blob: 1a5a521b69f4651cc27b996c1c00fed8a70438f7 [file] [log] [blame]
Chris Lattnerdf986172009-01-02 07:01:27 +00001//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/ValueSymbolTable.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
Chris Lattnerdf986172009-01-02 07:01:27 +000028namespace llvm {
Chris Lattner3ed88ef2009-01-02 08:05:26 +000029 /// ValID - Represents a reference of a definition of some sort with no type.
30 /// There are several cases where we have to parse the value but where the
31 /// type can depend on later context. This may either be a numeric reference
32 /// or a symbolic (%var) reference. This is just a discriminated union.
Chris Lattnerdf986172009-01-02 07:01:27 +000033 struct ValID {
34 enum {
35 t_LocalID, t_GlobalID, // ID in UIntVal.
36 t_LocalName, t_GlobalName, // Name in StrVal.
37 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
38 t_Null, t_Undef, t_Zero, // No value.
Chris Lattner081b5052009-01-05 07:52:51 +000039 t_EmptyArray, // No value: []
Chris Lattnerdf986172009-01-02 07:01:27 +000040 t_Constant, // Value in ConstantVal.
41 t_InlineAsm // Value in StrVal/StrVal2/UIntVal.
42 } Kind;
43
44 LLParser::LocTy Loc;
45 unsigned UIntVal;
46 std::string StrVal, StrVal2;
47 APSInt APSIntVal;
48 APFloat APFloatVal;
49 Constant *ConstantVal;
50 ValID() : APFloatVal(0.0) {}
51 };
52}
53
Chris Lattner3ed88ef2009-01-02 08:05:26 +000054/// Run: module ::= toplevelentity*
Chris Lattnerad7d1e22009-01-04 20:44:11 +000055bool LLParser::Run() {
Chris Lattner3ed88ef2009-01-02 08:05:26 +000056 // Prime the lexer.
57 Lex.Lex();
58
Chris Lattnerad7d1e22009-01-04 20:44:11 +000059 return ParseTopLevelEntities() ||
60 ValidateEndOfModule();
Chris Lattnerdf986172009-01-02 07:01:27 +000061}
62
63/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
64/// module.
65bool LLParser::ValidateEndOfModule() {
66 if (!ForwardRefTypes.empty())
67 return Error(ForwardRefTypes.begin()->second.second,
68 "use of undefined type named '" +
69 ForwardRefTypes.begin()->first + "'");
70 if (!ForwardRefTypeIDs.empty())
71 return Error(ForwardRefTypeIDs.begin()->second.second,
72 "use of undefined type '%" +
73 utostr(ForwardRefTypeIDs.begin()->first) + "'");
74
75 if (!ForwardRefVals.empty())
76 return Error(ForwardRefVals.begin()->second.second,
77 "use of undefined value '@" + ForwardRefVals.begin()->first +
78 "'");
79
80 if (!ForwardRefValIDs.empty())
81 return Error(ForwardRefValIDs.begin()->second.second,
82 "use of undefined value '@" +
83 utostr(ForwardRefValIDs.begin()->first) + "'");
84
85 // Look for intrinsic functions and CallInst that need to be upgraded
86 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
87 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
88
89 return false;
90}
91
92//===----------------------------------------------------------------------===//
93// Top-Level Entities
94//===----------------------------------------------------------------------===//
95
96bool LLParser::ParseTopLevelEntities() {
Chris Lattnerdf986172009-01-02 07:01:27 +000097 while (1) {
98 switch (Lex.getKind()) {
99 default: return TokError("expected top-level entity");
100 case lltok::Eof: return false;
101 //case lltok::kw_define:
102 case lltok::kw_declare: if (ParseDeclare()) return true; break;
103 case lltok::kw_define: if (ParseDefine()) return true; break;
104 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
105 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
106 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
107 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
108 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
109 case lltok::LocalVar: if (ParseNamedType()) return true; break;
110 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
111
112 // The Global variable production with no name can have many different
113 // optional leading prefixes, the production is:
114 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
115 // OptionalAddrSpace ('constant'|'global') ...
116 case lltok::kw_internal: // OptionalLinkage
117 case lltok::kw_weak: // OptionalLinkage
118 case lltok::kw_linkonce: // OptionalLinkage
119 case lltok::kw_appending: // OptionalLinkage
120 case lltok::kw_dllexport: // OptionalLinkage
121 case lltok::kw_common: // OptionalLinkage
122 case lltok::kw_dllimport: // OptionalLinkage
123 case lltok::kw_extern_weak: // OptionalLinkage
124 case lltok::kw_external: { // OptionalLinkage
125 unsigned Linkage, Visibility;
126 if (ParseOptionalLinkage(Linkage) ||
127 ParseOptionalVisibility(Visibility) ||
128 ParseGlobal("", 0, Linkage, true, Visibility))
129 return true;
130 break;
131 }
132 case lltok::kw_default: // OptionalVisibility
133 case lltok::kw_hidden: // OptionalVisibility
134 case lltok::kw_protected: { // OptionalVisibility
135 unsigned Visibility;
136 if (ParseOptionalVisibility(Visibility) ||
137 ParseGlobal("", 0, 0, false, Visibility))
138 return true;
139 break;
140 }
141
142 case lltok::kw_thread_local: // OptionalThreadLocal
143 case lltok::kw_addrspace: // OptionalAddrSpace
144 case lltok::kw_constant: // GlobalType
145 case lltok::kw_global: // GlobalType
146 if (ParseGlobal("", 0, 0, false, 0)) return true;
147 break;
148 }
149 }
150}
151
152
153/// toplevelentity
154/// ::= 'module' 'asm' STRINGCONSTANT
155bool LLParser::ParseModuleAsm() {
156 assert(Lex.getKind() == lltok::kw_module);
157 Lex.Lex();
158
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000159 std::string AsmStr;
160 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
161 ParseStringConstant(AsmStr)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000162
163 const std::string &AsmSoFar = M->getModuleInlineAsm();
164 if (AsmSoFar.empty())
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000165 M->setModuleInlineAsm(AsmStr);
Chris Lattnerdf986172009-01-02 07:01:27 +0000166 else
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000167 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
Chris Lattnerdf986172009-01-02 07:01:27 +0000168 return false;
169}
170
171/// toplevelentity
172/// ::= 'target' 'triple' '=' STRINGCONSTANT
173/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
174bool LLParser::ParseTargetDefinition() {
175 assert(Lex.getKind() == lltok::kw_target);
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000176 std::string Str;
Chris Lattnerdf986172009-01-02 07:01:27 +0000177 switch (Lex.Lex()) {
178 default: return TokError("unknown target property");
179 case lltok::kw_triple:
180 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000181 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
182 ParseStringConstant(Str))
Chris Lattnerdf986172009-01-02 07:01:27 +0000183 return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000184 M->setTargetTriple(Str);
Chris Lattnerdf986172009-01-02 07:01:27 +0000185 return false;
186 case lltok::kw_datalayout:
187 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000188 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
189 ParseStringConstant(Str))
Chris Lattnerdf986172009-01-02 07:01:27 +0000190 return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000191 M->setDataLayout(Str);
Chris Lattnerdf986172009-01-02 07:01:27 +0000192 return false;
193 }
194}
195
196/// toplevelentity
197/// ::= 'deplibs' '=' '[' ']'
198/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
199bool LLParser::ParseDepLibs() {
200 assert(Lex.getKind() == lltok::kw_deplibs);
Chris Lattnerdf986172009-01-02 07:01:27 +0000201 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000202 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
203 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
204 return true;
205
206 if (EatIfPresent(lltok::rsquare))
207 return false;
208
209 std::string Str;
210 if (ParseStringConstant(Str)) return true;
211 M->addLibrary(Str);
212
213 while (EatIfPresent(lltok::comma)) {
214 if (ParseStringConstant(Str)) return true;
215 M->addLibrary(Str);
216 }
217
218 return ParseToken(lltok::rsquare, "expected ']' at end of list");
Chris Lattnerdf986172009-01-02 07:01:27 +0000219}
220
221/// toplevelentity
222/// ::= 'type' type
223bool LLParser::ParseUnnamedType() {
224 assert(Lex.getKind() == lltok::kw_type);
225 LocTy TypeLoc = Lex.getLoc();
226 Lex.Lex(); // eat kw_type
227
228 PATypeHolder Ty(Type::VoidTy);
229 if (ParseType(Ty)) return true;
230
231 unsigned TypeID = NumberedTypes.size();
232
233 // We don't allow assigning names to void type
234 if (Ty == Type::VoidTy)
235 return Error(TypeLoc, "can't assign name to the void type");
236
237 // See if this type was previously referenced.
238 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
239 FI = ForwardRefTypeIDs.find(TypeID);
240 if (FI != ForwardRefTypeIDs.end()) {
241 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
242 Ty = FI->second.first.get();
243 ForwardRefTypeIDs.erase(FI);
244 }
245
246 NumberedTypes.push_back(Ty);
247
248 return false;
249}
250
251/// toplevelentity
252/// ::= LocalVar '=' 'type' type
253bool LLParser::ParseNamedType() {
254 std::string Name = Lex.getStrVal();
255 LocTy NameLoc = Lex.getLoc();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000256 Lex.Lex(); // eat LocalVar.
Chris Lattnerdf986172009-01-02 07:01:27 +0000257
258 PATypeHolder Ty(Type::VoidTy);
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000259
260 if (ParseToken(lltok::equal, "expected '=' after name") ||
261 ParseToken(lltok::kw_type, "expected 'type' after name") ||
262 ParseType(Ty))
263 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000264
265 // We don't allow assigning names to void type
266 if (Ty == Type::VoidTy)
267 return Error(NameLoc, "can't assign name '" + Name + "' to the void type");
268
269 // Set the type name, checking for conflicts as we do so.
270 bool AlreadyExists = M->addTypeName(Name, Ty);
271 if (!AlreadyExists) return false;
272
273 // See if this type is a forward reference. We need to eagerly resolve
274 // types to allow recursive type redefinitions below.
275 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
276 FI = ForwardRefTypes.find(Name);
277 if (FI != ForwardRefTypes.end()) {
278 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
279 Ty = FI->second.first.get();
280 ForwardRefTypes.erase(FI);
281 }
282
283 // Inserting a name that is already defined, get the existing name.
284 const Type *Existing = M->getTypeByName(Name);
285 assert(Existing && "Conflict but no matching type?!");
286
287 // Otherwise, this is an attempt to redefine a type. That's okay if
288 // the redefinition is identical to the original.
289 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
290 if (Existing == Ty) return false;
291
292 // Any other kind of (non-equivalent) redefinition is an error.
293 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
294 Ty->getDescription() + "'");
295}
296
297
298/// toplevelentity
299/// ::= 'declare' FunctionHeader
300bool LLParser::ParseDeclare() {
301 assert(Lex.getKind() == lltok::kw_declare);
302 Lex.Lex();
303
304 Function *F;
305 return ParseFunctionHeader(F, false);
306}
307
308/// toplevelentity
309/// ::= 'define' FunctionHeader '{' ...
310bool LLParser::ParseDefine() {
311 assert(Lex.getKind() == lltok::kw_define);
312 Lex.Lex();
313
314 Function *F;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000315 return ParseFunctionHeader(F, true) ||
316 ParseFunctionBody(*F);
Chris Lattnerdf986172009-01-02 07:01:27 +0000317}
318
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000319/// ParseGlobalType
320/// ::= 'constant'
321/// ::= 'global'
Chris Lattnerdf986172009-01-02 07:01:27 +0000322bool LLParser::ParseGlobalType(bool &IsConstant) {
323 if (Lex.getKind() == lltok::kw_constant)
324 IsConstant = true;
325 else if (Lex.getKind() == lltok::kw_global)
326 IsConstant = false;
327 else
328 return TokError("expected 'global' or 'constant'");
329 Lex.Lex();
330 return false;
331}
332
333/// ParseNamedGlobal:
334/// GlobalVar '=' OptionalVisibility ALIAS ...
335/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
336bool LLParser::ParseNamedGlobal() {
337 assert(Lex.getKind() == lltok::GlobalVar);
338 LocTy NameLoc = Lex.getLoc();
339 std::string Name = Lex.getStrVal();
340 Lex.Lex();
341
342 bool HasLinkage;
343 unsigned Linkage, Visibility;
344 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
345 ParseOptionalLinkage(Linkage, HasLinkage) ||
346 ParseOptionalVisibility(Visibility))
347 return true;
348
349 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
350 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
351 return ParseAlias(Name, NameLoc, Visibility);
352}
353
354/// ParseAlias:
355/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
356/// Aliasee
357/// ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')'
358///
359/// Everything through visibility has already been parsed.
360///
361bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
362 unsigned Visibility) {
363 assert(Lex.getKind() == lltok::kw_alias);
364 Lex.Lex();
365 unsigned Linkage;
366 LocTy LinkageLoc = Lex.getLoc();
367 if (ParseOptionalLinkage(Linkage))
368 return true;
369
370 if (Linkage != GlobalValue::ExternalLinkage &&
371 Linkage != GlobalValue::WeakLinkage &&
372 Linkage != GlobalValue::InternalLinkage)
373 return Error(LinkageLoc, "invalid linkage type for alias");
374
375 Constant *Aliasee;
376 LocTy AliaseeLoc = Lex.getLoc();
377 if (Lex.getKind() != lltok::kw_bitcast) {
378 if (ParseGlobalTypeAndValue(Aliasee)) return true;
379 } else {
380 // The bitcast dest type is not present, it is implied by the dest type.
