blob: b0b9bac8f755722fcd4c9273c6aacb9cc8975f88 [file] [log] [blame]
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/IntrinsicInst.h"
Duncan Sands82fdab32010-12-21 14:00:22 +000017#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd12c27c2010-01-05 06:09:35 +000018#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
Chris Lattner1add46d2011-05-22 18:18:41 +000022
23/// simplifyValueKnownNonZero - The specific integer value is used in a context
24/// where it is known to be non-zero. If this allows us to simplify the
25/// computation, do so and return the new operand, otherwise return null.
26static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27 // If V has multiple uses, then we would have to do more analysis to determine
28 // if this is safe. For example, the use could be in dynamically unreached
29 // code.
30 if (!V->hasOneUse()) return 0;
31
Chris Lattner613f1a32011-05-23 00:32:19 +000032 bool MadeChange = false;
33
Chris Lattner1add46d2011-05-22 18:18:41 +000034 // ((1 << A) >>u B) --> (1 << (A-B))
35 // Because V cannot be zero, we know that B is less than A.
Chris Lattner6083bb92011-05-23 00:09:55 +000036 Value *A = 0, *B = 0, *PowerOf2 = 0;
37 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
Chris Lattner1add46d2011-05-22 18:18:41 +000038 m_Value(B))) &&
39 // The "1" can be any value known to be a power of 2.
Micah Villmow3574eca2012-10-08 16:38:25 +000040 isPowerOfTwo(PowerOf2, IC.getDataLayout())) {
Benjamin Kramera9390a42011-09-27 20:39:19 +000041 A = IC.Builder->CreateSub(A, B);
Chris Lattner6083bb92011-05-23 00:09:55 +000042 return IC.Builder->CreateShl(PowerOf2, A);
Chris Lattner1add46d2011-05-22 18:18:41 +000043 }
44
Chris Lattner613f1a32011-05-23 00:32:19 +000045 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46 // inexact. Similarly for <<.
47 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
48 if (I->isLogicalShift() &&
Micah Villmow3574eca2012-10-08 16:38:25 +000049 isPowerOfTwo(I->getOperand(0), IC.getDataLayout())) {
Chris Lattner613f1a32011-05-23 00:32:19 +000050 // We know that this is an exact/nuw shift and that the input is a
51 // non-zero context as well.
52 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
53 I->setOperand(0, V2);
54 MadeChange = true;
55 }
56
57 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
58 I->setIsExact();
59 MadeChange = true;
60 }
61
62 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
63 I->setHasNoUnsignedWrap();
64 MadeChange = true;
65 }
66 }
67
Chris Lattner6c9b8d32011-05-22 18:26:48 +000068 // TODO: Lots more we could do here:
Chris Lattner6c9b8d32011-05-22 18:26:48 +000069 // If V is a phi node, we can call this on each of its operands.
70 // "select cond, X, 0" can simplify to "X".
71
Chris Lattner613f1a32011-05-23 00:32:19 +000072 return MadeChange ? V : 0;
Chris Lattner1add46d2011-05-22 18:18:41 +000073}
74
75
Chris Lattnerd12c27c2010-01-05 06:09:35 +000076/// MultiplyOverflows - True if the multiply can not be expressed in an int
77/// this size.
