blob: bcfd5b2392d3f95f0db97fe68b4eda2e61d4da1e [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Chris Lattnerabf05b22003-08-03 21:55:55 +000016#include "X86GenInstrInfo.inc"
Evan Chengaa3c1412006-05-30 21:45:53 +000017#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng0488db92007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000028
Brian Gaeked0fde302003-11-11 22:41:34 +000029using namespace llvm;
30
Owen Anderson43dbe052008-01-07 01:35:02 +000031namespace {
32 cl::opt<bool>
33 NoFusing("disable-spill-fusing",
34 cl::desc("Disable fusing of spill code into instructions"));
35 cl::opt<bool>
36 PrintFailedFusing("print-failed-fuse-candidates",
37 cl::desc("Print instructions that the allocator wants to"
38 " fuse, but the X86 backend currently can't"),
39 cl::Hidden);
40}
41
Evan Chengaa3c1412006-05-30 21:45:53 +000042X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattner64105522008-01-01 01:03:04 +000043 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng25ab6902006-09-08 06:48:29 +000044 TM(tm), RI(tm, *this) {
Owen Anderson43dbe052008-01-07 01:35:02 +000045 SmallVector<unsigned,16> AmbEntries;
46 static const unsigned OpTbl2Addr[][2] = {
47 { X86::ADC32ri, X86::ADC32mi },
48 { X86::ADC32ri8, X86::ADC32mi8 },
49 { X86::ADC32rr, X86::ADC32mr },
50 { X86::ADC64ri32, X86::ADC64mi32 },
51 { X86::ADC64ri8, X86::ADC64mi8 },
52 { X86::ADC64rr, X86::ADC64mr },
53 { X86::ADD16ri, X86::ADD16mi },
54 { X86::ADD16ri8, X86::ADD16mi8 },
55 { X86::ADD16rr, X86::ADD16mr },
56 { X86::ADD32ri, X86::ADD32mi },
57 { X86::ADD32ri8, X86::ADD32mi8 },
58 { X86::ADD32rr, X86::ADD32mr },
59 { X86::ADD64ri32, X86::ADD64mi32 },
60 { X86::ADD64ri8, X86::ADD64mi8 },
61 { X86::ADD64rr, X86::ADD64mr },
62 { X86::ADD8ri, X86::ADD8mi },
63 { X86::ADD8rr, X86::ADD8mr },
64 { X86::AND16ri, X86::AND16mi },
65 { X86::AND16ri8, X86::AND16mi8 },
66 { X86::AND16rr, X86::AND16mr },
67 { X86::AND32ri, X86::AND32mi },
68 { X86::AND32ri8, X86::AND32mi8 },
69 { X86::AND32rr, X86::AND32mr },
70 { X86::AND64ri32, X86::AND64mi32 },
71 { X86::AND64ri8, X86::AND64mi8 },
72 { X86::AND64rr, X86::AND64mr },
73 { X86::AND8ri, X86::AND8mi },
74 { X86::AND8rr, X86::AND8mr },
75 { X86::DEC16r, X86::DEC16m },
76 { X86::DEC32r, X86::DEC32m },
77 { X86::DEC64_16r, X86::DEC64_16m },
78 { X86::DEC64_32r, X86::DEC64_32m },
79 { X86::DEC64r, X86::DEC64m },
80 { X86::DEC8r, X86::DEC8m },
81 { X86::INC16r, X86::INC16m },
82 { X86::INC32r, X86::INC32m },
83 { X86::INC64_16r, X86::INC64_16m },
84 { X86::INC64_32r, X86::INC64_32m },
85 { X86::INC64r, X86::INC64m },
86 { X86::INC8r, X86::INC8m },
87 { X86::NEG16r, X86::NEG16m },
88 { X86::NEG32r, X86::NEG32m },
89 { X86::NEG64r, X86::NEG64m },
90 { X86::NEG8r, X86::NEG8m },
91 { X86::NOT16r, X86::NOT16m },
92 { X86::NOT32r, X86::NOT32m },
93 { X86::NOT64r, X86::NOT64m },
94 { X86::NOT8r, X86::NOT8m },
95 { X86::OR16ri, X86::OR16mi },
96 { X86::OR16ri8, X86::OR16mi8 },
97 { X86::OR16rr, X86::OR16mr },
98 { X86::OR32ri, X86::OR32mi },
99 { X86::OR32ri8, X86::OR32mi8 },
100 { X86::OR32rr, X86::OR32mr },
101 { X86::OR64ri32, X86::OR64mi32 },
102 { X86::OR64ri8, X86::OR64mi8 },
103 { X86::OR64rr, X86::OR64mr },
104 { X86::OR8ri, X86::OR8mi },
105 { X86::OR8rr, X86::OR8mr },
106 { X86::ROL16r1, X86::ROL16m1 },
107 { X86::ROL16rCL, X86::ROL16mCL },
108 { X86::ROL16ri, X86::ROL16mi },
109 { X86::ROL32r1, X86::ROL32m1 },
110 { X86::ROL32rCL, X86::ROL32mCL },
111 { X86::ROL32ri, X86::ROL32mi },
112 { X86::ROL64r1, X86::ROL64m1 },
113 { X86::ROL64rCL, X86::ROL64mCL },
114 { X86::ROL64ri, X86::ROL64mi },
