blob: 67c97d24cc841ed81c5900bc437212681689c979 [file] [log] [blame]
Chris Lattner02446fc2010-01-04 07:37:31 +00001//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Support/ConstantRange.h"
20#include "llvm/Support/GetElementPtrTypeIterator.h"
21#include "llvm/Support/PatternMatch.h"
22using namespace llvm;
23using namespace PatternMatch;
24
Chris Lattnerb20c0b52011-02-10 05:23:05 +000025static ConstantInt *getOne(Constant *C) {
26 return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
27}
28
Chris Lattner02446fc2010-01-04 07:37:31 +000029/// AddOne - Add one to a ConstantInt
30static Constant *AddOne(Constant *C) {
31 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
32}
33/// SubOne - Subtract one from a ConstantInt
Chris Lattnerb20c0b52011-02-10 05:23:05 +000034static Constant *SubOne(Constant *C) {
35 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
Chris Lattner02446fc2010-01-04 07:37:31 +000036}
37
38static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
39 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
40}
41
42static bool HasAddOverflow(ConstantInt *Result,
43 ConstantInt *In1, ConstantInt *In2,
44 bool IsSigned) {
45 if (IsSigned)
46 if (In2->getValue().isNegative())
47 return Result->getValue().sgt(In1->getValue());
48 else
49 return Result->getValue().slt(In1->getValue());
50 else
51 return Result->getValue().ult(In1->getValue());
52}
53
54/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
55/// overflowed for this type.
56static bool AddWithOverflow(Constant *&Result, Constant *In1,
57 Constant *In2, bool IsSigned = false) {
58 Result = ConstantExpr::getAdd(In1, In2);
59
60 if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
61 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63 if (HasAddOverflow(ExtractElement(Result, Idx),
64 ExtractElement(In1, Idx),
65 ExtractElement(In2, Idx),
66 IsSigned))
67 return true;
68 }
69 return false;
70 }
71
72 return HasAddOverflow(cast<ConstantInt>(Result),
73 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74 IsSigned);
75}
76
77static bool HasSubOverflow(ConstantInt *Result,
78 ConstantInt *In1, ConstantInt *In2,
79 bool IsSigned) {
80 if (IsSigned)
81 if (In2->getValue().isNegative())
82 return Result->getValue().slt(In1->getValue());
83 else
84 return Result->getValue().sgt(In1->getValue());
85 else
86 return Result->getValue().ugt(In1->getValue());
87}
88
89/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
90/// overflowed for this type.
91static bool SubWithOverflow(Constant *&Result, Constant *In1,
92 Constant *In2, bool IsSigned = false) {
93 Result = ConstantExpr::getSub(In1, In2);
94
95 if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
96 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98 if (HasSubOverflow(ExtractElement(Result, Idx),
99 ExtractElement(In1, Idx),
100 ExtractElement(In2, Idx),
101 IsSigned))
102 return true;
103 }
104 return false;
105 }
106
107 return HasSubOverflow(cast<ConstantInt>(Result),
108 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109 IsSigned);
110}
111
112/// isSignBitCheck - Given an exploded icmp instruction, return true if the
113/// comparison only checks the sign bit. If it only checks the sign bit, set
114/// TrueIfSigned if the result of the comparison is true when the input value is
115/// signed.
116static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
117 bool &TrueIfSigned) {
118 switch (pred) {
119 case ICmpInst::ICMP_SLT: // True if LHS s< 0
120 TrueIfSigned = true;
121 return RHS->isZero();
122 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
123 TrueIfSigned = true;
124 return RHS->isAllOnesValue();
125 case ICmpInst::ICMP_SGT: // True if LHS s> -1
126 TrueIfSigned = false;
127 return RHS->isAllOnesValue();
128 case ICmpInst::ICMP_UGT:
129 // True if LHS u> RHS and RHS == high-bit-mask - 1
130 TrueIfSigned = true;
131 return RHS->getValue() ==
132 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
133 case ICmpInst::ICMP_UGE:
134 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135 TrueIfSigned = true;
136 return RHS->getValue().isSignBit();
137 default:
138 return false;
139 }
140}
141
142// isHighOnes - Return true if the constant is of the form 1+0+.
143// This is the same as lowones(~X).
144static bool isHighOnes(const ConstantInt *CI) {
145 return (~CI->getValue() + 1).isPowerOf2();
146}
147
148/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
149/// set of known zero and one bits, compute the maximum and minimum values that
150/// could have the specified known zero and known one bits, returning them in
151/// min/max.
152static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
153 const APInt& KnownOne,
154 APInt& Min, APInt& Max) {
155 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
156 KnownZero.getBitWidth() == Min.getBitWidth() &&
157 KnownZero.getBitWidth() == Max.getBitWidth() &&
158 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
159 APInt UnknownBits = ~(KnownZero|KnownOne);
160
161 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
162 // bit if it is unknown.
163 Min = KnownOne;
164 Max = KnownOne|UnknownBits;
165
166 if (UnknownBits.isNegative()) { // Sign bit is unknown
Jay Foad7a874dd2010-12-01 08:53:58 +0000167 Min.setBit(Min.getBitWidth()-1);
168 Max.clearBit(Max.getBitWidth()-1);
Chris Lattner02446fc2010-01-04 07:37:31 +0000169 }
170}
171
172// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
173// a set of known zero and one bits, compute the maximum and minimum values that
174// could have the specified known zero and known one bits, returning them in
175// min/max.
176static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
177 const APInt &KnownOne,
178 APInt &Min, APInt &Max) {
179 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
180 KnownZero.getBitWidth() == Min.getBitWidth() &&
181 KnownZero.getBitWidth() == Max.getBitWidth() &&
182 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
183 APInt UnknownBits = ~(KnownZero|KnownOne);
184
185 // The minimum value is when the unknown bits are all zeros.
186 Min = KnownOne;
187 // The maximum value is when the unknown bits are all ones.
188 Max = KnownOne|UnknownBits;
189}
190
191
192
193/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
194/// cmp pred (load (gep GV, ...)), cmpcst
195/// where GV is a global variable with a constant initializer. Try to simplify
196/// this into some simple computation that does not need the load. For example
197/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
198///
199/// If AndCst is non-null, then the loaded value is masked with that constant
200/// before doing the comparison. This handles cases like "A[i]&4 == 0".
201Instruction *InstCombiner::
202FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
203 CmpInst &ICI, ConstantInt *AndCst) {
Chris Lattnerd7f5a582010-01-04 18:57:15 +0000204 // We need TD information to know the pointer size unless this is inbounds.
205 if (!GEP->isInBounds() && TD == 0) return 0;
206
Chris Lattner02446fc2010-01-04 07:37:31 +0000207 ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
208 if (Init == 0 || Init->getNumOperands() > 1024) return 0;
209
210 // There are many forms of this optimization we can handle, for now, just do
211 // the simple index into a single-dimensional array.
212 //
213 // Require: GEP GV, 0, i {{, constant indices}}
214 if (GEP->getNumOperands() < 3 ||
215 !isa<ConstantInt>(GEP->getOperand(1)) ||
216 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
217 isa<Constant>(GEP->getOperand(2)))
218 return 0;
219
220 // Check that indices after the variable are constants and in-range for the
221 // type they index. Collect the indices. This is typically for arrays of
222 // structs.
223 SmallVector<unsigned, 4> LaterIndices;
224
225 const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
226 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
227 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
228 if (Idx == 0) return 0; // Variable index.
229
230 uint64_t IdxVal = Idx->getZExtValue();
231 if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
232
233 if (const StructType *STy = dyn_cast<StructType>(EltTy))
234 EltTy = STy->getElementType(IdxVal);
235 else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
236 if (IdxVal >= ATy->getNumElements()) return 0;
237 EltTy = ATy->getElementType();
238 } else {
239 return 0; // Unknown type.
240 }
241
242 LaterIndices.push_back(IdxVal);
243 }
244
245 enum { Overdefined = -3, Undefined = -2 };
246
247 // Variables for our state machines.
248
249 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
250 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
251 // and 87 is the second (and last) index. FirstTrueElement is -2 when
252 // undefined, otherwise set to the first true element. SecondTrueElement is
253 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
254 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
255
256 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
257 // form "i != 47 & i != 87". Same state transitions as for true elements.
258 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
259
260 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
261 /// define a state machine that triggers for ranges of values that the index
262 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
263 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
264 /// index in the range (inclusive). We use -2 for undefined here because we
265 /// use relative comparisons and don't want 0-1 to match -1.
266 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
267
268 // MagicBitvector - This is a magic bitvector where we set a bit if the
269 // comparison is true for element 'i'. If there are 64 elements or less in
270 // the array, this will fully represent all the comparison results.
271 uint64_t MagicBitvector = 0;
272
273
274 // Scan the array and see if one of our patterns matches.
275 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
276 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
277 Constant *Elt = Init->getOperand(i);
278
279 // If this is indexing an array of structures, get the structure element.
280 if (!LaterIndices.empty())
281 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
282 LaterIndices.size());
283
284 // If the element is masked, handle it.
285 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
286
287 // Find out if the comparison would be true or false for the i'th element.
288 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
289 CompareRHS, TD);
290 // If the result is undef for this element, ignore it.
291 if (isa<UndefValue>(C)) {
292 // Extend range state machines to cover this element in case there is an
293 // undef in the middle of the range.
294 if (TrueRangeEnd == (int)i-1)
295 TrueRangeEnd = i;
296 if (FalseRangeEnd == (int)i-1)
297 FalseRangeEnd = i;
298 continue;
299 }
300
301 // If we can't compute the result for any of the elements, we have to give
302 // up evaluating the entire conditional.
303 if (!isa<ConstantInt>(C)) return 0;
304
305 // Otherwise, we know if the comparison is true or false for this element,
306 // update our state machines.
307 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
308
309 // State machine for single/double/range index comparison.
310 if (IsTrueForElt) {
311 // Update the TrueElement state machine.
312 if (FirstTrueElement == Undefined)
313 FirstTrueElement = TrueRangeEnd = i; // First true element.
314 else {
315 // Update double-compare state machine.
316 if (SecondTrueElement == Undefined)
317 SecondTrueElement = i;
318 else
319 SecondTrueElement = Overdefined;
320
321 // Update range state machine.
322 if (TrueRangeEnd == (int)i-1)
323 TrueRangeEnd = i;
324 else
325 TrueRangeEnd = Overdefined;
326 }
327 } else {
328 // Update the FalseElement state machine.
329 if (FirstFalseElement == Undefined)
330 FirstFalseElement = FalseRangeEnd = i; // First false element.
331 else {
332 // Update double-compare state machine.
333 if (SecondFalseElement == Undefined)
334 SecondFalseElement = i;
335 else
336 SecondFalseElement = Overdefined;
337
338 // Update range state machine.
339 if (FalseRangeEnd == (int)i-1)
340 FalseRangeEnd = i;
341 else
342 FalseRangeEnd = Overdefined;
343 }
344 }
345
346
347 // If this element is in range, update our magic bitvector.
348 if (i < 64 && IsTrueForElt)
349 MagicBitvector |= 1ULL << i;
350
351 // If all of our states become overdefined, bail out early. Since the
352 // predicate is expensive, only check it every 8 elements. This is only
353 // really useful for really huge arrays.