78static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
79 uint32_t W = C1->getBitWidth();
80 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
81 if (sign) {
Jay Foad40f8f622010-12-07 08:25:19 +000082 LHSExt = LHSExt.sext(W * 2);
83 RHSExt = RHSExt.sext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000084 } else {
Jay Foad40f8f622010-12-07 08:25:19 +000085 LHSExt = LHSExt.zext(W * 2);
86 RHSExt = RHSExt.zext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000087 }
88
89 APInt MulExt = LHSExt * RHSExt;
90
91 if (!sign)
92 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
93
94 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
95 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
96 return MulExt.slt(Min) || MulExt.sgt(Max);
97}
98
99Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000100 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000101 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
102
Duncan Sands82fdab32010-12-21 14:00:22 +0000103 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
104 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000105
Duncan Sands37bf92b2010-12-22 13:36:08 +0000106 if (Value *V = SimplifyUsingDistributiveLaws(I))
107 return ReplaceInstUsesWith(I, V);
108
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000109 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
110 return BinaryOperator::CreateNeg(Op0, I.getName());
111
112 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
113
114 // ((X << C1)*C2) == (X * (C2 << C1))
115 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
116 if (SI->getOpcode() == Instruction::Shl)
117 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
118 return BinaryOperator::CreateMul(SI->getOperand(0),
119 ConstantExpr::getShl(CI, ShOp));
120
121 const APInt &Val = CI->getValue();
122 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
123 Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
124 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
125 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
126 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
127 return Shl;
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000128 }
129
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000130 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
131 { Value *X; ConstantInt *C1;
132 if (Op0->hasOneUse() &&
133 match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
Benjamin Kramera9390a42011-09-27 20:39:19 +0000134 Value *Add = Builder->CreateMul(X, CI);
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000135 return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000136 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000137 }
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000138
Stuart Hastingsf1002822011-06-01 16:42:47 +0000139 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
140 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
141 // The "* (2**n)" thus becomes a potential shifting opportunity.
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000142 {
143 const APInt & Val = CI->getValue();
144 const APInt &PosVal = Val.abs();
145 if (Val.isNegative() && PosVal.isPowerOf2()) {
Stuart Hastingsf1002822011-06-01 16:42:47 +0000146 Value *X = 0, *Y = 0;
147 if (Op0->hasOneUse()) {
148 ConstantInt *C1;
149 Value *Sub = 0;
150 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
151 Sub = Builder->CreateSub(X, Y, "suba");
152 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
153 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
154 if (Sub)
155 return
156 BinaryOperator::CreateMul(Sub,
157 ConstantInt::get(Y->getType(), PosVal));
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000158 }
159 }
160 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000161 }
162
163 // Simplify mul instructions with a constant RHS.
164 if (isa<Constant>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000165 // Try to fold constant mul into select arguments.
166 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
167 if (Instruction *R = FoldOpIntoSelect(I, SI))
168 return R;
169
170 if (isa<PHINode>(Op0))
171 if (Instruction *NV = FoldOpIntoPhi(I))
172 return NV;
173 }
174
175 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
176 if (Value *Op1v = dyn_castNegVal(Op1))
177 return BinaryOperator::CreateMul(Op0v, Op1v);
178
179 // (X / Y) * Y = X - (X % Y)
180 // (X / Y) * -Y = (X % Y) - X
181 {
182 Value *Op1C = Op1;
183 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
184 if (!BO ||
185 (BO->getOpcode() != Instruction::UDiv &&
186 BO->getOpcode() != Instruction::SDiv)) {
187 Op1C = Op0;
188 BO = dyn_cast<BinaryOperator>(Op1);
189 }
190 Value *Neg = dyn_castNegVal(Op1C);
191 if (BO && BO->hasOneUse() &&
192 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
193 (BO->getOpcode() == Instruction::UDiv ||
194 BO->getOpcode() == Instruction::SDiv)) {
195 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
196
Chris Lattner35bda892011-02-06 21:44:57 +0000197 // If the division is exact, X % Y is zero, so we end up with X or -X.