115 { X86::ROL8r1, X86::ROL8m1 },
116 { X86::ROL8rCL, X86::ROL8mCL },
117 { X86::ROL8ri, X86::ROL8mi },
118 { X86::ROR16r1, X86::ROR16m1 },
119 { X86::ROR16rCL, X86::ROR16mCL },
120 { X86::ROR16ri, X86::ROR16mi },
121 { X86::ROR32r1, X86::ROR32m1 },
122 { X86::ROR32rCL, X86::ROR32mCL },
123 { X86::ROR32ri, X86::ROR32mi },
124 { X86::ROR64r1, X86::ROR64m1 },
125 { X86::ROR64rCL, X86::ROR64mCL },
126 { X86::ROR64ri, X86::ROR64mi },
127 { X86::ROR8r1, X86::ROR8m1 },
128 { X86::ROR8rCL, X86::ROR8mCL },
129 { X86::ROR8ri, X86::ROR8mi },
130 { X86::SAR16r1, X86::SAR16m1 },
131 { X86::SAR16rCL, X86::SAR16mCL },
132 { X86::SAR16ri, X86::SAR16mi },
133 { X86::SAR32r1, X86::SAR32m1 },
134 { X86::SAR32rCL, X86::SAR32mCL },
135 { X86::SAR32ri, X86::SAR32mi },
136 { X86::SAR64r1, X86::SAR64m1 },
137 { X86::SAR64rCL, X86::SAR64mCL },
138 { X86::SAR64ri, X86::SAR64mi },
139 { X86::SAR8r1, X86::SAR8m1 },
140 { X86::SAR8rCL, X86::SAR8mCL },
141 { X86::SAR8ri, X86::SAR8mi },
142 { X86::SBB32ri, X86::SBB32mi },
143 { X86::SBB32ri8, X86::SBB32mi8 },
144 { X86::SBB32rr, X86::SBB32mr },
145 { X86::SBB64ri32, X86::SBB64mi32 },
146 { X86::SBB64ri8, X86::SBB64mi8 },
147 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson43dbe052008-01-07 01:35:02 +0000148 { X86::SHL16rCL, X86::SHL16mCL },
149 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000150 { X86::SHL32rCL, X86::SHL32mCL },
151 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000152 { X86::SHL64rCL, X86::SHL64mCL },
153 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000154 { X86::SHL8rCL, X86::SHL8mCL },
155 { X86::SHL8ri, X86::SHL8mi },
156 { X86::SHLD16rrCL, X86::SHLD16mrCL },
157 { X86::SHLD16rri8, X86::SHLD16mri8 },
158 { X86::SHLD32rrCL, X86::SHLD32mrCL },
159 { X86::SHLD32rri8, X86::SHLD32mri8 },
160 { X86::SHLD64rrCL, X86::SHLD64mrCL },
161 { X86::SHLD64rri8, X86::SHLD64mri8 },
162 { X86::SHR16r1, X86::SHR16m1 },
163 { X86::SHR16rCL, X86::SHR16mCL },
164 { X86::SHR16ri, X86::SHR16mi },
165 { X86::SHR32r1, X86::SHR32m1 },
166 { X86::SHR32rCL, X86::SHR32mCL },
167 { X86::SHR32ri, X86::SHR32mi },
168 { X86::SHR64r1, X86::SHR64m1 },
169 { X86::SHR64rCL, X86::SHR64mCL },
170 { X86::SHR64ri, X86::SHR64mi },
171 { X86::SHR8r1, X86::SHR8m1 },
172 { X86::SHR8rCL, X86::SHR8mCL },
173 { X86::SHR8ri, X86::SHR8mi },
174 { X86::SHRD16rrCL, X86::SHRD16mrCL },
175 { X86::SHRD16rri8, X86::SHRD16mri8 },
176 { X86::SHRD32rrCL, X86::SHRD32mrCL },
177 { X86::SHRD32rri8, X86::SHRD32mri8 },
178 { X86::SHRD64rrCL, X86::SHRD64mrCL },
179 { X86::SHRD64rri8, X86::SHRD64mri8 },
180 { X86::SUB16ri, X86::SUB16mi },
181 { X86::SUB16ri8, X86::SUB16mi8 },
182 { X86::SUB16rr, X86::SUB16mr },
183 { X86::SUB32ri, X86::SUB32mi },
184 { X86::SUB32ri8, X86::SUB32mi8 },
185 { X86::SUB32rr, X86::SUB32mr },
186 { X86::SUB64ri32, X86::SUB64mi32 },
187 { X86::SUB64ri8, X86::SUB64mi8 },
188 { X86::SUB64rr, X86::SUB64mr },
189 { X86::SUB8ri, X86::SUB8mi },
190 { X86::SUB8rr, X86::SUB8mr },
191 { X86::XOR16ri, X86::XOR16mi },
192 { X86::XOR16ri8, X86::XOR16mi8 },
193 { X86::XOR16rr, X86::XOR16mr },
194 { X86::XOR32ri, X86::XOR32mi },
195 { X86::XOR32ri8, X86::XOR32mi8 },
196 { X86::XOR32rr, X86::XOR32mr },
197 { X86::XOR64ri32, X86::XOR64mi32 },
198 { X86::XOR64ri8, X86::XOR64mi8 },
199 { X86::XOR64rr, X86::XOR64mr },
200 { X86::XOR8ri, X86::XOR8mi },
201 { X86::XOR8rr, X86::XOR8mr }
202 };
203
204 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
205 unsigned RegOp = OpTbl2Addr[i][0];
206 unsigned MemOp = OpTbl2Addr[i][1];
207 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