381 ValID ID;
382 if (ParseValID(ID)) return true;
383 if (ID.Kind != ValID::t_Constant)
384 return Error(AliaseeLoc, "invalid aliasee");
385 Aliasee = ID.ConstantVal;
386 }
387
388 if (!isa<PointerType>(Aliasee->getType()))
389 return Error(AliaseeLoc, "alias must have pointer type");
390
391 // Okay, create the alias but do not insert it into the module yet.
392 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
393 (GlobalValue::LinkageTypes)Linkage, Name,
394 Aliasee);
395 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
396
397 // See if this value already exists in the symbol table. If so, it is either
398 // a redefinition or a definition of a forward reference.
399 if (GlobalValue *Val =
400 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
401 // See if this was a redefinition. If so, there is no entry in
402 // ForwardRefVals.
403 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
404 I = ForwardRefVals.find(Name);
405 if (I == ForwardRefVals.end())
406 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
407
408 // Otherwise, this was a definition of forward ref. Verify that types
409 // agree.
410 if (Val->getType() != GA->getType())
411 return Error(NameLoc,
412 "forward reference and definition of alias have different types");
413
414 // If they agree, just RAUW the old value with the alias and remove the
415 // forward ref info.
416 Val->replaceAllUsesWith(GA);
417 Val->eraseFromParent();
418 ForwardRefVals.erase(I);
419 }
420
421 // Insert into the module, we know its name won't collide now.
422 M->getAliasList().push_back(GA);
423 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
424
425 return false;
426}
427
428/// ParseGlobal
429/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
430/// OptionalAddrSpace GlobalType Type Const
431/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
432/// OptionalAddrSpace GlobalType Type Const
433///
434/// Everything through visibility has been parsed already.
435///
436bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
437 unsigned Linkage, bool HasLinkage,
438 unsigned Visibility) {
439 unsigned AddrSpace;
440 bool ThreadLocal, IsConstant;
441 LocTy TyLoc;
442
443 PATypeHolder Ty(Type::VoidTy);
444 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
445 ParseOptionalAddrSpace(AddrSpace) ||
446 ParseGlobalType(IsConstant) ||
447 ParseType(Ty, TyLoc))
448 return true;
449
450 // If the linkage is specified and is external, then no initializer is
451 // present.
452 Constant *Init = 0;
453 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
454 Linkage != GlobalValue::ExternalWeakLinkage &&
455 Linkage != GlobalValue::ExternalLinkage)) {
456 if (ParseGlobalValue(Ty, Init))
457 return true;
458 }
459
460 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
461 return Error(TyLoc, "invald type for global variable");
462
463 GlobalVariable *GV = 0;
464
465 // See if the global was forward referenced, if so, use the global.
466 if (!Name.empty() && (GV = M->getGlobalVariable(Name, true))) {
467 if (!ForwardRefVals.erase(Name))
468 return Error(NameLoc, "redefinition of global '@" + Name + "'");
469 } else {
470 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
471 I = ForwardRefValIDs.find(NumberedVals.size());
472 if (I != ForwardRefValIDs.end()) {
473 GV = cast<GlobalVariable>(I->second.first);
474 ForwardRefValIDs.erase(I);
475 }
476 }
477
478 if (GV == 0) {
479 GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
480 M, false, AddrSpace);
481 } else {
482 if (GV->getType()->getElementType() != Ty)
483 return Error(TyLoc,
484 "forward reference and definition of global have different types");
485
486 // Move the forward-reference to the correct spot in the module.
487 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
488 }
489
490 if (Name.empty())
491 NumberedVals.push_back(GV);
492
493 // Set the parsed properties on the global.
494 if (Init)
495 GV->setInitializer(Init);
496 GV->setConstant(IsConstant);
497 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
498 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
499 GV->setThreadLocal(ThreadLocal);
500
501 // Parse attributes on the global.
502 while (Lex.getKind() == lltok::comma) {
503 Lex.Lex();
504
505 if (Lex.getKind() == lltok::kw_section) {
506 Lex.Lex();
507 GV->setSection(Lex.getStrVal());
508 if (ParseToken(lltok::StringConstant, "expected global section string"))
509 return true;
510 } else if (Lex.getKind() == lltok::kw_align) {
511 unsigned Alignment;
512 if (ParseOptionalAlignment(Alignment)) return true;
513 GV->setAlignment(Alignment);
514 } else {
515 TokError("unknown global variable property!");
516 }
517 }
518
519 return false;
520}
521
522
523//===----------------------------------------------------------------------===//
524// GlobalValue Reference/Resolution Routines.
525//===----------------------------------------------------------------------===//
526
527/// GetGlobalVal - Get a value with the specified name or ID, creating a
528/// forward reference record if needed. This can return null if the value
529/// exists but does not have the right type.
530GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
531 LocTy Loc) {
532 const PointerType *PTy = dyn_cast<PointerType>(Ty);
533 if (PTy == 0) {
534 Error(Loc, "global variable reference must have pointer type");
535 return 0;
536 }
537
538 // Look this name up in the normal function symbol table.
539 GlobalValue *Val =
540 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
541
542 // If this is a forward reference for the value, see if we already created a
543 // forward ref record.
544 if (Val == 0) {
545 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
546 I = ForwardRefVals.find(Name);
547 if (I != ForwardRefVals.end())
548 Val = I->second.first;
549 }
550
551 // If we have the value in the symbol table or fwd-ref table, return it.
552 if (Val) {
553 if (Val->getType() == Ty) return Val;
554 Error(Loc, "'@" + Name + "' defined with type '" +
555 Val->getType()->getDescription() + "'");
556 return 0;
557 }
558
559 // Otherwise, create a new forward reference for this value and remember it.
560 GlobalValue *FwdVal;
561 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
562 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
563 else
564 FwdVal = new GlobalVariable(PTy->getElementType(), false,
565 GlobalValue::ExternalWeakLinkage, 0, Name, M);
566
567 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
568 return FwdVal;
569}
570
571GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
572 const PointerType *PTy = dyn_cast<PointerType>(Ty);
573 if (PTy == 0) {
574 Error(Loc, "global variable reference must have pointer type");
575 return 0;
576 }
577
578 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
579
580 // If this is a forward reference for the value, see if we already created a
581 // forward ref record.
582 if (Val == 0) {
583 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
584 I = ForwardRefValIDs.find(ID);
585 if (I != ForwardRefValIDs.end())
586 Val = I->second.first;
587 }
588
589 // If we have the value in the symbol table or fwd-ref table, return it.
590 if (Val) {
591 if (Val->getType() == Ty) return Val;
592 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
593 Val->getType()->getDescription() + "'");
594 return 0;
595 }
596
597 // Otherwise, create a new forward reference for this value and remember it.
598 GlobalValue *FwdVal;
599 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
600 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
601 else
602 FwdVal = new GlobalVariable(PTy->getElementType(), false,
603 GlobalValue::ExternalWeakLinkage, 0, "", M);
604
605 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
606 return FwdVal;
607}
608
609
610//===----------------------------------------------------------------------===//
611// Helper Routines.
612//===----------------------------------------------------------------------===//
613
614/// ParseToken - If the current token has the specified kind, eat it and return
615/// success. Otherwise, emit the specified error and return failure.
616bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
617 if (Lex.getKind() != T)
618 return TokError(ErrMsg);
619 Lex.Lex();
620 return false;
621}
622
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000623/// ParseStringConstant
624/// ::= StringConstant
625bool LLParser::ParseStringConstant(std::string &Result) {
626 if (Lex.getKind() != lltok::StringConstant)
627 return TokError("expected string constant");
628 Result = Lex.getStrVal();
629 Lex.Lex();
630 return false;
631}
632
633/// ParseUInt32
634/// ::= uint32
635bool LLParser::ParseUInt32(unsigned &Val) {
Chris Lattnerdf986172009-01-02 07:01:27 +0000636 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
637 return TokError("expected integer");
638 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
639 if (Val64 != unsigned(Val64))
640 return TokError("expected 32-bit integer (too large)");
641 Val = Val64;
642 Lex.Lex();
643 return false;
644}
645
646
647/// ParseOptionalAddrSpace
648/// := /*empty*/
649/// := 'addrspace' '(' uint32 ')'
650bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
651 AddrSpace = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000652 if (!EatIfPresent(lltok::kw_addrspace))
Chris Lattnerdf986172009-01-02 07:01:27 +0000653 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +0000654 return ParseToken(lltok::lparen, "expected '(' in address space") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000655 ParseUInt32(AddrSpace) ||
Chris Lattnerdf986172009-01-02 07:01:27 +0000656 ParseToken(lltok::rparen, "expected ')' in address space");
657}
658
659/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
660/// indicates what kind of attribute list this is: 0: function arg, 1: result,
661/// 2: function attr.
662bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
663 Attrs = Attribute::None;
664 LocTy AttrLoc = Lex.getLoc();
665
666 while (1) {
667 switch (Lex.getKind()) {
668 case lltok::kw_sext:
669 case lltok::kw_zext:
670 // Treat these as signext/zeroext unless they are function attrs.
671 // FIXME: REMOVE THIS IN LLVM 3.0
672 if (AttrKind != 2) {
673 if (Lex.getKind() == lltok::kw_sext)
674 Attrs |= Attribute::SExt;
675 else
676 Attrs |= Attribute::ZExt;
677 break;
678 }
679 // FALL THROUGH.
680 default: // End of attributes.
681 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
682 return Error(AttrLoc, "invalid use of function-only attribute");
683
684 if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
685 return Error(AttrLoc, "invalid use of parameter-only attribute");
686
687 return false;
688 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
689 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
690 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
691 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
692 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
693 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
694 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
695 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
696
697 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
698 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
699 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
700 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
701 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
702 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
703 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
704 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
705 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
706
707
708 case lltok::kw_align: {
709 unsigned Alignment;
710 if (ParseOptionalAlignment(Alignment))
711 return true;
712 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
713 continue;
714 }
715 }
716 Lex.Lex();
717 }
718}
719
720/// ParseOptionalLinkage
721/// ::= /*empty*/
722/// ::= 'internal'
723/// ::= 'weak'
724/// ::= 'linkonce'
725/// ::= 'appending'
726/// ::= 'dllexport'
727/// ::= 'common'
728/// ::= 'dllimport'
729/// ::= 'extern_weak'
730/// ::= 'external'
731bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
732 HasLinkage = false;
733 switch (Lex.getKind()) {
734 default: Res = GlobalValue::ExternalLinkage; return false;
735 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
736 case lltok::kw_weak: Res = GlobalValue::WeakLinkage; break;
737 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceLinkage; break;
738 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
739 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
740 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
741 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
742 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
743 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
744 }
745 Lex.Lex();
746 HasLinkage = true;
747 return false;
748}
749
750/// ParseOptionalVisibility
751/// ::= /*empty*/
752/// ::= 'default'
753/// ::= 'hidden'
754/// ::= 'protected'
755///
756bool LLParser::ParseOptionalVisibility(unsigned &Res) {
757 switch (Lex.getKind()) {
758 default: Res = GlobalValue::DefaultVisibility; return false;
759 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
760 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
761 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
762 }
763 Lex.Lex();
764 return false;
765}
766
767/// ParseOptionalCallingConv
768/// ::= /*empty*/
769/// ::= 'ccc'
770/// ::= 'fastcc'
771/// ::= 'coldcc'
772/// ::= 'x86_stdcallcc'
773/// ::= 'x86_fastcallcc'
774/// ::= 'cc' UINT
775///
776bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
777 switch (Lex.getKind()) {
778 default: CC = CallingConv::C; return false;
779 case lltok::kw_ccc: CC = CallingConv::C; break;
780 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
781 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
782 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
783 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000784 case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
Chris Lattnerdf986172009-01-02 07:01:27 +0000785 }
786 Lex.Lex();
787 return false;
788}
789
790/// ParseOptionalAlignment
791/// ::= /* empty */
792/// ::= 'align' 4
793bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
794 Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000795 if (!EatIfPresent(lltok::kw_align))
796 return false;
Chris Lattner3fbb3ab2009-01-05 07:46:05 +0000797 LocTy AlignLoc = Lex.getLoc();
798 if (ParseUInt32(Alignment)) return true;
799 if (!isPowerOf2_32(Alignment))
800 return Error(AlignLoc, "alignment is not a power of two");
801 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +0000802}
803
804/// ParseOptionalCommaAlignment
805/// ::= /* empty */
806/// ::= ',' 'align' 4
807bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
808 Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000809 if (!EatIfPresent(lltok::comma))
Chris Lattnerdf986172009-01-02 07:01:27 +0000810 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +0000811 return ParseToken(lltok::kw_align, "expected 'align'") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000812 ParseUInt32(Alignment);
Chris Lattnerdf986172009-01-02 07:01:27 +0000813}
814
815/// ParseIndexList
816/// ::= (',' uint32)+
817bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
818 if (Lex.getKind() != lltok::comma)
819 return TokError("expected ',' as start of index list");
820
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000821 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +0000822 unsigned Idx;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000823 if (ParseUInt32(Idx)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000824 Indices.push_back(Idx);
825 }
826
827 return false;
828}
829
830//===----------------------------------------------------------------------===//
831// Type Parsing.