354 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
355 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
356 FalseRangeEnd == Overdefined)
357 return 0;
358 }
359
360 // Now that we've scanned the entire array, emit our new comparison(s). We
361 // order the state machines in complexity of the generated code.
362 Value *Idx = GEP->getOperand(2);
363
Chris Lattnerd7f5a582010-01-04 18:57:15 +0000364 // If the index is larger than the pointer size of the target, truncate the
365 // index down like the GEP would do implicitly. We don't have to do this for
366 // an inbounds GEP because the index can't be out of range.
367 if (!GEP->isInBounds() &&
368 Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
369 Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
Chris Lattner02446fc2010-01-04 07:37:31 +0000370
371 // If the comparison is only true for one or two elements, emit direct
372 // comparisons.
373 if (SecondTrueElement != Overdefined) {
374 // None true -> false.
375 if (FirstTrueElement == Undefined)
376 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
377
378 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
379
380 // True for one element -> 'i == 47'.
381 if (SecondTrueElement == Undefined)
382 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
383
384 // True for two elements -> 'i == 47 | i == 72'.
385 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
386 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
387 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
388 return BinaryOperator::CreateOr(C1, C2);
389 }
390
391 // If the comparison is only false for one or two elements, emit direct
392 // comparisons.
393 if (SecondFalseElement != Overdefined) {
394 // None false -> true.
395 if (FirstFalseElement == Undefined)
396 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
397
398 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
399
400 // False for one element -> 'i != 47'.
401 if (SecondFalseElement == Undefined)
402 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
403
404 // False for two elements -> 'i != 47 & i != 72'.
405 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
406 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
407 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
408 return BinaryOperator::CreateAnd(C1, C2);
409 }
410
411 // If the comparison can be replaced with a range comparison for the elements
412 // where it is true, emit the range check.
413 if (TrueRangeEnd != Overdefined) {
414 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
415
416 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
417 if (FirstTrueElement) {
418 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
419 Idx = Builder->CreateAdd(Idx, Offs);
420 }
421
422 Value *End = ConstantInt::get(Idx->getType(),
423 TrueRangeEnd-FirstTrueElement+1);
424 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
425 }
426
427 // False range check.
428 if (FalseRangeEnd != Overdefined) {
429 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
430 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
431 if (FirstFalseElement) {
432 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
433 Idx = Builder->CreateAdd(Idx, Offs);
434 }
435
436 Value *End = ConstantInt::get(Idx->getType(),
437 FalseRangeEnd-FirstFalseElement);
438 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
439 }
440
441
442 // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
443 // of this load, replace it with computation that does:
444 // ((magic_cst >> i) & 1) != 0
445 if (Init->getNumOperands() <= 32 ||
446 (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
447 const Type *Ty;
448 if (Init->getNumOperands() <= 32)
449 Ty = Type::getInt32Ty(Init->getContext());
450 else
451 Ty = Type::getInt64Ty(Init->getContext());
452 Value *V = Builder->CreateIntCast(Idx, Ty, false);
453 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
454 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
455 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
456 }
457
458 return 0;
459}
460
461
462/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
463/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
464/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
465/// be complex, and scales are involved. The above expression would also be
466/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
467/// This later form is less amenable to optimization though, and we are allowed
468/// to generate the first by knowing that pointer arithmetic doesn't overflow.
469///
470/// If we can't emit an optimized form for this expression, this returns null.
471///
472static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
473 InstCombiner &IC) {
474 TargetData &TD = *IC.getTargetData();
475 gep_type_iterator GTI = gep_type_begin(GEP);
476
477 // Check to see if this gep only has a single variable index. If so, and if
478 // any constant indices are a multiple of its scale, then we can compute this
479 // in terms of the scale of the variable index. For example, if the GEP
480 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
481 // because the expression will cross zero at the same point.
482 unsigned i, e = GEP->getNumOperands();
483 int64_t Offset = 0;
484 for (i = 1; i != e; ++i, ++GTI) {
485 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
486 // Compute the aggregate offset of constant indices.
487 if (CI->isZero()) continue;
488
489 // Handle a struct index, which adds its field offset to the pointer.
490 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
491 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
492 } else {
493 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
494 Offset += Size*CI->getSExtValue();
495 }
496 } else {
497 // Found our variable index.
498 break;
499 }
500 }
501
502 // If there are no variable indices, we must have a constant offset, just
503 // evaluate it the general way.
504 if (i == e) return 0;
505
506 Value *VariableIdx = GEP->getOperand(i);
507 // Determine the scale factor of the variable element. For example, this is
508 // 4 if the variable index is into an array of i32.
509 uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
510
511 // Verify that there are no other variable indices. If so, emit the hard way.
512 for (++i, ++GTI; i != e; ++i, ++GTI) {
513 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
514 if (!CI) return 0;
515
516 // Compute the aggregate offset of constant indices.
517 if (CI->isZero()) continue;
518
519 // Handle a struct index, which adds its field offset to the pointer.
520 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
521 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
522 } else {
523 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
524 Offset += Size*CI->getSExtValue();
525 }
526 }
527
528 // Okay, we know we have a single variable index, which must be a
529 // pointer/array/vector index. If there is no offset, life is simple, return
530 // the index.
531 unsigned IntPtrWidth = TD.getPointerSizeInBits();
532 if (Offset == 0) {
533 // Cast to intptrty in case a truncation occurs. If an extension is needed,
534 // we don't need to bother extending: the extension won't affect where the
535 // computation crosses zero.
536 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
537 VariableIdx = new TruncInst(VariableIdx,
538 TD.getIntPtrType(VariableIdx->getContext()),
539 VariableIdx->getName(), &I);
540 return VariableIdx;
541 }
542
543 // Otherwise, there is an index. The computation we will do will be modulo
544 // the pointer size, so get it.
545 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
546
547 Offset &= PtrSizeMask;
548 VariableScale &= PtrSizeMask;
549
550 // To do this transformation, any constant index must be a multiple of the
551 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
552 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
553 // multiple of the variable scale.
554 int64_t NewOffs = Offset / (int64_t)VariableScale;
555 if (Offset != NewOffs*(int64_t)VariableScale)
556 return 0;
557
558 // Okay, we can do this evaluation. Start by converting the index to intptr.
559 const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
560 if (VariableIdx->getType() != IntPtrTy)
561 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
562 true /*SExt*/,
563 VariableIdx->getName(), &I);
564 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
565 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
566}
567
568/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
569/// else. At this point we know that the GEP is on the LHS of the comparison.
570Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
571 ICmpInst::Predicate Cond,
572 Instruction &I) {
573 // Look through bitcasts.
574 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
575 RHS = BCI->getOperand(0);
576
577 Value *PtrBase = GEPLHS->getOperand(0);
578 if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
579 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
580 // This transformation (ignoring the base and scales) is valid because we
581 // know pointers can't overflow since the gep is inbounds. See if we can
582 // output an optimized form.
583 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
584
585 // If not, synthesize the offset the hard way.
586 if (Offset == 0)
587 Offset = EmitGEPOffset(GEPLHS);
588 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
589 Constant::getNullValue(Offset->getType()));
590 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
591 // If the base pointers are different, but the indices are the same, just
592 // compare the base pointer.
593 if (PtrBase != GEPRHS->getOperand(0)) {
594 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
595 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
596 GEPRHS->getOperand(0)->getType();
597 if (IndicesTheSame)
598 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
599 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
600 IndicesTheSame = false;
601 break;
602 }
603
604 // If all indices are the same, just compare the base pointers.
605 if (IndicesTheSame)
606 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
607 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
608
609 // Otherwise, the base pointers are different and the indices are
610 // different, bail out.
611 return 0;
612 }
613
614 // If one of the GEPs has all zero indices, recurse.
615 bool AllZeros = true;
616 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
617 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
618 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
619 AllZeros = false;
620 break;
621 }
622 if (AllZeros)
623 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
624 ICmpInst::getSwappedPredicate(Cond), I);
625
626 // If the other GEP has all zero indices, recurse.
627 AllZeros = true;
628 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
629 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
630 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
631 AllZeros = false;
632 break;
633 }
634 if (AllZeros)
635 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
636
637 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
638 // If the GEPs only differ by one index, compare it.
639 unsigned NumDifferences = 0; // Keep track of # differences.
640 unsigned DiffOperand = 0; // The operand that differs.
641 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
642 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
643 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
644 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
645 // Irreconcilable differences.
646 NumDifferences = 2;
647 break;
648 } else {
649 if (NumDifferences++) break;
650 DiffOperand = i;
651 }
652 }
653
654 if (NumDifferences == 0) // SAME GEP?
655 return ReplaceInstUsesWith(I, // No comparison is needed here.
656 ConstantInt::get(Type::getInt1Ty(I.getContext()),
657 ICmpInst::isTrueWhenEqual(Cond)));
658
659 else if (NumDifferences == 1) {
660 Value *LHSV = GEPLHS->getOperand(DiffOperand);
661 Value *RHSV = GEPRHS->getOperand(DiffOperand);
662 // Make sure we do a signed comparison here.
663 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
664 }
665 }
666
667 // Only lower this if the icmp is the only user of the GEP or if we expect
668 // the result to fold to a constant!
669 if (TD &&
670 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
671 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
672 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
673 Value *L = EmitGEPOffset(GEPLHS);
674 Value *R = EmitGEPOffset(GEPRHS);
675 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
676 }
677 }
678 return 0;
679}
680
681/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
682Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
683 Value *X, ConstantInt *CI,
684 ICmpInst::Predicate Pred,
685 Value *TheAdd) {
686 // If we have X+0, exit early (simplifying logic below) and let it get folded
687 // elsewhere. icmp X+0, X -> icmp X, X
688 if (CI->isZero()) {
689 bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
690 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
691 }
692
693 // (X+4) == X -> false.
694 if (Pred == ICmpInst::ICMP_EQ)
695 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
696
697 // (X+4) != X -> true.
698 if (Pred == ICmpInst::ICMP_NE)
699 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
700
701 // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
702 bool isNUW = false, isNSW = false;
703 if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
704 isNUW = Add->hasNoUnsignedWrap();
705 isNSW = Add->hasNoSignedWrap();
706 }
707
708 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
709 // so the values can never be equal. Similiarly for all other "or equals"
710 // operators.
711
Chris Lattner9aa1e242010-01-08 17:48:19 +0000712 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
Chris Lattner02446fc2010-01-04 07:37:31 +0000713 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
714 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
715 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
716 // If this is an NUW add, then this is always false.
717 if (isNUW)
718 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
719
Chris Lattner9aa1e242010-01-08 17:48:19 +0000720 Value *R =
721 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
Chris Lattner02446fc2010-01-04 07:37:31 +0000722 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
723 }
724
725 // (X+1) >u X --> X <u (0-1) --> X != 255
726 // (X+2) >u X --> X <u (0-2) --> X <u 254
727 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
728 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
729 // If this is an NUW add, then this is always true.
730 if (isNUW)
731 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
732 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
733 }
734
735 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
736 ConstantInt *SMax = ConstantInt::get(X->getContext(),
737 APInt::getSignedMaxValue(BitWidth));
738
739 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
740 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
741 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
742 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
743 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
744 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
745 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
746 // If this is an NSW add, then we have two cases: if the constant is
747 // positive, then this is always false, if negative, this is always true.