208 assert(false && "Duplicated entries?");
209 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
210 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
211 std::make_pair(RegOp, AuxInfo))))
212 AmbEntries.push_back(MemOp);
213 }
214
215 // If the third value is 1, then it's folding either a load or a store.
216 static const unsigned OpTbl0[][3] = {
217 { X86::CALL32r, X86::CALL32m, 1 },
218 { X86::CALL64r, X86::CALL64m, 1 },
219 { X86::CMP16ri, X86::CMP16mi, 1 },
220 { X86::CMP16ri8, X86::CMP16mi8, 1 },
221 { X86::CMP32ri, X86::CMP32mi, 1 },
222 { X86::CMP32ri8, X86::CMP32mi8, 1 },
223 { X86::CMP64ri32, X86::CMP64mi32, 1 },
224 { X86::CMP64ri8, X86::CMP64mi8, 1 },
225 { X86::CMP8ri, X86::CMP8mi, 1 },
226 { X86::DIV16r, X86::DIV16m, 1 },
227 { X86::DIV32r, X86::DIV32m, 1 },
228 { X86::DIV64r, X86::DIV64m, 1 },
229 { X86::DIV8r, X86::DIV8m, 1 },
230 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
231 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
232 { X86::IDIV16r, X86::IDIV16m, 1 },
233 { X86::IDIV32r, X86::IDIV32m, 1 },
234 { X86::IDIV64r, X86::IDIV64m, 1 },
235 { X86::IDIV8r, X86::IDIV8m, 1 },
236 { X86::IMUL16r, X86::IMUL16m, 1 },
237 { X86::IMUL32r, X86::IMUL32m, 1 },
238 { X86::IMUL64r, X86::IMUL64m, 1 },
239 { X86::IMUL8r, X86::IMUL8m, 1 },
240 { X86::JMP32r, X86::JMP32m, 1 },
241 { X86::JMP64r, X86::JMP64m, 1 },
242 { X86::MOV16ri, X86::MOV16mi, 0 },
243 { X86::MOV16rr, X86::MOV16mr, 0 },
244 { X86::MOV16to16_, X86::MOV16_mr, 0 },
245 { X86::MOV32ri, X86::MOV32mi, 0 },
246 { X86::MOV32rr, X86::MOV32mr, 0 },
247 { X86::MOV32to32_, X86::MOV32_mr, 0 },
248 { X86::MOV64ri32, X86::MOV64mi32, 0 },
249 { X86::MOV64rr, X86::MOV64mr, 0 },
250 { X86::MOV8ri, X86::MOV8mi, 0 },
251 { X86::MOV8rr, X86::MOV8mr, 0 },
252 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
253 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
254 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
255 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
256 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
257 { X86::MOVSDrr, X86::MOVSDmr, 0 },
258 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
259 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
260 { X86::MOVSSrr, X86::MOVSSmr, 0 },
261 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
262 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
263 { X86::MUL16r, X86::MUL16m, 1 },
264 { X86::MUL32r, X86::MUL32m, 1 },
265 { X86::MUL64r, X86::MUL64m, 1 },
266 { X86::MUL8r, X86::MUL8m, 1 },
267 { X86::SETAEr, X86::SETAEm, 0 },
268 { X86::SETAr, X86::SETAm, 0 },
269 { X86::SETBEr, X86::SETBEm, 0 },
270 { X86::SETBr, X86::SETBm, 0 },
271 { X86::SETEr, X86::SETEm, 0 },
272 { X86::SETGEr, X86::SETGEm, 0 },
273 { X86::SETGr, X86::SETGm, 0 },
274 { X86::SETLEr, X86::SETLEm, 0 },
275 { X86::SETLr, X86::SETLm, 0 },
276 { X86::SETNEr, X86::SETNEm, 0 },
277 { X86::SETNPr, X86::SETNPm, 0 },
278 { X86::SETNSr, X86::SETNSm, 0 },
279 { X86::SETPr, X86::SETPm, 0 },
280 { X86::SETSr, X86::SETSm, 0 },
281 { X86::TAILJMPr, X86::TAILJMPm, 1 },
282 { X86::TEST16ri, X86::TEST16mi, 1 },
283 { X86::TEST32ri, X86::TEST32mi, 1 },
284 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000285 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000286 };
287
288 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
289 unsigned RegOp = OpTbl0[i][0];
290 unsigned MemOp = OpTbl0[i][1];
291 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
292 assert(false && "Duplicated entries?");
293 unsigned FoldedLoad = OpTbl0[i][2];
294 // Index 0, folded load or store.
