 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
280 // we just get a lot of insert/extracts. If at least one vector is
281 // involved, then we probably really do have a union of vector/array.
282 const Type *NewTy;
Chris Lattner85a7c692011-01-23 06:40:33 +0000283 if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
Chris Lattnera001b662010-04-16 00:38:19 +0000284 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
285 << *VectorTy << '\n');
286 NewTy = VectorTy; // Use the vector type.
287 } else {
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000288 unsigned BitWidth = AllocaSize * 8;
289 if (!HadAVector && !HadNonMemTransferAccess &&
290 !TD.fitsInLegalInteger(BitWidth))
291 return 0;
292
Chris Lattnera001b662010-04-16 00:38:19 +0000293 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
294 // Create and insert the integer alloca.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000295 NewTy = IntegerType::get(AI->getContext(), BitWidth);
Chris Lattnera001b662010-04-16 00:38:19 +0000296 }
297 AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
298 ConvertUsesToScalar(AI, NewAI, 0);
299 return NewAI;
300}
301
302/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
303/// so far at the offset specified by Offset (which is specified in bytes).
Chris Lattner4cc576b2010-04-16 00:24:57 +0000304///
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000305/// There are three cases we handle here:
Chris Lattner4cc576b2010-04-16 00:24:57 +0000306/// 1) A union of vector types of the same size and potentially its elements.
307/// Here we turn element accesses into insert/extract element operations.
308/// This promotes a <4 x float> with a store of float to the third element
309/// into a <4 x float> that uses insert element.
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000310/// 2) A union of vector types with power-of-2 size differences, e.g. a float,
311/// <2 x float> and <4 x float>. Here we turn element accesses into insert
312/// and extract element operations, and <2 x float> accesses into a cast to
313/// <2 x double>, an extract, and a cast back to <2 x float>.
314/// 3) A fully general blob of memory, which we turn into some (potentially
Chris Lattner4cc576b2010-04-16 00:24:57 +0000315/// large) integer type with extract and insert operations where the loads
Chris Lattnera001b662010-04-16 00:38:19 +0000316/// and stores would mutate the memory. We mark this by setting VectorTy
317/// to VoidTy.
Cameron Zwarich9827b782011-03-29 05:19:52 +0000318void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset,
319 bool IsLoadOrStore) {
Chris Lattnera001b662010-04-16 00:38:19 +0000320 // If we already decided to turn this into a blob of integer memory, there is
321 // nothing to be done.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000322 if (VectorTy && VectorTy->isVoidTy())
323 return;
Bob Wilson69743022011-01-13 20:59:44 +0000324
Chris Lattner4cc576b2010-04-16 00:24:57 +0000325 // If this could be contributing to a vector, analyze it.
326
327 // If the In type is a vector that is the same size as the alloca, see if it
328 // matches the existing VecTy.
329 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000330 if (MergeInVectorType(VInTy, Offset))
Chris Lattner4cc576b2010-04-16 00:24:57 +0000331 return;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000332 } else if (In->isFloatTy() || In->isDoubleTy() ||
333 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
334 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
Cameron Zwarich9827b782011-03-29 05:19:52 +0000335 // Full width accesses can be ignored, because they can always be turned
336 // into bitcasts.
337 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
338 if (IsLoadOrStore && EltSize == AllocaSize)
339 return;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000340 // If we're accessing something that could be an element of a vector, see
341 // if the implied vector agrees with what we already have and if Offset is
342 // compatible with it.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000343 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
Bob Wilson69743022011-01-13 20:59:44 +0000344 (VectorTy == 0 ||
Chris Lattner4cc576b2010-04-16 00:24:57 +0000345 cast<VectorType>(VectorTy)->getElementType()
346 ->getPrimitiveSizeInBits()/8 == EltSize)) {
347 if (VectorTy == 0)
348 VectorTy = VectorType::get(In, AllocaSize/EltSize);
349 return;
350 }
351 }
Bob Wilson69743022011-01-13 20:59:44 +0000352
Chris Lattner4cc576b2010-04-16 00:24:57 +0000353 // Otherwise, we have a case that we can't handle with an optimized vector
354 // form. We can still turn this into a large integer.
355 VectorTy = Type::getVoidTy(In->getContext());
356}
357
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000358/// MergeInVectorType - Handles the vector case of MergeInType, returning true
359/// if the type was successfully merged and false otherwise.
360bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
361 uint64_t Offset) {
362 // Remember if we saw a vector type.
363 HadAVector = true;
364
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000365 // TODO: Support nonzero offsets?
366 if (Offset != 0)
367 return false;
368
369 // Only allow vectors that are a power-of-2 away from the size of the alloca.
370 if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
371 return false;
372
373 // If this the first vector we see, remember the type so that we know the
374 // element size.
375 if (!VectorTy) {
376 VectorTy = VInTy;
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000377 return true;
378 }
379
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000380 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
381 unsigned InBitWidth = VInTy->getBitWidth();
382
383 // Vectors of the same size can be converted using a simple bitcast.
384 if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
385 return true;
386
387 const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
Cameron Zwarichc77a10f2011-03-26 04:58:50 +0000388 const Type *InElementTy = cast<VectorType>(VInTy)->getElementType();
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000389
390 // Do not allow mixed integer and floating-point accesses from vectors of
391 // different sizes.
392 if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
393 return false;
394
395 if (ElementTy->isFloatingPointTy()) {
396 // Only allow floating-point vectors of different sizes if they have the
397 // same element type.
398 // TODO: This could be loosened a bit, but would anything benefit?
399 if (ElementTy != InElementTy)
400 return false;
401
402 // There are no arbitrary-precision floating-point types, which limits the
403 // number of legal vector types with larger element types that we can form
404 // to bitcast and extract a subvector.
405 // TODO: We could support some more cases with mixed fp128 and double here.
406 if (!(BitWidth == 64 || BitWidth == 128) ||
407 !(InBitWidth == 64 || InBitWidth == 128))
408 return false;
409 } else {
410 assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
411 "or floating-point.");
412 unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
413 unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
414
415 // Do not allow integer types smaller than a byte or types whose widths are
416 // not a multiple of a byte.
417 if (BitWidth < 8 || InBitWidth < 8 ||
418 BitWidth % 8 != 0 || InBitWidth % 8 != 0)
419 return false;
420 }
421
422 // Pick the largest of the two vector types.
423 if (InBitWidth > BitWidth)
424 VectorTy = VInTy;
425
426 return true;
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000427}
428
Chris Lattner4cc576b2010-04-16 00:24:57 +0000429/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
430/// its accesses to a single vector type, return true and set VecTy to
431/// the new type. If we could convert the alloca into a single promotable
432/// integer, return true but set VecTy to VoidTy. Further, if the use is not a
433/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
434/// is the current offset from the base of the alloca being analyzed.
435///
436/// If we see at least one access to the value that is as a vector type, set the
437/// SawVec flag.
438bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
439 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
440 Instruction *User = cast<Instruction>(*UI);
Bob Wilson69743022011-01-13 20:59:44 +0000441
Chris Lattner4cc576b2010-04-16 00:24:57 +0000442 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
443 // Don't break volatile loads.
444 if (LI->isVolatile())
445 return false;
Dale Johannesen0488fb62010-09-30 23:57:10 +0000446 // Don't touch MMX operations.
447 if (LI->getType()->isX86_MMXTy())
448 return false;
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000449 HadNonMemTransferAccess = true;
Cameron Zwarich9827b782011-03-29 05:19:52 +0000450 MergeInType(LI->getType(), Offset, true);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000451 continue;
452 }
Bob Wilson69743022011-01-13 20:59:44 +0000453
Chris Lattner4cc576b2010-04-16 00:24:57 +0000454 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
455 // Storing the pointer, not into the value?
456 if (SI->getOperand(0) == V || SI->isVolatile()) return false;
Dale Johannesen0488fb62010-09-30 23:57:10 +0000457 // Don't touch MMX operations.
458 if (SI->getOperand(0)->getType()->isX86_MMXTy())
459 return false;
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000460 HadNonMemTransferAccess = true;
Cameron Zwarich9827b782011-03-29 05:19:52 +0000461 MergeInType(SI->getOperand(0)->getType(), Offset, true);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000462 continue;
463 }
Bob Wilson69743022011-01-13 20:59:44 +0000464
Chris Lattner4cc576b2010-04-16 00:24:57 +0000465 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000466 IsNotTrivial = true; // Can't be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000467 if (!CanConvertToScalar(BCI, Offset))
468 return false;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000469 continue;
470 }
471
472 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
473 // If this is a GEP with a variable indices, we can't handle it.
474 if (!GEP->hasAllConstantIndices())
475 return false;
Bob Wilson69743022011-01-13 20:59:44 +0000476
Chris Lattner4cc576b2010-04-16 00:24:57 +0000477 // Compute the offset that this GEP adds to the pointer.
478 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
479 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
480 &Indices[0], Indices.size());
481 // See if all uses can be converted.
482 if (!CanConvertToScalar(GEP, Offset+GEPOffset))
483 return false;
Chris Lattnera001b662010-04-16 00:38:19 +0000484 IsNotTrivial = true; // Can't be mem2reg'd.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000485 HadNonMemTransferAccess = true;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000486 continue;
487 }
488
489 // If this is a constant sized memset of a constant value (e.g. 0) we can
490 // handle it.
491 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
492 // Store of constant value and constant size.
Chris Lattnera001b662010-04-16 00:38:19 +0000493 if (!isa<ConstantInt>(MSI->getValue()) ||
494 !isa<ConstantInt>(MSI->getLength()))
495 return false;
496 IsNotTrivial = true; // Can't be mem2reg'd.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000497 HadNonMemTransferAccess = true;
Chris Lattnera001b662010-04-16 00:38:19 +0000498 continue;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000499 }
500
501 // If this is a memcpy or memmove into or out of the whole allocation, we
502 // can handle it like a load or store of the scalar type.
503 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000504 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
505 if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
506 return false;
Bob Wilson69743022011-01-13 20:59:44 +0000507
Chris Lattnera001b662010-04-16 00:38:19 +0000508 IsNotTrivial = true; // Can't be mem2reg'd.
509 continue;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000510 }
Bob Wilson69743022011-01-13 20:59:44 +0000511
Chris Lattner4cc576b2010-04-16 00:24:57 +0000512 // Otherwise, we cannot handle this!
513 return false;
514 }
Bob Wilson69743022011-01-13 20:59:44 +0000515
Chris Lattner4cc576b2010-04-16 00:24:57 +0000516 return true;
517}
518
519/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
520/// directly. This happens when we are converting an "integer union" to a
521/// single integer scalar, or when we are converting a "vector union" to a
522/// vector with insert/extractelement instructions.
523///
524/// Offset is an offset from the original alloca, in bits that need to be
525/// shifted to the right. By the end of this, there should be no uses of Ptr.
526void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
527 uint64_t Offset) {
528 while (!Ptr->use_empty()) {
529 Instruction *User = cast<Instruction>(Ptr->use_back());
530
531 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
532 ConvertUsesToScalar(CI, NewAI, Offset);
533 CI->eraseFromParent();
534 continue;
535 }
536
537 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
538 // Compute the offset that this GEP adds to the pointer.
539 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
540 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
541 &Indices[0], Indices.size());
542 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
543 GEP->eraseFromParent();
544 continue;
545 }
Bob Wilson69743022011-01-13 20:59:44 +0000546
Chris Lattner61db1f52010-12-26 22:57:41 +0000547 IRBuilder<> Builder(User);
Bob Wilson69743022011-01-13 20:59:44 +0000548
Chris Lattner4cc576b2010-04-16 00:24:57 +0000549 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
550 // The load is a bit extract from NewAI shifted right by Offset bits.
551 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
552 Value *NewLoadVal
553 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
554 LI->replaceAllUsesWith(NewLoadVal);
555 LI->eraseFromParent();
556 continue;
557 }
Bob Wilson69743022011-01-13 20:59:44 +0000558
Chris Lattner4cc576b2010-04-16 00:24:57 +0000559 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
560 assert(SI->getOperand(0) != Ptr && "Consistency error!");
561 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
562 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
563 Builder);
564 Builder.CreateStore(New, NewAI);
565 SI->eraseFromParent();
Bob Wilson69743022011-01-13 20:59:44 +0000566
Chris Lattner4cc576b2010-04-16 00:24:57 +0000567 // If the load we just inserted is now dead, then the inserted store
568 // overwrote the entire thing.
569 if (Old->use_empty())
570 Old->eraseFromParent();
571 continue;
572 }
Bob Wilson69743022011-01-13 20:59:44 +0000573
Chris Lattner4cc576b2010-04-16 00:24:57 +0000574 // If this is a constant sized memset of a constant value (e.g. 0) we can
575 // transform it into a store of the expanded constant value.
576 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
577 assert(MSI->getRawDest() == Ptr && "Consistency error!");
578 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
579 if (NumBytes != 0) {
580 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
Bob Wilson69743022011-01-13 20:59:44 +0000581
Chris Lattner4cc576b2010-04-16 00:24:57 +0000582 // Compute the value replicated the right number of times.
583 APInt APVal(NumBytes*8, Val);
584
585 // Splat the value if non-zero.