198 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000199 if (SDiv->isExact()) {
200 if (Op1BO == Op1C)
201 return ReplaceInstUsesWith(I, Op0BO);
202 return BinaryOperator::CreateNeg(Op0BO);
203 }
204
205 Value *Rem;
206 if (BO->getOpcode() == Instruction::UDiv)
207 Rem = Builder->CreateURem(Op0BO, Op1BO);
208 else
209 Rem = Builder->CreateSRem(Op0BO, Op1BO);
210 Rem->takeName(BO);
211
212 if (Op1BO == Op1C)
213 return BinaryOperator::CreateSub(Op0BO, Rem);
214 return BinaryOperator::CreateSub(Rem, Op0BO);
215 }
216 }
217
218 /// i1 mul -> i1 and.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000219 if (I.getType()->isIntegerTy(1))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000220 return BinaryOperator::CreateAnd(Op0, Op1);
221
222 // X*(1 << Y) --> X << Y
223 // (1 << Y)*X --> X << Y
224 {
225 Value *Y;
226 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
227 return BinaryOperator::CreateShl(Op1, Y);
228 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
229 return BinaryOperator::CreateShl(Op0, Y);
230 }
231
232 // If one of the operands of the multiply is a cast from a boolean value, then
233 // we know the bool is either zero or one, so this is a 'masking' multiply.
234 // X * Y (where Y is 0 or 1) -> X & (0-Y)
Duncan Sands1df98592010-02-16 11:11:14 +0000235 if (!I.getType()->isVectorTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000236 // -2 is "-1 << 1" so it is all bits set except the low one.
237 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
238
239 Value *BoolCast = 0, *OtherOp = 0;
240 if (MaskedValueIsZero(Op0, Negative2))
241 BoolCast = Op0, OtherOp = Op1;
242 else if (MaskedValueIsZero(Op1, Negative2))
243 BoolCast = Op1, OtherOp = Op0;
244
245 if (BoolCast) {
246 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
Benjamin Kramera9390a42011-09-27 20:39:19 +0000247 BoolCast);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000248 return BinaryOperator::CreateAnd(V, OtherOp);
249 }
250 }
251
252 return Changed ? &I : 0;
253}
254
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000255//
256// Detect pattern:
257//
258// log2(Y*0.5)
259//
260// And check for corresponding fast math flags
261//
262
263static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
264 if (Op->hasOneUse()) {
265 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op)) {
266 if (II->getIntrinsicID() == Intrinsic::log2 &&
267 II->hasUnsafeAlgebra()) {
268 Log2 = II;
269 Value *OpLog2Of = II->getArgOperand(0);
270 if (OpLog2Of->hasOneUse()) {
271 if (Instruction *I = dyn_cast<Instruction>(OpLog2Of)) {
272 if (I->getOpcode() == Instruction::FMul &&
273 I->hasUnsafeAlgebra()) {
274 ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
275 if (CFP && CFP->isExactlyValue(0.5)) {
276 Y = I->getOperand(1);
277 } else {
278 CFP = dyn_cast<ConstantFP>(I->getOperand(1));
279 if (CFP && CFP->isExactlyValue(0.5)) {
280 Y = I->getOperand(0);
281 }
282 }
283 }
284 }
285 }
286 }
287 }
288 }
289}
290
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000291Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000292 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000293 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
294
Chris Lattner7302d802012-02-06 21:56:39 +0000295 // Simplify mul instructions with a constant RHS.
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000296 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
297 if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
298 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
299 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
300 if (Op1F->isExactlyValue(1.0))
Dan Gohmana9445e12010-03-02 01:11:08 +0000301 return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
Chris Lattner7302d802012-02-06 21:56:39 +0000302 } else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) {
303 // As above, vector X*splat(1.0) -> X in all defined cases.
304 if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
305 if (F->isExactlyValue(1.0))
306 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000307 }
308
309 // Try to fold constant mul into select arguments.