832//===----------------------------------------------------------------------===//
833
834/// ParseType - Parse and resolve a full type.
835bool LLParser::ParseType(PATypeHolder &Result) {
836 if (ParseTypeRec(Result)) return true;
837
838 // Verify no unresolved uprefs.
839 if (!UpRefs.empty())
840 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
Chris Lattnerdf986172009-01-02 07:01:27 +0000841
842 return false;
843}
844
845/// HandleUpRefs - Every time we finish a new layer of types, this function is
846/// called. It loops through the UpRefs vector, which is a list of the
847/// currently active types. For each type, if the up-reference is contained in
848/// the newly completed type, we decrement the level count. When the level
849/// count reaches zero, the up-referenced type is the type that is passed in:
850/// thus we can complete the cycle.
851///
852PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
853 // If Ty isn't abstract, or if there are no up-references in it, then there is
854 // nothing to resolve here.
855 if (!ty->isAbstract() || UpRefs.empty()) return ty;
856
857 PATypeHolder Ty(ty);
858#if 0
859 errs() << "Type '" << Ty->getDescription()
860 << "' newly formed. Resolving upreferences.\n"
861 << UpRefs.size() << " upreferences active!\n";
862#endif
863
864 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
865 // to zero), we resolve them all together before we resolve them to Ty. At
866 // the end of the loop, if there is anything to resolve to Ty, it will be in
867 // this variable.
868 OpaqueType *TypeToResolve = 0;
869
870 for (unsigned i = 0; i != UpRefs.size(); ++i) {
871 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
872 bool ContainsType =
873 std::find(Ty->subtype_begin(), Ty->subtype_end(),
874 UpRefs[i].LastContainedTy) != Ty->subtype_end();
875
876#if 0
877 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
878 << UpRefs[i].LastContainedTy->getDescription() << ") = "
879 << (ContainsType ? "true" : "false")
880 << " level=" << UpRefs[i].NestingLevel << "\n";
881#endif
882 if (!ContainsType)
883 continue;
884
885 // Decrement level of upreference
886 unsigned Level = --UpRefs[i].NestingLevel;
887 UpRefs[i].LastContainedTy = Ty;
888
889 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
890 if (Level != 0)
891 continue;
892
893#if 0
894 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
895#endif
896 if (!TypeToResolve)
897 TypeToResolve = UpRefs[i].UpRefTy;
898 else
899 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
900 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
901 --i; // Do not skip the next element.
902 }
903
904 if (TypeToResolve)
905 TypeToResolve->refineAbstractTypeTo(Ty);
906
907 return Ty;
908}
909
910
911/// ParseTypeRec - The recursive function used to process the internal
912/// implementation details of types.
913bool LLParser::ParseTypeRec(PATypeHolder &Result) {
914 switch (Lex.getKind()) {
915 default:
916 return TokError("expected type");
917 case lltok::Type:
918 // TypeRec ::= 'float' | 'void' (etc)
919 Result = Lex.getTyVal();
920 Lex.Lex();
921 break;
922 case lltok::kw_opaque:
923 // TypeRec ::= 'opaque'
924 Result = OpaqueType::get();
925 Lex.Lex();
926 break;
927 case lltok::lbrace:
928 // TypeRec ::= '{' ... '}'
929 if (ParseStructType(Result, false))
930 return true;
931 break;
932 case lltok::lsquare:
933 // TypeRec ::= '[' ... ']'
934 Lex.Lex(); // eat the lsquare.
935 if (ParseArrayVectorType(Result, false))
936 return true;
937 break;
938 case lltok::less: // Either vector or packed struct.
939 // TypeRec ::= '<' ... '>'
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000940 Lex.Lex();
941 if (Lex.getKind() == lltok::lbrace) {
942 if (ParseStructType(Result, true) ||
943 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
Chris Lattnerdf986172009-01-02 07:01:27 +0000944 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000945 } else if (ParseArrayVectorType(Result, true))
946 return true;
947 break;
948 case lltok::LocalVar:
949 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
950 // TypeRec ::= %foo
951 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
952 Result = T;
953 } else {
954 Result = OpaqueType::get();
955 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
956 std::make_pair(Result,
957 Lex.getLoc())));
958 M->addTypeName(Lex.getStrVal(), Result.get());
959 }
960 Lex.Lex();
961 break;
962
963 case lltok::LocalVarID:
964 // TypeRec ::= %4
965 if (Lex.getUIntVal() < NumberedTypes.size())
966 Result = NumberedTypes[Lex.getUIntVal()];
967 else {
968 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
969 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
970 if (I != ForwardRefTypeIDs.end())
971 Result = I->second.first;
972 else {
973 Result = OpaqueType::get();
974 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
975 std::make_pair(Result,
976 Lex.getLoc())));
977 }
978 }
979 Lex.Lex();
980 break;
981 case lltok::backslash: {
982 // TypeRec ::= '\' 4
Chris Lattnerdf986172009-01-02 07:01:27 +0000983 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000984 unsigned Val;
985 if (ParseUInt32(Val)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000986 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder.
987 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
988 Result = OT;
989 break;
990 }
991 }
992
993 // Parse the type suffixes.
994 while (1) {
995 switch (Lex.getKind()) {
996 // End of type.
997 default: return false;
998
999 // TypeRec ::= TypeRec '*'
1000 case lltok::star:
1001 if (Result.get() == Type::LabelTy)
1002 return TokError("basic block pointers are invalid");
1003 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1004 Lex.Lex();
1005 break;
1006
1007 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1008 case lltok::kw_addrspace: {
1009 if (Result.get() == Type::LabelTy)
1010 return TokError("basic block pointers are invalid");
1011 unsigned AddrSpace;
1012 if (ParseOptionalAddrSpace(AddrSpace) ||
1013 ParseToken(lltok::star, "expected '*' in address space"))
1014 return true;
1015
1016 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1017 break;
1018 }
1019
1020 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1021 case lltok::lparen:
1022 if (ParseFunctionType(Result))
1023 return true;
1024 break;
1025 }
1026 }
1027}
1028
1029/// ParseParameterList
1030/// ::= '(' ')'
1031/// ::= '(' Arg (',' Arg)* ')'
1032/// Arg
1033/// ::= Type OptionalAttributes Value OptionalAttributes
1034bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1035 PerFunctionState &PFS) {
1036 if (ParseToken(lltok::lparen, "expected '(' in call"))
1037 return true;
1038
1039 while (Lex.getKind() != lltok::rparen) {
1040 // If this isn't the first argument, we need a comma.
1041 if (!ArgList.empty() &&
1042 ParseToken(lltok::comma, "expected ',' in argument list"))
1043 return true;
1044
1045 // Parse the argument.
1046 LocTy ArgLoc;
1047 PATypeHolder ArgTy(Type::VoidTy);
1048 unsigned ArgAttrs1, ArgAttrs2;
1049 Value *V;
1050 if (ParseType(ArgTy, ArgLoc) ||
1051 ParseOptionalAttrs(ArgAttrs1, 0) ||
1052 ParseValue(ArgTy, V, PFS) ||
1053 // FIXME: Should not allow attributes after the argument, remove this in
1054 // LLVM 3.0.
1055 ParseOptionalAttrs(ArgAttrs2, 0))
1056 return true;
1057 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1058 }
1059
1060 Lex.Lex(); // Lex the ')'.
1061 return false;
1062}
1063
1064
1065
1066/// ParseArgumentList
1067/// ::= '(' ArgTypeListI ')'
1068/// ArgTypeListI
1069/// ::= /*empty*/
1070/// ::= '...'
1071/// ::= ArgTypeList ',' '...'
1072/// ::= ArgType (',' ArgType)*
1073bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1074 bool &isVarArg) {
1075 isVarArg = false;
1076 assert(Lex.getKind() == lltok::lparen);
1077 Lex.Lex(); // eat the (.
1078
1079 if (Lex.getKind() == lltok::rparen) {
1080 // empty
1081 } else if (Lex.getKind() == lltok::dotdotdot) {
1082 isVarArg = true;
1083 Lex.Lex();
1084 } else {
1085 LocTy TypeLoc = Lex.getLoc();
1086 PATypeHolder ArgTy(Type::VoidTy);
Chris Lattnerdf986172009-01-02 07:01:27 +00001087 unsigned Attrs;
Chris Lattnerdf986172009-01-02 07:01:27 +00001088 std::string Name;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001089
1090 if (ParseTypeRec(ArgTy) ||
1091 ParseOptionalAttrs(Attrs, 0)) return true;
1092
Chris Lattnerdf986172009-01-02 07:01:27 +00001093 if (Lex.getKind() == lltok::LocalVar ||
1094 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1095 Name = Lex.getStrVal();
1096 Lex.Lex();
1097 }
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001098
1099 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1100 return Error(TypeLoc, "invalid type for function argument");
Chris Lattnerdf986172009-01-02 07:01:27 +00001101
1102 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1103
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001104 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001105 // Handle ... at end of arg list.
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001106 if (EatIfPresent(lltok::dotdotdot)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001107 isVarArg = true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001108 break;
1109 }
1110
1111 // Otherwise must be an argument type.
1112 TypeLoc = Lex.getLoc();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001113 if (ParseTypeRec(ArgTy) ||
1114 ParseOptionalAttrs(Attrs, 0)) return true;
1115
Chris Lattnerdf986172009-01-02 07:01:27 +00001116 if (Lex.getKind() == lltok::LocalVar ||
1117 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1118 Name = Lex.getStrVal();
1119 Lex.Lex();
1120 } else {
1121 Name = "";
1122 }
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001123
1124 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1125 return Error(TypeLoc, "invalid type for function argument");
Chris Lattnerdf986172009-01-02 07:01:27 +00001126
1127 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1128 }
1129 }
1130
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001131 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
Chris Lattnerdf986172009-01-02 07:01:27 +00001132}
1133
1134/// ParseFunctionType
1135/// ::= Type ArgumentList OptionalAttrs
1136bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1137 assert(Lex.getKind() == lltok::lparen);
1138
Chris Lattnerd77d04c2009-01-05 08:04:33 +00001139 if (!FunctionType::isValidReturnType(Result))
1140 return TokError("invalid function return type");
1141
Chris Lattnerdf986172009-01-02 07:01:27 +00001142 std::vector<ArgInfo> ArgList;
1143 bool isVarArg;
1144 unsigned Attrs;
1145 if (ParseArgumentList(ArgList, isVarArg) ||
1146 // FIXME: Allow, but ignore attributes on function types!
1147 // FIXME: Remove in LLVM 3.0
1148 ParseOptionalAttrs(Attrs, 2))
1149 return true;
1150
1151 // Reject names on the arguments lists.
1152 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1153 if (!ArgList[i].Name.empty())
1154 return Error(ArgList[i].Loc, "argument name invalid in function type");
1155 if (!ArgList[i].Attrs != 0) {
1156 // Allow but ignore attributes on function types; this permits
1157 // auto-upgrade.
1158 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1159 }
1160 }
1161
1162 std::vector<const Type*> ArgListTy;
1163 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1164 ArgListTy.push_back(ArgList[i].Type);
1165
1166 Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1167 return false;
1168}
1169
1170/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1171/// TypeRec
1172/// ::= '{' '}'
1173/// ::= '{' TypeRec (',' TypeRec)* '}'
1174/// ::= '<' '{' '}' '>'
1175/// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1176bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1177 assert(Lex.getKind() == lltok::lbrace);
1178 Lex.Lex(); // Consume the '{'
1179
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001180 if (EatIfPresent(lltok::rbrace)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001181 Result = StructType::get(std::vector<const Type*>(), Packed);
Chris Lattnerdf986172009-01-02 07:01:27 +00001182 return false;
1183 }
1184
1185 std::vector<PATypeHolder> ParamsList;
1186 if (ParseTypeRec(Result)) return true;
1187 ParamsList.push_back(Result);
1188
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001189 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001190 if (ParseTypeRec(Result)) return true;
1191 ParamsList.push_back(Result);
1192 }
1193
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001194 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1195 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001196
1197 std::vector<const Type*> ParamsListTy;
1198 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1199 ParamsListTy.push_back(ParamsList[i].get());
1200 Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1201 return false;
1202}
1203
1204/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1205/// token has already been consumed.
1206/// TypeRec
1207/// ::= '[' APSINTVAL 'x' Types ']'
1208/// ::= '<' APSINTVAL 'x' Types '>'
1209bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1210 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1211 Lex.getAPSIntVal().getBitWidth() > 64)
1212 return TokError("expected number in address space");
1213
1214 LocTy SizeLoc = Lex.getLoc();
1215 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001216 Lex.Lex();
1217
1218 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1219 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001220
1221 LocTy TypeLoc = Lex.getLoc();
1222 PATypeHolder EltTy(Type::VoidTy);
1223 if (ParseTypeRec(EltTy)) return true;
1224
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001225 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1226 "expected end of sequential type"))
1227 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001228
1229 if (isVector) {
1230 if ((unsigned)Size != Size)
1231 return Error(SizeLoc, "size too large for vector");
1232 if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1233 return Error(TypeLoc, "vector element type must be fp or integer");
1234 Result = VectorType::get(EltTy, unsigned(Size));
1235 } else {
1236 if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1237 return Error(TypeLoc, "invalid array element type");
1238 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1239 }
1240 return false;
1241}
1242
1243//===----------------------------------------------------------------------===//
1244// Function Semantic Analysis.