586 if (Val)
587 for (unsigned i = 1; i != NumBytes; ++i)
588 APVal |= APVal << 8;
Bob Wilson69743022011-01-13 20:59:44 +0000589
Chris Lattner4cc576b2010-04-16 00:24:57 +0000590 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
591 Value *New = ConvertScalar_InsertValue(
592 ConstantInt::get(User->getContext(), APVal),
593 Old, Offset, Builder);
594 Builder.CreateStore(New, NewAI);
Bob Wilson69743022011-01-13 20:59:44 +0000595
Chris Lattner4cc576b2010-04-16 00:24:57 +0000596 // If the load we just inserted is now dead, then the memset overwrote
597 // the entire thing.
598 if (Old->use_empty())
Bob Wilson69743022011-01-13 20:59:44 +0000599 Old->eraseFromParent();
Chris Lattner4cc576b2010-04-16 00:24:57 +0000600 }
601 MSI->eraseFromParent();
602 continue;
603 }
604
605 // If this is a memcpy or memmove into or out of the whole allocation, we
606 // can handle it like a load or store of the scalar type.
607 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
608 assert(Offset == 0 && "must be store to start of alloca");
Bob Wilson69743022011-01-13 20:59:44 +0000609
Chris Lattner4cc576b2010-04-16 00:24:57 +0000610 // If the source and destination are both to the same alloca, then this is
611 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
612 // as appropriate.
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000613 AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
Bob Wilson69743022011-01-13 20:59:44 +0000614
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000615 if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
Chris Lattner4cc576b2010-04-16 00:24:57 +0000616 // Dest must be OrigAI, change this to be a load from the original
617 // pointer (bitcasted), then a store to our new alloca.
618 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
619 Value *SrcPtr = MTI->getSource();
Mon P Wange90a6332010-12-23 01:41:32 +0000620 const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
621 const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
622 if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
623 AIPTy = PointerType::get(AIPTy->getElementType(),
624 SPTy->getAddressSpace());
625 }
626 SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
627
Chris Lattner4cc576b2010-04-16 00:24:57 +0000628 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
629 SrcVal->setAlignment(MTI->getAlignment());
630 Builder.CreateStore(SrcVal, NewAI);
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000631 } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
Chris Lattner4cc576b2010-04-16 00:24:57 +0000632 // Src must be OrigAI, change this to be a load from NewAI then a store
633 // through the original dest pointer (bitcasted).
634 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
635 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
636
Mon P Wange90a6332010-12-23 01:41:32 +0000637 const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
638 const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
639 if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
640 AIPTy = PointerType::get(AIPTy->getElementType(),
641 DPTy->getAddressSpace());
642 }
643 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
644
Chris Lattner4cc576b2010-04-16 00:24:57 +0000645 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
646 NewStore->setAlignment(MTI->getAlignment());
647 } else {
648 // Noop transfer. Src == Dst
649 }
650
651 MTI->eraseFromParent();
652 continue;
653 }
Bob Wilson69743022011-01-13 20:59:44 +0000654
Chris Lattner4cc576b2010-04-16 00:24:57 +0000655 llvm_unreachable("Unsupported operation!");
656 }
657}
658
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000659/// getScaledElementType - Gets a scaled element type for a partial vector
660/// access of an alloca. The input type must be an integer or float, and
661/// the resulting type must be an integer, float or double.
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000662static const Type *getScaledElementType(const Type *OldTy,
663 unsigned NewBitWidth) {
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000664 assert((OldTy->isIntegerTy() || OldTy->isFloatTy()) && "Partial vector "
665 "accesses must be scaled from integer or float elements.");
666
667 LLVMContext &Context = OldTy->getContext();
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000668
669 if (OldTy->isIntegerTy())
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000670 return Type::getIntNTy(Context, NewBitWidth);
671 if (NewBitWidth == 32)
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000672 return Type::getFloatTy(Context);
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000673 if (NewBitWidth == 64)
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000674 return Type::getDoubleTy(Context);
675
676 llvm_unreachable("Invalid type for a partial vector access of an alloca!");
677}
678
Mon P Wangddf9abf2011-04-14 08:04:01 +0000679/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
680/// to another vector of the same element type which has the same allocation
681/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
682static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
683 IRBuilder<> &Builder) {
684 const Type *FromType = FromVal->getType();
685 const VectorType *FromVTy = dyn_cast<VectorType>(FromType);
686 const VectorType *ToVTy = dyn_cast<VectorType>(ToType);
687 assert(FromVTy && ToVTy &&
688 (ToVTy->getElementType() == FromVTy->getElementType()) &&
689 "Vectors must have the same element type");
690 LLVMContext &Context = FromVal->getContext();
691 Value *UnV = UndefValue::get(FromType);
692 unsigned numEltsFrom = FromVTy->getNumElements();
693 unsigned numEltsTo = ToVTy->getNumElements();
694
695 SmallVector<Constant*, 3> Args;
696 unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
697 unsigned i;
698 for (i=0; i != minNumElts; ++i)
699 Args.push_back(ConstantInt::get(Type::getInt32Ty(Context), i));
700
701 if (i < numEltsTo) {
702 Constant* UnC = UndefValue::get(Type::getInt32Ty(Context));
703 for (; i != numEltsTo; ++i)
704 Args.push_back(UnC);
705 }
706 Constant *Mask = ConstantVector::get(Args);
707 return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
708}
709
Chris Lattner4cc576b2010-04-16 00:24:57 +0000710/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
711/// or vector value FromVal, extracting the bits from the offset specified by
712/// Offset. This returns the value, which is of type ToType.
713///
714/// This happens when we are converting an "integer union" to a single
715/// integer scalar, or when we are converting a "vector union" to a vector with
716/// insert/extractelement instructions.
717///
718/// Offset is an offset from the original alloca, in bits that need to be
719/// shifted to the right.
720Value *ConvertToScalarInfo::
721ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
722 uint64_t Offset, IRBuilder<> &Builder) {
723 // If the load is of the whole new alloca, no conversion is needed.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000724 const Type *FromType = FromVal->getType();
725 if (FromType == ToType && Offset == 0)
Chris Lattner4cc576b2010-04-16 00:24:57 +0000726 return FromVal;
727
728 // If the result alloca is a vector type, this is either an element
729 // access or a bitcast to another vector type of the same size.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000730 if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
Cameron Zwarich9827b782011-03-29 05:19:52 +0000731 unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
Mon P Wangbe0761c2011-04-13 21:40:02 +0000732 if (ToTypeSize == AllocaSize) {
Mon P Wangddf9abf2011-04-14 08:04:01 +0000733 // If the two types have the same primitive size, use a bit cast.
734 // Otherwise, it is two vectors with the same element type that has
735 // the same allocation size but different number of elements so use
736 // a shuffle vector.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000737 if (FromType->getPrimitiveSizeInBits() ==
738 ToType->getPrimitiveSizeInBits())
739 return Builder.CreateBitCast(FromVal, ToType, "tmp");
Mon P Wangddf9abf2011-04-14 08:04:01 +0000740 else
741 return CreateShuffleVectorCast(FromVal, ToType, Builder);
Mon P Wangbe0761c2011-04-13 21:40:02 +0000742 }
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000743
Cameron Zwarich9827b782011-03-29 05:19:52 +0000744 if (ToType->isVectorTy()) {
Cameron Zwarich032c10f2011-03-09 07:34:11 +0000745 assert(isPowerOf2_64(AllocaSize / ToTypeSize) &&
746 "Partial vector access of an alloca must have a power-of-2 size "
747 "ratio.");
748 assert(Offset == 0 && "Can't extract a value of a smaller vector type "
749 "from a nonzero offset.");
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000750
Cameron Zwarich032c10f2011-03-09 07:34:11 +0000751 const Type *ToElementTy = cast<VectorType>(ToType)->getElementType();
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000752 const Type *CastElementTy = getScaledElementType(ToElementTy,
753 ToTypeSize * 8);
754 unsigned NumCastVectorElements = AllocaSize / ToTypeSize;
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000755
Cameron Zwarich032c10f2011-03-09 07:34:11 +0000756 LLVMContext &Context = FromVal->getContext();
757 const Type *CastTy = VectorType::get(CastElementTy,
758 NumCastVectorElements);
759 Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
760 Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
761 Type::getInt32Ty(Context), 0), "tmp");
762 return Builder.CreateBitCast(Extract, ToType, "tmp");
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000763 }
Chris Lattner4cc576b2010-04-16 00:24:57 +0000764
765 // Otherwise it must be an element access.
766 unsigned Elt = 0;
767 if (Offset) {
768 unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
769 Elt = Offset/EltSize;
770 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
771 }
772 // Return the element extracted out of it.
773 Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
774 Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
775 if (V->getType() != ToType)
776 V = Builder.CreateBitCast(V, ToType, "tmp");
777 return V;
778 }
Bob Wilson69743022011-01-13 20:59:44 +0000779
Chris Lattner4cc576b2010-04-16 00:24:57 +0000780 // If ToType is a first class aggregate, extract out each of the pieces and
781 // use insertvalue's to form the FCA.
782 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
783 const StructLayout &Layout = *TD.getStructLayout(ST);
784 Value *Res = UndefValue::get(ST);
785 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
786 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
787 Offset+Layout.getElementOffsetInBits(i),
788 Builder);
789 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
790 }
791 return Res;
792 }
Bob Wilson69743022011-01-13 20:59:44 +0000793
Chris Lattner4cc576b2010-04-16 00:24:57 +0000794 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
795 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
796 Value *Res = UndefValue::get(AT);
797 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
798 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
799 Offset+i*EltSize, Builder);
800 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
801 }
802 return Res;
803 }
804
805 // Otherwise, this must be a union that was converted to an integer value.
806 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
807
808 // If this is a big-endian system and the load is narrower than the
809 // full alloca type, we need to do a shift to get the right bits.
810 int ShAmt = 0;
811 if (TD.isBigEndian()) {
812 // On big-endian machines, the lowest bit is stored at the bit offset
813 // from the pointer given by getTypeStoreSizeInBits. This matters for
814 // integers with a bitwidth that is not a multiple of 8.
815 ShAmt = TD.getTypeStoreSizeInBits(NTy) -
816 TD.getTypeStoreSizeInBits(ToType) - Offset;
817 } else {
818 ShAmt = Offset;
819 }
820
821 // Note: we support negative bitwidths (with shl) which are not defined.
822 // We do this to support (f.e.) loads off the end of a structure where
823 // only some bits are used.
824 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
825 FromVal = Builder.CreateLShr(FromVal,
826 ConstantInt::get(FromVal->getType(),
827 ShAmt), "tmp");
828 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
Bob Wilson69743022011-01-13 20:59:44 +0000829 FromVal = Builder.CreateShl(FromVal,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000830 ConstantInt::get(FromVal->getType(),
831 -ShAmt), "tmp");
832
833 // Finally, unconditionally truncate the integer to the right width.
834 unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
835 if (LIBitWidth < NTy->getBitWidth())
836 FromVal =
Bob Wilson69743022011-01-13 20:59:44 +0000837 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
Chris Lattner4cc576b2010-04-16 00:24:57 +0000838 LIBitWidth), "tmp");
839 else if (LIBitWidth > NTy->getBitWidth())
840 FromVal =
Bob Wilson69743022011-01-13 20:59:44 +0000841 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
Chris Lattner4cc576b2010-04-16 00:24:57 +0000842 LIBitWidth), "tmp");
843
844 // If the result is an integer, this is a trunc or bitcast.
845 if (ToType->isIntegerTy()) {
846 // Should be done.
847 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
848 // Just do a bitcast, we know the sizes match up.
849 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
850 } else {
851 // Otherwise must be a pointer.
852 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
853 }
854 assert(FromVal->getType() == ToType && "Didn't convert right?");
855 return FromVal;
856}
857
858/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
859/// or vector value "Old" at the offset specified by Offset.
860///
861/// This happens when we are converting an "integer union" to a
862/// single integer scalar, or when we are converting a "vector union" to a
863/// vector with insert/extractelement instructions.
864///
865/// Offset is an offset from the original alloca, in bits that need to be
866/// shifted to the right.
867Value *ConvertToScalarInfo::
868ConvertScalar_InsertValue(Value *SV, Value *Old,
869 uint64_t Offset, IRBuilder<> &Builder) {
870 // Convert the stored type to the actual type, shift it left to insert
871 // then 'or' into place.
872 const Type *AllocaType = Old->getType();
873 LLVMContext &Context = Old->getContext();
874
875 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
876 uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
877 uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
Bob Wilson69743022011-01-13 20:59:44 +0000878
Chris Lattner4cc576b2010-04-16 00:24:57 +0000879 // Changing the whole vector with memset or with an access of a different
880 // vector type?
Mon P Wangbe0761c2011-04-13 21:40:02 +0000881 if (ValSize == VecSize) {
Mon P Wangddf9abf2011-04-14 08:04:01 +0000882 // If the two types have the same primitive size, use a bit cast.