748 if (isNSW) {
749 bool isTrue = CI->getValue().isNegative();
750 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
751 }
752
753 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
754 }
755
756 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
757 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
758 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
759 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
760 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
761 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
762
763 // If this is an NSW add, then we have two cases: if the constant is
764 // positive, then this is always true, if negative, this is always false.
765 if (isNSW) {
766 bool isTrue = !CI->getValue().isNegative();
767 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
768 }
769
770 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
771 Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
772 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
773}
774
775/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
776/// and CmpRHS are both known to be integer constants.
777Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
778 ConstantInt *DivRHS) {
779 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
780 const APInt &CmpRHSV = CmpRHS->getValue();
781
782 // FIXME: If the operand types don't match the type of the divide
783 // then don't attempt this transform. The code below doesn't have the
784 // logic to deal with a signed divide and an unsigned compare (and
785 // vice versa). This is because (x /s C1) <s C2 produces different
786 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
787 // (x /u C1) <u C2. Simply casting the operands and result won't
788 // work. :( The if statement below tests that condition and bails
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000789 // if it finds it.
Chris Lattner02446fc2010-01-04 07:37:31 +0000790 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
791 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
792 return 0;
793 if (DivRHS->isZero())
794 return 0; // The ProdOV computation fails on divide by zero.
795 if (DivIsSigned && DivRHS->isAllOnesValue())
796 return 0; // The overflow computation also screws up here
Chris Lattnerbb75d332011-02-13 08:07:21 +0000797 if (DivRHS->isOne()) {
798 // This eliminates some funny cases with INT_MIN.
799 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
800 return &ICI;
801 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000802
803 // Compute Prod = CI * DivRHS. We are essentially solving an equation
804 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
805 // C2 (CI). By solving for X we can turn this into a range check
806 // instead of computing a divide.
807 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
808
809 // Determine if the product overflows by seeing if the product is
810 // not equal to the divide. Make sure we do the same kind of divide
811 // as in the LHS instruction that we're folding.
812 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
813 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
814
815 // Get the ICmp opcode
816 ICmpInst::Predicate Pred = ICI.getPredicate();
817
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000818 /// If the division is known to be exact, then there is no remainder from the
819 /// divide, so the covered range size is unit, otherwise it is the divisor.
820 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
821
Chris Lattner02446fc2010-01-04 07:37:31 +0000822 // Figure out the interval that is being checked. For example, a comparison
823 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
824 // Compute this interval based on the constants involved and the signedness of
825 // the compare/divide. This computes a half-open interval, keeping track of
826 // whether either value in the interval overflows. After analysis each
827 // overflow variable is set to 0 if it's corresponding bound variable is valid
828 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
829 int LoOverflow = 0, HiOverflow = 0;
830 Constant *LoBound = 0, *HiBound = 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000831
Chris Lattner02446fc2010-01-04 07:37:31 +0000832 if (!DivIsSigned) { // udiv
833 // e.g. X/5 op 3 --> [15, 20)
834 LoBound = Prod;
835 HiOverflow = LoOverflow = ProdOV;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000836 if (!HiOverflow) {
837 // If this is not an exact divide, then many values in the range collapse
838 // to the same result value.
839 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
840 }
841
Chris Lattner02446fc2010-01-04 07:37:31 +0000842 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
843 if (CmpRHSV == 0) { // (X / pos) op 0
844 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000845 LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
846 HiBound = RangeSize;
Chris Lattner02446fc2010-01-04 07:37:31 +0000847 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
848 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
849 HiOverflow = LoOverflow = ProdOV;
850 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000851 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000852 } else { // (X / pos) op neg
853 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
854 HiBound = AddOne(Prod);
855 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
856 if (!LoOverflow) {
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000857 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000858 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000859 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000860 }
861 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000862 if (DivI->isExact())
863 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000864 if (CmpRHSV == 0) { // (X / neg) op 0
865 // e.g. X/-5 op 0 --> [-4, 5)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000866 LoBound = AddOne(RangeSize);
867 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000868 if (HiBound == DivRHS) { // -INTMIN = INTMIN
869 HiOverflow = 1; // [INTMIN+1, overflow)
870 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
871 }
872 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
873 // e.g. X/-5 op 3 --> [-19, -14)
874 HiBound = AddOne(Prod);
875 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
876 if (!LoOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000877 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
Chris Lattner02446fc2010-01-04 07:37:31 +0000878 } else { // (X / neg) op neg
879 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
880 LoOverflow = HiOverflow = ProdOV;
881 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000882 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000883 }
884
885 // Dividing by a negative swaps the condition. LT <-> GT
886 Pred = ICmpInst::getSwappedPredicate(Pred);
887 }
888
889 Value *X = DivI->getOperand(0);
890 switch (Pred) {
891 default: llvm_unreachable("Unhandled icmp opcode!");
892 case ICmpInst::ICMP_EQ:
893 if (LoOverflow && HiOverflow)
894 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000895 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000896 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
897 ICmpInst::ICMP_UGE, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000898 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000899 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
900 ICmpInst::ICMP_ULT, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000901 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
902 DivIsSigned, true));
Chris Lattner02446fc2010-01-04 07:37:31 +0000903 case ICmpInst::ICMP_NE:
904 if (LoOverflow && HiOverflow)
905 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000906 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000907 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
908 ICmpInst::ICMP_ULT, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000909 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000910 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
911 ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000912 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
913 DivIsSigned, false));
Chris Lattner02446fc2010-01-04 07:37:31 +0000914 case ICmpInst::ICMP_ULT:
915 case ICmpInst::ICMP_SLT:
916 if (LoOverflow == +1) // Low bound is greater than input range.
917 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
918 if (LoOverflow == -1) // Low bound is less than input range.
919 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
920 return new ICmpInst(Pred, X, LoBound);
921 case ICmpInst::ICMP_UGT:
922 case ICmpInst::ICMP_SGT:
923 if (HiOverflow == +1) // High bound greater than input range.
924 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000925 if (HiOverflow == -1) // High bound less than input range.
Chris Lattner02446fc2010-01-04 07:37:31 +0000926 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
927 if (Pred == ICmpInst::ICMP_UGT)
928 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000929 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
Chris Lattner02446fc2010-01-04 07:37:31 +0000930 }
931}
932
Chris Lattner74542aa2011-02-13 07:43:07 +0000933/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
934Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
935 ConstantInt *ShAmt) {
Chris Lattner74542aa2011-02-13 07:43:07 +0000936 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
937
938 // Check that the shift amount is in range. If not, don't perform
939 // undefined shifts. When the shift is visited it will be
940 // simplified.
941 uint32_t TypeBits = CmpRHSV.getBitWidth();
942 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Chris Lattnerbb75d332011-02-13 08:07:21 +0000943 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
Chris Lattner74542aa2011-02-13 07:43:07 +0000944 return 0;
945
Chris Lattnerbb75d332011-02-13 08:07:21 +0000946 if (!ICI.isEquality()) {
947 // If we have an unsigned comparison and an ashr, we can't simplify this.
948 // Similarly for signed comparisons with lshr.
949 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
950 return 0;
951
952 // Otherwise, all lshr and all exact ashr's are equivalent to a udiv/sdiv by
953 // a power of 2. Since we already have logic to simplify these, transform
954 // to div and then simplify the resultant comparison.
955 if (Shr->getOpcode() == Instruction::AShr &&
956 !Shr->isExact())
957 return 0;
958
959 // Revisit the shift (to delete it).
960 Worklist.Add(Shr);
961
962 Constant *DivCst =
963 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
964
965 Value *Tmp =
966 Shr->getOpcode() == Instruction::AShr ?
967 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
968 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
969
970 ICI.setOperand(0, Tmp);
971
972 // If the builder folded the binop, just return it.
973 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
974 if (TheDiv == 0)
975 return &ICI;
976
977 // Otherwise, fold this div/compare.
978 assert(TheDiv->getOpcode() == Instruction::SDiv ||
979 TheDiv->getOpcode() == Instruction::UDiv);
980
981 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
982 assert(Res && "This div/cst should have folded!");
983 return Res;
984 }
985
986
Chris Lattner74542aa2011-02-13 07:43:07 +0000987 // If we are comparing against bits always shifted out, the
988 // comparison cannot succeed.
989 APInt Comp = CmpRHSV << ShAmtVal;
990 ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
991 if (Shr->getOpcode() == Instruction::LShr)
992 Comp = Comp.lshr(ShAmtVal);
993 else
994 Comp = Comp.ashr(ShAmtVal);
995
996 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
997 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
998 Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
999 IsICMP_NE);
1000 return ReplaceInstUsesWith(ICI, Cst);
1001 }
1002
1003 // Otherwise, check to see if the bits shifted out are known to be zero.
1004 // If so, we can compare against the unshifted value:
1005 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Chris Lattnere5116f82011-02-13 18:30:09 +00001006 if (Shr->hasOneUse() && Shr->isExact())
Chris Lattner74542aa2011-02-13 07:43:07 +00001007 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1008
1009 if (Shr->hasOneUse()) {
1010 // Otherwise strength reduce the shift into an and.
1011 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1012 Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
1013
1014 Value *And = Builder->CreateAnd(Shr->getOperand(0),
1015 Mask, Shr->getName()+".mask");
1016 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1017 }
1018 return 0;
1019}
1020
Chris Lattner02446fc2010-01-04 07:37:31 +00001021
1022/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1023///
1024Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1025 Instruction *LHSI,
1026 ConstantInt *RHS) {
1027 const APInt &RHSV = RHS->getValue();
1028
1029 switch (LHSI->getOpcode()) {
1030 case Instruction::Trunc:
1031 if (ICI.isEquality() && LHSI->hasOneUse()) {
1032 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1033 // of the high bits truncated out of x are known.
1034 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1035 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1036 APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
1037 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1038 ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
1039
1040 // If all the high bits are known, we can do this xform.
1041 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1042 // Pull in the high bits from known-ones set.
Jay Foad40f8f622010-12-07 08:25:19 +00001043 APInt NewRHS = RHS->getValue().zext(SrcBits);
Chris Lattner02446fc2010-01-04 07:37:31 +00001044 NewRHS |= KnownOne;
1045 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1046 ConstantInt::get(ICI.getContext(), NewRHS));
1047 }
1048 }
1049 break;
1050
1051 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
1052 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1053 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1054 // fold the xor.
1055 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1056 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1057 Value *CompareVal = LHSI->getOperand(0);
1058
1059 // If the sign bit of the XorCST is not set, there is no change to
1060 // the operation, just stop using the Xor.
1061 if (!XorCST->getValue().isNegative()) {
1062 ICI.setOperand(0, CompareVal);
1063 Worklist.Add(LHSI);
1064 return &ICI;
1065 }
1066
1067 // Was the old condition true if the operand is positive?
1068 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1069
1070 // If so, the new one isn't.