1245//===----------------------------------------------------------------------===//
1246
1247LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1248 : P(p), F(f) {
1249
1250 // Insert unnamed arguments into the NumberedVals list.
1251 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1252 AI != E; ++AI)
1253 if (!AI->hasName())
1254 NumberedVals.push_back(AI);
1255}
1256
1257LLParser::PerFunctionState::~PerFunctionState() {
1258 // If there were any forward referenced non-basicblock values, delete them.
1259 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1260 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1261 if (!isa<BasicBlock>(I->second.first)) {
1262 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1263 ->getType()));
1264 delete I->second.first;
1265 I->second.first = 0;
1266 }
1267
1268 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1269 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1270 if (!isa<BasicBlock>(I->second.first)) {
1271 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1272 ->getType()));
1273 delete I->second.first;
1274 I->second.first = 0;
1275 }
1276}
1277
1278bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1279 if (!ForwardRefVals.empty())
1280 return P.Error(ForwardRefVals.begin()->second.second,
1281 "use of undefined value '%" + ForwardRefVals.begin()->first +
1282 "'");
1283 if (!ForwardRefValIDs.empty())
1284 return P.Error(ForwardRefValIDs.begin()->second.second,
1285 "use of undefined value '%" +
1286 utostr(ForwardRefValIDs.begin()->first) + "'");
1287 return false;
1288}
1289
1290
1291/// GetVal - Get a value with the specified name or ID, creating a
1292/// forward reference record if needed. This can return null if the value
1293/// exists but does not have the right type.
1294Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1295 const Type *Ty, LocTy Loc) {
1296 // Look this name up in the normal function symbol table.
1297 Value *Val = F.getValueSymbolTable().lookup(Name);
1298
1299 // If this is a forward reference for the value, see if we already created a
1300 // forward ref record.
1301 if (Val == 0) {
1302 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1303 I = ForwardRefVals.find(Name);
1304 if (I != ForwardRefVals.end())
1305 Val = I->second.first;
1306 }
1307
1308 // If we have the value in the symbol table or fwd-ref table, return it.
1309 if (Val) {
1310 if (Val->getType() == Ty) return Val;
1311 if (Ty == Type::LabelTy)
1312 P.Error(Loc, "'%" + Name + "' is not a basic block");
1313 else
1314 P.Error(Loc, "'%" + Name + "' defined with type '" +
1315 Val->getType()->getDescription() + "'");
1316 return 0;
1317 }
1318
1319 // Don't make placeholders with invalid type.
1320 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1321 P.Error(Loc, "invalid use of a non-first-class type");
1322 return 0;
1323 }
1324
1325 // Otherwise, create a new forward reference for this value and remember it.
1326 Value *FwdVal;
1327 if (Ty == Type::LabelTy)
1328 FwdVal = BasicBlock::Create(Name, &F);
1329 else
1330 FwdVal = new Argument(Ty, Name);
1331
1332 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1333 return FwdVal;
1334}
1335
1336Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1337 LocTy Loc) {
1338 // Look this name up in the normal function symbol table.
1339 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1340
1341 // If this is a forward reference for the value, see if we already created a
1342 // forward ref record.
1343 if (Val == 0) {
1344 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1345 I = ForwardRefValIDs.find(ID);
1346 if (I != ForwardRefValIDs.end())
1347 Val = I->second.first;
1348 }
1349
1350 // If we have the value in the symbol table or fwd-ref table, return it.
1351 if (Val) {
1352 if (Val->getType() == Ty) return Val;
1353 if (Ty == Type::LabelTy)
1354 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1355 else
1356 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1357 Val->getType()->getDescription() + "'");
1358 return 0;
1359 }
1360
1361 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1362 P.Error(Loc, "invalid use of a non-first-class type");
1363 return 0;
1364 }
1365
1366 // Otherwise, create a new forward reference for this value and remember it.
1367 Value *FwdVal;
1368 if (Ty == Type::LabelTy)
1369 FwdVal = BasicBlock::Create("", &F);
1370 else
1371 FwdVal = new Argument(Ty);
1372
1373 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1374 return FwdVal;
1375}
1376
1377/// SetInstName - After an instruction is parsed and inserted into its
1378/// basic block, this installs its name.
1379bool LLParser::PerFunctionState::SetInstName(int NameID,
1380 const std::string &NameStr,
1381 LocTy NameLoc, Instruction *Inst) {
1382 // If this instruction has void type, it cannot have a name or ID specified.
1383 if (Inst->getType() == Type::VoidTy) {
1384 if (NameID != -1 || !NameStr.empty())
1385 return P.Error(NameLoc, "instructions returning void cannot have a name");
1386 return false;
1387 }
1388
1389 // If this was a numbered instruction, verify that the instruction is the
1390 // expected value and resolve any forward references.
1391 if (NameStr.empty()) {
1392 // If neither a name nor an ID was specified, just use the next ID.
1393 if (NameID == -1)
1394 NameID = NumberedVals.size();
1395
1396 if (unsigned(NameID) != NumberedVals.size())
1397 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1398 utostr(NumberedVals.size()) + "'");
1399
1400 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1401 ForwardRefValIDs.find(NameID);
1402 if (FI != ForwardRefValIDs.end()) {
1403 if (FI->second.first->getType() != Inst->getType())
1404 return P.Error(NameLoc, "instruction forward referenced with type '" +
1405 FI->second.first->getType()->getDescription() + "'");
1406 FI->second.first->replaceAllUsesWith(Inst);
1407 ForwardRefValIDs.erase(FI);
1408 }
1409
1410 NumberedVals.push_back(Inst);
1411 return false;
1412 }
1413
1414 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1415 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1416 FI = ForwardRefVals.find(NameStr);
1417 if (FI != ForwardRefVals.end()) {
1418 if (FI->second.first->getType() != Inst->getType())
1419 return P.Error(NameLoc, "instruction forward referenced with type '" +
1420 FI->second.first->getType()->getDescription() + "'");
1421 FI->second.first->replaceAllUsesWith(Inst);
1422 ForwardRefVals.erase(FI);
1423 }
1424
1425 // Set the name on the instruction.
1426 Inst->setName(NameStr);
1427
1428 if (Inst->getNameStr() != NameStr)
1429 return P.Error(NameLoc, "multiple definition of local value named '" +
1430 NameStr + "'");
1431 return false;
1432}
1433
1434/// GetBB - Get a basic block with the specified name or ID, creating a
1435/// forward reference record if needed.
1436BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1437 LocTy Loc) {
1438 return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1439}
1440
1441BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1442 return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1443}
1444
1445/// DefineBB - Define the specified basic block, which is either named or
1446/// unnamed. If there is an error, this returns null otherwise it returns
1447/// the block being defined.
1448BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1449 LocTy Loc) {
1450 BasicBlock *BB;
1451 if (Name.empty())
1452 BB = GetBB(NumberedVals.size(), Loc);
1453 else
1454 BB = GetBB(Name, Loc);
1455 if (BB == 0) return 0; // Already diagnosed error.
1456
1457 // Move the block to the end of the function. Forward ref'd blocks are
1458 // inserted wherever they happen to be referenced.
1459 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1460
1461 // Remove the block from forward ref sets.
1462 if (Name.empty()) {
1463 ForwardRefValIDs.erase(NumberedVals.size());
1464 NumberedVals.push_back(BB);
1465 } else {
1466 // BB forward references are already in the function symbol table.
1467 ForwardRefVals.erase(Name);
1468 }
1469
1470 return BB;
1471}
1472
1473//===----------------------------------------------------------------------===//
1474// Constants.
1475//===----------------------------------------------------------------------===//
1476
1477/// ParseValID - Parse an abstract value that doesn't necessarily have a
1478/// type implied. For example, if we parse "4" we don't know what integer type
1479/// it has. The value will later be combined with its type and checked for
1480/// sanity.
1481bool LLParser::ParseValID(ValID &ID) {
1482 ID.Loc = Lex.getLoc();
1483 switch (Lex.getKind()) {
1484 default: return TokError("expected value token");
1485 case lltok::GlobalID: // @42
1486 ID.UIntVal = Lex.getUIntVal();
1487 ID.Kind = ValID::t_GlobalID;
1488 break;
1489 case lltok::GlobalVar: // @foo
1490 ID.StrVal = Lex.getStrVal();
1491 ID.Kind = ValID::t_GlobalName;
1492 break;
1493 case lltok::LocalVarID: // %42
1494 ID.UIntVal = Lex.getUIntVal();
1495 ID.Kind = ValID::t_LocalID;
1496 break;
1497 case lltok::LocalVar: // %foo
1498 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1499 ID.StrVal = Lex.getStrVal();
1500 ID.Kind = ValID::t_LocalName;
1501 break;
1502 case lltok::APSInt:
1503 ID.APSIntVal = Lex.getAPSIntVal();
1504 ID.Kind = ValID::t_APSInt;
1505 break;
1506 case lltok::APFloat:
1507 ID.APFloatVal = Lex.getAPFloatVal();
1508 ID.Kind = ValID::t_APFloat;
1509 break;
1510 case lltok::kw_true:
1511 ID.ConstantVal = ConstantInt::getTrue();
1512 ID.Kind = ValID::t_Constant;
1513 break;
1514 case lltok::kw_false:
1515 ID.ConstantVal = ConstantInt::getFalse();
1516 ID.Kind = ValID::t_Constant;
1517 break;
1518 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1519 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1520 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1521
1522 case lltok::lbrace: {
1523 // ValID ::= '{' ConstVector '}'
1524 Lex.Lex();
1525 SmallVector<Constant*, 16> Elts;
1526 if (ParseGlobalValueVector(Elts) ||
1527 ParseToken(lltok::rbrace, "expected end of struct constant"))
1528 return true;
1529
1530 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1531 ID.Kind = ValID::t_Constant;
1532 return false;
1533 }
1534 case lltok::less: {
1535 // ValID ::= '<' ConstVector '>' --> Vector.
1536 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1537 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001538 bool isPackedStruct = EatIfPresent(lltok::lbrace);
Chris Lattnerdf986172009-01-02 07:01:27 +00001539
1540 SmallVector<Constant*, 16> Elts;
1541 LocTy FirstEltLoc = Lex.getLoc();
1542 if (ParseGlobalValueVector(Elts) ||
1543 (isPackedStruct &&
1544 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1545 ParseToken(lltok::greater, "expected end of constant"))
1546 return true;
1547
1548 if (isPackedStruct) {
1549 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1550 ID.Kind = ValID::t_Constant;
1551 return false;
1552 }
1553
1554 if (Elts.empty())
1555 return Error(ID.Loc, "constant vector must not be empty");
1556
1557 if (!Elts[0]->getType()->isInteger() &&
1558 !Elts[0]->getType()->isFloatingPoint())
1559 return Error(FirstEltLoc,
1560 "vector elements must have integer or floating point type");
1561
1562 // Verify that all the vector elements have the same type.
1563 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1564 if (Elts[i]->getType() != Elts[0]->getType())
1565 return Error(FirstEltLoc,
1566 "vector element #" + utostr(i) +
1567 " is not of type '" + Elts[0]->getType()->getDescription());
1568
1569 ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1570 ID.Kind = ValID::t_Constant;
1571 return false;
1572 }
1573 case lltok::lsquare: { // Array Constant
1574 Lex.Lex();
1575 SmallVector<Constant*, 16> Elts;
1576 LocTy FirstEltLoc = Lex.getLoc();
1577 if (ParseGlobalValueVector(Elts) ||
1578 ParseToken(lltok::rsquare, "expected end of array constant"))
1579 return true;
1580
1581 // Handle empty element.
1582 if (Elts.empty()) {
1583 // Use undef instead of an array because it's inconvenient to determine
1584 // the element type at this point, there being no elements to examine.
Chris Lattner081b5052009-01-05 07:52:51 +00001585 ID.Kind = ValID::t_EmptyArray;
Chris Lattnerdf986172009-01-02 07:01:27 +00001586 return false;
1587 }
1588
1589 if (!Elts[0]->getType()->isFirstClassType())
1590 return Error(FirstEltLoc, "invalid array element type: " +
1591 Elts[0]->getType()->getDescription());
1592
1593 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1594
1595 // Verify all elements are correct type!