883 // Otherwise, it is two vectors with the same element type that has
884 // the same allocation size but different number of elements so use
885 // a shuffle vector.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000886 if (VTy->getPrimitiveSizeInBits() ==
887 SV->getType()->getPrimitiveSizeInBits())
888 return Builder.CreateBitCast(SV, AllocaType, "tmp");
Mon P Wangddf9abf2011-04-14 08:04:01 +0000889 else
890 return CreateShuffleVectorCast(SV, VTy, Builder);
Mon P Wangbe0761c2011-04-13 21:40:02 +0000891 }
Chris Lattner4cc576b2010-04-16 00:24:57 +0000892
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000893 if (SV->getType()->isVectorTy() && isPowerOf2_64(VecSize / ValSize)) {
894 assert(Offset == 0 && "Can't insert a value of a smaller vector type at "
895 "a nonzero offset.");
896
897 const Type *ToElementTy =
898 cast<VectorType>(SV->getType())->getElementType();
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000899 const Type *CastElementTy = getScaledElementType(ToElementTy, ValSize);
900 unsigned NumCastVectorElements = VecSize / ValSize;
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000901
902 LLVMContext &Context = SV->getContext();
903 const Type *OldCastTy = VectorType::get(CastElementTy,
904 NumCastVectorElements);
905 Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
906
907 Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
908 Value *Insert =
909 Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
910 Type::getInt32Ty(Context), 0), "tmp");
911 return Builder.CreateBitCast(Insert, AllocaType, "tmp");
912 }
913
Chris Lattner4cc576b2010-04-16 00:24:57 +0000914 uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
915
916 // Must be an element insertion.
917 unsigned Elt = Offset/EltSize;
Bob Wilson69743022011-01-13 20:59:44 +0000918
Chris Lattner4cc576b2010-04-16 00:24:57 +0000919 if (SV->getType() != VTy->getElementType())
920 SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
Bob Wilson69743022011-01-13 20:59:44 +0000921
922 SV = Builder.CreateInsertElement(Old, SV,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000923 ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
924 "tmp");
925 return SV;
926 }
Bob Wilson69743022011-01-13 20:59:44 +0000927
Chris Lattner4cc576b2010-04-16 00:24:57 +0000928 // If SV is a first-class aggregate value, insert each value recursively.
929 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
930 const StructLayout &Layout = *TD.getStructLayout(ST);
931 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
932 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
Bob Wilson69743022011-01-13 20:59:44 +0000933 Old = ConvertScalar_InsertValue(Elt, Old,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000934 Offset+Layout.getElementOffsetInBits(i),
935 Builder);
936 }
937 return Old;
938 }
Bob Wilson69743022011-01-13 20:59:44 +0000939
Chris Lattner4cc576b2010-04-16 00:24:57 +0000940 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
941 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
942 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
943 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
944 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
945 }
946 return Old;
947 }
948
949 // If SV is a float, convert it to the appropriate integer type.
950 // If it is a pointer, do the same.
951 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
952 unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
953 unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
954 unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
955 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
956 SV = Builder.CreateBitCast(SV,
957 IntegerType::get(SV->getContext(),SrcWidth), "tmp");
958 else if (SV->getType()->isPointerTy())
959 SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
960
961 // Zero extend or truncate the value if needed.
962 if (SV->getType() != AllocaType) {
963 if (SV->getType()->getPrimitiveSizeInBits() <
964 AllocaType->getPrimitiveSizeInBits())
965 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
966 else {
967 // Truncation may be needed if storing more than the alloca can hold
968 // (undefined behavior).
969 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
970 SrcWidth = DestWidth;
971 SrcStoreWidth = DestStoreWidth;
972 }
973 }
974
975 // If this is a big-endian system and the store is narrower than the
976 // full alloca type, we need to do a shift to get the right bits.
977 int ShAmt = 0;
978 if (TD.isBigEndian()) {
979 // On big-endian machines, the lowest bit is stored at the bit offset
980 // from the pointer given by getTypeStoreSizeInBits. This matters for
981 // integers with a bitwidth that is not a multiple of 8.
982 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
983 } else {
984 ShAmt = Offset;
985 }
986
987 // Note: we support negative bitwidths (with shr) which are not defined.
988 // We do this to support (f.e.) stores off the end of a structure where
989 // only some bits in the structure are set.
990 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
991 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
992 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
993 ShAmt), "tmp");
994 Mask <<= ShAmt;
995 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
996 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
997 -ShAmt), "tmp");
998 Mask = Mask.lshr(-ShAmt);
999 }
1000
1001 // Mask out the bits we are about to insert from the old value, and or
1002 // in the new bits.
1003 if (SrcWidth != DestWidth) {
1004 assert(DestWidth > SrcWidth);
1005 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1006 SV = Builder.CreateOr(Old, SV, "ins");
1007 }
1008 return SV;
1009}
1010
1011
1012//===----------------------------------------------------------------------===//
1013// SRoA Driver
1014//===----------------------------------------------------------------------===//
1015
1016
Chris Lattnered7b41e2003-05-27 15:45:27 +00001017bool SROA::runOnFunction(Function &F) {
Dan Gohmane4af1cf2009-08-19 18:22:18 +00001018 TD = getAnalysisIfAvailable<TargetData>();
1019
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +00001020 bool Changed = performPromotion(F);
Dan Gohmane4af1cf2009-08-19 18:22:18 +00001021
1022 // FIXME: ScalarRepl currently depends on TargetData more than it
1023 // theoretically needs to. It should be refactored in order to support
1024 // target-independent IR. Until this is done, just skip the actual
1025 // scalar-replacement portion of this pass.
1026 if (!TD) return Changed;
1027
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +00001028 while (1) {
1029 bool LocalChange = performScalarRepl(F);
1030 if (!LocalChange) break; // No need to repromote if no scalarrepl
1031 Changed = true;
1032 LocalChange = performPromotion(F);
1033 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
1034 }
Chris Lattner38aec322003-09-11 16:45:55 +00001035
1036 return Changed;
1037}
1038
Chris Lattnerd0f56132011-01-14 19:50:47 +00001039namespace {
1040class AllocaPromoter : public LoadAndStorePromoter {
1041 AllocaInst *AI;
1042public:
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001043 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
1044 : LoadAndStorePromoter(Insts, S), AI(0) {}
Chris Lattnerd0f56132011-01-14 19:50:47 +00001045
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001046 void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
Chris Lattnerd0f56132011-01-14 19:50:47 +00001047 // Remember which alloca we're promoting (for isInstInList).
1048 this->AI = AI;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001049 LoadAndStorePromoter::run(Insts);
Chris Lattnerd0f56132011-01-14 19:50:47 +00001050 AI->eraseFromParent();
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001051 }
1052
Chris Lattnerd0f56132011-01-14 19:50:47 +00001053 virtual bool isInstInList(Instruction *I,
1054 const SmallVectorImpl<Instruction*> &Insts) const {
1055 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1056 return LI->getOperand(0) == AI;
1057 return cast<StoreInst>(I)->getPointerOperand() == AI;
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001058 }
Chris Lattnerd0f56132011-01-14 19:50:47 +00001059};
1060} // end anon namespace
Chris Lattner38aec322003-09-11 16:45:55 +00001061
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001062/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1063/// subsequently loaded can be rewritten to load both input pointers and then
1064/// select between the result, allowing the load of the alloca to be promoted.
1065/// From this:
1066/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1067/// %V = load i32* %P2
1068/// to:
1069/// %V1 = load i32* %Alloca -> will be mem2reg'd
1070/// %V2 = load i32* %Other
Chris Lattnere3357862011-01-24 01:07:11 +00001071/// %V = select i1 %cond, i32 %V1, i32 %V2
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001072///
1073/// We can do this to a select if its only uses are loads and if the operand to
1074/// the select can be loaded unconditionally.
1075static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1076 bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1077 bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1078
1079 for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1080 UI != UE; ++UI) {
1081 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1082 if (LI == 0 || LI->isVolatile()) return false;
1083
Chris Lattnere3357862011-01-24 01:07:11 +00001084 // Both operands to the select need to be dereferencable, either absolutely
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001085 // (e.g. allocas) or at this point because we can see other accesses to it.
1086 if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1087 LI->getAlignment(), TD))
1088 return false;
1089 if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1090 LI->getAlignment(), TD))
1091 return false;
1092 }
1093
1094 return true;
1095}
1096
Chris Lattnere3357862011-01-24 01:07:11 +00001097/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1098/// subsequently loaded can be rewritten to load both input pointers in the pred
1099/// blocks and then PHI the results, allowing the load of the alloca to be
1100/// promoted.
1101/// From this:
1102/// %P2 = phi [i32* %Alloca, i32* %Other]
1103/// %V = load i32* %P2
1104/// to:
1105/// %V1 = load i32* %Alloca -> will be mem2reg'd
1106/// ...
1107/// %V2 = load i32* %Other
1108/// ...
1109/// %V = phi [i32 %V1, i32 %V2]
1110///
1111/// We can do this to a select if its only uses are loads and if the operand to
1112/// the select can be loaded unconditionally.
1113static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1114 // For now, we can only do this promotion if the load is in the same block as
1115 // the PHI, and if there are no stores between the phi and load.
1116 // TODO: Allow recursive phi users.
1117 // TODO: Allow stores.
1118 BasicBlock *BB = PN->getParent();
1119 unsigned MaxAlign = 0;
1120 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1121 UI != UE; ++UI) {
1122 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1123 if (LI == 0 || LI->isVolatile()) return false;
1124
1125 // For now we only allow loads in the same block as the PHI. This is a
1126 // common case that happens when instcombine merges two loads through a PHI.
1127 if (LI->getParent() != BB) return false;
1128
1129 // Ensure that there are no instructions between the PHI and the load that
1130 // could store.
1131 for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1132 if (BBI->mayWriteToMemory())
1133 return false;
1134
1135 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1136 }
1137
1138 // Okay, we know that we have one or more loads in the same block as the PHI.
1139 // We can transform this if it is safe to push the loads into the predecessor
1140 // blocks. The only thing to watch out for is that we can't put a possibly
1141 // trapping load in the predecessor if it is a critical edge.
1142 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1143 BasicBlock *Pred = PN->getIncomingBlock(i);
1144
1145 // If the predecessor has a single successor, then the edge isn't critical.
1146 if (Pred->getTerminator()->getNumSuccessors() == 1)
1147 continue;
1148
1149 Value *InVal = PN->getIncomingValue(i);
1150
1151 // If the InVal is an invoke in the pred, we can't put a load on the edge.
1152 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1153 if (II->getParent() == Pred)
1154 return false;
1155
1156 // If this pointer is always safe to load, or if we can prove that there is
1157 // already a load in the block, then we can move the load to the pred block.
1158 if (InVal->isDereferenceablePointer() ||
1159 isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1160 continue;
1161
1162 return false;
1163 }
1164
1165 return true;
1166}
1167
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001168
1169/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1170/// direct (non-volatile) loads and stores to it. If the alloca is close but
1171/// not quite there, this will transform the code to allow promotion. As such,
1172/// it is a non-pure predicate.
1173static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1174 SetVector<Instruction*, SmallVector<Instruction*, 4>,
1175 SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1176
1177 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1178 UI != UE; ++UI) {
1179 User *U = *UI;
1180 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1181 if (LI->isVolatile())
1182 return false;
1183 continue;
1184 }
1185
1186 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1187 if (SI->getOperand(0) == AI || SI->isVolatile())
1188 return false; // Don't allow a store OF the AI, only INTO the AI.
1189 continue;
1190 }
1191
1192 if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1193 // If the condition being selected on is a constant, fold the select, yes
1194 // this does (rarely) happen early on.
1195 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1196 Value *Result = SI->getOperand(1+CI->isZero());
1197 SI->replaceAllUsesWith(Result);
1198 SI->eraseFromParent();
1199
1200 // This is very rare and we just scrambled the use list of AI, start
1201 // over completely.
1202 return tryToMakeAllocaBePromotable(AI, TD);
1203 }
1204
1205 // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1206 // loads, then we can transform this by rewriting the select.
1207 if (!isSafeSelectToSpeculate(SI, TD))
1208 return false;
1209
1210 InstsToRewrite.insert(SI);
1211 continue;
1212 }
1213
Chris Lattnere3357862011-01-24 01:07:11 +00001214 if (PHINode *PN = dyn_cast<PHINode>(U)) {
1215 if (PN->use_empty()) { // Dead PHIs can be stripped.
1216 InstsToRewrite.insert(PN);
1217 continue;
1218 }
1219
1220 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1221 // in the pred blocks, then we can transform this by rewriting the PHI.
1222 if (!isSafePHIToSpeculate(PN, TD))
1223 return false;
1224
1225 InstsToRewrite.insert(PN);
1226 continue;
1227 }
1228
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001229 return false;
1230 }
1231
1232 // If there are no instructions to rewrite, then all uses are load/stores and
1233 // we're done!
1234 if (InstsToRewrite.empty())
1235 return true;
1236
1237 // If we have instructions that need to be rewritten for this to be promotable
1238 // take care of it now.
1239 for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
Chris Lattnere3357862011-01-24 01:07:11 +00001240 if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1241 // Selects in InstsToRewrite only have load uses. Rewrite each as two
1242 // loads with a new select.
1243 while (!SI->use_empty()) {
1244 LoadInst *LI = cast<LoadInst>(SI->use_back());
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001245
Chris Lattnere3357862011-01-24 01:07:11 +00001246 IRBuilder<> Builder(LI);
1247 LoadInst *TrueLoad =
1248 Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1249 LoadInst *FalseLoad =
1250 Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1251
1252 // Transfer alignment and TBAA info if present.