1071 isTrueIfPositive ^= true;
1072
1073 if (isTrueIfPositive)
1074 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1075 SubOne(RHS));
1076 else
1077 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1078 AddOne(RHS));
1079 }
1080
1081 if (LHSI->hasOneUse()) {
1082 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1083 if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1084 const APInt &SignBit = XorCST->getValue();
1085 ICmpInst::Predicate Pred = ICI.isSigned()
1086 ? ICI.getUnsignedPredicate()
1087 : ICI.getSignedPredicate();
1088 return new ICmpInst(Pred, LHSI->getOperand(0),
1089 ConstantInt::get(ICI.getContext(),
1090 RHSV ^ SignBit));
1091 }
1092
1093 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1094 if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
1095 const APInt &NotSignBit = XorCST->getValue();
1096 ICmpInst::Predicate Pred = ICI.isSigned()
1097 ? ICI.getUnsignedPredicate()
1098 : ICI.getSignedPredicate();
1099 Pred = ICI.getSwappedPredicate(Pred);
1100 return new ICmpInst(Pred, LHSI->getOperand(0),
1101 ConstantInt::get(ICI.getContext(),
1102 RHSV ^ NotSignBit));
1103 }
1104 }
1105 }
1106 break;
1107 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
1108 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1109 LHSI->getOperand(0)->hasOneUse()) {
1110 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1111
1112 // If the LHS is an AND of a truncating cast, we can widen the
1113 // and/compare to be the input width without changing the value
1114 // produced, eliminating a cast.
1115 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1116 // We can do this transformation if either the AND constant does not
1117 // have its sign bit set or if it is an equality comparison.
1118 // Extending a relational comparison when we're checking the sign
1119 // bit would not work.
1120 if (Cast->hasOneUse() &&
1121 (ICI.isEquality() ||
1122 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
1123 uint32_t BitWidth =
1124 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
Jay Foad40f8f622010-12-07 08:25:19 +00001125 APInt NewCST = AndCST->getValue().zext(BitWidth);
1126 APInt NewCI = RHSV.zext(BitWidth);
Chris Lattner02446fc2010-01-04 07:37:31 +00001127 Value *NewAnd =
1128 Builder->CreateAnd(Cast->getOperand(0),
1129 ConstantInt::get(ICI.getContext(), NewCST),
1130 LHSI->getName());
1131 return new ICmpInst(ICI.getPredicate(), NewAnd,
1132 ConstantInt::get(ICI.getContext(), NewCI));
1133 }
1134 }
1135
1136 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1137 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1138 // happens a LOT in code produced by the C front-end, for bitfield
1139 // access.
1140 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1141 if (Shift && !Shift->isShift())
1142 Shift = 0;
1143
1144 ConstantInt *ShAmt;
1145 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1146 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
1147 const Type *AndTy = AndCST->getType(); // Type of the and.
1148
1149 // We can fold this as long as we can't shift unknown bits
1150 // into the mask. This can only happen with signed shift
1151 // rights, as they sign-extend.
1152 if (ShAmt) {
1153 bool CanFold = Shift->isLogicalShift();
1154 if (!CanFold) {
1155 // To test for the bad case of the signed shr, see if any
1156 // of the bits shifted in could be tested after the mask.
1157 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1158 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1159
1160 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1161 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1162 AndCST->getValue()) == 0)
1163 CanFold = true;
1164 }
1165
1166 if (CanFold) {
1167 Constant *NewCst;
1168 if (Shift->getOpcode() == Instruction::Shl)
1169 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1170 else
1171 NewCst = ConstantExpr::getShl(RHS, ShAmt);
1172
1173 // Check to see if we are shifting out any of the bits being
1174 // compared.
1175 if (ConstantExpr::get(Shift->getOpcode(),
1176 NewCst, ShAmt) != RHS) {
1177 // If we shifted bits out, the fold is not going to work out.
1178 // As a special case, check to see if this means that the
1179 // result is always true or false now.
1180 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1181 return ReplaceInstUsesWith(ICI,
1182 ConstantInt::getFalse(ICI.getContext()));
1183 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1184 return ReplaceInstUsesWith(ICI,
1185 ConstantInt::getTrue(ICI.getContext()));
1186 } else {
1187 ICI.setOperand(1, NewCst);
1188 Constant *NewAndCST;
1189 if (Shift->getOpcode() == Instruction::Shl)
1190 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1191 else
1192 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1193 LHSI->setOperand(1, NewAndCST);
1194 LHSI->setOperand(0, Shift->getOperand(0));
1195 Worklist.Add(Shift); // Shift is dead.
1196 return &ICI;
1197 }
1198 }
1199 }
1200
1201 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1202 // preferable because it allows the C<<Y expression to be hoisted out
1203 // of a loop if Y is invariant and X is not.
1204 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1205 ICI.isEquality() && !Shift->isArithmeticShift() &&
1206 !isa<Constant>(Shift->getOperand(0))) {
1207 // Compute C << Y.
1208 Value *NS;
1209 if (Shift->getOpcode() == Instruction::LShr) {
1210 NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
1211 } else {
1212 // Insert a logical shift.
1213 NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
1214 }
1215
1216 // Compute X & (C << Y).
1217 Value *NewAnd =
1218 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1219
1220 ICI.setOperand(0, NewAnd);
1221 return &ICI;
1222 }
1223 }
1224
1225 // Try to optimize things like "A[i]&42 == 0" to index computations.
1226 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1227 if (GetElementPtrInst *GEP =
1228 dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1229 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1230 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1231 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1232 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1233 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1234 return Res;
1235 }
1236 }
1237 break;
1238
1239 case Instruction::Or: {
1240 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1241 break;
1242 Value *P, *Q;
1243 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1244 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1245 // -> and (icmp eq P, null), (icmp eq Q, null).
Chris Lattner02446fc2010-01-04 07:37:31 +00001246 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1247 Constant::getNullValue(P->getType()));
1248 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1249 Constant::getNullValue(Q->getType()));
1250 Instruction *Op;
1251 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1252 Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1253 else
1254 Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1255 return Op;
1256 }
1257 break;
1258 }
1259
1260 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
1261 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1262 if (!ShAmt) break;
1263
1264 uint32_t TypeBits = RHSV.getBitWidth();
1265
1266 // Check that the shift amount is in range. If not, don't perform
1267 // undefined shifts. When the shift is visited it will be
1268 // simplified.
1269 if (ShAmt->uge(TypeBits))
1270 break;
1271
1272 if (ICI.isEquality()) {
1273 // If we are comparing against bits always shifted out, the
1274 // comparison cannot succeed.
1275 Constant *Comp =
1276 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1277 ShAmt);
1278 if (Comp != RHS) {// Comparing against a bit that we know is zero.
1279 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1280 Constant *Cst =
1281 ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1282 return ReplaceInstUsesWith(ICI, Cst);
1283 }
1284
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001285 // If the shift is NUW, then it is just shifting out zeros, no need for an
1286 // AND.
1287 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1288 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1289 ConstantExpr::getLShr(RHS, ShAmt));
1290
Chris Lattner02446fc2010-01-04 07:37:31 +00001291 if (LHSI->hasOneUse()) {
1292 // Otherwise strength reduce the shift into an and.
1293 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1294 Constant *Mask =
1295 ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1296 TypeBits-ShAmtVal));
1297
1298 Value *And =
1299 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1300 return new ICmpInst(ICI.getPredicate(), And,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001301 ConstantExpr::getLShr(RHS, ShAmt));
Chris Lattner02446fc2010-01-04 07:37:31 +00001302 }
1303 }
1304
1305 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1306 bool TrueIfSigned = false;
1307 if (LHSI->hasOneUse() &&
1308 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1309 // (X << 31) <s 0 --> (X&1) != 0
Chris Lattnerbb75d332011-02-13 08:07:21 +00001310 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1311 APInt::getOneBitSet(TypeBits,
1312 TypeBits-ShAmt->getZExtValue()-1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001313 Value *And =
1314 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1315 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1316 And, Constant::getNullValue(And->getType()));
1317 }
1318 break;
1319 }
1320
1321 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
Chris Lattner74542aa2011-02-13 07:43:07 +00001322 case Instruction::AShr:
Chris Lattner02446fc2010-01-04 07:37:31 +00001323 // Only handle equality comparisons of shift-by-constant.
Chris Lattner74542aa2011-02-13 07:43:07 +00001324 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1325 if (Instruction *Res = FoldICmpShrCst(ICI, cast<BinaryOperator>(LHSI),
1326 ShAmt))
1327 return Res;
Chris Lattner02446fc2010-01-04 07:37:31 +00001328 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001329
1330 case Instruction::SDiv:
1331 case Instruction::UDiv:
1332 // Fold: icmp pred ([us]div X, C1), C2 -> range test
1333 // Fold this div into the comparison, producing a range check.
1334 // Determine, based on the divide type, what the range is being
1335 // checked. If there is an overflow on the low or high side, remember
1336 // it, otherwise compute the range [low, hi) bounding the new value.
1337 // See: InsertRangeTest above for the kinds of replacements possible.
1338 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1339 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1340 DivRHS))
1341 return R;
1342 break;
1343
1344 case Instruction::Add:
1345 // Fold: icmp pred (add X, C1), C2
1346 if (!ICI.isEquality()) {
1347 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1348 if (!LHSC) break;
1349 const APInt &LHSV = LHSC->getValue();
1350
1351 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1352 .subtract(LHSV);
1353
1354 if (ICI.isSigned()) {
1355 if (CR.getLower().isSignBit()) {
1356 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1357 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1358 } else if (CR.getUpper().isSignBit()) {
1359 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1360 ConstantInt::get(ICI.getContext(),CR.getLower()));
1361 }
1362 } else {
1363 if (CR.getLower().isMinValue()) {
1364 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1365 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1366 } else if (CR.getUpper().isMinValue()) {
1367 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1368 ConstantInt::get(ICI.getContext(),CR.getLower()));
1369 }
1370 }
1371 }
1372 break;
1373 }
1374
1375 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1376 if (ICI.isEquality()) {
1377 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1378
1379 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1380 // the second operand is a constant, simplify a bit.
1381 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1382 switch (BO->getOpcode()) {
1383 case Instruction::SRem:
1384 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1385 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1386 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
Dan Gohmane0567812010-04-08 23:03:40 +00001387 if (V.sgt(1) && V.isPowerOf2()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001388 Value *NewRem =
1389 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1390 BO->getName());
1391 return new ICmpInst(ICI.getPredicate(), NewRem,
1392 Constant::getNullValue(BO->getType()));
1393 }
1394 }
1395 break;
1396 case Instruction::Add:
1397 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1398 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1399 if (BO->hasOneUse())
1400 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1401 ConstantExpr::getSub(RHS, BOp1C));
1402 } else if (RHSV == 0) {
1403 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1404 // efficiently invertible, or if the add has just this one use.
1405 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1406
1407 if (Value *NegVal = dyn_castNegVal(BOp1))
1408 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1409 else if (Value *NegVal = dyn_castNegVal(BOp0))
1410 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1411 else if (BO->hasOneUse()) {
1412 Value *Neg = Builder->CreateNeg(BOp1);
1413 Neg->takeName(BO);
1414 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1415 }
1416 }
1417 break;
1418 case Instruction::Xor:
1419 // For the xor case, we can xor two constants together, eliminating
1420 // the explicit xor.