Chris Lattner6d6b3cc2009-01-02 08:49:06 +00001596 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001597 if (Elts[i]->getType() != Elts[0]->getType())
1598 return Error(FirstEltLoc,
1599 "array element #" + utostr(i) +
1600 " is not of type '" +Elts[0]->getType()->getDescription());
1601 }
1602
1603 ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1604 ID.Kind = ValID::t_Constant;
1605 return false;
1606 }
1607 case lltok::kw_c: // c "foo"
1608 Lex.Lex();
1609 ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1610 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1611 ID.Kind = ValID::t_Constant;
1612 return false;
1613
1614 case lltok::kw_asm: {
1615 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1616 bool HasSideEffect;
1617 Lex.Lex();
1618 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001619 ParseStringConstant(ID.StrVal) ||
1620 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
Chris Lattnerdf986172009-01-02 07:01:27 +00001621 ParseToken(lltok::StringConstant, "expected constraint string"))
1622 return true;
1623 ID.StrVal2 = Lex.getStrVal();
1624 ID.UIntVal = HasSideEffect;
1625 ID.Kind = ValID::t_InlineAsm;
1626 return false;
1627 }
1628
1629 case lltok::kw_trunc:
1630 case lltok::kw_zext:
1631 case lltok::kw_sext:
1632 case lltok::kw_fptrunc:
1633 case lltok::kw_fpext:
1634 case lltok::kw_bitcast:
1635 case lltok::kw_uitofp:
1636 case lltok::kw_sitofp:
1637 case lltok::kw_fptoui:
1638 case lltok::kw_fptosi:
1639 case lltok::kw_inttoptr:
1640 case lltok::kw_ptrtoint: {
1641 unsigned Opc = Lex.getUIntVal();
1642 PATypeHolder DestTy(Type::VoidTy);
1643 Constant *SrcVal;
1644 Lex.Lex();
1645 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1646 ParseGlobalTypeAndValue(SrcVal) ||
1647 ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1648 ParseType(DestTy) ||
1649 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1650 return true;
1651 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1652 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1653 SrcVal->getType()->getDescription() + "' to '" +
1654 DestTy->getDescription() + "'");
1655 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1656 DestTy);
1657 ID.Kind = ValID::t_Constant;
1658 return false;
1659 }
1660 case lltok::kw_extractvalue: {
1661 Lex.Lex();
1662 Constant *Val;
1663 SmallVector<unsigned, 4> Indices;
1664 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1665 ParseGlobalTypeAndValue(Val) ||
1666 ParseIndexList(Indices) ||
1667 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1668 return true;
1669 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1670 return Error(ID.Loc, "extractvalue operand must be array or struct");
1671 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1672 Indices.end()))
1673 return Error(ID.Loc, "invalid indices for extractvalue");
1674 ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1675 &Indices[0], Indices.size());
1676 ID.Kind = ValID::t_Constant;
1677 return false;
1678 }
1679 case lltok::kw_insertvalue: {
1680 Lex.Lex();
1681 Constant *Val0, *Val1;
1682 SmallVector<unsigned, 4> Indices;
1683 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1684 ParseGlobalTypeAndValue(Val0) ||
1685 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1686 ParseGlobalTypeAndValue(Val1) ||
1687 ParseIndexList(Indices) ||
1688 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1689 return true;
1690 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1691 return Error(ID.Loc, "extractvalue operand must be array or struct");
1692 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1693 Indices.end()))
1694 return Error(ID.Loc, "invalid indices for insertvalue");
1695 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1696 &Indices[0], Indices.size());
1697 ID.Kind = ValID::t_Constant;
1698 return false;
1699 }
1700 case lltok::kw_icmp:
1701 case lltok::kw_fcmp:
1702 case lltok::kw_vicmp:
1703 case lltok::kw_vfcmp: {
1704 unsigned PredVal, Opc = Lex.getUIntVal();
1705 Constant *Val0, *Val1;
1706 Lex.Lex();
1707 if (ParseCmpPredicate(PredVal, Opc) ||
1708 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1709 ParseGlobalTypeAndValue(Val0) ||
1710 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1711 ParseGlobalTypeAndValue(Val1) ||
1712 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1713 return true;
1714
1715 if (Val0->getType() != Val1->getType())
1716 return Error(ID.Loc, "compare operands must have the same type");
1717
1718 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1719
1720 if (Opc == Instruction::FCmp) {
1721 if (!Val0->getType()->isFPOrFPVector())
1722 return Error(ID.Loc, "fcmp requires floating point operands");
1723 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1724 } else if (Opc == Instruction::ICmp) {
1725 if (!Val0->getType()->isIntOrIntVector() &&
1726 !isa<PointerType>(Val0->getType()))
1727 return Error(ID.Loc, "icmp requires pointer or integer operands");
1728 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1729 } else if (Opc == Instruction::VFCmp) {
1730 // FIXME: REMOVE VFCMP Support
1731 ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1732 } else if (Opc == Instruction::VICmp) {
1733 // FIXME: REMOVE VFCMP Support
1734 ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1735 }
1736 ID.Kind = ValID::t_Constant;
1737 return false;
1738 }
1739
1740 // Binary Operators.
1741 case lltok::kw_add:
1742 case lltok::kw_sub:
1743 case lltok::kw_mul:
1744 case lltok::kw_udiv:
1745 case lltok::kw_sdiv:
1746 case lltok::kw_fdiv:
1747 case lltok::kw_urem:
1748 case lltok::kw_srem:
1749 case lltok::kw_frem: {
1750 unsigned Opc = Lex.getUIntVal();
1751 Constant *Val0, *Val1;
1752 Lex.Lex();
1753 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1754 ParseGlobalTypeAndValue(Val0) ||
1755 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1756 ParseGlobalTypeAndValue(Val1) ||
1757 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1758 return true;
1759 if (Val0->getType() != Val1->getType())
1760 return Error(ID.Loc, "operands of constexpr must have same type");
1761 if (!Val0->getType()->isIntOrIntVector() &&
1762 !Val0->getType()->isFPOrFPVector())
1763 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1764 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1765 ID.Kind = ValID::t_Constant;
1766 return false;
1767 }
1768
1769 // Logical Operations
1770 case lltok::kw_shl:
1771 case lltok::kw_lshr:
1772 case lltok::kw_ashr:
1773 case lltok::kw_and:
1774 case lltok::kw_or:
1775 case lltok::kw_xor: {
1776 unsigned Opc = Lex.getUIntVal();
1777 Constant *Val0, *Val1;
1778 Lex.Lex();
1779 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1780 ParseGlobalTypeAndValue(Val0) ||
1781 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1782 ParseGlobalTypeAndValue(Val1) ||
1783 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1784 return true;
1785 if (Val0->getType() != Val1->getType())
1786 return Error(ID.Loc, "operands of constexpr must have same type");
1787 if (!Val0->getType()->isIntOrIntVector())
1788 return Error(ID.Loc,
1789 "constexpr requires integer or integer vector operands");
1790 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1791 ID.Kind = ValID::t_Constant;
1792 return false;
1793 }
1794
1795 case lltok::kw_getelementptr:
1796 case lltok::kw_shufflevector:
1797 case lltok::kw_insertelement:
1798 case lltok::kw_extractelement:
1799 case lltok::kw_select: {
1800 unsigned Opc = Lex.getUIntVal();
1801 SmallVector<Constant*, 16> Elts;
1802 Lex.Lex();
1803 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1804 ParseGlobalValueVector(Elts) ||
1805 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1806 return true;
1807
1808 if (Opc == Instruction::GetElementPtr) {
1809 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1810 return Error(ID.Loc, "getelementptr requires pointer operand");
1811
1812 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1813 (Value**)&Elts[1], Elts.size()-1))
1814 return Error(ID.Loc, "invalid indices for getelementptr");
1815 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1816 &Elts[1], Elts.size()-1);
1817 } else if (Opc == Instruction::Select) {
1818 if (Elts.size() != 3)
1819 return Error(ID.Loc, "expected three operands to select");
1820 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1821 Elts[2]))
1822 return Error(ID.Loc, Reason);
1823 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1824 } else if (Opc == Instruction::ShuffleVector) {
1825 if (Elts.size() != 3)
1826 return Error(ID.Loc, "expected three operands to shufflevector");
1827 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1828 return Error(ID.Loc, "invalid operands to shufflevector");
1829 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1830 } else if (Opc == Instruction::ExtractElement) {
1831 if (Elts.size() != 2)
1832 return Error(ID.Loc, "expected two operands to extractelement");
1833 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1834 return Error(ID.Loc, "invalid extractelement operands");
1835 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1836 } else {
1837 assert(Opc == Instruction::InsertElement && "Unknown opcode");
1838 if (Elts.size() != 3)
1839 return Error(ID.Loc, "expected three operands to insertelement");
1840 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1841 return Error(ID.Loc, "invalid insertelement operands");
1842 ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1843 }
1844
1845 ID.Kind = ValID::t_Constant;
1846 return false;
1847 }
1848 }
1849
1850 Lex.Lex();
1851 return false;
1852}
1853
1854/// ParseGlobalValue - Parse a global value with the specified type.
1855bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1856 V = 0;
1857 ValID ID;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001858 return ParseValID(ID) ||
1859 ConvertGlobalValIDToValue(Ty, ID, V);
Chris Lattnerdf986172009-01-02 07:01:27 +00001860}
1861
1862/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1863/// constant.
1864bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1865 Constant *&V) {
1866 if (isa<FunctionType>(Ty))
1867 return Error(ID.Loc, "functions are not values, refer to them as pointers");
1868
1869 switch (ID.Kind) {
1870 default: assert(0 && "Unknown ValID!");
1871 case ValID::t_LocalID:
1872 case ValID::t_LocalName:
1873 return Error(ID.Loc, "invalid use of function-local name");
1874 case ValID::t_InlineAsm:
1875 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1876 case ValID::t_GlobalName:
1877 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1878 return V == 0;
1879 case ValID::t_GlobalID:
1880 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1881 return V == 0;
1882 case ValID::t_APSInt:
1883 if (!isa<IntegerType>(Ty))
1884 return Error(ID.Loc, "integer constant must have integer type");
1885 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1886 V = ConstantInt::get(ID.APSIntVal);
1887 return false;
1888 case ValID::t_APFloat:
1889 if (!Ty->isFloatingPoint() ||
1890 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1891 return Error(ID.Loc, "floating point constant invalid for type");
1892
1893 // The lexer has no type info, so builds all float and double FP constants
1894 // as double. Fix this here. Long double does not need this.
1895 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1896 Ty == Type::FloatTy) {
1897 bool Ignored;
1898 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1899 &Ignored);
1900 }
1901 V = ConstantFP::get(ID.APFloatVal);
1902 return false;
1903 case ValID::t_Null:
1904 if (!isa<PointerType>(Ty))
1905 return Error(ID.Loc, "null must be a pointer type");
1906 V = ConstantPointerNull::get(cast<PointerType>(Ty));
1907 return false;
1908 case ValID::t_Undef:
Chris Lattnere67c1aa2009-01-05 08:13:38 +00001909 // FIXME: LabelTy should not be a first-class type.
1910 if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
1911 return Error(ID.Loc, "invalid type for undef constant");
Chris Lattnerdf986172009-01-02 07:01:27 +00001912 V = UndefValue::get(Ty);
1913 return false;
Chris Lattner081b5052009-01-05 07:52:51 +00001914 case ValID::t_EmptyArray:
1915 if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
1916 return Error(ID.Loc, "invalid empty array initializer");
1917 V = UndefValue::get(Ty);
1918 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +00001919 case ValID::t_Zero:
Chris Lattnere67c1aa2009-01-05 08:13:38 +00001920 // FIXME: LabelTy should not be a first-class type.
1921 if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
Chris Lattnerdf986172009-01-02 07:01:27 +00001922 return Error(ID.Loc, "invalid type for null constant");
1923 V = Constant::getNullValue(Ty);
1924 return false;
1925 case ValID::t_Constant:
1926 if (ID.ConstantVal->getType() != Ty)
1927 return Error(ID.Loc, "constant expression type mismatch");
1928 V = ID.ConstantVal;
1929 return false;
1930 }
1931}
1932
1933bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
1934 PATypeHolder Type(Type::VoidTy);
1935 return ParseType(Type) ||
1936 ParseGlobalValue(Type, V);
1937}
1938
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001939/// ParseGlobalValueVector
1940/// ::= /*empty*/
1941/// ::= TypeAndValue (',' TypeAndValue)*
Chris Lattnerdf986172009-01-02 07:01:27 +00001942bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
1943 // Empty list.
1944 if (Lex.getKind() == lltok::rbrace ||
1945 Lex.getKind() == lltok::rsquare ||
1946 Lex.getKind() == lltok::greater ||
1947 Lex.getKind() == lltok::rparen)
1948 return false;
1949
1950 Constant *C;
1951 if (ParseGlobalTypeAndValue(C)) return true;
1952 Elts.push_back(C);
1953
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001954 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001955 if (ParseGlobalTypeAndValue(C)) return true;
1956 Elts.push_back(C);
1957 }
1958
1959 return false;
1960}
1961
1962
1963//===----------------------------------------------------------------------===//
1964// Function Parsing.