295 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
296 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
297 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
298 std::make_pair(RegOp, AuxInfo))))
299 AmbEntries.push_back(MemOp);
300 }
301
302 static const unsigned OpTbl1[][2] = {
303 { X86::CMP16rr, X86::CMP16rm },
304 { X86::CMP32rr, X86::CMP32rm },
305 { X86::CMP64rr, X86::CMP64rm },
306 { X86::CMP8rr, X86::CMP8rm },
307 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
308 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
309 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
310 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
311 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
312 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
313 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
314 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
315 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
316 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
317 { X86::FsMOVAPDrr, X86::MOVSDrm },
318 { X86::FsMOVAPSrr, X86::MOVSSrm },
319 { X86::IMUL16rri, X86::IMUL16rmi },
320 { X86::IMUL16rri8, X86::IMUL16rmi8 },
321 { X86::IMUL32rri, X86::IMUL32rmi },
322 { X86::IMUL32rri8, X86::IMUL32rmi8 },
323 { X86::IMUL64rri32, X86::IMUL64rmi32 },
324 { X86::IMUL64rri8, X86::IMUL64rmi8 },
325 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
326 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
327 { X86::Int_COMISDrr, X86::Int_COMISDrm },
328 { X86::Int_COMISSrr, X86::Int_COMISSrm },
329 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
330 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
331 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
332 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
333 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
334 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
335 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
336 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
337 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
338 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
339 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
340 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
341 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
342 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
343 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
344 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
345 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
346 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
347 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
348 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
349 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
350 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
351 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
352 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
353 { X86::MOV16rr, X86::MOV16rm },
354 { X86::MOV16to16_, X86::MOV16_rm },
355 { X86::MOV32rr, X86::MOV32rm },
356 { X86::MOV32to32_, X86::MOV32_rm },
357 { X86::MOV64rr, X86::MOV64rm },
358 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
359 { X86::MOV64toSDrr, X86::MOV64toSDrm },
360 { X86::MOV8rr, X86::MOV8rm },
361 { X86::MOVAPDrr, X86::MOVAPDrm },
362 { X86::MOVAPSrr, X86::MOVAPSrm },
363 { X86::MOVDDUPrr, X86::MOVDDUPrm },
364 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
365 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
366 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
367 { X86::MOVSDrr, X86::MOVSDrm },
368 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
369 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
370 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
371 { X86::MOVSSrr, X86::MOVSSrm },
372 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
373 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
374 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
375 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
376 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
377 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
378 { X86::MOVUPDrr, X86::MOVUPDrm },
379 { X86::MOVUPSrr, X86::MOVUPSrm },
380 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
381 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
382 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