1421 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1422 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1423 ConstantExpr::getXor(RHS, BOC));
1424
1425 // FALLTHROUGH
1426 case Instruction::Sub:
1427 // Replace (([sub|xor] A, B) != 0) with (A != B)
1428 if (RHSV == 0)
1429 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1430 BO->getOperand(1));
1431 break;
1432
1433 case Instruction::Or:
1434 // If bits are being or'd in that are not present in the constant we
1435 // are comparing against, then the comparison could never succeed!
Eli Friedman618898e2010-07-29 18:03:33 +00001436 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001437 Constant *NotCI = ConstantExpr::getNot(RHS);
1438 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1439 return ReplaceInstUsesWith(ICI,
1440 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1441 isICMP_NE));
1442 }
1443 break;
1444
1445 case Instruction::And:
1446 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1447 // If bits are being compared against that are and'd out, then the
1448 // comparison can never succeed!
1449 if ((RHSV & ~BOC->getValue()) != 0)
1450 return ReplaceInstUsesWith(ICI,
1451 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1452 isICMP_NE));
1453
1454 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1455 if (RHS == BOC && RHSV.isPowerOf2())
1456 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1457 ICmpInst::ICMP_NE, LHSI,
1458 Constant::getNullValue(RHS->getType()));
1459
1460 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1461 if (BOC->getValue().isSignBit()) {
1462 Value *X = BO->getOperand(0);
1463 Constant *Zero = Constant::getNullValue(X->getType());
1464 ICmpInst::Predicate pred = isICMP_NE ?
1465 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1466 return new ICmpInst(pred, X, Zero);
1467 }
1468
1469 // ((X & ~7) == 0) --> X < 8
1470 if (RHSV == 0 && isHighOnes(BOC)) {
1471 Value *X = BO->getOperand(0);
1472 Constant *NegX = ConstantExpr::getNeg(BOC);
1473 ICmpInst::Predicate pred = isICMP_NE ?
1474 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1475 return new ICmpInst(pred, X, NegX);
1476 }
1477 }
1478 default: break;
1479 }
1480 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1481 // Handle icmp {eq|ne} <intrinsic>, intcst.
Chris Lattner03357402010-01-05 18:09:56 +00001482 switch (II->getIntrinsicID()) {
1483 case Intrinsic::bswap:
Chris Lattner02446fc2010-01-04 07:37:31 +00001484 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001485 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner02446fc2010-01-04 07:37:31 +00001486 ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1487 return &ICI;
Chris Lattner03357402010-01-05 18:09:56 +00001488 case Intrinsic::ctlz:
1489 case Intrinsic::cttz:
1490 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1491 if (RHSV == RHS->getType()->getBitWidth()) {
1492 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001493 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001494 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1495 return &ICI;
1496 }
1497 break;
1498 case Intrinsic::ctpop:
1499 // popcount(A) == 0 -> A == 0 and likewise for !=
1500 if (RHS->isZero()) {
1501 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001502 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001503 ICI.setOperand(1, RHS);
1504 return &ICI;
1505 }
1506 break;
1507 default:
Duncan Sands34727662010-07-12 08:16:59 +00001508 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001509 }
1510 }
1511 }
1512 return 0;
1513}
1514
1515/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1516/// We only handle extending casts so far.
1517///
1518Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1519 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1520 Value *LHSCIOp = LHSCI->getOperand(0);
1521 const Type *SrcTy = LHSCIOp->getType();
1522 const Type *DestTy = LHSCI->getType();
1523 Value *RHSCIOp;
1524
1525 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1526 // integer type is the same size as the pointer type.
1527 if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1528 TD->getPointerSizeInBits() ==
1529 cast<IntegerType>(DestTy)->getBitWidth()) {
1530 Value *RHSOp = 0;
1531 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1532 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1533 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1534 RHSOp = RHSC->getOperand(0);
1535 // If the pointer types don't match, insert a bitcast.
1536 if (LHSCIOp->getType() != RHSOp->getType())
1537 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1538 }
1539
1540 if (RHSOp)
1541 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1542 }
1543
1544 // The code below only handles extension cast instructions, so far.
1545 // Enforce this.
1546 if (LHSCI->getOpcode() != Instruction::ZExt &&
1547 LHSCI->getOpcode() != Instruction::SExt)
1548 return 0;
1549
1550 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1551 bool isSignedCmp = ICI.isSigned();
1552
1553 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1554 // Not an extension from the same type?
1555 RHSCIOp = CI->getOperand(0);
1556 if (RHSCIOp->getType() != LHSCIOp->getType())
1557 return 0;
1558
1559 // If the signedness of the two casts doesn't agree (i.e. one is a sext
1560 // and the other is a zext), then we can't handle this.
1561 if (CI->getOpcode() != LHSCI->getOpcode())
1562 return 0;
1563
1564 // Deal with equality cases early.
1565 if (ICI.isEquality())
1566 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1567
1568 // A signed comparison of sign extended values simplifies into a
1569 // signed comparison.
1570 if (isSignedCmp && isSignedExt)
1571 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1572
1573 // The other three cases all fold into an unsigned comparison.
1574 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1575 }
1576
1577 // If we aren't dealing with a constant on the RHS, exit early
1578 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1579 if (!CI)
1580 return 0;
1581
1582 // Compute the constant that would happen if we truncated to SrcTy then
1583 // reextended to DestTy.
1584 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1585 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1586 Res1, DestTy);
1587
1588 // If the re-extended constant didn't change...
1589 if (Res2 == CI) {
1590 // Deal with equality cases early.
1591 if (ICI.isEquality())
1592 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1593
1594 // A signed comparison of sign extended values simplifies into a
1595 // signed comparison.
1596 if (isSignedExt && isSignedCmp)
1597 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1598
1599 // The other three cases all fold into an unsigned comparison.
1600 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1601 }
1602
1603 // The re-extended constant changed so the constant cannot be represented
1604 // in the shorter type. Consequently, we cannot emit a simple comparison.
Duncan Sands9d32f602011-01-20 13:21:55 +00001605 // All the cases that fold to true or false will have already been handled
1606 // by SimplifyICmpInst, so only deal with the tricky case.
Chris Lattner02446fc2010-01-04 07:37:31 +00001607
Duncan Sands9d32f602011-01-20 13:21:55 +00001608 if (isSignedCmp || !isSignedExt)
1609 return 0;
Chris Lattner02446fc2010-01-04 07:37:31 +00001610
1611 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1612 // should have been folded away previously and not enter in here.
Duncan Sands9d32f602011-01-20 13:21:55 +00001613
1614 // We're performing an unsigned comp with a sign extended value.
1615 // This is true if the input is >= 0. [aka >s -1]
1616 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1617 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
Chris Lattner02446fc2010-01-04 07:37:31 +00001618
1619 // Finally, return the value computed.
Duncan Sands9d32f602011-01-20 13:21:55 +00001620 if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
Chris Lattner02446fc2010-01-04 07:37:31 +00001621 return ReplaceInstUsesWith(ICI, Result);
1622
Duncan Sands9d32f602011-01-20 13:21:55 +00001623 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
Chris Lattner02446fc2010-01-04 07:37:31 +00001624 return BinaryOperator::CreateNot(Result);
1625}
1626
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001627/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1628/// I = icmp ugt (add (add A, B), CI2), CI1
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001629/// If this is of the form:
1630/// sum = a + b
1631/// if (sum+128 >u 255)
1632/// Then replace it with llvm.sadd.with.overflow.i8.
1633///
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001634static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1635 ConstantInt *CI2, ConstantInt *CI1,
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001636 InstCombiner &IC) {
Chris Lattner368397b2010-12-19 17:59:02 +00001637 // The transformation we're trying to do here is to transform this into an
1638 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1639 // with a narrower add, and discard the add-with-constant that is part of the
1640 // range check (if we can't eliminate it, this isn't profitable).
1641
1642 // In order to eliminate the add-with-constant, the compare can be its only
1643 // use.
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001644 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
Chris Lattner368397b2010-12-19 17:59:02 +00001645 if (!AddWithCst->hasOneUse()) return 0;
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001646
1647 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1648 if (!CI2->getValue().isPowerOf2()) return 0;
1649 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1650 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1651
1652 // The width of the new add formed is 1 more than the bias.
1653 ++NewWidth;
1654
1655 // Check to see that CI1 is an all-ones value with NewWidth bits.
1656 if (CI1->getBitWidth() == NewWidth ||
1657 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1658 return 0;
1659
1660 // In order to replace the original add with a narrower
1661 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1662 // and truncates that discard the high bits of the add. Verify that this is
1663 // the case.
1664 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1665 for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1666 UI != E; ++UI) {
1667 if (*UI == AddWithCst) continue;
1668
1669 // Only accept truncates for now. We would really like a nice recursive
1670 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1671 // chain to see which bits of a value are actually demanded. If the
1672 // original add had another add which was then immediately truncated, we
1673 // could still do the transformation.
1674 TruncInst *TI = dyn_cast<TruncInst>(*UI);
1675 if (TI == 0 ||
1676 TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1677 }
1678
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001679 // If the pattern matches, truncate the inputs to the narrower type and
1680 // use the sadd_with_overflow intrinsic to efficiently compute both the
1681 // result and the overflow bit.
Chris Lattner0a624742010-12-19 18:35:09 +00001682 Module *M = I.getParent()->getParent()->getParent();
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001683
Chris Lattner0a624742010-12-19 18:35:09 +00001684 const Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1685 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1686 &NewType, 1);
1687
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001688 InstCombiner::BuilderTy *Builder = IC.Builder;
1689
Chris Lattner0a624742010-12-19 18:35:09 +00001690 // Put the new code above the original add, in case there are any uses of the
1691 // add between the add and the compare.
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001692 Builder->SetInsertPoint(OrigAdd);
Chris Lattner0a624742010-12-19 18:35:09 +00001693
1694 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1695 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1696 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1697 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1698 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001699
1700 // The inner add was the result of the narrow add, zero extended to the
1701 // wider type. Replace it with the result computed by the intrinsic.
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001702 IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001703
Chris Lattner0a624742010-12-19 18:35:09 +00001704 // The original icmp gets replaced with the overflow value.
1705 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001706}
Chris Lattner02446fc2010-01-04 07:37:31 +00001707
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001708static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1709 InstCombiner &IC) {
1710 // Don't bother doing this transformation for pointers, don't do it for
1711 // vectors.
1712 if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1713
1714 // If the add is a constant expr, then we don't bother transforming it.
1715 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1716 if (OrigAdd == 0) return 0;
1717
1718 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1719
1720 // Put the new code above the original add, in case there are any uses of the
1721 // add between the add and the compare.
1722 InstCombiner::BuilderTy *Builder = IC.Builder;
1723 Builder->SetInsertPoint(OrigAdd);
1724
1725 Module *M = I.getParent()->getParent()->getParent();
1726 const Type *Ty = LHS->getType();
1727 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, &Ty,1);
1728 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1729 Value *Add = Builder->CreateExtractValue(Call, 0);
1730
1731 IC.ReplaceInstUsesWith(*OrigAdd, Add);
1732
1733 // The original icmp gets replaced with the overflow value.