1965//===----------------------------------------------------------------------===//
1966
1967bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
1968 PerFunctionState &PFS) {
1969 if (ID.Kind == ValID::t_LocalID)
1970 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
1971 else if (ID.Kind == ValID::t_LocalName)
1972 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
1973 else if (ID.Kind == ValID::ValID::t_InlineAsm) {
1974 const PointerType *PTy = dyn_cast<PointerType>(Ty);
1975 const FunctionType *FTy =
1976 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
1977 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
1978 return Error(ID.Loc, "invalid type for inline asm constraint string");
1979 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
1980 return false;
1981 } else {
1982 Constant *C;
1983 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
1984 V = C;
1985 return false;
1986 }
1987
1988 return V == 0;
1989}
1990
1991bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
1992 V = 0;
1993 ValID ID;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001994 return ParseValID(ID) ||
1995 ConvertValIDToValue(Ty, ID, V, PFS);
Chris Lattnerdf986172009-01-02 07:01:27 +00001996}
1997
1998bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
1999 PATypeHolder T(Type::VoidTy);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002000 return ParseType(T) ||
2001 ParseValue(T, V, PFS);
Chris Lattnerdf986172009-01-02 07:01:27 +00002002}
2003
2004/// FunctionHeader
2005/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2006/// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2007/// OptionalAlign OptGC
2008bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2009 // Parse the linkage.
2010 LocTy LinkageLoc = Lex.getLoc();
2011 unsigned Linkage;
2012
2013 unsigned Visibility, CC, RetAttrs;
2014 PATypeHolder RetType(Type::VoidTy);
2015 LocTy RetTypeLoc = Lex.getLoc();
2016 if (ParseOptionalLinkage(Linkage) ||
2017 ParseOptionalVisibility(Visibility) ||
2018 ParseOptionalCallingConv(CC) ||
2019 ParseOptionalAttrs(RetAttrs, 1) ||
2020 ParseType(RetType, RetTypeLoc))
2021 return true;
2022
2023 // Verify that the linkage is ok.
2024 switch ((GlobalValue::LinkageTypes)Linkage) {
2025 case GlobalValue::ExternalLinkage:
2026 break; // always ok.
2027 case GlobalValue::DLLImportLinkage:
2028 case GlobalValue::ExternalWeakLinkage:
2029 if (isDefine)
2030 return Error(LinkageLoc, "invalid linkage for function definition");
2031 break;
2032 case GlobalValue::InternalLinkage:
2033 case GlobalValue::LinkOnceLinkage:
2034 case GlobalValue::WeakLinkage:
2035 case GlobalValue::DLLExportLinkage:
2036 if (!isDefine)
2037 return Error(LinkageLoc, "invalid linkage for function declaration");
2038 break;
2039 case GlobalValue::AppendingLinkage:
2040 case GlobalValue::GhostLinkage:
2041 case GlobalValue::CommonLinkage:
2042 return Error(LinkageLoc, "invalid function linkage type");
2043 }
2044
Chris Lattner99bb3152009-01-05 08:00:30 +00002045 if (!FunctionType::isValidReturnType(RetType) ||
2046 isa<OpaqueType>(RetType))
Chris Lattnerdf986172009-01-02 07:01:27 +00002047 return Error(RetTypeLoc, "invalid function return type");
2048
2049 if (Lex.getKind() != lltok::GlobalVar)
2050 return TokError("expected function name");
2051
2052 LocTy NameLoc = Lex.getLoc();
2053 std::string FunctionName = Lex.getStrVal();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002054 Lex.Lex();
Chris Lattnerdf986172009-01-02 07:01:27 +00002055
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002056 if (Lex.getKind() != lltok::lparen)
Chris Lattnerdf986172009-01-02 07:01:27 +00002057 return TokError("expected '(' in function argument list");
2058
2059 std::vector<ArgInfo> ArgList;
2060 bool isVarArg;
Chris Lattnerdf986172009-01-02 07:01:27 +00002061 unsigned FuncAttrs;
Chris Lattnerdf986172009-01-02 07:01:27 +00002062 std::string Section;
Chris Lattnerdf986172009-01-02 07:01:27 +00002063 unsigned Alignment;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002064 std::string GC;
2065
2066 if (ParseArgumentList(ArgList, isVarArg) ||
2067 ParseOptionalAttrs(FuncAttrs, 2) ||
2068 (EatIfPresent(lltok::kw_section) &&
2069 ParseStringConstant(Section)) ||
2070 ParseOptionalAlignment(Alignment) ||
2071 (EatIfPresent(lltok::kw_gc) &&
2072 ParseStringConstant(GC)))
2073 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002074
2075 // If the alignment was parsed as an attribute, move to the alignment field.
2076 if (FuncAttrs & Attribute::Alignment) {
2077 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2078 FuncAttrs &= ~Attribute::Alignment;
2079 }
2080
Chris Lattnerdf986172009-01-02 07:01:27 +00002081 // Okay, if we got here, the function is syntactically valid. Convert types
2082 // and do semantic checks.
2083 std::vector<const Type*> ParamTypeList;
2084 SmallVector<AttributeWithIndex, 8> Attrs;
2085 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2086 // attributes.
2087 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2088 if (FuncAttrs & ObsoleteFuncAttrs) {
2089 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2090 FuncAttrs &= ~ObsoleteFuncAttrs;
2091 }
2092
2093 if (RetAttrs != Attribute::None)
2094 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2095
2096 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2097 ParamTypeList.push_back(ArgList[i].Type);
2098 if (ArgList[i].Attrs != Attribute::None)
2099 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2100 }
2101
2102 if (FuncAttrs != Attribute::None)
2103 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2104
2105 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2106
2107 const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2108 const PointerType *PFT = PointerType::getUnqual(FT);
2109
2110 Fn = 0;
2111 if (!FunctionName.empty()) {
2112 // If this was a definition of a forward reference, remove the definition
2113 // from the forward reference table and fill in the forward ref.
2114 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2115 ForwardRefVals.find(FunctionName);
2116 if (FRVI != ForwardRefVals.end()) {
2117 Fn = M->getFunction(FunctionName);
2118 ForwardRefVals.erase(FRVI);
2119 } else if ((Fn = M->getFunction(FunctionName))) {
2120 // If this function already exists in the symbol table, then it is
2121 // multiply defined. We accept a few cases for old backwards compat.
2122 // FIXME: Remove this stuff for LLVM 3.0.
2123 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2124 (!Fn->isDeclaration() && isDefine)) {
2125 // If the redefinition has different type or different attributes,
2126 // reject it. If both have bodies, reject it.
2127 return Error(NameLoc, "invalid redefinition of function '" +
2128 FunctionName + "'");
2129 } else if (Fn->isDeclaration()) {
2130 // Make sure to strip off any argument names so we can't get conflicts.
2131 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2132 AI != AE; ++AI)
2133 AI->setName("");
2134 }
2135 }
2136
2137 } else if (FunctionName.empty()) {
2138 // If this is a definition of a forward referenced function, make sure the
2139 // types agree.
2140 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2141 = ForwardRefValIDs.find(NumberedVals.size());
2142 if (I != ForwardRefValIDs.end()) {
2143 Fn = cast<Function>(I->second.first);
2144 if (Fn->getType() != PFT)
2145 return Error(NameLoc, "type of definition and forward reference of '@" +
2146 utostr(NumberedVals.size()) +"' disagree");
2147 ForwardRefValIDs.erase(I);
2148 }
2149 }
2150
2151 if (Fn == 0)
2152 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2153 else // Move the forward-reference to the correct spot in the module.
2154 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2155
2156 if (FunctionName.empty())
2157 NumberedVals.push_back(Fn);
2158
2159 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2160 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2161 Fn->setCallingConv(CC);
2162 Fn->setAttributes(PAL);
2163 Fn->setAlignment(Alignment);
2164 Fn->setSection(Section);
2165 if (!GC.empty()) Fn->setGC(GC.c_str());
2166
2167 // Add all of the arguments we parsed to the function.
2168 Function::arg_iterator ArgIt = Fn->arg_begin();
2169 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2170 // If the argument has a name, insert it into the argument symbol table.
2171 if (ArgList[i].Name.empty()) continue;
2172
2173 // Set the name, if it conflicted, it will be auto-renamed.
2174 ArgIt->setName(ArgList[i].Name);
2175
2176 if (ArgIt->getNameStr() != ArgList[i].Name)
2177 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2178 ArgList[i].Name + "'");
2179 }
2180
2181 return false;
2182}
2183
2184
2185/// ParseFunctionBody
2186/// ::= '{' BasicBlock+ '}'
2187/// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2188///
2189bool LLParser::ParseFunctionBody(Function &Fn) {
2190 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2191 return TokError("expected '{' in function body");
2192 Lex.Lex(); // eat the {.
2193
2194 PerFunctionState PFS(*this, Fn);
2195
2196 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2197 if (ParseBasicBlock(PFS)) return true;
2198
2199 // Eat the }.
2200 Lex.Lex();
2201
2202 // Verify function is ok.
2203 return PFS.VerifyFunctionComplete();
2204}
2205
2206/// ParseBasicBlock
2207/// ::= LabelStr? Instruction*
2208bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2209 // If this basic block starts out with a name, remember it.
2210 std::string Name;
2211 LocTy NameLoc = Lex.getLoc();
2212 if (Lex.getKind() == lltok::LabelStr) {
2213 Name = Lex.getStrVal();
2214 Lex.Lex();
2215 }
2216
2217 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2218 if (BB == 0) return true;
2219
2220 std::string NameStr;
2221
2222 // Parse the instructions in this block until we get a terminator.
2223 Instruction *Inst;
2224 do {
2225 // This instruction may have three possibilities for a name: a) none
2226 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2227 LocTy NameLoc = Lex.getLoc();
2228 int NameID = -1;
2229 NameStr = "";
2230
2231 if (Lex.getKind() == lltok::LocalVarID) {
2232 NameID = Lex.getUIntVal();
2233 Lex.Lex();
2234 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2235 return true;
2236 } else if (Lex.getKind() == lltok::LocalVar ||
2237 // FIXME: REMOVE IN LLVM 3.0
2238 Lex.getKind() == lltok::StringConstant) {
2239 NameStr = Lex.getStrVal();
2240 Lex.Lex();
2241 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2242 return true;
2243 }
2244
2245 if (ParseInstruction(Inst, BB, PFS)) return true;
2246
2247 BB->getInstList().push_back(Inst);
2248
2249 // Set the name on the instruction.
2250 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2251 } while (!isa<TerminatorInst>(Inst));
2252
2253 return false;
2254}
2255
2256//===----------------------------------------------------------------------===//
2257// Instruction Parsing.
2258//===----------------------------------------------------------------------===//
2259
2260/// ParseInstruction - Parse one of the many different instructions.
2261///
2262bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2263 PerFunctionState &PFS) {
2264 lltok::Kind Token = Lex.getKind();
2265 if (Token == lltok::Eof)
2266 return TokError("found end of file when expecting more instructions");
2267 LocTy Loc = Lex.getLoc();
2268 Lex.Lex(); // Eat the keyword.
2269
2270 switch (Token) {
2271 default: return Error(Loc, "expected instruction opcode");
2272 // Terminator Instructions.
2273 case lltok::kw_unwind: Inst = new UnwindInst(); return false;
2274 case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2275 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2276 case lltok::kw_br: return ParseBr(Inst, PFS);
2277 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2278 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2279 // Binary Operators.
2280 case lltok::kw_add:
2281 case lltok::kw_sub:
Chris Lattnere914b592009-01-05 08:24:46 +00002282 case lltok::kw_mul: return ParseArithmetic(Inst, PFS, Lex.getUIntVal(), 0);
2283
Chris Lattnerdf986172009-01-02 07:01:27 +00002284 case lltok::kw_udiv:
2285 case lltok::kw_sdiv:
Chris Lattnerdf986172009-01-02 07:01:27 +00002286 case lltok::kw_urem:
Chris Lattnere914b592009-01-05 08:24:46 +00002287 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, Lex.getUIntVal(), 1);
2288 case lltok::kw_fdiv:
2289 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, Lex.getUIntVal(), 2);
Chris Lattnerdf986172009-01-02 07:01:27 +00002290 case lltok::kw_shl:
2291 case lltok::kw_lshr:
2292 case lltok::kw_ashr:
2293 case lltok::kw_and:
2294 case lltok::kw_or:
2295 case lltok::kw_xor: return ParseLogical(Inst, PFS, Lex.getUIntVal());
2296 case lltok::kw_icmp:
2297 case lltok::kw_fcmp:
2298 case lltok::kw_vicmp:
2299 case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, Lex.getUIntVal());
2300 // Casts.
2301 case lltok::kw_trunc:
2302 case lltok::kw_zext:
2303 case lltok::kw_sext:
2304 case lltok::kw_fptrunc:
2305 case lltok::kw_fpext:
2306 case lltok::kw_bitcast:
2307 case lltok::kw_uitofp:
2308 case lltok::kw_sitofp:
2309 case lltok::kw_fptoui:
2310 case lltok::kw_fptosi:
2311 case lltok::kw_inttoptr:
2312 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, Lex.getUIntVal());
2313 // Other.
2314 case lltok::kw_select: return ParseSelect(Inst, PFS);
Chris Lattner0088a5c2009-01-05 08:18:44 +00002315 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
Chris Lattnerdf986172009-01-02 07:01:27 +00002316 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2317 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2318 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2319 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2320 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2321 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2322 // Memory.