310 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
311 if (Instruction *R = FoldOpIntoSelect(I, SI))
312 return R;
313
314 if (isa<PHINode>(Op0))
315 if (Instruction *NV = FoldOpIntoPhi(I))
316 return NV;
317 }
318
319 if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
320 if (Value *Op1v = dyn_castFNegVal(Op1))
321 return BinaryOperator::CreateFMul(Op0v, Op1v);
322
Pedro Artigas84030dc2012-11-30 19:09:41 +0000323 // Under unsafe algebra do:
324 // X * log2(0.5*Y) = X*log2(Y) - X
325 if (I.hasUnsafeAlgebra()) {
326 Value *OpX = NULL;
327 Value *OpY = NULL;
328 IntrinsicInst *Log2;
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000329 detectLog2OfHalf(Op0, OpY, Log2);
330 if (OpY) {
331 OpX = Op1;
332 } else {
333 detectLog2OfHalf(Op1, OpY, Log2);
334 if (OpY) {
335 OpX = Op0;
Pedro Artigas84030dc2012-11-30 19:09:41 +0000336 }
337 }
338 // if pattern detected emit alternate sequence
339 if (OpX && OpY) {
340 Log2->setArgOperand(0, OpY);
341 Value *FMulVal = Builder->CreateFMul(OpX, Log2);
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000342 Instruction *FMul = cast<Instruction>(FMulVal);
Pedro Artigas84030dc2012-11-30 19:09:41 +0000343 FMul->copyFastMathFlags(Log2);
344 Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX);
345 FSub->copyFastMathFlags(Log2);
346 return FSub;
347 }
348 }
349
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000350 return Changed ? &I : 0;
351}
352
353/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
354/// instruction.
355bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
356 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
357
358 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
359 int NonNullOperand = -1;
360 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
361 if (ST->isNullValue())
362 NonNullOperand = 2;
363 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
364 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
365 if (ST->isNullValue())
366 NonNullOperand = 1;
367
368 if (NonNullOperand == -1)
369 return false;
370
371 Value *SelectCond = SI->getOperand(0);
372
373 // Change the div/rem to use 'Y' instead of the select.
374 I.setOperand(1, SI->getOperand(NonNullOperand));
375
376 // Okay, we know we replace the operand of the div/rem with 'Y' with no
377 // problem. However, the select, or the condition of the select may have
378 // multiple uses. Based on our knowledge that the operand must be non-zero,
379 // propagate the known value for the select into other uses of it, and
380 // propagate a known value of the condition into its other users.
381
382 // If the select and condition only have a single use, don't bother with this,
383 // early exit.
384 if (SI->use_empty() && SelectCond->hasOneUse())
385 return true;
386
387 // Scan the current block backward, looking for other uses of SI.
388 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
389
390 while (BBI != BBFront) {
391 --BBI;
392 // If we found a call to a function, we can't assume it will return, so
393 // information from below it cannot be propagated above it.
394 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
395 break;
396
397 // Replace uses of the select or its condition with the known values.
398 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
399 I != E; ++I) {
400 if (*I == SI) {
401 *I = SI->getOperand(NonNullOperand);
402 Worklist.Add(BBI);
403 } else if (*I == SelectCond) {
404 *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
405 ConstantInt::getFalse(BBI->getContext());
406 Worklist.Add(BBI);
407 }
408 }
409
410 // If we past the instruction, quit looking for it.
411 if (&*BBI == SI)
412 SI = 0;
413 if (&*BBI == SelectCond)
414 SelectCond = 0;
415
416 // If we ran out of things to eliminate, break out of the loop.
417 if (SelectCond == 0 && SI == 0)
418 break;
419
420 }
421 return true;
422}
423
424
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000425/// This function implements the transforms common to both integer division
426/// instructions (udiv and sdiv). It is called by the visitors to those integer
427/// division instructions.
428/// @brief Common integer divide transforms
429Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
430 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
431
Chris Lattner1add46d2011-05-22 18:18:41 +0000432 // The RHS is known non-zero.
433 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
434 I.setOperand(1, V);
435 return &I;
436 }
437
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000438 // Handle cases involving: [su]div X, (select Cond, Y, Z)
439 // This does not apply for fdiv.
440 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
441 return &I;
442
443 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000444 // (X / C1) / C2 -> X / (C1*C2)
445 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
446 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
447 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
448 if (MultiplyOverflows(RHS, LHSRHS,
449 I.getOpcode()==Instruction::SDiv))
450 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000451 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
452 ConstantExpr::getMul(RHS, LHSRHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000453 }
454
455 if (!RHS->isZero()) { // avoid X udiv 0
456 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
457 if (Instruction *R = FoldOpIntoSelect(I, SI))
458 return R;
459 if (isa<PHINode>(Op0))
460 if (Instruction *NV = FoldOpIntoPhi(I))
461 return NV;
462 }
463 }
464
Benjamin Kramer23b02cd2011-04-30 18:16:00 +0000465 // See if we can fold away this div instruction.