1734 return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1735}
1736
Owen Andersonda1c1222011-01-11 00:36:45 +00001737// DemandedBitsLHSMask - When performing a comparison against a constant,
1738// it is possible that not all the bits in the LHS are demanded. This helper
1739// method computes the mask that IS demanded.
1740static APInt DemandedBitsLHSMask(ICmpInst &I,
1741 unsigned BitWidth, bool isSignCheck) {
1742 if (isSignCheck)
1743 return APInt::getSignBit(BitWidth);
1744
1745 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1746 if (!CI) return APInt::getAllOnesValue(BitWidth);
Owen Andersona33b6252011-01-11 18:26:37 +00001747 const APInt &RHS = CI->getValue();
Owen Andersonda1c1222011-01-11 00:36:45 +00001748
1749 switch (I.getPredicate()) {
1750 // For a UGT comparison, we don't care about any bits that
1751 // correspond to the trailing ones of the comparand. The value of these
1752 // bits doesn't impact the outcome of the comparison, because any value
1753 // greater than the RHS must differ in a bit higher than these due to carry.
1754 case ICmpInst::ICMP_UGT: {
1755 unsigned trailingOnes = RHS.countTrailingOnes();
1756 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1757 return ~lowBitsSet;
1758 }
1759
1760 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1761 // Any value less than the RHS must differ in a higher bit because of carries.
1762 case ICmpInst::ICMP_ULT: {
1763 unsigned trailingZeros = RHS.countTrailingZeros();
1764 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1765 return ~lowBitsSet;
1766 }
1767
1768 default:
1769 return APInt::getAllOnesValue(BitWidth);
1770 }
1771
Owen Andersonda1c1222011-01-11 00:36:45 +00001772}
Chris Lattner02446fc2010-01-04 07:37:31 +00001773
1774Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1775 bool Changed = false;
Chris Lattner5f670d42010-02-01 19:54:45 +00001776 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner02446fc2010-01-04 07:37:31 +00001777
1778 /// Orders the operands of the compare so that they are listed from most
1779 /// complex to least complex. This puts constants before unary operators,
1780 /// before binary operators.
Chris Lattner5f670d42010-02-01 19:54:45 +00001781 if (getComplexity(Op0) < getComplexity(Op1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001782 I.swapOperands();
Chris Lattner5f670d42010-02-01 19:54:45 +00001783 std::swap(Op0, Op1);
Chris Lattner02446fc2010-01-04 07:37:31 +00001784 Changed = true;
1785 }
1786
Chris Lattner02446fc2010-01-04 07:37:31 +00001787 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1788 return ReplaceInstUsesWith(I, V);
1789
1790 const Type *Ty = Op0->getType();
1791
1792 // icmp's with boolean values can always be turned into bitwise operations
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001793 if (Ty->isIntegerTy(1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001794 switch (I.getPredicate()) {
1795 default: llvm_unreachable("Invalid icmp instruction!");
1796 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
1797 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1798 return BinaryOperator::CreateNot(Xor);
1799 }
1800 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
1801 return BinaryOperator::CreateXor(Op0, Op1);
1802
1803 case ICmpInst::ICMP_UGT:
1804 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
1805 // FALL THROUGH
1806 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
1807 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1808 return BinaryOperator::CreateAnd(Not, Op1);
1809 }
1810 case ICmpInst::ICMP_SGT:
1811 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
1812 // FALL THROUGH
1813 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
1814 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1815 return BinaryOperator::CreateAnd(Not, Op0);
1816 }
1817 case ICmpInst::ICMP_UGE:
1818 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
1819 // FALL THROUGH
1820 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
1821 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1822 return BinaryOperator::CreateOr(Not, Op1);
1823 }
1824 case ICmpInst::ICMP_SGE:
1825 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
1826 // FALL THROUGH
1827 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
1828 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1829 return BinaryOperator::CreateOr(Not, Op0);
1830 }
1831 }
1832 }
1833
1834 unsigned BitWidth = 0;
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001835 if (Ty->isIntOrIntVectorTy())
Chris Lattner02446fc2010-01-04 07:37:31 +00001836 BitWidth = Ty->getScalarSizeInBits();
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001837 else if (TD) // Pointers require TD info to get their size.
1838 BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1839
Chris Lattner02446fc2010-01-04 07:37:31 +00001840 bool isSignBit = false;
1841
1842 // See if we are doing a comparison with a constant.
1843 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1844 Value *A = 0, *B = 0;
1845
Owen Andersone63dda52010-12-17 18:08:00 +00001846 // Match the following pattern, which is a common idiom when writing
1847 // overflow-safe integer arithmetic function. The source performs an
1848 // addition in wider type, and explicitly checks for overflow using
1849 // comparisons against INT_MIN and INT_MAX. Simplify this by using the
1850 // sadd_with_overflow intrinsic.
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001851 //
1852 // TODO: This could probably be generalized to handle other overflow-safe
Owen Andersone63dda52010-12-17 18:08:00 +00001853 // operations if we worked out the formulas to compute the appropriate
1854 // magic constants.
1855 //
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001856 // sum = a + b
1857 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
Owen Andersone63dda52010-12-17 18:08:00 +00001858 {
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001859 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
Owen Andersone63dda52010-12-17 18:08:00 +00001860 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001861 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001862 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001863 return Res;
Owen Andersone63dda52010-12-17 18:08:00 +00001864 }
1865
Chris Lattner02446fc2010-01-04 07:37:31 +00001866 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1867 if (I.isEquality() && CI->isZero() &&
1868 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1869 // (icmp cond A B) if cond is equality
1870 return new ICmpInst(I.getPredicate(), A, B);
1871 }
1872
1873 // If we have an icmp le or icmp ge instruction, turn it into the
1874 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
1875 // them being folded in the code below. The SimplifyICmpInst code has
1876 // already handled the edge cases for us, so we just assert on them.
1877 switch (I.getPredicate()) {
1878 default: break;
1879 case ICmpInst::ICMP_ULE:
1880 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
1881 return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1882 ConstantInt::get(CI->getContext(), CI->getValue()+1));
1883 case ICmpInst::ICMP_SLE:
1884 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
1885 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1886 ConstantInt::get(CI->getContext(), CI->getValue()+1));
1887 case ICmpInst::ICMP_UGE:
1888 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
1889 return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1890 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1891 case ICmpInst::ICMP_SGE:
1892 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
1893 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1894 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1895 }
1896
1897 // If this comparison is a normal comparison, it demands all
1898 // bits, if it is a sign bit comparison, it only demands the sign bit.
1899 bool UnusedBit;
1900 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1901 }
1902
1903 // See if we can fold the comparison based on range information we can get
1904 // by checking whether bits are known to be zero or one in the input.
1905 if (BitWidth != 0) {
1906 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1907 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1908
1909 if (SimplifyDemandedBits(I.getOperandUse(0),
Owen Andersonda1c1222011-01-11 00:36:45 +00001910 DemandedBitsLHSMask(I, BitWidth, isSignBit),
Chris Lattner02446fc2010-01-04 07:37:31 +00001911 Op0KnownZero, Op0KnownOne, 0))
1912 return &I;
1913 if (SimplifyDemandedBits(I.getOperandUse(1),
1914 APInt::getAllOnesValue(BitWidth),
1915 Op1KnownZero, Op1KnownOne, 0))
1916 return &I;
1917
1918 // Given the known and unknown bits, compute a range that the LHS could be
1919 // in. Compute the Min, Max and RHS values based on the known bits. For the
1920 // EQ and NE we use unsigned values.
1921 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1922 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1923 if (I.isSigned()) {
1924 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1925 Op0Min, Op0Max);
1926 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1927 Op1Min, Op1Max);
1928 } else {
1929 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1930 Op0Min, Op0Max);
1931 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1932 Op1Min, Op1Max);
1933 }
1934
1935 // If Min and Max are known to be the same, then SimplifyDemandedBits
1936 // figured out that the LHS is a constant. Just constant fold this now so
1937 // that code below can assume that Min != Max.
1938 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1939 return new ICmpInst(I.getPredicate(),
1940 ConstantInt::get(I.getContext(), Op0Min), Op1);
1941 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1942 return new ICmpInst(I.getPredicate(), Op0,
1943 ConstantInt::get(I.getContext(), Op1Min));
1944
1945 // Based on the range information we know about the LHS, see if we can
1946 // simplify this comparison. For example, (x&4) < 8 is always true.
1947 switch (I.getPredicate()) {
1948 default: llvm_unreachable("Unknown icmp opcode!");
Chris Lattner75d8f592010-11-21 06:44:42 +00001949 case ICmpInst::ICMP_EQ: {
Chris Lattner02446fc2010-01-04 07:37:31 +00001950 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1951 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
Chris Lattner75d8f592010-11-21 06:44:42 +00001952
1953 // If all bits are known zero except for one, then we know at most one
1954 // bit is set. If the comparison is against zero, then this is a check
1955 // to see if *that* bit is set.
1956 APInt Op0KnownZeroInverted = ~Op0KnownZero;
1957 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1958 // If the LHS is an AND with the same constant, look through it.
1959 Value *LHS = 0;
1960 ConstantInt *LHSC = 0;
1961 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1962 LHSC->getValue() != Op0KnownZeroInverted)
1963 LHS = Op0;
1964
1965 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00001966 // then turn "((1 << x)&8) == 0" into "x != 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00001967 Value *X = 0;
1968 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1969 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00001970 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00001971 ConstantInt::get(X->getType(), CmpVal));
1972 }
1973
1974 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00001975 // then turn "((8 >>u x)&1) == 0" into "x != 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001976 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00001977 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001978 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00001979 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001980 ConstantInt::get(X->getType(),
1981 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00001982 }
1983
Chris Lattner02446fc2010-01-04 07:37:31 +00001984 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00001985 }
1986 case ICmpInst::ICMP_NE: {
Chris Lattner02446fc2010-01-04 07:37:31 +00001987 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1988 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
Chris Lattner75d8f592010-11-21 06:44:42 +00001989
1990 // If all bits are known zero except for one, then we know at most one
1991 // bit is set. If the comparison is against zero, then this is a check
1992 // to see if *that* bit is set.
1993 APInt Op0KnownZeroInverted = ~Op0KnownZero;
1994 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1995 // If the LHS is an AND with the same constant, look through it.