1253 TrueLoad->setAlignment(LI->getAlignment());
1254 FalseLoad->setAlignment(LI->getAlignment());
1255 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1256 TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1257 FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1258 }
1259
1260 Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1261 V->takeName(LI);
1262 LI->replaceAllUsesWith(V);
1263 LI->eraseFromParent();
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001264 }
Chris Lattnere3357862011-01-24 01:07:11 +00001265
1266 // Now that all the loads are gone, the select is gone too.
1267 SI->eraseFromParent();
1268 continue;
1269 }
1270
1271 // Otherwise, we have a PHI node which allows us to push the loads into the
1272 // predecessors.
1273 PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1274 if (PN->use_empty()) {
1275 PN->eraseFromParent();
1276 continue;
1277 }
1278
1279 const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
Jay Foad3ecfc862011-03-30 11:28:46 +00001280 PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1281 PN->getName()+".ld", PN);
Chris Lattnere3357862011-01-24 01:07:11 +00001282
1283 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1284 // matter which one we get and if any differ, it doesn't matter.
1285 LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1286 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1287 unsigned Align = SomeLoad->getAlignment();
1288
1289 // Rewrite all loads of the PN to use the new PHI.
1290 while (!PN->use_empty()) {
1291 LoadInst *LI = cast<LoadInst>(PN->use_back());
1292 LI->replaceAllUsesWith(NewPN);
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001293 LI->eraseFromParent();
1294 }
1295
Chris Lattnere3357862011-01-24 01:07:11 +00001296 // Inject loads into all of the pred blocks. Keep track of which blocks we
1297 // insert them into in case we have multiple edges from the same block.
1298 DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1299
1300 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1301 BasicBlock *Pred = PN->getIncomingBlock(i);
1302 LoadInst *&Load = InsertedLoads[Pred];
1303 if (Load == 0) {
1304 Load = new LoadInst(PN->getIncomingValue(i),
1305 PN->getName() + "." + Pred->getName(),
1306 Pred->getTerminator());
1307 Load->setAlignment(Align);
1308 if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1309 }
1310
1311 NewPN->addIncoming(Load, Pred);
1312 }
1313
1314 PN->eraseFromParent();
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001315 }
1316
1317 ++NumAdjusted;
1318 return true;
1319}
1320
1321
Chris Lattner38aec322003-09-11 16:45:55 +00001322bool SROA::performPromotion(Function &F) {
1323 std::vector<AllocaInst*> Allocas;
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001324 DominatorTree *DT = 0;
Cameron Zwarichb1686c32011-01-18 03:53:26 +00001325 if (HasDomTree)
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001326 DT = &getAnalysis<DominatorTree>();
Chris Lattner38aec322003-09-11 16:45:55 +00001327
Chris Lattner02a3be02003-09-20 14:39:18 +00001328 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
Chris Lattner38aec322003-09-11 16:45:55 +00001329
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +00001330 bool Changed = false;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001331 SmallVector<Instruction*, 64> Insts;
Chris Lattner38aec322003-09-11 16:45:55 +00001332 while (1) {
1333 Allocas.clear();
1334
1335 // Find allocas that are safe to promote, by looking at all instructions in
1336 // the entry node
1337 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1338 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001339 if (tryToMakeAllocaBePromotable(AI, TD))
Chris Lattner38aec322003-09-11 16:45:55 +00001340 Allocas.push_back(AI);
1341
1342 if (Allocas.empty()) break;
1343
Cameron Zwarichb1686c32011-01-18 03:53:26 +00001344 if (HasDomTree)
Cameron Zwarich419e8a62011-01-17 17:38:41 +00001345 PromoteMemToReg(Allocas, *DT);
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001346 else {
1347 SSAUpdater SSA;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001348 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1349 AllocaInst *AI = Allocas[i];
1350
1351 // Build list of instructions to promote.
1352 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1353 UI != E; ++UI)
1354 Insts.push_back(cast<Instruction>(*UI));
1355
1356 AllocaPromoter(Insts, SSA).run(AI, Insts);
1357 Insts.clear();
1358 }
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001359 }
Chris Lattner38aec322003-09-11 16:45:55 +00001360 NumPromoted += Allocas.size();
1361 Changed = true;
1362 }
1363
1364 return Changed;
1365}
1366
Chris Lattner4cc576b2010-04-16 00:24:57 +00001367
Bob Wilson3992feb2010-02-03 17:23:56 +00001368/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1369/// SROA. It must be a struct or array type with a small number of elements.
1370static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1371 const Type *T = AI->getAllocatedType();
1372 // Do not promote any struct into more than 32 separate vars.
Chris Lattner963a97f2008-06-22 17:46:21 +00001373 if (const StructType *ST = dyn_cast<StructType>(T))
Bob Wilson3992feb2010-02-03 17:23:56 +00001374 return ST->getNumElements() <= 32;
1375 // Arrays are much less likely to be safe for SROA; only consider
1376 // them if they are very small.
1377 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1378 return AT->getNumElements() <= 8;
1379 return false;
Chris Lattner963a97f2008-06-22 17:46:21 +00001380}
1381
Chris Lattnerc4472072010-04-15 23:50:26 +00001382
Chris Lattner38aec322003-09-11 16:45:55 +00001383// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1384// which runs on all of the malloc/alloca instructions in the function, removing
1385// them if they are only used by getelementptr instructions.
1386//
1387bool SROA::performScalarRepl(Function &F) {
Victor Hernandez7b929da2009-10-23 21:09:37 +00001388 std::vector<AllocaInst*> WorkList;
Chris Lattnered7b41e2003-05-27 15:45:27 +00001389
Chris Lattner31d80102010-04-15 21:59:20 +00001390 // Scan the entry basic block, adding allocas to the worklist.
Chris Lattner02a3be02003-09-20 14:39:18 +00001391 BasicBlock &BB = F.getEntryBlock();
Chris Lattnered7b41e2003-05-27 15:45:27 +00001392 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
Victor Hernandez7b929da2009-10-23 21:09:37 +00001393 if (AllocaInst *A = dyn_cast<AllocaInst>(I))
Chris Lattnered7b41e2003-05-27 15:45:27 +00001394 WorkList.push_back(A);
1395
1396 // Process the worklist
1397 bool Changed = false;
1398 while (!WorkList.empty()) {
Victor Hernandez7b929da2009-10-23 21:09:37 +00001399 AllocaInst *AI = WorkList.back();
Chris Lattnered7b41e2003-05-27 15:45:27 +00001400 WorkList.pop_back();
Bob Wilson69743022011-01-13 20:59:44 +00001401
Chris Lattneradd2bd72006-12-22 23:14:42 +00001402 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1403 // with unused elements.
1404 if (AI->use_empty()) {
1405 AI->eraseFromParent();
Chris Lattnerc4472072010-04-15 23:50:26 +00001406 Changed = true;
Chris Lattneradd2bd72006-12-22 23:14:42 +00001407 continue;
1408 }
Chris Lattner7809ecd2009-02-03 01:30:09 +00001409
1410 // If this alloca is impossible for us to promote, reject it early.
1411 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1412 continue;
Bob Wilson69743022011-01-13 20:59:44 +00001413
Chris Lattner79b3bd32007-04-25 06:40:51 +00001414 // Check to see if this allocation is only modified by a memcpy/memmove from
1415 // a constant global. If this is the case, we can change all users to use
1416 // the constant global instead. This is commonly produced by the CFE by
1417 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1418 // is only subsequently read.
Chris Lattner31d80102010-04-15 21:59:20 +00001419 if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
David Greene504c7d82010-01-05 01:27:09 +00001420 DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1421 DEBUG(dbgs() << " memcpy = " << *TheCopy << '\n');
Chris Lattner31d80102010-04-15 21:59:20 +00001422 Constant *TheSrc = cast<Constant>(TheCopy->getSource());
Owen Andersonbaf3c402009-07-29 18:55:55 +00001423 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
Chris Lattner79b3bd32007-04-25 06:40:51 +00001424 TheCopy->eraseFromParent(); // Don't mutate the global.
1425 AI->eraseFromParent();
1426 ++NumGlobals;
1427 Changed = true;
1428 continue;
1429 }
Bob Wilson69743022011-01-13 20:59:44 +00001430
Chris Lattner7809ecd2009-02-03 01:30:09 +00001431 // Check to see if we can perform the core SROA transformation. We cannot
1432 // transform the allocation instruction if it is an array allocation
1433 // (allocations OF arrays are ok though), and an allocation of a scalar
1434 // value cannot be decomposed at all.
Duncan Sands777d2302009-05-09 07:06:46 +00001435 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
Bill Wendling5a377cb2009-03-03 12:12:58 +00001436
Nick Lewyckyd3aa25e2009-08-17 05:37:31 +00001437 // Do not promote [0 x %struct].
1438 if (AllocaSize == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00001439
Chris Lattner31d80102010-04-15 21:59:20 +00001440 // Do not promote any struct whose size is too big.
1441 if (AllocaSize > SRThreshold) continue;
Bob Wilson69743022011-01-13 20:59:44 +00001442
Bob Wilson3992feb2010-02-03 17:23:56 +00001443 // If the alloca looks like a good candidate for scalar replacement, and if
1444 // all its users can be transformed, then split up the aggregate into its
1445 // separate elements.
1446 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1447 DoScalarReplacement(AI, WorkList);
1448 Changed = true;
1449 continue;
1450 }
1451
Chris Lattner6e733d32009-01-28 20:16:43 +00001452 // If we can turn this aggregate value (potentially with casts) into a
1453 // simple scalar value that can be mem2reg'd into a register value.
Chris Lattner2e0d5f82009-01-31 02:28:54 +00001454 // IsNotTrivial tracks whether this is something that mem2reg could have
1455 // promoted itself. If so, we don't want to transform it needlessly. Note
1456 // that we can't just check based on the type: the alloca may be of an i32
1457 // but that has pointer arithmetic to set byte 3 of it or something.
Chris Lattner593375d2010-04-16 00:20:00 +00001458 if (AllocaInst *NewAI =
1459 ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
Chris Lattner7809ecd2009-02-03 01:30:09 +00001460 NewAI->takeName(AI);
1461 AI->eraseFromParent();
1462 ++NumConverted;
1463 Changed = true;
1464 continue;
Bob Wilson69743022011-01-13 20:59:44 +00001465 }
1466
Chris Lattner7809ecd2009-02-03 01:30:09 +00001467 // Otherwise, couldn't process this alloca.
Chris Lattnered7b41e2003-05-27 15:45:27 +00001468 }
1469
1470 return Changed;
1471}
Chris Lattner5e062a12003-05-30 04:15:41 +00001472
Chris Lattnera10b29b2007-04-25 05:02:56 +00001473/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1474/// predicate, do SROA now.
Bob Wilson69743022011-01-13 20:59:44 +00001475void SROA::DoScalarReplacement(AllocaInst *AI,
Victor Hernandez7b929da2009-10-23 21:09:37 +00001476 std::vector<AllocaInst*> &WorkList) {
David Greene504c7d82010-01-05 01:27:09 +00001477 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
Chris Lattnera10b29b2007-04-25 05:02:56 +00001478 SmallVector<AllocaInst*, 32> ElementAllocas;
1479 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1480 ElementAllocas.reserve(ST->getNumContainedTypes());
1481 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
Bob Wilson69743022011-01-13 20:59:44 +00001482 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
Chris Lattnera10b29b2007-04-25 05:02:56 +00001483 AI->getAlignment(),
Daniel Dunbarfe09b202009-07-30 17:37:43 +00001484 AI->getName() + "." + Twine(i), AI);
Chris Lattnera10b29b2007-04-25 05:02:56 +00001485 ElementAllocas.push_back(NA);
1486 WorkList.push_back(NA); // Add to worklist for recursive processing
1487 }
1488 } else {
1489 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1490 ElementAllocas.reserve(AT->getNumElements());
1491 const Type *ElTy = AT->getElementType();
1492 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Owen Anderson50dead02009-07-15 23:53:25 +00001493 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
Daniel Dunbarfe09b202009-07-30 17:37:43 +00001494 AI->getName() + "." + Twine(i), AI);
Chris Lattnera10b29b2007-04-25 05:02:56 +00001495 ElementAllocas.push_back(NA);
1496 WorkList.push_back(NA); // Add to worklist for recursive processing
1497 }
1498 }
1499
Bob Wilsonb742def2009-12-18 20:14:40 +00001500 // Now that we have created the new alloca instructions, rewrite all the
1501 // uses of the old alloca.
1502 RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
Chris Lattnera59adc42009-12-14 05:11:02 +00001503
Bob Wilsonb742def2009-12-18 20:14:40 +00001504 // Now erase any instructions that were made dead while rewriting the alloca.
1505 DeleteDeadInstructions();
Bob Wilson39c88a62009-12-17 18:34:24 +00001506 AI->eraseFromParent();
Bob Wilsonb742def2009-12-18 20:14:40 +00001507
Dan Gohmanfe601042010-06-22 15:08:57 +00001508 ++NumReplaced;
Chris Lattnera10b29b2007-04-25 05:02:56 +00001509}
Chris Lattnera59adc42009-12-14 05:11:02 +00001510
Bob Wilsonb742def2009-12-18 20:14:40 +00001511/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1512/// recursively including all their operands that become trivially dead.