466 if (SimplifyDemandedInstructionBits(I))
467 return &I;
468
Duncan Sands593faa52011-01-28 16:51:11 +0000469 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
470 Value *X = 0, *Z = 0;
471 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
472 bool isSigned = I.getOpcode() == Instruction::SDiv;
473 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
474 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
475 return BinaryOperator::Create(I.getOpcode(), X, Op1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000476 }
477
478 return 0;
479}
480
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000481/// dyn_castZExtVal - Checks if V is a zext or constant that can
482/// be truncated to Ty without losing bits.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000483static Value *dyn_castZExtVal(Value *V, Type *Ty) {
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000484 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
485 if (Z->getSrcTy() == Ty)
486 return Z->getOperand(0);
487 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
488 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
489 return ConstantExpr::getTrunc(C, Ty);
490 }
491 return 0;
492}
493
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000494Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
495 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
496
Duncan Sands593faa52011-01-28 16:51:11 +0000497 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
498 return ReplaceInstUsesWith(I, V);
499
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000500 // Handle the integer div common cases
501 if (Instruction *Common = commonIDivTransforms(I))
502 return Common;
Pete Coopera29fc802011-11-07 23:04:49 +0000503
504 {
Owen Anderson5b396202010-01-17 06:49:03 +0000505 // X udiv 2^C -> X >> C
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000506 // Check to see if this is an unsigned division with an exact power of 2,
507 // if so, convert to a right shift.
Pete Coopera29fc802011-11-07 23:04:49 +0000508 const APInt *C;
509 if (match(Op1, m_Power2(C))) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000510 BinaryOperator *LShr =
Pete Coopera29fc802011-11-07 23:04:49 +0000511 BinaryOperator::CreateLShr(Op0,
512 ConstantInt::get(Op0->getType(),
513 C->logBase2()));
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000514 if (I.isExact()) LShr->setIsExact();
515 return LShr;
516 }
Pete Coopera29fc802011-11-07 23:04:49 +0000517 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000518
Pete Coopera29fc802011-11-07 23:04:49 +0000519 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000520 // X udiv C, where C >= signbit
521 if (C->getValue().isNegative()) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000522 Value *IC = Builder->CreateICmpULT(Op0, C);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000523 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
524 ConstantInt::get(I.getType(), 1));
525 }
526 }
527
Benjamin Kramerc81fe9c2012-08-30 15:07:40 +0000528 // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
Nadav Rotema694e2a2012-08-28 12:23:22 +0000529 if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
Benjamin Krameraac7c652012-08-28 13:08:13 +0000530 Value *X;
531 ConstantInt *C1;
532 if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
Benjamin Kramer37dca632012-08-28 13:59:23 +0000533 APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
Benjamin Krameraac7c652012-08-28 13:08:13 +0000534 return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
Nadav Rotem9753f0b2012-08-28 10:01:43 +0000535 }
536 }
537
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000538 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000539 { const APInt *CI; Value *N;
Evan Cheng2a5422b2012-06-21 22:52:49 +0000540 if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
541 match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000542 if (*CI != 1)
Benjamin Kramere5bd3cf2012-09-21 16:26:41 +0000543 N = Builder->CreateAdd(N,
544 ConstantInt::get(N->getType(), CI->logBase2()));
Evan Cheng2a5422b2012-06-21 22:52:49 +0000545 if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
546 N = Builder->CreateZExt(N, Z->getDestTy());
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000547 if (I.isExact())
548 return BinaryOperator::CreateExactLShr(Op0, N);
549 return BinaryOperator::CreateLShr(Op0, N);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000550 }
551 }
552
553 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
554 // where C1&C2 are powers of two.