1996 Value *LHS = 0;
1997 ConstantInt *LHSC = 0;
1998 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1999 LHSC->getValue() != Op0KnownZeroInverted)
2000 LHS = Op0;
2001
2002 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00002003 // then turn "((1 << x)&8) != 0" into "x == 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00002004 Value *X = 0;
2005 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2006 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00002007 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00002008 ConstantInt::get(X->getType(), CmpVal));
2009 }
2010
2011 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00002012 // then turn "((8 >>u x)&1) != 0" into "x == 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002013 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00002014 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002015 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00002016 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002017 ConstantInt::get(X->getType(),
2018 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00002019 }
2020
Chris Lattner02446fc2010-01-04 07:37:31 +00002021 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00002022 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002023 case ICmpInst::ICMP_ULT:
2024 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
2025 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2026 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
2027 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2028 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
2029 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2030 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2031 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
2032 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2033 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2034
2035 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
2036 if (CI->isMinValue(true))
2037 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2038 Constant::getAllOnesValue(Op0->getType()));
2039 }
2040 break;
2041 case ICmpInst::ICMP_UGT:
2042 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
2043 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2044 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
2045 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2046
2047 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
2048 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2049 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2050 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
2051 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2052 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2053
2054 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
2055 if (CI->isMaxValue(true))
2056 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2057 Constant::getNullValue(Op0->getType()));
2058 }
2059 break;
2060 case ICmpInst::ICMP_SLT:
2061 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
2062 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2063 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
2064 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2065 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
2066 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2067 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2068 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
2069 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2070 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2071 }
2072 break;
2073 case ICmpInst::ICMP_SGT:
2074 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
2075 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2076 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
2077 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2078
2079 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
2080 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2081 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2082 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
2083 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2084 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2085 }
2086 break;
2087 case ICmpInst::ICMP_SGE:
2088 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2089 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
2090 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2091 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
2092 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2093 break;
2094 case ICmpInst::ICMP_SLE:
2095 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2096 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
2097 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2098 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
2099 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2100 break;
2101 case ICmpInst::ICMP_UGE:
2102 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2103 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
2104 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2105 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
2106 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2107 break;
2108 case ICmpInst::ICMP_ULE:
2109 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2110 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
2111 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2112 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
2113 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2114 break;
2115 }
2116
2117 // Turn a signed comparison into an unsigned one if both operands
2118 // are known to have the same sign.
2119 if (I.isSigned() &&
2120 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2121 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2122 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2123 }
2124
2125 // Test if the ICmpInst instruction is used exclusively by a select as
2126 // part of a minimum or maximum operation. If so, refrain from doing
2127 // any other folding. This helps out other analyses which understand
2128 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2129 // and CodeGen. And in this case, at least one of the comparison
2130 // operands has at least one user besides the compare (the select),
2131 // which would often largely negate the benefit of folding anyway.
2132 if (I.hasOneUse())
2133 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2134 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2135 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2136 return 0;
2137
2138 // See if we are doing a comparison between a constant and an instruction that
2139 // can be folded into the comparison.
2140 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2141 // Since the RHS is a ConstantInt (CI), if the left hand side is an
2142 // instruction, see if that instruction also has constants so that the
2143 // instruction can be folded into the icmp
2144 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2145 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2146 return Res;
2147 }
2148
2149 // Handle icmp with constant (but not simple integer constant) RHS
2150 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2151 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2152 switch (LHSI->getOpcode()) {
2153 case Instruction::GetElementPtr:
2154 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2155 if (RHSC->isNullValue() &&
2156 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2157 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2158 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2159 break;
2160 case Instruction::PHI:
2161 // Only fold icmp into the PHI if the phi and icmp are in the same
2162 // block. If in the same block, we're encouraging jump threading. If
2163 // not, we are just pessimizing the code by making an i1 phi.
2164 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00002165 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00002166 return NV;
2167 break;
2168 case Instruction::Select: {
2169 // If either operand of the select is a constant, we can fold the
2170 // comparison into the select arms, which will cause one to be
2171 // constant folded and the select turned into a bitwise or.
2172 Value *Op1 = 0, *Op2 = 0;
2173 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2174 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2175 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2176 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2177
2178 // We only want to perform this transformation if it will not lead to
2179 // additional code. This is true if either both sides of the select
2180 // fold to a constant (in which case the icmp is replaced with a select
2181 // which will usually simplify) or this is the only user of the
2182 // select (in which case we are trading a select+icmp for a simpler
2183 // select+icmp).
2184 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2185 if (!Op1)
2186 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2187 RHSC, I.getName());
2188 if (!Op2)
2189 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2190 RHSC, I.getName());
2191 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2192 }
2193 break;
2194 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002195 case Instruction::IntToPtr:
2196 // icmp pred inttoptr(X), null -> icmp pred X, 0
2197 if (RHSC->isNullValue() && TD &&
2198 TD->getIntPtrType(RHSC->getContext()) ==
2199 LHSI->getOperand(0)->getType())
2200 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2201 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2202 break;
2203
2204 case Instruction::Load:
2205 // Try to optimize things like "A[i] > 4" to index computations.
2206 if (GetElementPtrInst *GEP =
2207 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2208 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2209 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2210 !cast<LoadInst>(LHSI)->isVolatile())
2211 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2212 return Res;
2213 }
2214 break;
2215 }
2216 }
2217
2218 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2219 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2220 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2221 return NI;
2222 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2223 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2224 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2225 return NI;
2226
2227 // Test to see if the operands of the icmp are casted versions of other
2228 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
2229 // now.
2230 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
Duncan Sands1df98592010-02-16 11:11:14 +00002231 if (Op0->getType()->isPointerTy() &&
Chris Lattner02446fc2010-01-04 07:37:31 +00002232 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2233 // We keep moving the cast from the left operand over to the right
2234 // operand, where it can often be eliminated completely.
2235 Op0 = CI->getOperand(0);
2236
2237 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2238 // so eliminate it as well.
2239 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2240 Op1 = CI2->getOperand(0);
2241
2242 // If Op1 is a constant, we can fold the cast into the constant.
2243 if (Op0->getType() != Op1->getType()) {
2244 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2245 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2246 } else {
2247 // Otherwise, cast the RHS right before the icmp
2248 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2249 }
2250 }
2251 return new ICmpInst(I.getPredicate(), Op0, Op1);
2252 }
2253 }
2254
2255 if (isa<CastInst>(Op0)) {
2256 // Handle the special case of: icmp (cast bool to X), <cst>
2257 // This comes up when you have code like
2258 // int X = A < B;
2259 // if (X) ...
2260 // For generality, we handle any zero-extension of any operand comparison
2261 // with a constant or another cast from the same type.
2262 if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2263 if (Instruction *R = visitICmpInstWithCastAndCast(I))
2264 return R;
2265 }
2266
2267 // See if it's the same type of instruction on the left and right.
2268 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2269 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2270 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
2271 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
2272 switch (Op0I->getOpcode()) {
2273 default: break;
2274 case Instruction::Add:
2275 case Instruction::Sub:
2276 case Instruction::Xor:
2277 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2278 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
2279 Op1I->getOperand(0));
2280 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2281 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2282 if (CI->getValue().isSignBit()) {
2283 ICmpInst::Predicate Pred = I.isSigned()
2284 ? I.getUnsignedPredicate()
2285 : I.getSignedPredicate();
2286 return new ICmpInst(Pred, Op0I->getOperand(0),
2287 Op1I->getOperand(0));
2288 }
2289
2290 if (CI->getValue().isMaxSignedValue()) {
2291 ICmpInst::Predicate Pred = I.isSigned()
2292 ? I.getUnsignedPredicate()
2293 : I.getSignedPredicate();
2294 Pred = I.getSwappedPredicate(Pred);
2295 return new ICmpInst(Pred, Op0I->getOperand(0),
2296 Op1I->getOperand(0));
2297 }
2298 }
2299 break;
2300 case Instruction::Mul:
2301 if (!I.isEquality())
2302 break;
2303
2304 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2305 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2306 // Mask = -1 >> count-trailing-zeros(Cst).
2307 if (!CI->isZero() && !CI->isOne()) {
2308 const APInt &AP = CI->getValue();
2309 ConstantInt *Mask = ConstantInt::get(I.getContext(),
2310 APInt::getLowBitsSet(AP.getBitWidth(),
2311 AP.getBitWidth() -
2312 AP.countTrailingZeros()));
2313 Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
2314 Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
2315 return new ICmpInst(I.getPredicate(), And1, And2);
2316 }
2317 }
2318 break;
2319 }
2320 }
2321 }
2322 }
2323
Chris Lattner02446fc2010-01-04 07:37:31 +00002324 { Value *A, *B;
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002325 // ~x < ~y --> y < x
2326 // ~x < cst --> ~cst < x
2327 if (match(Op0, m_Not(m_Value(A)))) {
2328 if (match(Op1, m_Not(m_Value(B))))
2329 return new ICmpInst(I.getPredicate(), B, A);
Chris Lattner27a98482011-01-15 05:42:47 +00002330 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002331 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2332 }
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002333
2334 // (a+b) <u a --> llvm.uadd.with.overflow.
2335 // (a+b) <u b --> llvm.uadd.with.overflow.
2336 if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2337 match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2338 (Op1 == A || Op1 == B))
2339 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2340 return R;
2341
2342 // a >u (a+b) --> llvm.uadd.with.overflow.
2343 // b >u (a+b) --> llvm.uadd.with.overflow.
2344 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2345 match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2346 (Op0 == A || Op0 == B))
2347 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2348 return R;
Chris Lattner02446fc2010-01-04 07:37:31 +00002349 }
2350
2351 if (I.isEquality()) {
2352 Value *A, *B, *C, *D;
2353
2354 // -x == -y --> x == y
2355 if (match(Op0, m_Neg(m_Value(A))) &&
2356 match(Op1, m_Neg(m_Value(B))))
2357 return new ICmpInst(I.getPredicate(), A, B);
2358
2359 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2360 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
2361 Value *OtherVal = A == Op1 ? B : A;
2362 return new ICmpInst(I.getPredicate(), OtherVal,
2363 Constant::getNullValue(A->getType()));
2364 }
2365
2366 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2367 // A^c1 == C^c2 --> A == C^(c1^c2)
2368 ConstantInt *C1, *C2;
2369 if (match(B, m_ConstantInt(C1)) &&
2370 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2371 Constant *NC = ConstantInt::get(I.getContext(),
2372 C1->getValue() ^ C2->getValue());
2373 Value *Xor = Builder->CreateXor(C, NC, "tmp");
2374 return new ICmpInst(I.getPredicate(), A, Xor);
2375 }
2376
2377 // A^B == A^D -> B == D
2378 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2379 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2380 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2381 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2382 }
2383 }
2384
2385 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2386 (A == Op0 || B == Op0)) {
2387 // A == (A^B) -> B == 0
2388 Value *OtherVal = A == Op0 ? B : A;
2389 return new ICmpInst(I.getPredicate(), OtherVal,
2390 Constant::getNullValue(A->getType()));
2391 }
2392
2393 // (A-B) == A -> B == 0
2394 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
2395 return new ICmpInst(I.getPredicate(), B,
2396 Constant::getNullValue(B->getType()));
2397
2398 // A == (A-B) -> B == 0
2399 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
2400 return new ICmpInst(I.getPredicate(), B,
2401 Constant::getNullValue(B->getType()));
Anders Carlsson77bc49e2011-01-30 22:01:13 +00002402
2403 // (A+B) == A -> B == 0
Benjamin Kramerb6c8cb42011-02-11 21:46:48 +00002404 if (match(Op0, m_Add(m_Specific(Op1), m_Value(B))) ||
2405 match(Op0, m_Add(m_Value(B), m_Specific(Op1))))
Anders Carlsson77bc49e2011-01-30 22:01:13 +00002406 return new ICmpInst(I.getPredicate(), B,
2407 Constant::getNullValue(B->getType()));
2408
2409 // A == (A+B) -> B == 0
Benjamin Kramerb6c8cb42011-02-11 21:46:48 +00002410 if (match(Op1, m_Add(m_Specific(Op0), m_Value(B))) ||
2411 match(Op1, m_Add(m_Value(B), m_Specific(Op0))))
Anders Carlsson77bc49e2011-01-30 22:01:13 +00002412 return new ICmpInst(I.getPredicate(), B,
2413 Constant::getNullValue(B->getType()));
2414
Chris Lattner02446fc2010-01-04 07:37:31 +00002415 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2416 if (Op0->hasOneUse() && Op1->hasOneUse() &&
2417 match(Op0, m_And(m_Value(A), m_Value(B))) &&
2418 match(Op1, m_And(m_Value(C), m_Value(D)))) {
2419 Value *X = 0, *Y = 0, *Z = 0;
2420
2421 if (A == C) {
2422 X = B; Y = D; Z = A;
2423 } else if (A == D) {
2424 X = B; Y = C; Z = A;
2425 } else if (B == C) {
2426 X = A; Y = D; Z = B;
2427 } else if (B == D) {
2428 X = A; Y = C; Z = B;
2429 }
2430
2431 if (X) { // Build (X^Y) & Z
2432 Op1 = Builder->CreateXor(X, Y, "tmp");
2433 Op1 = Builder->CreateAnd(Op1, Z, "tmp");
2434 I.setOperand(0, Op1);
2435 I.setOperand(1, Constant::getNullValue(Op1->getType()));
2436 return &I;
2437 }
2438 }
2439 }
2440
2441 {
2442 Value *X; ConstantInt *Cst;
2443 // icmp X+Cst, X
2444 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2445 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2446
2447 // icmp X, X+Cst
2448 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2449 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2450 }
2451 return Changed ? &I : 0;
2452}
2453
2454
2455
2456
2457
2458
2459/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2460///
2461Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2462 Instruction *LHSI,
2463 Constant *RHSC) {
2464 if (!isa<ConstantFP>(RHSC)) return 0;
2465 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2466
2467 // Get the width of the mantissa. We don't want to hack on conversions that
2468 // might lose information from the integer, e.g. "i64 -> float"
2469 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2470 if (MantissaWidth == -1) return 0; // Unknown.