1513void SROA::DeleteDeadInstructions() {
1514 while (!DeadInsts.empty()) {
1515 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
Chris Lattnera59adc42009-12-14 05:11:02 +00001516
Bob Wilsonb742def2009-12-18 20:14:40 +00001517 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1518 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1519 // Zero out the operand and see if it becomes trivially dead.
1520 // (But, don't add allocas to the dead instruction list -- they are
1521 // already on the worklist and will be deleted separately.)
1522 *OI = 0;
1523 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1524 DeadInsts.push_back(U);
Chris Lattnera59adc42009-12-14 05:11:02 +00001525 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001526
1527 I->eraseFromParent();
Chris Lattnera59adc42009-12-14 05:11:02 +00001528 }
Chris Lattnera59adc42009-12-14 05:11:02 +00001529}
Bob Wilson69743022011-01-13 20:59:44 +00001530
Bob Wilsonb742def2009-12-18 20:14:40 +00001531/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1532/// performing scalar replacement of alloca AI. The results are flagged in
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001533/// the Info parameter. Offset indicates the position within AI that is
1534/// referenced by this instruction.
Chris Lattner6c95d242011-01-23 07:29:29 +00001535void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001536 AllocaInfo &Info) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001537 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1538 Instruction *User = cast<Instruction>(*UI);
Chris Lattnerbe883a22003-11-25 21:09:18 +00001539
Bob Wilsonb742def2009-12-18 20:14:40 +00001540 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
Chris Lattner6c95d242011-01-23 07:29:29 +00001541 isSafeForScalarRepl(BC, Offset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001542 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001543 uint64_t GEPOffset = Offset;
Chris Lattner6c95d242011-01-23 07:29:29 +00001544 isSafeGEP(GEPI, GEPOffset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001545 if (!Info.isUnsafe)
Chris Lattner6c95d242011-01-23 07:29:29 +00001546 isSafeForScalarRepl(GEPI, GEPOffset, Info);
Gabor Greif19101c72010-06-28 11:20:42 +00001547 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001548 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001549 if (Length == 0)
1550 return MarkUnsafe(Info, User);
Chris Lattner6c95d242011-01-23 07:29:29 +00001551 isSafeMemAccess(Offset, Length->getZExtValue(), 0,
Chris Lattner145c5322011-01-23 08:27:54 +00001552 UI.getOperandNo() == 0, Info, MI,
1553 true /*AllowWholeAccess*/);
Bob Wilsonb742def2009-12-18 20:14:40 +00001554 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001555 if (LI->isVolatile())
1556 return MarkUnsafe(Info, User);
1557 const Type *LIType = LI->getType();
Chris Lattner6c95d242011-01-23 07:29:29 +00001558 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
Chris Lattner145c5322011-01-23 08:27:54 +00001559 LIType, false, Info, LI, true /*AllowWholeAccess*/);
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001560 Info.hasALoadOrStore = true;
1561
Bob Wilsonb742def2009-12-18 20:14:40 +00001562 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1563 // Store is ok if storing INTO the pointer, not storing the pointer
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001564 if (SI->isVolatile() || SI->getOperand(0) == I)
1565 return MarkUnsafe(Info, User);
1566
1567 const Type *SIType = SI->getOperand(0)->getType();
Chris Lattner6c95d242011-01-23 07:29:29 +00001568 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
Chris Lattner145c5322011-01-23 08:27:54 +00001569 SIType, true, Info, SI, true /*AllowWholeAccess*/);
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001570 Info.hasALoadOrStore = true;
Chris Lattner145c5322011-01-23 08:27:54 +00001571 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1572 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1573 } else {
1574 return MarkUnsafe(Info, User);
1575 }
1576 if (Info.isUnsafe) return;
1577 }
1578}
1579
1580
1581/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1582/// derived from the alloca, we can often still split the alloca into elements.
1583/// This is useful if we have a large alloca where one element is phi'd
1584/// together somewhere: we can SRoA and promote all the other elements even if
1585/// we end up not being able to promote this one.
1586///
1587/// All we require is that the uses of the PHI do not index into other parts of
1588/// the alloca. The most important use case for this is single load and stores
1589/// that are PHI'd together, which can happen due to code sinking.
1590void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1591 AllocaInfo &Info) {
1592 // If we've already checked this PHI, don't do it again.
1593 if (PHINode *PN = dyn_cast<PHINode>(I))
1594 if (!Info.CheckedPHIs.insert(PN))
1595 return;
1596
1597 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1598 Instruction *User = cast<Instruction>(*UI);
1599
1600 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1601 isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1602 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1603 // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1604 // but would have to prove that we're staying inside of an element being
1605 // promoted.
1606 if (!GEPI->hasAllZeroIndices())
1607 return MarkUnsafe(Info, User);
1608 isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1609 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1610 if (LI->isVolatile())
1611 return MarkUnsafe(Info, User);
1612 const Type *LIType = LI->getType();
1613 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1614 LIType, false, Info, LI, false /*AllowWholeAccess*/);
1615 Info.hasALoadOrStore = true;
1616
1617 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1618 // Store is ok if storing INTO the pointer, not storing the pointer
1619 if (SI->isVolatile() || SI->getOperand(0) == I)
1620 return MarkUnsafe(Info, User);
1621
1622 const Type *SIType = SI->getOperand(0)->getType();
1623 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1624 SIType, true, Info, SI, false /*AllowWholeAccess*/);
1625 Info.hasALoadOrStore = true;
1626 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1627 isSafePHISelectUseForScalarRepl(User, Offset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001628 } else {
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001629 return MarkUnsafe(Info, User);
Bob Wilsonb742def2009-12-18 20:14:40 +00001630 }
1631 if (Info.isUnsafe) return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001632 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001633}
Bob Wilson39c88a62009-12-17 18:34:24 +00001634
Bob Wilsonb742def2009-12-18 20:14:40 +00001635/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1636/// replacement. It is safe when all the indices are constant, in-bounds
1637/// references, and when the resulting offset corresponds to an element within
1638/// the alloca type. The results are flagged in the Info parameter. Upon
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001639/// return, Offset is adjusted as specified by the GEP indices.
Chris Lattner6c95d242011-01-23 07:29:29 +00001640void SROA::isSafeGEP(GetElementPtrInst *GEPI,
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001641 uint64_t &Offset, AllocaInfo &Info) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001642 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1643 if (GEPIt == E)
1644 return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001645
Chris Lattner88e6dc82008-08-23 05:21:06 +00001646 // Walk through the GEP type indices, checking the types that this indexes
1647 // into.
Bob Wilsonb742def2009-12-18 20:14:40 +00001648 for (; GEPIt != E; ++GEPIt) {
Chris Lattner88e6dc82008-08-23 05:21:06 +00001649 // Ignore struct elements, no extra checking needed for these.
Duncan Sands1df98592010-02-16 11:11:14 +00001650 if ((*GEPIt)->isStructTy())
Chris Lattner88e6dc82008-08-23 05:21:06 +00001651 continue;
Matthijs Kooijman5fac55f2008-10-06 16:23:31 +00001652
Bob Wilsonb742def2009-12-18 20:14:40 +00001653 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1654 if (!IdxVal)
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001655 return MarkUnsafe(Info, GEPI);
Chris Lattner88e6dc82008-08-23 05:21:06 +00001656 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001657
Bob Wilsonf27a4cd2009-12-22 06:57:14 +00001658 // Compute the offset due to this GEP and check if the alloca has a
1659 // component element at that offset.
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001660 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1661 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1662 &Indices[0], Indices.size());
Chris Lattner6c95d242011-01-23 07:29:29 +00001663 if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001664 MarkUnsafe(Info, GEPI);
Chris Lattner5e062a12003-05-30 04:15:41 +00001665}
1666
Bob Wilson704d1342011-01-13 17:45:11 +00001667/// isHomogeneousAggregate - Check if type T is a struct or array containing
1668/// elements of the same type (which is always true for arrays). If so,
1669/// return true with NumElts and EltTy set to the number of elements and the
1670/// element type, respectively.
1671static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1672 const Type *&EltTy) {
1673 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1674 NumElts = AT->getNumElements();
Bob Wilsonf0908ae2011-01-13 18:26:59 +00001675 EltTy = (NumElts == 0 ? 0 : AT->getElementType());
Bob Wilson704d1342011-01-13 17:45:11 +00001676 return true;
1677 }
1678 if (const StructType *ST = dyn_cast<StructType>(T)) {
1679 NumElts = ST->getNumContainedTypes();
Bob Wilsonf0908ae2011-01-13 18:26:59 +00001680 EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
Bob Wilson704d1342011-01-13 17:45:11 +00001681 for (unsigned n = 1; n < NumElts; ++n) {
1682 if (ST->getContainedType(n) != EltTy)
1683 return false;
1684 }
1685 return true;
1686 }
1687 return false;
1688}
1689
1690/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1691/// "homogeneous" aggregates with the same element type and number of elements.
1692static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1693 if (T1 == T2)
1694 return true;
1695
1696 unsigned NumElts1, NumElts2;
1697 const Type *EltTy1, *EltTy2;
1698 if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1699 isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1700 NumElts1 == NumElts2 &&
1701 EltTy1 == EltTy2)
1702 return true;
1703
1704 return false;
1705}
1706
Bob Wilsonb742def2009-12-18 20:14:40 +00001707/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1708/// alloca or has an offset and size that corresponds to a component element
1709/// within it. The offset checked here may have been formed from a GEP with a
1710/// pointer bitcasted to a different type.
Chris Lattner145c5322011-01-23 08:27:54 +00001711///
1712/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1713/// unit. If false, it only allows accesses known to be in a single element.
Chris Lattner6c95d242011-01-23 07:29:29 +00001714void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Bob Wilsonb742def2009-12-18 20:14:40 +00001715 const Type *MemOpType, bool isStore,
Chris Lattner145c5322011-01-23 08:27:54 +00001716 AllocaInfo &Info, Instruction *TheAccess,
1717 bool AllowWholeAccess) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001718 // Check if this is a load/store of the entire alloca.
Chris Lattner145c5322011-01-23 08:27:54 +00001719 if (Offset == 0 && AllowWholeAccess &&
Chris Lattner6c95d242011-01-23 07:29:29 +00001720 MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
Bob Wilson704d1342011-01-13 17:45:11 +00001721 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1722 // loads/stores (which are essentially the same as the MemIntrinsics with
1723 // regard to copying padding between elements). But, if an alloca is
1724 // flagged as both a source and destination of such operations, we'll need
1725 // to check later for padding between elements.
1726 if (!MemOpType || MemOpType->isIntegerTy()) {
1727 if (isStore)
1728 Info.isMemCpyDst = true;
1729 else
1730 Info.isMemCpySrc = true;
Bob Wilsonb742def2009-12-18 20:14:40 +00001731 return;
1732 }
Bob Wilson704d1342011-01-13 17:45:11 +00001733 // This is also safe for references using a type that is compatible with
1734 // the type of the alloca, so that loads/stores can be rewritten using
1735 // insertvalue/extractvalue.
Chris Lattner6c95d242011-01-23 07:29:29 +00001736 if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
Chris Lattner7e9b4272011-01-16 06:18:28 +00001737 Info.hasSubelementAccess = true;
Bob Wilson704d1342011-01-13 17:45:11 +00001738 return;
Chris Lattner7e9b4272011-01-16 06:18:28 +00001739 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001740 }
1741 // Check if the offset/size correspond to a component within the alloca type.
Chris Lattner6c95d242011-01-23 07:29:29 +00001742 const Type *T = Info.AI->getAllocatedType();
Chris Lattner7e9b4272011-01-16 06:18:28 +00001743 if (TypeHasComponent(T, Offset, MemSize)) {
1744 Info.hasSubelementAccess = true;
Bob Wilsonb742def2009-12-18 20:14:40 +00001745 return;
Chris Lattner7e9b4272011-01-16 06:18:28 +00001746 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001747
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001748 return MarkUnsafe(Info, TheAccess);
Bob Wilsonb742def2009-12-18 20:14:40 +00001749}
1750
1751/// TypeHasComponent - Return true if T has a component type with the
1752/// specified offset and size. If Size is zero, do not check the size.
1753bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1754 const Type *EltTy;
1755 uint64_t EltSize;
1756 if (const StructType *ST = dyn_cast<StructType>(T)) {
1757 const StructLayout *Layout = TD->getStructLayout(ST);
1758 unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1759 EltTy = ST->getContainedType(EltIdx);
1760 EltSize = TD->getTypeAllocSize(EltTy);
1761 Offset -= Layout->getElementOffset(EltIdx);
1762 } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1763 EltTy = AT->getElementType();
1764 EltSize = TD->getTypeAllocSize(EltTy);
Bob Wilsonf27a4cd2009-12-22 06:57:14 +00001765 if (Offset >= AT->getNumElements() * EltSize)
1766 return false;
Bob Wilsonb742def2009-12-18 20:14:40 +00001767 Offset %= EltSize;
1768 } else {
1769 return false;
1770 }
1771 if (Offset == 0 && (Size == 0 || EltSize == Size))
1772 return true;
1773 // Check if the component spans multiple elements.