2323 case lltok::kw_alloca:
2324 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, Lex.getUIntVal());
2325 case lltok::kw_free: return ParseFree(Inst, PFS);
2326 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2327 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2328 case lltok::kw_volatile:
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002329 if (EatIfPresent(lltok::kw_load))
Chris Lattnerdf986172009-01-02 07:01:27 +00002330 return ParseLoad(Inst, PFS, true);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002331 else if (EatIfPresent(lltok::kw_store))
Chris Lattnerdf986172009-01-02 07:01:27 +00002332 return ParseStore(Inst, PFS, true);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002333 else
Chris Lattnerdf986172009-01-02 07:01:27 +00002334 return TokError("expected 'load' or 'store'");
Chris Lattnerdf986172009-01-02 07:01:27 +00002335 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2336 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2337 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2338 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2339 }
2340}
2341
2342/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2343bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2344 // FIXME: REMOVE vicmp/vfcmp!
2345 if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2346 switch (Lex.getKind()) {
2347 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2348 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2349 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2350 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2351 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2352 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2353 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2354 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2355 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2356 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2357 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2358 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2359 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2360 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2361 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2362 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2363 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2364 }
2365 } else {
2366 switch (Lex.getKind()) {
2367 default: TokError("expected icmp predicate (e.g. 'eq')");
2368 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2369 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2370 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2371 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2372 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2373 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2374 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2375 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2376 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2377 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2378 }
2379 }
2380 Lex.Lex();
2381 return false;
2382}
2383
2384//===----------------------------------------------------------------------===//
2385// Terminator Instructions.
2386//===----------------------------------------------------------------------===//
2387
2388/// ParseRet - Parse a return instruction.
2389/// ::= 'ret' void
2390/// ::= 'ret' TypeAndValue
2391/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2392bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2393 PerFunctionState &PFS) {
2394 PATypeHolder Ty(Type::VoidTy);
2395 if (ParseType(Ty)) return true;
2396
2397 if (Ty == Type::VoidTy) {
2398 Inst = ReturnInst::Create();
2399 return false;
2400 }
2401
2402 Value *RV;
2403 if (ParseValue(Ty, RV, PFS)) return true;
2404
2405 // The normal case is one return value.
2406 if (Lex.getKind() == lltok::comma) {
2407 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2408 // of 'ret {i32,i32} {i32 1, i32 2}'
2409 SmallVector<Value*, 8> RVs;
2410 RVs.push_back(RV);
2411
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002412 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00002413 if (ParseTypeAndValue(RV, PFS)) return true;
2414 RVs.push_back(RV);
2415 }
2416
2417 RV = UndefValue::get(PFS.getFunction().getReturnType());
2418 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2419 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2420 BB->getInstList().push_back(I);
2421 RV = I;
2422 }
2423 }
2424 Inst = ReturnInst::Create(RV);
2425 return false;
2426}
2427
2428
2429/// ParseBr
2430/// ::= 'br' TypeAndValue
2431/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2432bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2433 LocTy Loc, Loc2;
2434 Value *Op0, *Op1, *Op2;
2435 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2436
2437 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2438 Inst = BranchInst::Create(BB);
2439 return false;
2440 }
2441
2442 if (Op0->getType() != Type::Int1Ty)
2443 return Error(Loc, "branch condition must have 'i1' type");
2444
2445 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2446 ParseTypeAndValue(Op1, Loc, PFS) ||
2447 ParseToken(lltok::comma, "expected ',' after true destination") ||
2448 ParseTypeAndValue(Op2, Loc2, PFS))
2449 return true;
2450
2451 if (!isa<BasicBlock>(Op1))
2452 return Error(Loc, "true destination of branch must be a basic block");
Chris Lattnerdf986172009-01-02 07:01:27 +00002453 if (!isa<BasicBlock>(Op2))
2454 return Error(Loc2, "true destination of branch must be a basic block");
2455
2456 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2457 return false;
2458}
2459
2460/// ParseSwitch
2461/// Instruction
2462/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2463/// JumpTable
2464/// ::= (TypeAndValue ',' TypeAndValue)*
2465bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2466 LocTy CondLoc, BBLoc;
2467 Value *Cond, *DefaultBB;
2468 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2469 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2470 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2471 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2472 return true;
2473
2474 if (!isa<IntegerType>(Cond->getType()))
2475 return Error(CondLoc, "switch condition must have integer type");
2476 if (!isa<BasicBlock>(DefaultBB))
2477 return Error(BBLoc, "default destination must be a basic block");
2478
2479 // Parse the jump table pairs.
2480 SmallPtrSet<Value*, 32> SeenCases;
2481 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2482 while (Lex.getKind() != lltok::rsquare) {
2483 Value *Constant, *DestBB;
2484
2485 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2486 ParseToken(lltok::comma, "expected ',' after case value") ||
2487 ParseTypeAndValue(DestBB, BBLoc, PFS))
2488 return true;
2489
2490 if (!SeenCases.insert(Constant))
2491 return Error(CondLoc, "duplicate case value in switch");
2492 if (!isa<ConstantInt>(Constant))
2493 return Error(CondLoc, "case value is not a constant integer");
2494 if (!isa<BasicBlock>(DestBB))
2495 return Error(BBLoc, "case destination is not a basic block");
2496
2497 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2498 cast<BasicBlock>(DestBB)));
2499 }
2500
2501 Lex.Lex(); // Eat the ']'.
2502
2503 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2504 Table.size());
2505 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2506 SI->addCase(Table[i].first, Table[i].second);
2507 Inst = SI;
2508 return false;
2509}
2510
2511/// ParseInvoke
2512/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2513/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2514bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2515 LocTy CallLoc = Lex.getLoc();
2516 unsigned CC, RetAttrs, FnAttrs;
2517 PATypeHolder RetType(Type::VoidTy);
2518 LocTy RetTypeLoc;
2519 ValID CalleeID;
2520 SmallVector<ParamInfo, 16> ArgList;
2521
2522 Value *NormalBB, *UnwindBB;
2523 if (ParseOptionalCallingConv(CC) ||
2524 ParseOptionalAttrs(RetAttrs, 1) ||
2525 ParseType(RetType, RetTypeLoc) ||
2526 ParseValID(CalleeID) ||
2527 ParseParameterList(ArgList, PFS) ||
2528 ParseOptionalAttrs(FnAttrs, 2) ||
2529 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2530 ParseTypeAndValue(NormalBB, PFS) ||
2531 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2532 ParseTypeAndValue(UnwindBB, PFS))
2533 return true;
2534
2535 if (!isa<BasicBlock>(NormalBB))
2536 return Error(CallLoc, "normal destination is not a basic block");
2537 if (!isa<BasicBlock>(UnwindBB))
2538 return Error(CallLoc, "unwind destination is not a basic block");
2539
2540 // If RetType is a non-function pointer type, then this is the short syntax
2541 // for the call, which means that RetType is just the return type. Infer the
2542 // rest of the function argument types from the arguments that are present.
2543 const PointerType *PFTy = 0;
2544 const FunctionType *Ty = 0;
2545 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2546 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2547 // Pull out the types of all of the arguments...
2548 std::vector<const Type*> ParamTypes;
2549 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2550 ParamTypes.push_back(ArgList[i].V->getType());
2551
2552 if (!FunctionType::isValidReturnType(RetType))
2553 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2554
2555 Ty = FunctionType::get(RetType, ParamTypes, false);
2556 PFTy = PointerType::getUnqual(Ty);
2557 }
2558
2559 // Look up the callee.
2560 Value *Callee;
2561 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2562
2563 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2564 // function attributes.
2565 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2566 if (FnAttrs & ObsoleteFuncAttrs) {
2567 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2568 FnAttrs &= ~ObsoleteFuncAttrs;
2569 }
2570
2571 // Set up the Attributes for the function.
2572 SmallVector<AttributeWithIndex, 8> Attrs;
2573 if (RetAttrs != Attribute::None)
2574 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2575
2576 SmallVector<Value*, 8> Args;
2577
2578 // Loop through FunctionType's arguments and ensure they are specified
2579 // correctly. Also, gather any parameter attributes.
2580 FunctionType::param_iterator I = Ty->param_begin();
2581 FunctionType::param_iterator E = Ty->param_end();
2582 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2583 const Type *ExpectedTy = 0;
2584 if (I != E) {
2585 ExpectedTy = *I++;
2586 } else if (!Ty->isVarArg()) {
2587 return Error(ArgList[i].Loc, "too many arguments specified");
2588 }
2589
2590 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2591 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2592 ExpectedTy->getDescription() + "'");
2593 Args.push_back(ArgList[i].V);
2594 if (ArgList[i].Attrs != Attribute::None)
2595 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2596 }
2597
2598 if (I != E)
2599 return Error(CallLoc, "not enough parameters specified for call");
2600
2601 if (FnAttrs != Attribute::None)
2602 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2603
2604 // Finish off the Attributes and check them
2605 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2606
2607 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2608 cast<BasicBlock>(UnwindBB),
2609 Args.begin(), Args.end());
2610 II->setCallingConv(CC);
2611 II->setAttributes(PAL);
2612 Inst = II;
2613 return false;
2614}
2615
2616
2617
2618//===----------------------------------------------------------------------===//
2619// Binary Operators.
2620//===----------------------------------------------------------------------===//
2621
2622/// ParseArithmetic
Chris Lattnere914b592009-01-05 08:24:46 +00002623/// ::= ArithmeticOps TypeAndValue ',' Value
2624///
2625/// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
2626/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
Chris Lattnerdf986172009-01-02 07:01:27 +00002627bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
Chris Lattnere914b592009-01-05 08:24:46 +00002628 unsigned Opc, unsigned OperandType) {
Chris Lattnerdf986172009-01-02 07:01:27 +00002629 LocTy Loc; Value *LHS, *RHS;
2630 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2631 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2632 ParseValue(LHS->getType(), RHS, PFS))
2633 return true;
2634
Chris Lattnere914b592009-01-05 08:24:46 +00002635 bool Valid;
2636 switch (OperandType) {
2637 default: assert(0 && "Unknown operand type!");
2638 case 0: // int or FP.
2639 Valid = LHS->getType()->isIntOrIntVector() ||
2640 LHS->getType()->isFPOrFPVector();
2641 break;
2642 case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2643 case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2644 }
2645
2646 if (!Valid)
2647 return Error(Loc, "invalid operand type for instruction");
Chris Lattnerdf986172009-01-02 07:01:27 +00002648
2649 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2650 return false;
2651}
2652
2653/// ParseLogical
2654/// ::= ArithmeticOps TypeAndValue ',' Value {
2655bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2656 unsigned Opc) {
2657 LocTy Loc; Value *LHS, *RHS;
2658 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2659 ParseToken(lltok::comma, "expected ',' in logical operation") ||
2660 ParseValue(LHS->getType(), RHS, PFS))
2661 return true;
2662
2663 if (!LHS->getType()->isIntOrIntVector())
2664 return Error(Loc,"instruction requires integer or integer vector operands");
2665
2666 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2667 return false;
2668}
2669
2670
2671/// ParseCompare
2672/// ::= 'icmp' IPredicates TypeAndValue ',' Value
2673/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
2674/// ::= 'vicmp' IPredicates TypeAndValue ',' Value
2675/// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2676bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2677 unsigned Opc) {
2678 // Parse the integer/fp comparison predicate.
2679 LocTy Loc;
2680 unsigned Pred;
2681 Value *LHS, *RHS;
2682 if (ParseCmpPredicate(Pred, Opc) ||
2683 ParseTypeAndValue(LHS, Loc, PFS) ||
2684 ParseToken(lltok::comma, "expected ',' after compare value") ||
2685 ParseValue(LHS->getType(), RHS, PFS))
2686 return true;
2687
2688 if (Opc == Instruction::FCmp) {
2689 if (!LHS->getType()->isFPOrFPVector())
2690 return Error(Loc, "fcmp requires floating point operands");
2691 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2692 } else if (Opc == Instruction::ICmp) {
2693 if (!LHS->getType()->isIntOrIntVector() &&
2694 !isa<PointerType>(LHS->getType()))
2695 return Error(Loc, "icmp requires integer operands");
2696 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2697 } else if (Opc == Instruction::VFCmp) {
Chris Lattner4a1c4a42009-01-05 08:09:48 +00002698 if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2699 return Error(Loc, "vfcmp requires vector floating point operands");
Chris Lattnerdf986172009-01-02 07:01:27 +00002700 Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2701 } else if (Opc == Instruction::VICmp) {
Chris Lattner4a1c4a42009-01-05 08:09:48 +00002702 if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2703 return Error(Loc, "vicmp requires vector floating point operands");
Chris Lattnerdf986172009-01-02 07:01:27 +00002704 Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2705 }
2706 return false;
2707}
2708
2709//===----------------------------------------------------------------------===//
2710// Other Instructions.