2471
2472 // Check to see that the input is converted from an integer type that is small
2473 // enough that preserves all bits. TODO: check here for "known" sign bits.
2474 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2475 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2476
2477 // If this is a uitofp instruction, we need an extra bit to hold the sign.
2478 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2479 if (LHSUnsigned)
2480 ++InputSize;
2481
2482 // If the conversion would lose info, don't hack on this.
2483 if ((int)InputSize > MantissaWidth)
2484 return 0;
2485
2486 // Otherwise, we can potentially simplify the comparison. We know that it
2487 // will always come through as an integer value and we know the constant is
2488 // not a NAN (it would have been previously simplified).
2489 assert(!RHS.isNaN() && "NaN comparison not already folded!");
2490
2491 ICmpInst::Predicate Pred;
2492 switch (I.getPredicate()) {
2493 default: llvm_unreachable("Unexpected predicate!");
2494 case FCmpInst::FCMP_UEQ:
2495 case FCmpInst::FCMP_OEQ:
2496 Pred = ICmpInst::ICMP_EQ;
2497 break;
2498 case FCmpInst::FCMP_UGT:
2499 case FCmpInst::FCMP_OGT:
2500 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2501 break;
2502 case FCmpInst::FCMP_UGE:
2503 case FCmpInst::FCMP_OGE:
2504 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2505 break;
2506 case FCmpInst::FCMP_ULT:
2507 case FCmpInst::FCMP_OLT:
2508 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2509 break;
2510 case FCmpInst::FCMP_ULE:
2511 case FCmpInst::FCMP_OLE:
2512 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2513 break;
2514 case FCmpInst::FCMP_UNE:
2515 case FCmpInst::FCMP_ONE:
2516 Pred = ICmpInst::ICMP_NE;
2517 break;
2518 case FCmpInst::FCMP_ORD:
2519 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2520 case FCmpInst::FCMP_UNO:
2521 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2522 }
2523
2524 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2525
2526 // Now we know that the APFloat is a normal number, zero or inf.
2527
2528 // See if the FP constant is too large for the integer. For example,
2529 // comparing an i8 to 300.0.
2530 unsigned IntWidth = IntTy->getScalarSizeInBits();
2531
2532 if (!LHSUnsigned) {
2533 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
2534 // and large values.
2535 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2536 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2537 APFloat::rmNearestTiesToEven);
2538 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
2539 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
2540 Pred == ICmpInst::ICMP_SLE)
2541 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2542 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2543 }
2544 } else {
2545 // If the RHS value is > UnsignedMax, fold the comparison. This handles
2546 // +INF and large values.
2547 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2548 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2549 APFloat::rmNearestTiesToEven);
2550 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
2551 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
2552 Pred == ICmpInst::ICMP_ULE)
2553 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2554 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2555 }
2556 }
2557
2558 if (!LHSUnsigned) {
2559 // See if the RHS value is < SignedMin.
2560 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2561 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2562 APFloat::rmNearestTiesToEven);
2563 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2564 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2565 Pred == ICmpInst::ICMP_SGE)
2566 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2567 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2568 }
2569 }
2570
2571 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2572 // [0, UMAX], but it may still be fractional. See if it is fractional by
2573 // casting the FP value to the integer value and back, checking for equality.
2574 // Don't do this for zero, because -0.0 is not fractional.
2575 Constant *RHSInt = LHSUnsigned
2576 ? ConstantExpr::getFPToUI(RHSC, IntTy)
2577 : ConstantExpr::getFPToSI(RHSC, IntTy);
2578 if (!RHS.isZero()) {
2579 bool Equal = LHSUnsigned
2580 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2581 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2582 if (!Equal) {
2583 // If we had a comparison against a fractional value, we have to adjust
2584 // the compare predicate and sometimes the value. RHSC is rounded towards
2585 // zero at this point.
2586 switch (Pred) {
2587 default: llvm_unreachable("Unexpected integer comparison!");
2588 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
2589 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2590 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
2591 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2592 case ICmpInst::ICMP_ULE:
2593 // (float)int <= 4.4 --> int <= 4
2594 // (float)int <= -4.4 --> false
2595 if (RHS.isNegative())
2596 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2597 break;
2598 case ICmpInst::ICMP_SLE:
2599 // (float)int <= 4.4 --> int <= 4
2600 // (float)int <= -4.4 --> int < -4
2601 if (RHS.isNegative())
2602 Pred = ICmpInst::ICMP_SLT;
2603 break;
2604 case ICmpInst::ICMP_ULT:
2605 // (float)int < -4.4 --> false
2606 // (float)int < 4.4 --> int <= 4
2607 if (RHS.isNegative())
2608 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2609 Pred = ICmpInst::ICMP_ULE;
2610 break;
2611 case ICmpInst::ICMP_SLT:
2612 // (float)int < -4.4 --> int < -4
2613 // (float)int < 4.4 --> int <= 4
2614 if (!RHS.isNegative())
2615 Pred = ICmpInst::ICMP_SLE;
2616 break;
2617 case ICmpInst::ICMP_UGT:
2618 // (float)int > 4.4 --> int > 4
2619 // (float)int > -4.4 --> true
2620 if (RHS.isNegative())
2621 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2622 break;
2623 case ICmpInst::ICMP_SGT:
2624 // (float)int > 4.4 --> int > 4
2625 // (float)int > -4.4 --> int >= -4
2626 if (RHS.isNegative())
2627 Pred = ICmpInst::ICMP_SGE;
2628 break;
2629 case ICmpInst::ICMP_UGE:
2630 // (float)int >= -4.4 --> true
2631 // (float)int >= 4.4 --> int > 4
2632 if (!RHS.isNegative())
2633 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2634 Pred = ICmpInst::ICMP_UGT;
2635 break;
2636 case ICmpInst::ICMP_SGE:
2637 // (float)int >= -4.4 --> int >= -4
2638 // (float)int >= 4.4 --> int > 4
2639 if (!RHS.isNegative())
2640 Pred = ICmpInst::ICMP_SGT;
2641 break;
2642 }
2643 }
2644 }
2645
2646 // Lower this FP comparison into an appropriate integer version of the
2647 // comparison.
2648 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2649}
2650
2651Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2652 bool Changed = false;
2653
2654 /// Orders the operands of the compare so that they are listed from most
2655 /// complex to least complex. This puts constants before unary operators,
2656 /// before binary operators.
2657 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2658 I.swapOperands();
2659 Changed = true;
2660 }
2661
2662 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2663
2664 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2665 return ReplaceInstUsesWith(I, V);
2666
2667 // Simplify 'fcmp pred X, X'
2668 if (Op0 == Op1) {
2669 switch (I.getPredicate()) {
2670 default: llvm_unreachable("Unknown predicate!");
2671 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
2672 case FCmpInst::FCMP_ULT: // True if unordered or less than
2673 case FCmpInst::FCMP_UGT: // True if unordered or greater than
2674 case FCmpInst::FCMP_UNE: // True if unordered or not equal
2675 // Canonicalize these to be 'fcmp uno %X, 0.0'.
2676 I.setPredicate(FCmpInst::FCMP_UNO);
2677 I.setOperand(1, Constant::getNullValue(Op0->getType()));
2678 return &I;
2679
2680 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
2681 case FCmpInst::FCMP_OEQ: // True if ordered and equal
2682 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
2683 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
2684 // Canonicalize these to be 'fcmp ord %X, 0.0'.
2685 I.setPredicate(FCmpInst::FCMP_ORD);
2686 I.setOperand(1, Constant::getNullValue(Op0->getType()));
2687 return &I;
2688 }
2689 }
2690
2691 // Handle fcmp with constant RHS
2692 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2693 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2694 switch (LHSI->getOpcode()) {
2695 case Instruction::PHI:
2696 // Only fold fcmp into the PHI if the phi and fcmp are in the same
2697 // block. If in the same block, we're encouraging jump threading. If
2698 // not, we are just pessimizing the code by making an i1 phi.
2699 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00002700 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00002701 return NV;
2702 break;
2703 case Instruction::SIToFP:
2704 case Instruction::UIToFP:
2705 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2706 return NV;
2707 break;
2708 case Instruction::Select: {
2709 // If either operand of the select is a constant, we can fold the
2710 // comparison into the select arms, which will cause one to be
2711 // constant folded and the select turned into a bitwise or.
2712 Value *Op1 = 0, *Op2 = 0;
2713 if (LHSI->hasOneUse()) {
2714 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2715 // Fold the known value into the constant operand.
2716 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2717 // Insert a new FCmp of the other select operand.
2718 Op2 = Builder->CreateFCmp(I.getPredicate(),
2719 LHSI->getOperand(2), RHSC, I.getName());
2720 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2721 // Fold the known value into the constant operand.
2722 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2723 // Insert a new FCmp of the other select operand.
2724 Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2725 RHSC, I.getName());
2726 }
2727 }
2728
2729 if (Op1)
2730 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2731 break;
2732 }
Dan Gohman39516a62010-02-24 06:46:09 +00002733 case Instruction::Load:
2734 if (GetElementPtrInst *GEP =
2735 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2736 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2737 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2738 !cast<LoadInst>(LHSI)->isVolatile())
2739 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2740 return Res;
2741 }
2742 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00002743 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002744 }
2745
2746 return Changed ? &I : 0;
2747}