1774 if (Offset + Size > EltSize)
1775 return false;
1776 return TypeHasComponent(EltTy, Offset, Size);
1777}
1778
1779/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1780/// the instruction I, which references it, to use the separate elements.
1781/// Offset indicates the position within AI that is referenced by this
1782/// instruction.
1783void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1784 SmallVector<AllocaInst*, 32> &NewElts) {
Chris Lattner145c5322011-01-23 08:27:54 +00001785 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1786 Use &TheUse = UI.getUse();
1787 Instruction *User = cast<Instruction>(*UI++);
Bob Wilsonb742def2009-12-18 20:14:40 +00001788
1789 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1790 RewriteBitCast(BC, AI, Offset, NewElts);
Chris Lattner145c5322011-01-23 08:27:54 +00001791 continue;
1792 }
1793
1794 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001795 RewriteGEP(GEPI, AI, Offset, NewElts);
Chris Lattner145c5322011-01-23 08:27:54 +00001796 continue;
1797 }
1798
1799 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001800 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1801 uint64_t MemSize = Length->getZExtValue();
1802 if (Offset == 0 &&
1803 MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1804 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
Bob Wilsone88728d2009-12-19 06:53:17 +00001805 // Otherwise the intrinsic can only touch a single element and the
1806 // address operand will be updated, so nothing else needs to be done.
Chris Lattner145c5322011-01-23 08:27:54 +00001807 continue;
1808 }
1809
1810 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001811 const Type *LIType = LI->getType();
Chris Lattner192228e2011-01-16 05:28:59 +00001812
Bob Wilson704d1342011-01-13 17:45:11 +00001813 if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001814 // Replace:
1815 // %res = load { i32, i32 }* %alloc
1816 // with:
1817 // %load.0 = load i32* %alloc.0
1818 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1819 // %load.1 = load i32* %alloc.1
1820 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1821 // (Also works for arrays instead of structs)
1822 Value *Insert = UndefValue::get(LIType);
1823 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1824 Value *Load = new LoadInst(NewElts[i], "load", LI);
1825 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1826 }
1827 LI->replaceAllUsesWith(Insert);
1828 DeadInsts.push_back(LI);
Duncan Sands1df98592010-02-16 11:11:14 +00001829 } else if (LIType->isIntegerTy() &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001830 TD->getTypeAllocSize(LIType) ==
1831 TD->getTypeAllocSize(AI->getAllocatedType())) {
1832 // If this is a load of the entire alloca to an integer, rewrite it.
1833 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1834 }
Chris Lattner145c5322011-01-23 08:27:54 +00001835 continue;
1836 }
1837
1838 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001839 Value *Val = SI->getOperand(0);
1840 const Type *SIType = Val->getType();
Bob Wilson704d1342011-01-13 17:45:11 +00001841 if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001842 // Replace:
1843 // store { i32, i32 } %val, { i32, i32 }* %alloc
1844 // with:
1845 // %val.0 = extractvalue { i32, i32 } %val, 0
1846 // store i32 %val.0, i32* %alloc.0
1847 // %val.1 = extractvalue { i32, i32 } %val, 1
1848 // store i32 %val.1, i32* %alloc.1
1849 // (Also works for arrays instead of structs)
1850 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1851 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1852 new StoreInst(Extract, NewElts[i], SI);
1853 }
1854 DeadInsts.push_back(SI);
Duncan Sands1df98592010-02-16 11:11:14 +00001855 } else if (SIType->isIntegerTy() &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001856 TD->getTypeAllocSize(SIType) ==
1857 TD->getTypeAllocSize(AI->getAllocatedType())) {
1858 // If this is a store of the entire alloca from an integer, rewrite it.
1859 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1860 }
Chris Lattner145c5322011-01-23 08:27:54 +00001861 continue;
1862 }
1863
1864 if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1865 // If we have a PHI user of the alloca itself (as opposed to a GEP or
1866 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1867 // the new pointer.
1868 if (!isa<AllocaInst>(I)) continue;
1869
1870 assert(Offset == 0 && NewElts[0] &&
1871 "Direct alloca use should have a zero offset");
1872
1873 // If we have a use of the alloca, we know the derived uses will be
1874 // utilizing just the first element of the scalarized result. Insert a
1875 // bitcast of the first alloca before the user as required.
1876 AllocaInst *NewAI = NewElts[0];
1877 BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1878 NewAI->moveBefore(BCI);
1879 TheUse = BCI;
1880 continue;
Bob Wilsonb742def2009-12-18 20:14:40 +00001881 }
Bob Wilson39c88a62009-12-17 18:34:24 +00001882 }
1883}
1884
Bob Wilsonb742def2009-12-18 20:14:40 +00001885/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1886/// and recursively continue updating all of its uses.
1887void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1888 SmallVector<AllocaInst*, 32> &NewElts) {
1889 RewriteForScalarRepl(BC, AI, Offset, NewElts);
1890 if (BC->getOperand(0) != AI)
1891 return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001892
Bob Wilsonb742def2009-12-18 20:14:40 +00001893 // The bitcast references the original alloca. Replace its uses with
1894 // references to the first new element alloca.
1895 Instruction *Val = NewElts[0];
1896 if (Val->getType() != BC->getDestTy()) {
1897 Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1898 Val->takeName(BC);
Daniel Dunbarfca55c82009-12-16 10:56:17 +00001899 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001900 BC->replaceAllUsesWith(Val);
1901 DeadInsts.push_back(BC);
Daniel Dunbarfca55c82009-12-16 10:56:17 +00001902}
1903
Bob Wilsonb742def2009-12-18 20:14:40 +00001904/// FindElementAndOffset - Return the index of the element containing Offset
1905/// within the specified type, which must be either a struct or an array.
1906/// Sets T to the type of the element and Offset to the offset within that
Bob Wilsone88728d2009-12-19 06:53:17 +00001907/// element. IdxTy is set to the type of the index result to be used in a
1908/// GEP instruction.
1909uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1910 const Type *&IdxTy) {
1911 uint64_t Idx = 0;
Bob Wilsonb742def2009-12-18 20:14:40 +00001912 if (const StructType *ST = dyn_cast<StructType>(T)) {
1913 const StructLayout *Layout = TD->getStructLayout(ST);
1914 Idx = Layout->getElementContainingOffset(Offset);
1915 T = ST->getContainedType(Idx);
1916 Offset -= Layout->getElementOffset(Idx);
Bob Wilsone88728d2009-12-19 06:53:17 +00001917 IdxTy = Type::getInt32Ty(T->getContext());
1918 return Idx;
Chris Lattnera59adc42009-12-14 05:11:02 +00001919 }
Bob Wilsone88728d2009-12-19 06:53:17 +00001920 const ArrayType *AT = cast<ArrayType>(T);
1921 T = AT->getElementType();
1922 uint64_t EltSize = TD->getTypeAllocSize(T);
1923 Idx = Offset / EltSize;
1924 Offset -= Idx * EltSize;
1925 IdxTy = Type::getInt64Ty(T->getContext());
Bob Wilsonb742def2009-12-18 20:14:40 +00001926 return Idx;
1927}
1928
1929/// RewriteGEP - Check if this GEP instruction moves the pointer across
1930/// elements of the alloca that are being split apart, and if so, rewrite
1931/// the GEP to be relative to the new element.
1932void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1933 SmallVector<AllocaInst*, 32> &NewElts) {
1934 uint64_t OldOffset = Offset;
1935 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1936 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1937 &Indices[0], Indices.size());
1938
1939 RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1940
1941 const Type *T = AI->getAllocatedType();
Bob Wilsone88728d2009-12-19 06:53:17 +00001942 const Type *IdxTy;
1943 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
Bob Wilsonb742def2009-12-18 20:14:40 +00001944 if (GEPI->getOperand(0) == AI)
Bob Wilsone88728d2009-12-19 06:53:17 +00001945 OldIdx = ~0ULL; // Force the GEP to be rewritten.
Bob Wilsonb742def2009-12-18 20:14:40 +00001946
1947 T = AI->getAllocatedType();
1948 uint64_t EltOffset = Offset;
Bob Wilsone88728d2009-12-19 06:53:17 +00001949 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
Bob Wilsonb742def2009-12-18 20:14:40 +00001950
1951 // If this GEP does not move the pointer across elements of the alloca
1952 // being split, then it does not needs to be rewritten.
1953 if (Idx == OldIdx)
1954 return;
1955
1956 const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1957 SmallVector<Value*, 8> NewArgs;
1958 NewArgs.push_back(Constant::getNullValue(i32Ty));
1959 while (EltOffset != 0) {
Bob Wilsone88728d2009-12-19 06:53:17 +00001960 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1961 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
Bob Wilsonb742def2009-12-18 20:14:40 +00001962 }
1963 Instruction *Val = NewElts[Idx];
1964 if (NewArgs.size() > 1) {
1965 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1966 NewArgs.end(), "", GEPI);
1967 Val->takeName(GEPI);
1968 }
1969 if (Val->getType() != GEPI->getType())
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00001970 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
Bob Wilsonb742def2009-12-18 20:14:40 +00001971 GEPI->replaceAllUsesWith(Val);
1972 DeadInsts.push_back(GEPI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001973}
1974
1975/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1976/// Rewrite it to copy or set the elements of the scalarized memory.
Bob Wilsonb742def2009-12-18 20:14:40 +00001977void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Victor Hernandez7b929da2009-10-23 21:09:37 +00001978 AllocaInst *AI,
Chris Lattnerd93afec2009-01-07 07:18:45 +00001979 SmallVector<AllocaInst*, 32> &NewElts) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00001980 // If this is a memcpy/memmove, construct the other pointer as the
Chris Lattner88fe1ad2009-03-04 19:23:25 +00001981 // appropriate type. The "Other" pointer is the pointer that goes to memory
1982 // that doesn't have anything to do with the alloca that we are promoting. For
1983 // memset, this Value* stays null.
Chris Lattnerd93afec2009-01-07 07:18:45 +00001984 Value *OtherPtr = 0;
Chris Lattnerdfe964c2009-03-08 03:59:00 +00001985 unsigned MemAlignment = MI->getAlignment();
Chris Lattner3ce5e882009-03-08 03:37:16 +00001986 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
Bob Wilsonb742def2009-12-18 20:14:40 +00001987 if (Inst == MTI->getRawDest())
Chris Lattner3ce5e882009-03-08 03:37:16 +00001988 OtherPtr = MTI->getRawSource();
Chris Lattnerd93afec2009-01-07 07:18:45 +00001989 else {
Bob Wilsonb742def2009-12-18 20:14:40 +00001990 assert(Inst == MTI->getRawSource());
Chris Lattner3ce5e882009-03-08 03:37:16 +00001991 OtherPtr = MTI->getRawDest();
Chris Lattnerd93afec2009-01-07 07:18:45 +00001992 }
1993 }
Bob Wilson78c50b82009-12-08 18:22:03 +00001994
Chris Lattnerd93afec2009-01-07 07:18:45 +00001995 // If there is an other pointer, we want to convert it to the same pointer
1996 // type as AI has, so we can GEP through it safely.
1997 if (OtherPtr) {
Chris Lattner0238f8c2010-07-08 00:27:05 +00001998 unsigned AddrSpace =
1999 cast<PointerType>(OtherPtr->getType())->getAddressSpace();
Bob Wilsonb742def2009-12-18 20:14:40 +00002000
2001 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
2002 // optimization, but it's also required to detect the corner case where
2003 // both pointer operands are referencing the same memory, and where
2004 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
2005 // function is only called for mem intrinsics that access the whole
2006 // aggregate, so non-zero GEPs are not an issue here.)
Chris Lattner0238f8c2010-07-08 00:27:05 +00002007 OtherPtr = OtherPtr->stripPointerCasts();
Bob Wilson69743022011-01-13 20:59:44 +00002008
Bob Wilsona756b1d2010-01-19 04:32:48 +00002009 // Copying the alloca to itself is a no-op: just delete it.
2010 if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2011 // This code will run twice for a no-op memcpy -- once for each operand.
2012 // Put only one reference to MI on the DeadInsts list.
2013 for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2014 E = DeadInsts.end(); I != E; ++I)
2015 if (*I == MI) return;
2016 DeadInsts.push_back(MI);
Bob Wilsonb742def2009-12-18 20:14:40 +00002017 return;
Bob Wilsona756b1d2010-01-19 04:32:48 +00002018 }
Bob Wilson69743022011-01-13 20:59:44 +00002019
Chris Lattnerd93afec2009-01-07 07:18:45 +00002020 // If the pointer is not the right type, insert a bitcast to the right
2021 // type.
Chris Lattner0238f8c2010-07-08 00:27:05 +00002022 const Type *NewTy =
2023 PointerType::get(AI->getType()->getElementType(), AddrSpace);
Bob Wilson69743022011-01-13 20:59:44 +00002024
Chris Lattner0238f8c2010-07-08 00:27:05 +00002025 if (OtherPtr->getType() != NewTy)
2026 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002027 }
Bob Wilson69743022011-01-13 20:59:44 +00002028
Chris Lattnerd93afec2009-01-07 07:18:45 +00002029 // Process each element of the aggregate.