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000555 { Value *Cond; const APInt *C1, *C2;
556 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
557 // Construct the "on true" case of the select
558 Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
559 I.isExact());
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000560
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000561 // Construct the "on false" case of the select
562 Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
563 I.isExact());
564
565 // construct the select instruction and return it.
566 return SelectInst::Create(Cond, TSI, FSI);
567 }
568 }
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000569
570 // (zext A) udiv (zext B) --> zext (A udiv B)
571 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
572 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
573 return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
574 I.isExact()),
575 I.getType());
576
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000577 return 0;
578}
579
580Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
581 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
582
Duncan Sands593faa52011-01-28 16:51:11 +0000583 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
584 return ReplaceInstUsesWith(I, V);
585
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000586 // Handle the integer div common cases
587 if (Instruction *Common = commonIDivTransforms(I))
588 return Common;
589
590 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
591 // sdiv X, -1 == -X
592 if (RHS->isAllOnesValue())
593 return BinaryOperator::CreateNeg(Op0);
594
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000595 // sdiv X, C --> ashr exact X, log2(C)
596 if (I.isExact() && RHS->getValue().isNonNegative() &&
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000597 RHS->getValue().isPowerOf2()) {
598 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
599 RHS->getValue().exactLogBase2());
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000600 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000601 }
602
603 // -X/C --> X/-C provided the negation doesn't overflow.
604 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000605 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000606 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
607 ConstantExpr::getNeg(RHS));
608 }
609
610 // If the sign bits of both operands are zero (i.e. we can prove they are
611 // unsigned inputs), turn this into a udiv.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000612 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000613 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
614 if (MaskedValueIsZero(Op0, Mask)) {
615 if (MaskedValueIsZero(Op1, Mask)) {
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000616 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000617 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
618 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000619
620 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000621 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
622 // Safe because the only negative value (1 << Y) can take on is
623 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
624 // the sign bit set.
625 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
626 }
627 }
628 }
629
630 return 0;
631}
632
Frits van Bommel31726c12011-01-29 17:50:27 +0000633Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
634 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
635
636 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
637 return ReplaceInstUsesWith(I, V);
638
Benjamin Kramer54673962011-03-30 15:42:35 +0000639 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
640 const APFloat &Op1F = Op1C->getValueAPF();
641
642 // If the divisor has an exact multiplicative inverse we can turn the fdiv
643 // into a cheaper fmul.
644 APFloat Reciprocal(Op1F.getSemantics());
645 if (Op1F.getExactInverse(&Reciprocal)) {
646 ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
647 return BinaryOperator::CreateFMul(Op0, RFP);
648 }
649 }
650
Frits van Bommel31726c12011-01-29 17:50:27 +0000651 return 0;
652}
653
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000654/// This function implements the transforms common to both integer remainder
655/// instructions (urem and srem). It is called by the visitors to those integer
656/// remainder instructions.
657/// @brief Common integer remainder transforms
658Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
659 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
660
Chris Lattner1add46d2011-05-22 18:18:41 +0000661 // The RHS is known non-zero.
662 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
663 I.setOperand(1, V);
664 return &I;
665 }
666
Duncan Sandsf24ed772011-05-02 16:27:02 +0000667 // Handle cases involving: rem X, (select Cond, Y, Z)
668 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
669 return &I;
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000670
Duncan Sands00676a62011-05-02 18:41:29 +0000671 if (isa<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000672 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
673 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
674 if (Instruction *R = FoldOpIntoSelect(I, SI))
675 return R;
676 } else if (isa<PHINode>(Op0I)) {
677 if (Instruction *NV = FoldOpIntoPhi(I))
678 return NV;
679 }
680
681 // See if we can fold away this rem instruction.