383 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
384 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
385 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
386 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
387 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
388 { X86::PSHUFDri, X86::PSHUFDmi },
389 { X86::PSHUFHWri, X86::PSHUFHWmi },
390 { X86::PSHUFLWri, X86::PSHUFLWmi },
391 { X86::PsMOVZX64rr32, X86::PsMOVZX64rm32 },
392 { X86::RCPPSr, X86::RCPPSm },
393 { X86::RCPPSr_Int, X86::RCPPSm_Int },
394 { X86::RSQRTPSr, X86::RSQRTPSm },
395 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
396 { X86::RSQRTSSr, X86::RSQRTSSm },
397 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
398 { X86::SQRTPDr, X86::SQRTPDm },
399 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
400 { X86::SQRTPSr, X86::SQRTPSm },
401 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
402 { X86::SQRTSDr, X86::SQRTSDm },
403 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
404 { X86::SQRTSSr, X86::SQRTSSm },
405 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
406 { X86::TEST16rr, X86::TEST16rm },
407 { X86::TEST32rr, X86::TEST32rm },
408 { X86::TEST64rr, X86::TEST64rm },
409 { X86::TEST8rr, X86::TEST8rm },
410 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
411 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000412 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson43dbe052008-01-07 01:35:02 +0000413 };
414
415 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
416 unsigned RegOp = OpTbl1[i][0];
417 unsigned MemOp = OpTbl1[i][1];
418 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
419 assert(false && "Duplicated entries?");
420 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
421 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
422 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
423 std::make_pair(RegOp, AuxInfo))))
424 AmbEntries.push_back(MemOp);
425 }
426
427 static const unsigned OpTbl2[][2] = {
428 { X86::ADC32rr, X86::ADC32rm },
429 { X86::ADC64rr, X86::ADC64rm },
430 { X86::ADD16rr, X86::ADD16rm },
431 { X86::ADD32rr, X86::ADD32rm },
432 { X86::ADD64rr, X86::ADD64rm },
433 { X86::ADD8rr, X86::ADD8rm },
434 { X86::ADDPDrr, X86::ADDPDrm },
435 { X86::ADDPSrr, X86::ADDPSrm },
436 { X86::ADDSDrr, X86::ADDSDrm },
437 { X86::ADDSSrr, X86::ADDSSrm },
438 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
439 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
440 { X86::AND16rr, X86::AND16rm },
441 { X86::AND32rr, X86::AND32rm },
442 { X86::AND64rr, X86::AND64rm },
443 { X86::AND8rr, X86::AND8rm },
444 { X86::ANDNPDrr, X86::ANDNPDrm },
445 { X86::ANDNPSrr, X86::ANDNPSrm },
446 { X86::ANDPDrr, X86::ANDPDrm },
447 { X86::ANDPSrr, X86::ANDPSrm },
448 { X86::CMOVA16rr, X86::CMOVA16rm },
449 { X86::CMOVA32rr, X86::CMOVA32rm },
450 { X86::CMOVA64rr, X86::CMOVA64rm },
451 { X86::CMOVAE16rr, X86::CMOVAE16rm },
452 { X86::CMOVAE32rr, X86::CMOVAE32rm },
453 { X86::CMOVAE64rr, X86::CMOVAE64rm },
454 { X86::CMOVB16rr, X86::CMOVB16rm },
455 { X86::CMOVB32rr, X86::CMOVB32rm },
456 { X86::CMOVB64rr, X86::CMOVB64rm },
457 { X86::CMOVBE16rr, X86::CMOVBE16rm },
458 { X86::CMOVBE32rr, X86::CMOVBE32rm },
459 { X86::CMOVBE64rr, X86::CMOVBE64rm },
460 { X86::CMOVE16rr, X86::CMOVE16rm },
461 { X86::CMOVE32rr, X86::CMOVE32rm },
462 { X86::CMOVE64rr, X86::CMOVE64rm },
463 { X86::CMOVG16rr, X86::CMOVG16rm },
464 { X86::CMOVG32rr, X86::CMOVG32rm },
465 { X86::CMOVG64rr, X86::CMOVG64rm },
466 { X86::CMOVGE16rr, X86::CMOVGE16rm },
467 { X86::CMOVGE32rr, X86::CMOVGE32rm },
468 { X86::CMOVGE64rr, X86::CMOVGE64rm },
469 { X86::CMOVL16rr, X86::CMOVL16rm },
470 { X86::CMOVL32rr, X86::CMOVL32rm },
471 { X86::CMOVL64rr, X86::CMOVL64rm },
472 { X86::CMOVLE16rr, X86::CMOVLE16rm },
473 { X86::CMOVLE32rr, X86::CMOVLE32rm },
474 { X86::CMOVLE64rr, X86::CMOVLE64rm },
475 { X86::CMOVNE16rr, X86::CMOVNE16rm },
476 { X86::CMOVNE32rr, X86::CMOVNE32rm },
477 { X86::CMOVNE64rr, X86::CMOVNE64rm },
478 { X86::CMOVNP16rr, X86::CMOVNP16rm },
479 { X86::CMOVNP32rr, X86::CMOVNP32rm },
480 { X86::CMOVNP64rr, X86::CMOVNP64rm },
481 { X86::CMOVNS16rr, X86::CMOVNS16rm },
482 { X86::CMOVNS32rr, X86::CMOVNS32rm },
483 { X86::CMOVNS64rr, X86::CMOVNS64rm },
484 { X86::CMOVP16rr, X86::CMOVP16rm },
485 { X86::CMOVP32rr, X86::CMOVP32rm },
486 { X86::CMOVP64rr, X86::CMOVP64rm },