Bob Wilsonb742def2009-12-18 20:14:40 +00002030 bool SROADest = MI->getRawDest() == Inst;
Bob Wilson69743022011-01-13 20:59:44 +00002031
Owen Anderson1d0be152009-08-13 21:58:54 +00002032 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
Chris Lattnerd93afec2009-01-07 07:18:45 +00002033
2034 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2035 // If this is a memcpy/memmove, emit a GEP of the other element address.
2036 Value *OtherElt = 0;
Chris Lattner1541e0f2009-03-04 19:20:50 +00002037 unsigned OtherEltAlign = MemAlignment;
Bob Wilson69743022011-01-13 20:59:44 +00002038
Bob Wilsona756b1d2010-01-19 04:32:48 +00002039 if (OtherPtr) {
Owen Anderson1d0be152009-08-13 21:58:54 +00002040 Value *Idx[2] = { Zero,
2041 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
Bob Wilsonb742def2009-12-18 20:14:40 +00002042 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00002043 OtherPtr->getName()+"."+Twine(i),
Bob Wilsonb742def2009-12-18 20:14:40 +00002044 MI);
Chris Lattner1541e0f2009-03-04 19:20:50 +00002045 uint64_t EltOffset;
2046 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
Chris Lattnerd55c1c12010-04-16 01:05:38 +00002047 const Type *OtherTy = OtherPtrTy->getElementType();
2048 if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
Chris Lattner1541e0f2009-03-04 19:20:50 +00002049 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2050 } else {
Chris Lattnerd55c1c12010-04-16 01:05:38 +00002051 const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002052 EltOffset = TD->getTypeAllocSize(EltTy)*i;
Chris Lattner1541e0f2009-03-04 19:20:50 +00002053 }
Bob Wilson69743022011-01-13 20:59:44 +00002054
Chris Lattner1541e0f2009-03-04 19:20:50 +00002055 // The alignment of the other pointer is the guaranteed alignment of the
2056 // element, which is affected by both the known alignment of the whole
2057 // mem intrinsic and the alignment of the element. If the alignment of
2058 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2059 // known alignment is just 4 bytes.
2060 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
Chris Lattnerc14d3ca2007-03-08 06:36:54 +00002061 }
Bob Wilson69743022011-01-13 20:59:44 +00002062
Chris Lattnerd93afec2009-01-07 07:18:45 +00002063 Value *EltPtr = NewElts[i];
Chris Lattner1541e0f2009-03-04 19:20:50 +00002064 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
Bob Wilson69743022011-01-13 20:59:44 +00002065
Chris Lattnerd93afec2009-01-07 07:18:45 +00002066 // If we got down to a scalar, insert a load or store as appropriate.
2067 if (EltTy->isSingleValueType()) {
Chris Lattner3ce5e882009-03-08 03:37:16 +00002068 if (isa<MemTransferInst>(MI)) {
Chris Lattner1541e0f2009-03-04 19:20:50 +00002069 if (SROADest) {
2070 // From Other to Alloca.
2071 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2072 new StoreInst(Elt, EltPtr, MI);
2073 } else {
2074 // From Alloca to Other.
2075 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2076 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2077 }
Chris Lattnerd93afec2009-01-07 07:18:45 +00002078 continue;
2079 }
2080 assert(isa<MemSetInst>(MI));
Bob Wilson69743022011-01-13 20:59:44 +00002081
Chris Lattnerd93afec2009-01-07 07:18:45 +00002082 // If the stored element is zero (common case), just store a null
2083 // constant.
2084 Constant *StoreVal;
Gabor Greif6f14c8c2010-06-30 09:16:16 +00002085 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00002086 if (CI->isZero()) {
Owen Andersona7235ea2009-07-31 20:28:14 +00002087 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
Chris Lattnerd93afec2009-01-07 07:18:45 +00002088 } else {
2089 // If EltTy is a vector type, get the element type.
Dan Gohman44118f02009-06-16 00:20:26 +00002090 const Type *ValTy = EltTy->getScalarType();
2091
Chris Lattnerd93afec2009-01-07 07:18:45 +00002092 // Construct an integer with the right value.
2093 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2094 APInt OneVal(EltSize, CI->getZExtValue());
2095 APInt TotalVal(OneVal);
2096 // Set each byte.
2097 for (unsigned i = 0; 8*i < EltSize; ++i) {
2098 TotalVal = TotalVal.shl(8);
2099 TotalVal |= OneVal;
2100 }
Bob Wilson69743022011-01-13 20:59:44 +00002101
Chris Lattnerd93afec2009-01-07 07:18:45 +00002102 // Convert the integer value to the appropriate type.
Chris Lattnerd55c1c12010-04-16 01:05:38 +00002103 StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
Duncan Sands1df98592010-02-16 11:11:14 +00002104 if (ValTy->isPointerTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +00002105 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002106 else if (ValTy->isFloatingPointTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +00002107 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002108 assert(StoreVal->getType() == ValTy && "Type mismatch!");
Bob Wilson69743022011-01-13 20:59:44 +00002109
Chris Lattnerd93afec2009-01-07 07:18:45 +00002110 // If the requested value was a vector constant, create it.
2111 if (EltTy != ValTy) {
2112 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2113 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
Chris Lattner2ca5c862011-02-15 00:14:00 +00002114 StoreVal = ConstantVector::get(Elts);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002115 }
2116 }
2117 new StoreInst(StoreVal, EltPtr, MI);
2118 continue;
2119 }
2120 // Otherwise, if we're storing a byte variable, use a memset call for
2121 // this element.
2122 }
Bob Wilson69743022011-01-13 20:59:44 +00002123
Duncan Sands777d2302009-05-09 07:06:46 +00002124 unsigned EltSize = TD->getTypeAllocSize(EltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002125
Chris Lattner61db1f52010-12-26 22:57:41 +00002126 IRBuilder<> Builder(MI);
Bob Wilson69743022011-01-13 20:59:44 +00002127
Chris Lattnerd93afec2009-01-07 07:18:45 +00002128 // Finally, insert the meminst for this element.
Chris Lattner61db1f52010-12-26 22:57:41 +00002129 if (isa<MemSetInst>(MI)) {
2130 Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2131 MI->isVolatile());
Chris Lattnerd93afec2009-01-07 07:18:45 +00002132 } else {
Chris Lattner61db1f52010-12-26 22:57:41 +00002133 assert(isa<MemTransferInst>(MI));
2134 Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr
2135 Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr
Bob Wilson69743022011-01-13 20:59:44 +00002136
Chris Lattner61db1f52010-12-26 22:57:41 +00002137 if (isa<MemCpyInst>(MI))
2138 Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2139 else
2140 Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
Chris Lattnerd93afec2009-01-07 07:18:45 +00002141 }
Chris Lattner372dda82007-03-05 07:52:57 +00002142 }
Bob Wilsonb742def2009-12-18 20:14:40 +00002143 DeadInsts.push_back(MI);
Chris Lattner372dda82007-03-05 07:52:57 +00002144}
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002145
Bob Wilson39fdd692009-12-04 21:57:37 +00002146/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002147/// overwrites the entire allocation. Extract out the pieces of the stored
2148/// integer and store them individually.
Victor Hernandez7b929da2009-10-23 21:09:37 +00002149void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002150 SmallVector<AllocaInst*, 32> &NewElts){
2151 // Extract each element out of the integer according to its structure offset
2152 // and store the element value to the individual alloca.
2153 Value *SrcVal = SI->getOperand(0);
Bob Wilsonb742def2009-12-18 20:14:40 +00002154 const Type *AllocaEltTy = AI->getAllocatedType();
Duncan Sands777d2302009-05-09 07:06:46 +00002155 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002156
Chris Lattner70728532011-01-16 05:58:24 +00002157 IRBuilder<> Builder(SI);
2158
Eli Friedman41b33f42009-06-01 09:14:32 +00002159 // Handle tail padding by extending the operand
2160 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002161 SrcVal = Builder.CreateZExt(SrcVal,
2162 IntegerType::get(SI->getContext(), AllocaSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002163
David Greene504c7d82010-01-05 01:27:09 +00002164 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
Nick Lewycky59136252009-09-15 07:08:25 +00002165 << '\n');
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002166
2167 // There are two forms here: AI could be an array or struct. Both cases
2168 // have different ways to compute the element offset.
2169 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2170 const StructLayout *Layout = TD->getStructLayout(EltSTy);
Bob Wilson69743022011-01-13 20:59:44 +00002171
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002172 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2173 // Get the number of bits to shift SrcVal to get the value.
2174 const Type *FieldTy = EltSTy->getElementType(i);
2175 uint64_t Shift = Layout->getElementOffsetInBits(i);
Bob Wilson69743022011-01-13 20:59:44 +00002176
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002177 if (TD->isBigEndian())
Duncan Sands777d2302009-05-09 07:06:46 +00002178 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002179
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002180 Value *EltVal = SrcVal;
2181 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002182 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
Chris Lattner70728532011-01-16 05:58:24 +00002183 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002184 }
Bob Wilson69743022011-01-13 20:59:44 +00002185
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002186 // Truncate down to an integer of the right size.
2187 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002188
Chris Lattner583dd602009-01-09 18:18:43 +00002189 // Ignore zero sized fields like {}, they obviously contain no data.
2190 if (FieldSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002191
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002192 if (FieldSizeBits != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002193 EltVal = Builder.CreateTrunc(EltVal,
2194 IntegerType::get(SI->getContext(), FieldSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002195 Value *DestField = NewElts[i];
2196 if (EltVal->getType() == FieldTy) {
2197 // Storing to an integer field of this size, just do it.
Duncan Sands1df98592010-02-16 11:11:14 +00002198 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002199 // Bitcast to the right element type (for fp/vector values).
Chris Lattner70728532011-01-16 05:58:24 +00002200 EltVal = Builder.CreateBitCast(EltVal, FieldTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002201 } else {
2202 // Otherwise, bitcast the dest pointer (for aggregates).
Chris Lattner70728532011-01-16 05:58:24 +00002203 DestField = Builder.CreateBitCast(DestField,
2204 PointerType::getUnqual(EltVal->getType()));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002205 }
2206 new StoreInst(EltVal, DestField, SI);
2207 }
Bob Wilson69743022011-01-13 20:59:44 +00002208
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002209 } else {
2210 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2211 const Type *ArrayEltTy = ATy->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002212 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002213 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2214
2215 uint64_t Shift;
Bob Wilson69743022011-01-13 20:59:44 +00002216
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002217 if (TD->isBigEndian())
2218 Shift = AllocaSizeBits-ElementOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002219 else
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002220 Shift = 0;
Bob Wilson69743022011-01-13 20:59:44 +00002221
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002222 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
Chris Lattner583dd602009-01-09 18:18:43 +00002223 // Ignore zero sized fields like {}, they obviously contain no data.
2224 if (ElementSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002225
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002226 Value *EltVal = SrcVal;
2227 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002228 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
Chris Lattner70728532011-01-16 05:58:24 +00002229 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002230 }
Bob Wilson69743022011-01-13 20:59:44 +00002231
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002232 // Truncate down to an integer of the right size.
2233 if (ElementSizeBits != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002234 EltVal = Builder.CreateTrunc(EltVal,
2235 IntegerType::get(SI->getContext(),
2236 ElementSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002237 Value *DestField = NewElts[i];
2238 if (EltVal->getType() == ArrayEltTy) {
2239 // Storing to an integer field of this size, just do it.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002240 } else if (ArrayEltTy->isFloatingPointTy() ||
Duncan Sands1df98592010-02-16 11:11:14 +00002241 ArrayEltTy->isVectorTy()) {
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002242 // Bitcast to the right element type (for fp/vector values).
Chris Lattner70728532011-01-16 05:58:24 +00002243 EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002244 } else {
2245 // Otherwise, bitcast the dest pointer (for aggregates).
Chris Lattner70728532011-01-16 05:58:24 +00002246 DestField = Builder.CreateBitCast(DestField,
2247 PointerType::getUnqual(EltVal->getType()));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002248 }
2249 new StoreInst(EltVal, DestField, SI);
Bob Wilson69743022011-01-13 20:59:44 +00002250
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002251 if (TD->isBigEndian())
2252 Shift -= ElementOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002253 else
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002254 Shift += ElementOffset;
2255 }
2256 }
Bob Wilson69743022011-01-13 20:59:44 +00002257
Bob Wilsonb742def2009-12-18 20:14:40 +00002258 DeadInsts.push_back(SI);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002259}
2260
Bob Wilson39fdd692009-12-04 21:57:37 +00002261/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002262/// an integer. Load the individual pieces to form the aggregate value.
Victor Hernandez7b929da2009-10-23 21:09:37 +00002263void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002264 SmallVector<AllocaInst*, 32> &NewElts) {
2265 // Extract each element out of the NewElts according to its structure offset
2266 // and form the result value.
Bob Wilsonb742def2009-12-18 20:14:40 +00002267 const Type *AllocaEltTy = AI->getAllocatedType();
Duncan Sands777d2302009-05-09 07:06:46 +00002268 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002269
David Greene504c7d82010-01-05 01:27:09 +00002270 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
Nick Lewycky59136252009-09-15 07:08:25 +00002271 << '\n');
Bob Wilson69743022011-01-13 20:59:44 +00002272
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002273 // There are two forms here: AI could be an array or struct. Both cases
2274 // have different ways to compute the element offset.