682 if (SimplifyDemandedInstructionBits(I))
683 return &I;
684 }
685 }
686
687 return 0;
688}
689
690Instruction *InstCombiner::visitURem(BinaryOperator &I) {
691 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
692
Duncan Sandsf24ed772011-05-02 16:27:02 +0000693 if (Value *V = SimplifyURemInst(Op0, Op1, TD))
694 return ReplaceInstUsesWith(I, V);
695
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000696 if (Instruction *common = commonIRemTransforms(I))
697 return common;
698
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000699 // X urem C^2 -> X and C-1
700 { const APInt *C;
701 if (match(Op1, m_Power2(C)))
702 return BinaryOperator::CreateAnd(Op0,
703 ConstantInt::get(I.getType(), *C-1));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000704 }
705
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000706 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
707 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
708 Constant *N1 = Constant::getAllOnesValue(I.getType());
Benjamin Kramera9390a42011-09-27 20:39:19 +0000709 Value *Add = Builder->CreateAdd(Op1, N1);
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000710 return BinaryOperator::CreateAnd(Op0, Add);
711 }
712
713 // urem X, (select Cond, 2^C1, 2^C2) -->
714 // select Cond, (and X, C1-1), (and X, C2-1)
715 // when C1&C2 are powers of two.
716 { Value *Cond; const APInt *C1, *C2;
717 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
718 Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
719 Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
720 return SelectInst::Create(Cond, TrueAnd, FalseAnd);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000721 }
722 }
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000723
724 // (zext A) urem (zext B) --> zext (A urem B)
725 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
726 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
727 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
728 I.getType());
729
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000730 return 0;
731}
732
733Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
734 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
735
Duncan Sandsf24ed772011-05-02 16:27:02 +0000736 if (Value *V = SimplifySRemInst(Op0, Op1, TD))
737 return ReplaceInstUsesWith(I, V);
738
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000739 // Handle the integer rem common cases
740 if (Instruction *Common = commonIRemTransforms(I))
741 return Common;
742
743 if (Value *RHSNeg = dyn_castNegVal(Op1))
744 if (!isa<Constant>(RHSNeg) ||
745 (isa<ConstantInt>(RHSNeg) &&
746 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
747 // X % -Y -> X % Y
748 Worklist.AddValue(I.getOperand(1));
749 I.setOperand(1, RHSNeg);
750 return &I;
751 }
752
753 // If the sign bits of both operands are zero (i.e. we can prove they are
754 // unsigned inputs), turn this into a urem.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000755 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000756 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
757 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000758 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000759 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
760 }
761 }
762
763 // If it's a constant vector, flip any negative values positive.
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000764 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
765 Constant *C = cast<Constant>(Op1);
766 unsigned VWidth = C->getType()->getVectorNumElements();
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000767
768 bool hasNegative = false;
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000769 bool hasMissing = false;
770 for (unsigned i = 0; i != VWidth; ++i) {
771 Constant *Elt = C->getAggregateElement(i);
772 if (Elt == 0) {
773 hasMissing = true;
774 break;
775 }
776
777 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000778 if (RHS->isNegative())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000779 hasNegative = true;
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000780 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000781
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000782 if (hasNegative && !hasMissing) {
Chris Lattner4ca829e2012-01-25 06:02:56 +0000783 SmallVector<Constant *, 16> Elts(VWidth);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000784 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7302d802012-02-06 21:56:39 +0000785 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000786 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000787 if (RHS->isNegative())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000788 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000789 }
790 }
791
792 Constant *NewRHSV = ConstantVector::get(Elts);
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000793 if (NewRHSV != C) { // Don't loop on -MININT
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000794 Worklist.AddValue(I.getOperand(1));
795 I.setOperand(1, NewRHSV);
796 return &I;
797 }
798 }
799 }
800
801 return 0;
802}
803
804Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Duncan Sandsf24ed772011-05-02 16:27:02 +0000805 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000806
Duncan Sandsf24ed772011-05-02 16:27:02 +0000807 if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
808 return ReplaceInstUsesWith(I, V);
809
810 // Handle cases involving: rem X, (select Cond, Y, Z)
811 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
812 return &I;
813
814 return 0;
815}