487 { X86::CMOVS16rr, X86::CMOVS16rm },
488 { X86::CMOVS32rr, X86::CMOVS32rm },
489 { X86::CMOVS64rr, X86::CMOVS64rm },
490 { X86::CMPPDrri, X86::CMPPDrmi },
491 { X86::CMPPSrri, X86::CMPPSrmi },
492 { X86::CMPSDrr, X86::CMPSDrm },
493 { X86::CMPSSrr, X86::CMPSSrm },
494 { X86::DIVPDrr, X86::DIVPDrm },
495 { X86::DIVPSrr, X86::DIVPSrm },
496 { X86::DIVSDrr, X86::DIVSDrm },
497 { X86::DIVSSrr, X86::DIVSSrm },
498 { X86::HADDPDrr, X86::HADDPDrm },
499 { X86::HADDPSrr, X86::HADDPSrm },
500 { X86::HSUBPDrr, X86::HSUBPDrm },
501 { X86::HSUBPSrr, X86::HSUBPSrm },
502 { X86::IMUL16rr, X86::IMUL16rm },
503 { X86::IMUL32rr, X86::IMUL32rm },
504 { X86::IMUL64rr, X86::IMUL64rm },
505 { X86::MAXPDrr, X86::MAXPDrm },
506 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
507 { X86::MAXPSrr, X86::MAXPSrm },
508 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
509 { X86::MAXSDrr, X86::MAXSDrm },
510 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
511 { X86::MAXSSrr, X86::MAXSSrm },
512 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
513 { X86::MINPDrr, X86::MINPDrm },
514 { X86::MINPDrr_Int, X86::MINPDrm_Int },
515 { X86::MINPSrr, X86::MINPSrm },
516 { X86::MINPSrr_Int, X86::MINPSrm_Int },
517 { X86::MINSDrr, X86::MINSDrm },
518 { X86::MINSDrr_Int, X86::MINSDrm_Int },
519 { X86::MINSSrr, X86::MINSSrm },
520 { X86::MINSSrr_Int, X86::MINSSrm_Int },
521 { X86::MULPDrr, X86::MULPDrm },
522 { X86::MULPSrr, X86::MULPSrm },
523 { X86::MULSDrr, X86::MULSDrm },
524 { X86::MULSSrr, X86::MULSSrm },
525 { X86::OR16rr, X86::OR16rm },
526 { X86::OR32rr, X86::OR32rm },
527 { X86::OR64rr, X86::OR64rm },
528 { X86::OR8rr, X86::OR8rm },
529 { X86::ORPDrr, X86::ORPDrm },
530 { X86::ORPSrr, X86::ORPSrm },
531 { X86::PACKSSDWrr, X86::PACKSSDWrm },
532 { X86::PACKSSWBrr, X86::PACKSSWBrm },
533 { X86::PACKUSWBrr, X86::PACKUSWBrm },
534 { X86::PADDBrr, X86::PADDBrm },
535 { X86::PADDDrr, X86::PADDDrm },
536 { X86::PADDQrr, X86::PADDQrm },
537 { X86::PADDSBrr, X86::PADDSBrm },
538 { X86::PADDSWrr, X86::PADDSWrm },
539 { X86::PADDWrr, X86::PADDWrm },
540 { X86::PANDNrr, X86::PANDNrm },
541 { X86::PANDrr, X86::PANDrm },
542 { X86::PAVGBrr, X86::PAVGBrm },
543 { X86::PAVGWrr, X86::PAVGWrm },
544 { X86::PCMPEQBrr, X86::PCMPEQBrm },
545 { X86::PCMPEQDrr, X86::PCMPEQDrm },
546 { X86::PCMPEQWrr, X86::PCMPEQWrm },
547 { X86::PCMPGTBrr, X86::PCMPGTBrm },
548 { X86::PCMPGTDrr, X86::PCMPGTDrm },
549 { X86::PCMPGTWrr, X86::PCMPGTWrm },
550 { X86::PINSRWrri, X86::PINSRWrmi },
551 { X86::PMADDWDrr, X86::PMADDWDrm },
552 { X86::PMAXSWrr, X86::PMAXSWrm },
553 { X86::PMAXUBrr, X86::PMAXUBrm },
554 { X86::PMINSWrr, X86::PMINSWrm },
555 { X86::PMINUBrr, X86::PMINUBrm },
556 { X86::PMULHUWrr, X86::PMULHUWrm },
557 { X86::PMULHWrr, X86::PMULHWrm },
558 { X86::PMULLWrr, X86::PMULLWrm },
559 { X86::PMULUDQrr, X86::PMULUDQrm },
560 { X86::PORrr, X86::PORrm },
561 { X86::PSADBWrr, X86::PSADBWrm },
562 { X86::PSLLDrr, X86::PSLLDrm },
563 { X86::PSLLQrr, X86::PSLLQrm },
564 { X86::PSLLWrr, X86::PSLLWrm },
565 { X86::PSRADrr, X86::PSRADrm },
566 { X86::PSRAWrr, X86::PSRAWrm },
567 { X86::PSRLDrr, X86::PSRLDrm },
568 { X86::PSRLQrr, X86::PSRLQrm },
569 { X86::PSRLWrr, X86::PSRLWrm },
570 { X86::PSUBBrr, X86::PSUBBrm },
571 { X86::PSUBDrr, X86::PSUBDrm },
572 { X86::PSUBSBrr, X86::PSUBSBrm },
573 { X86::PSUBSWrr, X86::PSUBSWrm },
574 { X86::PSUBWrr, X86::PSUBWrm },
575 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
576 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
577 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
578 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
579 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
580 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
581 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
582 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
583 { X86::PXORrr, X86::PXORrm },
584 { X86::SBB32rr, X86::SBB32rm },
585 { X86::SBB64rr, X86::SBB64rm },
586 { X86::SHUFPDrri, X86::SHUFPDrmi },
587 { X86::SHUFPSrri, X86::SHUFPSrmi },
588 { X86::SUB16rr, X86::SUB16rm },
589 { X86::SUB32rr, X86::SUB32rm },
590 { X86::SUB64rr, X86::SUB64rm },
591 { X86::SUB8rr, X86::SUB8rm },
592 { X86::SUBPDrr, X86::SUBPDrm },
593 { X86::SUBPSrr, X86::SUBPSrm },
594 { X86::SUBSDrr, X86::SUBSDrm },
595 { X86::SUBSSrr, X86::SUBSSrm },
596 // FIXME: TEST*rr -> swapped operand of TEST*mr.