2275 const StructLayout *Layout = 0;
2276 uint64_t ArrayEltBitOffset = 0;
2277 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2278 Layout = TD->getStructLayout(EltSTy);
2279 } else {
2280 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002281 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002282 }
2283
2284 Value *ResultVal =
Owen Anderson1d0be152009-08-13 21:58:54 +00002285 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
Bob Wilson69743022011-01-13 20:59:44 +00002286
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002287 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2288 // Load the value from the alloca. If the NewElt is an aggregate, cast
2289 // the pointer to an integer of the same size before doing the load.
2290 Value *SrcField = NewElts[i];
2291 const Type *FieldTy =
2292 cast<PointerType>(SrcField->getType())->getElementType();
Chris Lattner583dd602009-01-09 18:18:43 +00002293 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002294
Chris Lattner583dd602009-01-09 18:18:43 +00002295 // Ignore zero sized fields like {}, they obviously contain no data.
2296 if (FieldSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002297
2298 const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +00002299 FieldSizeBits);
Duncan Sands1df98592010-02-16 11:11:14 +00002300 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2301 !FieldTy->isVectorTy())
Owen Andersonfa5cbd62009-07-03 19:42:02 +00002302 SrcField = new BitCastInst(SrcField,
Owen Andersondebcb012009-07-29 22:17:13 +00002303 PointerType::getUnqual(FieldIntTy),
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002304 "", LI);
2305 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2306
2307 // If SrcField is a fp or vector of the right size but that isn't an
2308 // integer type, bitcast to an integer so we can shift it.
2309 if (SrcField->getType() != FieldIntTy)
2310 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2311
2312 // Zero extend the field to be the same size as the final alloca so that
2313 // we can shift and insert it.
2314 if (SrcField->getType() != ResultVal->getType())
2315 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
Bob Wilson69743022011-01-13 20:59:44 +00002316
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002317 // Determine the number of bits to shift SrcField.
2318 uint64_t Shift;
2319 if (Layout) // Struct case.
2320 Shift = Layout->getElementOffsetInBits(i);
2321 else // Array case.
2322 Shift = i*ArrayEltBitOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002323
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002324 if (TD->isBigEndian())
2325 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
Bob Wilson69743022011-01-13 20:59:44 +00002326
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002327 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002328 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002329 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2330 }
2331
Chris Lattner14952472010-06-27 07:58:26 +00002332 // Don't create an 'or x, 0' on the first iteration.
2333 if (!isa<Constant>(ResultVal) ||
2334 !cast<Constant>(ResultVal)->isNullValue())
2335 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2336 else
2337 ResultVal = SrcField;
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002338 }
Eli Friedman41b33f42009-06-01 09:14:32 +00002339
2340 // Handle tail padding by truncating the result
2341 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2342 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2343
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002344 LI->replaceAllUsesWith(ResultVal);
Bob Wilsonb742def2009-12-18 20:14:40 +00002345 DeadInsts.push_back(LI);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002346}
2347
Duncan Sands3cb36502007-11-04 14:43:57 +00002348/// HasPadding - Return true if the specified type has any structure or
Bob Wilson694a10e2011-01-13 17:45:08 +00002349/// alignment padding in between the elements that would be split apart
2350/// by SROA; return false otherwise.
Duncan Sandsa0fcc082008-06-04 08:21:45 +00002351static bool HasPadding(const Type *Ty, const TargetData &TD) {
Bob Wilson694a10e2011-01-13 17:45:08 +00002352 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2353 Ty = ATy->getElementType();
2354 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
Chris Lattner39a1c042007-05-30 06:11:23 +00002355 }
Bob Wilson694a10e2011-01-13 17:45:08 +00002356
2357 // SROA currently handles only Arrays and Structs.
2358 const StructType *STy = cast<StructType>(Ty);
2359 const StructLayout *SL = TD.getStructLayout(STy);
2360 unsigned PrevFieldBitOffset = 0;
2361 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2362 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2363
2364 // Check to see if there is any padding between this element and the
2365 // previous one.
2366 if (i) {
2367 unsigned PrevFieldEnd =
2368 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2369 if (PrevFieldEnd < FieldBitOffset)
2370 return true;
2371 }
2372 PrevFieldBitOffset = FieldBitOffset;
2373 }
2374 // Check for tail padding.
2375 if (unsigned EltCount = STy->getNumElements()) {
2376 unsigned PrevFieldEnd = PrevFieldBitOffset +
2377 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2378 if (PrevFieldEnd < SL->getSizeInBits())
2379 return true;
2380 }
2381 return false;
Chris Lattner39a1c042007-05-30 06:11:23 +00002382}
Chris Lattner372dda82007-03-05 07:52:57 +00002383
Chris Lattnerf5990ed2004-11-14 04:24:28 +00002384/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2385/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2386/// or 1 if safe after canonicalization has been performed.
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002387bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
Chris Lattner5e062a12003-05-30 04:15:41 +00002388 // Loop over the use list of the alloca. We can only transform it if all of
2389 // the users are safe to transform.
Chris Lattner6c95d242011-01-23 07:29:29 +00002390 AllocaInfo Info(AI);
Bob Wilson69743022011-01-13 20:59:44 +00002391
Chris Lattner6c95d242011-01-23 07:29:29 +00002392 isSafeForScalarRepl(AI, 0, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00002393 if (Info.isUnsafe) {
David Greene504c7d82010-01-05 01:27:09 +00002394 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002395 return false;
Chris Lattnerf5990ed2004-11-14 04:24:28 +00002396 }
Bob Wilson69743022011-01-13 20:59:44 +00002397
Chris Lattner39a1c042007-05-30 06:11:23 +00002398 // Okay, we know all the users are promotable. If the aggregate is a memcpy
2399 // source and destination, we have to be careful. In particular, the memcpy
2400 // could be moving around elements that live in structure padding of the LLVM
2401 // types, but may actually be used. In these cases, we refuse to promote the
2402 // struct.
2403 if (Info.isMemCpySrc && Info.isMemCpyDst &&
Bob Wilsonb742def2009-12-18 20:14:40 +00002404 HasPadding(AI->getAllocatedType(), *TD))
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002405 return false;
Duncan Sands3cb36502007-11-04 14:43:57 +00002406
Chris Lattner396a0562011-01-16 17:46:19 +00002407 // If the alloca never has an access to just *part* of it, but is accessed
2408 // via loads and stores, then we should use ConvertToScalarInfo to promote
Chris Lattner7e9b4272011-01-16 06:18:28 +00002409 // the alloca instead of promoting each piece at a time and inserting fission
2410 // and fusion code.
2411 if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2412 // If the struct/array just has one element, use basic SRoA.
2413 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2414 if (ST->getNumElements() > 1) return false;
2415 } else {
2416 if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2417 return false;
2418 }
2419 }
Chris Lattner145c5322011-01-23 08:27:54 +00002420
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002421 return true;
Chris Lattner5e062a12003-05-30 04:15:41 +00002422}
Chris Lattnera1888942005-12-12 07:19:13 +00002423
Chris Lattner800de312008-02-29 07:03:13 +00002424
Chris Lattner79b3bd32007-04-25 06:40:51 +00002425
2426/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2427/// some part of a constant global variable. This intentionally only accepts
2428/// constant expressions because we don't can't rewrite arbitrary instructions.
2429static bool PointsToConstantGlobal(Value *V) {
2430 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2431 return GV->isConstant();
2432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Bob Wilson69743022011-01-13 20:59:44 +00002433 if (CE->getOpcode() == Instruction::BitCast ||
Chris Lattner79b3bd32007-04-25 06:40:51 +00002434 CE->getOpcode() == Instruction::GetElementPtr)
2435 return PointsToConstantGlobal(CE->getOperand(0));
2436 return false;
2437}
2438
2439/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2440/// pointer to an alloca. Ignore any reads of the pointer, return false if we
2441/// see any stores or other unknown uses. If we see pointer arithmetic, keep
2442/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2443/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
Nick Lewycky081f8002010-11-24 22:04:20 +00002444/// the alloca, and if the source pointer is a pointer to a constant global, we
Chris Lattner79b3bd32007-04-25 06:40:51 +00002445/// can optimize this.
Chris Lattner31d80102010-04-15 21:59:20 +00002446static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
Chris Lattner79b3bd32007-04-25 06:40:51 +00002447 bool isOffset) {
2448 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
Gabor Greif8a8a4352010-04-06 19:32:30 +00002449 User *U = cast<Instruction>(*UI);
2450
Chris Lattner2e618492010-11-18 06:20:47 +00002451 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
Chris Lattner6e733d32009-01-28 20:16:43 +00002452 // Ignore non-volatile loads, they are always ok.
Chris Lattner2e618492010-11-18 06:20:47 +00002453 if (LI->isVolatile()) return false;
2454 continue;
2455 }
Bob Wilson69743022011-01-13 20:59:44 +00002456
Gabor Greif8a8a4352010-04-06 19:32:30 +00002457 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
Chris Lattner79b3bd32007-04-25 06:40:51 +00002458 // If uses of the bitcast are ok, we are ok.
2459 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2460 return false;
2461 continue;
2462 }
Gabor Greif8a8a4352010-04-06 19:32:30 +00002463 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
Chris Lattner79b3bd32007-04-25 06:40:51 +00002464 // If the GEP has all zero indices, it doesn't offset the pointer. If it
2465 // doesn't, it does.
2466 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2467 isOffset || !GEP->hasAllZeroIndices()))
2468 return false;
2469 continue;
2470 }
Bob Wilson69743022011-01-13 20:59:44 +00002471
Chris Lattner62480652010-11-18 06:41:51 +00002472 if (CallSite CS = U) {
2473 // If this is a readonly/readnone call site, then we know it is just a
2474 // load and we can ignore it.
Chris Lattnera9be1df2010-11-18 06:26:49 +00002475 if (CS.onlyReadsMemory())
2476 continue;
Nick Lewycky081f8002010-11-24 22:04:20 +00002477
2478 // If this is the function being called then we treat it like a load and
2479 // ignore it.
2480 if (CS.isCallee(UI))
2481 continue;
Bob Wilson69743022011-01-13 20:59:44 +00002482
Chris Lattner62480652010-11-18 06:41:51 +00002483 // If this is being passed as a byval argument, the caller is making a
2484 // copy, so it is only a read of the alloca.
2485 unsigned ArgNo = CS.getArgumentNo(UI);
2486 if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2487 continue;
2488 }
Bob Wilson69743022011-01-13 20:59:44 +00002489
Chris Lattner79b3bd32007-04-25 06:40:51 +00002490 // If this is isn't our memcpy/memmove, reject it as something we can't
2491 // handle.
Chris Lattner31d80102010-04-15 21:59:20 +00002492 MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2493 if (MI == 0)
Chris Lattner79b3bd32007-04-25 06:40:51 +00002494 return false;
Bob Wilson69743022011-01-13 20:59:44 +00002495
Chris Lattner2e618492010-11-18 06:20:47 +00002496 // If the transfer is using the alloca as a source of the transfer, then
Chris Lattner2e29ebd2010-11-18 07:32:33 +00002497 // ignore it since it is a load (unless the transfer is volatile).
Chris Lattner2e618492010-11-18 06:20:47 +00002498 if (UI.getOperandNo() == 1) {
2499 if (MI->isVolatile()) return false;
2500 continue;
2501 }
Chris Lattner79b3bd32007-04-25 06:40:51 +00002502
2503 // If we already have seen a copy, reject the second one.
2504 if (TheCopy) return false;
Bob Wilson69743022011-01-13 20:59:44 +00002505
Chris Lattner79b3bd32007-04-25 06:40:51 +00002506 // If the pointer has been offset from the start of the alloca, we can't
2507 // safely handle this.
2508 if (isOffset) return false;
2509
2510 // If the memintrinsic isn't using the alloca as the dest, reject it.
Gabor Greifa6aac4c2010-07-16 09:38:02 +00002511 if (UI.getOperandNo() != 0) return false;
Bob Wilson69743022011-01-13 20:59:44 +00002512
Chris Lattner79b3bd32007-04-25 06:40:51 +00002513 // If the source of the memcpy/move is not a constant global, reject it.
Chris Lattner31d80102010-04-15 21:59:20 +00002514 if (!PointsToConstantGlobal(MI->getSource()))
Chris Lattner79b3bd32007-04-25 06:40:51 +00002515 return false;
Bob Wilson69743022011-01-13 20:59:44 +00002516
Chris Lattner79b3bd32007-04-25 06:40:51 +00002517 // Otherwise, the transform is safe. Remember the copy instruction.
2518 TheCopy = MI;
2519 }
2520 return true;
2521}
2522
2523/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2524/// modified by a copy from a constant global. If we can prove this, we can
2525/// replace any uses of the alloca with uses of the global directly.
Chris Lattner31d80102010-04-15 21:59:20 +00002526MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2527 MemTransferInst *TheCopy = 0;
Chris Lattner79b3bd32007-04-25 06:40:51 +00002528 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2529 return TheCopy;
2530 return 0;
2531}