2711//===----------------------------------------------------------------------===//
2712
2713
2714/// ParseCast
2715/// ::= CastOpc TypeAndValue 'to' Type
2716bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2717 unsigned Opc) {
2718 LocTy Loc; Value *Op;
2719 PATypeHolder DestTy(Type::VoidTy);
2720 if (ParseTypeAndValue(Op, Loc, PFS) ||
2721 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2722 ParseType(DestTy))
2723 return true;
2724
2725 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy))
2726 return Error(Loc, "invalid cast opcode for cast from '" +
2727 Op->getType()->getDescription() + "' to '" +
2728 DestTy->getDescription() + "'");
2729 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2730 return false;
2731}
2732
2733/// ParseSelect
2734/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2735bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2736 LocTy Loc;
2737 Value *Op0, *Op1, *Op2;
2738 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2739 ParseToken(lltok::comma, "expected ',' after select condition") ||
2740 ParseTypeAndValue(Op1, PFS) ||
2741 ParseToken(lltok::comma, "expected ',' after select value") ||
2742 ParseTypeAndValue(Op2, PFS))
2743 return true;
2744
2745 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2746 return Error(Loc, Reason);
2747
2748 Inst = SelectInst::Create(Op0, Op1, Op2);
2749 return false;
2750}
2751
Chris Lattner0088a5c2009-01-05 08:18:44 +00002752/// ParseVA_Arg
2753/// ::= 'va_arg' TypeAndValue ',' Type
2754bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
Chris Lattnerdf986172009-01-02 07:01:27 +00002755 Value *Op;
2756 PATypeHolder EltTy(Type::VoidTy);
Chris Lattner0088a5c2009-01-05 08:18:44 +00002757 LocTy TypeLoc;
Chris Lattnerdf986172009-01-02 07:01:27 +00002758 if (ParseTypeAndValue(Op, PFS) ||
2759 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
Chris Lattner0088a5c2009-01-05 08:18:44 +00002760 ParseType(EltTy, TypeLoc))
Chris Lattnerdf986172009-01-02 07:01:27 +00002761 return true;
Chris Lattner0088a5c2009-01-05 08:18:44 +00002762
2763 if (!EltTy->isFirstClassType())
2764 return Error(TypeLoc, "va_arg requires operand with first class type");
Chris Lattnerdf986172009-01-02 07:01:27 +00002765
2766 Inst = new VAArgInst(Op, EltTy);
2767 return false;
2768}
2769
2770/// ParseExtractElement
2771/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
2772bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2773 LocTy Loc;
2774 Value *Op0, *Op1;
2775 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2776 ParseToken(lltok::comma, "expected ',' after extract value") ||
2777 ParseTypeAndValue(Op1, PFS))
2778 return true;
2779
2780 if (!ExtractElementInst::isValidOperands(Op0, Op1))
2781 return Error(Loc, "invalid extractelement operands");
2782
2783 Inst = new ExtractElementInst(Op0, Op1);
2784 return false;
2785}
2786
2787/// ParseInsertElement
2788/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2789bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2790 LocTy Loc;
2791 Value *Op0, *Op1, *Op2;
2792 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2793 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2794 ParseTypeAndValue(Op1, PFS) ||
2795 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2796 ParseTypeAndValue(Op2, PFS))
2797 return true;
2798
2799 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2800 return Error(Loc, "invalid extractelement operands");
2801
2802 Inst = InsertElementInst::Create(Op0, Op1, Op2);
2803 return false;
2804}
2805
2806/// ParseShuffleVector
2807/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2808bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2809 LocTy Loc;
2810 Value *Op0, *Op1, *Op2;
2811 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2812 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2813 ParseTypeAndValue(Op1, PFS) ||
2814 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2815 ParseTypeAndValue(Op2, PFS))
2816 return true;
2817
2818 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2819 return Error(Loc, "invalid extractelement operands");
2820
2821 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2822 return false;
2823}
2824
2825/// ParsePHI
2826/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2827bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2828 PATypeHolder Ty(Type::VoidTy);
2829 Value *Op0, *Op1;
2830 LocTy TypeLoc = Lex.getLoc();
2831
2832 if (ParseType(Ty) ||
2833 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2834 ParseValue(Ty, Op0, PFS) ||
2835 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2836 ParseValue(Type::LabelTy, Op1, PFS) ||
2837 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2838 return true;
2839
2840 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2841 while (1) {
2842 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2843
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002844 if (!EatIfPresent(lltok::comma))
Chris Lattnerdf986172009-01-02 07:01:27 +00002845 break;
2846
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002847 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
Chris Lattnerdf986172009-01-02 07:01:27 +00002848 ParseValue(Ty, Op0, PFS) ||
2849 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2850 ParseValue(Type::LabelTy, Op1, PFS) ||
2851 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2852 return true;
2853 }
2854
2855 if (!Ty->isFirstClassType())
2856 return Error(TypeLoc, "phi node must have first class type");
2857
2858 PHINode *PN = PHINode::Create(Ty);
2859 PN->reserveOperandSpace(PHIVals.size());
2860 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2861 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2862 Inst = PN;
2863 return false;
2864}
2865
2866/// ParseCall
2867/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2868/// ParameterList OptionalAttrs
2869bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2870 bool isTail) {
2871 unsigned CC, RetAttrs, FnAttrs;
2872 PATypeHolder RetType(Type::VoidTy);
2873 LocTy RetTypeLoc;
2874 ValID CalleeID;
2875 SmallVector<ParamInfo, 16> ArgList;
2876 LocTy CallLoc = Lex.getLoc();
2877
2878 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
2879 ParseOptionalCallingConv(CC) ||
2880 ParseOptionalAttrs(RetAttrs, 1) ||
2881 ParseType(RetType, RetTypeLoc) ||
2882 ParseValID(CalleeID) ||
2883 ParseParameterList(ArgList, PFS) ||
2884 ParseOptionalAttrs(FnAttrs, 2))
2885 return true;
2886
2887 // If RetType is a non-function pointer type, then this is the short syntax
2888 // for the call, which means that RetType is just the return type. Infer the
2889 // rest of the function argument types from the arguments that are present.
2890 const PointerType *PFTy = 0;
2891 const FunctionType *Ty = 0;
2892 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2893 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2894 // Pull out the types of all of the arguments...
2895 std::vector<const Type*> ParamTypes;
2896 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2897 ParamTypes.push_back(ArgList[i].V->getType());
2898
2899 if (!FunctionType::isValidReturnType(RetType))
2900 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2901
2902 Ty = FunctionType::get(RetType, ParamTypes, false);
2903 PFTy = PointerType::getUnqual(Ty);
2904 }
2905
2906 // Look up the callee.
2907 Value *Callee;
2908 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2909
2910 // Check for call to invalid intrinsic to avoid crashing later.
2911 if (Function *F = dyn_cast<Function>(Callee)) {
2912 if (F->hasName() && F->getNameLen() >= 5 &&
2913 !strncmp(F->getValueName()->getKeyData(), "llvm.", 5) &&
2914 !F->getIntrinsicID(true))
2915 return Error(CallLoc, "Call to invalid LLVM intrinsic function '" +
2916 F->getNameStr() + "'");
2917 }
2918
2919 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2920 // function attributes.
2921 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2922 if (FnAttrs & ObsoleteFuncAttrs) {
2923 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2924 FnAttrs &= ~ObsoleteFuncAttrs;
2925 }
2926
2927 // Set up the Attributes for the function.
2928 SmallVector<AttributeWithIndex, 8> Attrs;
2929 if (RetAttrs != Attribute::None)
2930 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2931
2932 SmallVector<Value*, 8> Args;
2933
2934 // Loop through FunctionType's arguments and ensure they are specified
2935 // correctly. Also, gather any parameter attributes.
2936 FunctionType::param_iterator I = Ty->param_begin();
2937 FunctionType::param_iterator E = Ty->param_end();
2938 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2939 const Type *ExpectedTy = 0;
2940 if (I != E) {
2941 ExpectedTy = *I++;
2942 } else if (!Ty->isVarArg()) {
2943 return Error(ArgList[i].Loc, "too many arguments specified");
2944 }
2945
2946 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2947 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2948 ExpectedTy->getDescription() + "'");
2949 Args.push_back(ArgList[i].V);
2950 if (ArgList[i].Attrs != Attribute::None)
2951 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2952 }
2953
2954 if (I != E)
2955 return Error(CallLoc, "not enough parameters specified for call");
2956
2957 if (FnAttrs != Attribute::None)
2958 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2959
2960 // Finish off the Attributes and check them
2961 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2962
2963 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
2964 CI->setTailCall(isTail);
2965 CI->setCallingConv(CC);
2966 CI->setAttributes(PAL);
2967 Inst = CI;
2968 return false;
2969}
2970
2971//===----------------------------------------------------------------------===//
2972// Memory Instructions.
2973//===----------------------------------------------------------------------===//
2974
2975/// ParseAlloc
2976/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2977/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2978bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
2979 unsigned Opc) {
2980 PATypeHolder Ty(Type::VoidTy);
2981 Value *Size = 0;
2982 LocTy SizeLoc = 0;
2983 unsigned Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002984 if (ParseType(Ty)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002985
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002986 if (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00002987 if (Lex.getKind() == lltok::kw_align) {
2988 if (ParseOptionalAlignment(Alignment)) return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002989 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
2990 ParseOptionalCommaAlignment(Alignment)) {
2991 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002992 }
2993 }
2994
2995 if (Size && Size->getType() != Type::Int32Ty)
2996 return Error(SizeLoc, "element count must be i32");
2997
2998 if (Opc == Instruction::Malloc)
2999 Inst = new MallocInst(Ty, Size, Alignment);
3000 else
3001 Inst = new AllocaInst(Ty, Size, Alignment);
3002 return false;
3003}
3004
3005/// ParseFree
3006/// ::= 'free' TypeAndValue
3007bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3008 Value *Val; LocTy Loc;
3009 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3010 if (!isa<PointerType>(Val->getType()))
3011 return Error(Loc, "operand to free must be a pointer");
3012 Inst = new FreeInst(Val);
3013 return false;
3014}
3015
3016/// ParseLoad
3017/// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3018bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3019 bool isVolatile) {
3020 Value *Val; LocTy Loc;
3021 unsigned Alignment;
3022 if (ParseTypeAndValue(Val, Loc, PFS) ||
3023 ParseOptionalCommaAlignment(Alignment))
3024 return true;
3025
3026 if (!isa<PointerType>(Val->getType()) ||
3027 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3028 return Error(Loc, "load operand must be a pointer to a first class type");
3029
3030 Inst = new LoadInst(Val, "", isVolatile, Alignment);
3031 return false;
3032}
3033
3034/// ParseStore
3035/// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3036bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3037 bool isVolatile) {
3038 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3039 unsigned Alignment;
3040 if (ParseTypeAndValue(Val, Loc, PFS) ||
3041 ParseToken(lltok::comma, "expected ',' after store operand") ||
3042 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3043 ParseOptionalCommaAlignment(Alignment))
3044 return true;
3045
3046 if (!isa<PointerType>(Ptr->getType()))
3047 return Error(PtrLoc, "store operand must be a pointer");
3048 if (!Val->getType()->isFirstClassType())
3049 return Error(Loc, "store operand must be a first class value");
3050 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3051 return Error(Loc, "stored value and pointer type do not match");
3052
3053 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3054 return false;
3055}
3056
3057/// ParseGetResult
3058/// ::= 'getresult' TypeAndValue ',' uint
3059/// FIXME: Remove support for getresult in LLVM 3.0
3060bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3061 Value *Val; LocTy ValLoc, EltLoc;
3062 unsigned Element;
3063 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3064 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003065 ParseUInt32(Element, EltLoc))
Chris Lattnerdf986172009-01-02 07:01:27 +00003066 return true;
3067
3068 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3069 return Error(ValLoc, "getresult inst requires an aggregate operand");
3070 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3071 return Error(EltLoc, "invalid getresult index for value");
3072 Inst = ExtractValueInst::Create(Val, Element);
3073 return false;
3074}
3075
3076/// ParseGetElementPtr
3077/// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3078bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3079 Value *Ptr, *Val; LocTy Loc, EltLoc;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003080 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00003081
3082 if (!isa<PointerType>(Ptr->getType()))
3083 return Error(Loc, "base of getelementptr must be a pointer");
3084
3085 SmallVector<Value*, 16> Indices;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003086 while (EatIfPresent(lltok::comma)) {
3087 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00003088 if (!isa<IntegerType>(Val->getType()))
3089 return Error(EltLoc, "getelementptr index must be an integer");
3090 Indices.push_back(Val);
3091 }
3092
3093 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3094 Indices.begin(), Indices.end()))
3095 return Error(Loc, "invalid getelementptr indices");
3096 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3097 return false;
3098}
3099
3100/// ParseExtractValue
3101/// ::= 'extractvalue' TypeAndValue (',' uint32)+
3102bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3103 Value *Val; LocTy Loc;
3104 SmallVector<unsigned, 4> Indices;
3105 if (ParseTypeAndValue(Val, Loc, PFS) ||
3106 ParseIndexList(Indices))
3107 return true;
3108
3109 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3110 return Error(Loc, "extractvalue operand must be array or struct");
3111
3112 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3113 Indices.end()))
3114 return Error(Loc, "invalid indices for extractvalue");
3115 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3116 return false;
3117}
3118
3119/// ParseInsertValue
3120/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3121bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3122 Value *Val0, *Val1; LocTy Loc0, Loc1;
3123 SmallVector<unsigned, 4> Indices;
3124 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3125 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3126 ParseTypeAndValue(Val1, Loc1, PFS) ||
3127 ParseIndexList(Indices))
3128 return true;
3129
3130 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3131 return Error(Loc0, "extractvalue operand must be array or struct");
3132
3133 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3134 Indices.end()))
3135 return Error(Loc0, "invalid indices for insertvalue");
3136 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3137 return false;
3138}