597 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
598 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
599 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
600 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
601 { X86::XOR16rr, X86::XOR16rm },
602 { X86::XOR32rr, X86::XOR32rm },
603 { X86::XOR64rr, X86::XOR64rm },
604 { X86::XOR8rr, X86::XOR8rm },
605 { X86::XORPDrr, X86::XORPDrm },
606 { X86::XORPSrr, X86::XORPSrm }
607 };
608
609 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
610 unsigned RegOp = OpTbl2[i][0];
611 unsigned MemOp = OpTbl2[i][1];
612 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
613 assert(false && "Duplicated entries?");
614 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
615 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
616 std::make_pair(RegOp, AuxInfo))))
617 AmbEntries.push_back(MemOp);
618 }
619
620 // Remove ambiguous entries.
621 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Chris Lattner72614082002-10-25 22:55:53 +0000622}
623
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000624bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
625 unsigned& sourceReg,
626 unsigned& destReg) const {
Chris Lattnercc8cd0c2008-01-07 02:48:55 +0000627 unsigned oc = MI.getOpcode();
Evan Cheng25ab6902006-09-08 06:48:29 +0000628 if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
629 oc == X86::MOV32rr || oc == X86::MOV64rr ||
Evan Cheng403be7e2006-05-08 08:01:26 +0000630 oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
Dale Johannesene377d4d2007-07-04 21:07:47 +0000631 oc == X86::MOV_Fp3232 || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
632 oc == X86::MOV_Fp3264 || oc == X86::MOV_Fp6432 || oc == X86::MOV_Fp6464 ||
Evan Chengfe5cb192006-02-16 22:45:17 +0000633 oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
Evan Cheng82521dd2006-03-21 07:09:35 +0000634 oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
Evan Cheng11e15b32006-04-03 20:53:28 +0000635 oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
Bill Wendling2f88dcd2007-03-08 22:09:11 +0000636 oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr ||
Bill Wendling6dd29e02007-04-24 21:17:46 +0000637 oc == X86::MMX_MOVD64rr || oc == X86::MMX_MOVQ64rr) {
Evan Cheng1e3417292007-04-25 07:12:14 +0000638 assert(MI.getNumOperands() >= 2 &&
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000639 MI.getOperand(0).isRegister() &&
640 MI.getOperand(1).isRegister() &&
641 "invalid register-register move instruction");
Alkis Evlogimenosbe766c72004-02-13 21:01:20 +0000642 sourceReg = MI.getOperand(1).getReg();
643 destReg = MI.getOperand(0).getReg();
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000644 return true;
645 }
646 return false;
647}
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000648
Chris Lattner40839602006-02-02 20:12:32 +0000649unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
650 int &FrameIndex) const {
651 switch (MI->getOpcode()) {
652 default: break;
653 case X86::MOV8rm:
654 case X86::MOV16rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000655 case X86::MOV16_rm:
Chris Lattner40839602006-02-02 20:12:32 +0000656 case X86::MOV32rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000657 case X86::MOV32_rm:
Evan Cheng25ab6902006-09-08 06:48:29 +0000658 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000659 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +0000660 case X86::MOVSSrm:
661 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +0000662 case X86::MOVAPSrm:
663 case X86::MOVAPDrm:
Bill Wendling823efee2007-04-03 06:00:37 +0000664 case X86::MMX_MOVD64rm:
665 case X86::MMX_MOVQ64rm:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000666 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
667 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000668 MI->getOperand(2).getImm() == 1 &&
Chris Lattner40839602006-02-02 20:12:32 +0000669 MI->getOperand(3).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000670 MI->getOperand(4).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000671 FrameIndex = MI->getOperand(1).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000672 return MI->getOperand(0).getReg();
673 }
674 break;
675 }
676 return 0;
677}
678
679unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
680 int &FrameIndex) const {
681 switch (MI->getOpcode()) {
682 default: break;
683 case X86::MOV8mr:
684 case X86::MOV16mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000685 case X86::MOV16_mr:
Chris Lattner40839602006-02-02 20:12:32 +0000686 case X86::MOV32mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000687 case X86::MOV32_mr:
Evan Cheng25ab6902006-09-08 06:48:29 +0000688 case X86::MOV64mr:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000689 case X86::ST_FpP64m:
Chris Lattner40839602006-02-02 20:12:32 +0000690 case X86::MOVSSmr:
691 case X86::MOVSDmr:
Chris Lattner993c8972006-04-18 16:44:51 +0000692 case X86::MOVAPSmr:
693 case X86::MOVAPDmr:
Bill Wendling823efee2007-04-03 06:00:37 +0000694 case X86::MMX_MOVD64mr:
695 case X86::MMX_MOVQ64mr:
Bill Wendling71bfd112007-04-03 23:48:32 +0000696 case X86::MMX_MOVNTQmr:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000697 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
698 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000699 MI->getOperand(1).getImm() == 1 &&
Chris Lattner1c07e722006-02-02 20:38:12 +0000700 MI->getOperand(2).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000701 MI->getOperand(3).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000702 FrameIndex = MI->getOperand(0).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000703 return MI->getOperand(4).getReg();
704 }
705 break;
706 }
707 return 0;
708}
709
710
Bill Wendling041b3f82007-12-08 23:58:46 +0000711bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
Dan Gohmanc101e952007-06-14 20:50:44 +0000712 switch (MI->getOpcode()) {
713 default: break;
714 case X86::MOV8rm:
715 case X86::MOV16rm:
716 case X86::MOV16_rm:
717 case X86::MOV32rm:
718 case X86::MOV32_rm:
719 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000720 case X86::LD_Fp64m:
Dan Gohmanc101e952007-06-14 20:50:44 +0000721 case X86::MOVSSrm:
722 case X86::MOVSDrm:
723 case X86::MOVAPSrm:
724 case X86::MOVAPDrm:
725 case X86::MMX_MOVD64rm:
726 case X86::MMX_MOVQ64rm:
Dan Gohman82a87a02007-06-19 01:48:05 +0000727 // Loads from constant pools are trivially rematerializable.
Chris Lattner3b5a2212008-01-05 05:28:30 +0000728 if (MI->getOperand(1).isReg() && MI->getOperand(2).isImm() &&
729 MI->getOperand(3).isReg() && MI->getOperand(4).isCPI() &&
730 MI->getOperand(1).getReg() == 0 &&
731 MI->getOperand(2).getImm() == 1 &&
732 MI->getOperand(3).getReg() == 0)
733 return true;
Chris Lattnerf29495a2008-01-05 06:10:42 +0000734
735 // If this is a load from a fixed argument slot, we know the value is
736 // invariant across the whole function, because we don't redefine argument
737 // values.
738#if 0
739 // FIXME: This is disabled due to a remat bug. rdar://5671644
Chris Lattner87943902008-01-10 04:16:31 +0000740 if (MI->getOperand(1).isFI()) {
741 const MachineFrameInfo &MFI=*MI->getParent()->getParent()->getFrameInfo();
742 int Idx = MI->getOperand(1).getIndex();
743 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
744 }
Chris Lattnerf29495a2008-01-05 06:10:42 +0000745#endif
746
Chris Lattner3b5a2212008-01-05 05:28:30 +0000747 return false;
Dan Gohmanc101e952007-06-14 20:50:44 +0000748 }
Dan Gohmand45eddd2007-06-26 00:48:07 +0000749 // All other instructions marked M_REMATERIALIZABLE are always trivially
750 // rematerializable.
751 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +0000752}
753
Chris Lattnera22edc82008-01-10 23:08:24 +0000754/// isInvariantLoad - Return true if the specified instruction (which is marked
755/// mayLoad) is loading from a location whose value is invariant across the
756/// function. For example, loading a value from the constant pool or from
757/// from the argument area of a function if it does not change. This should
758/// only return true of *all* loads the instruction does are invariant (if it
759/// does multiple loads).
760bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
761 // FIXME: This should work with any X86 instruction that does a load, for
762 // example, all load+op instructions.
Bill Wendling627c00b2007-12-17 23:07:56 +0000763 switch (MI->getOpcode()) {
764 default: break;
Bill Wendling6259d512007-12-30 03:18:58 +0000765 case X86::MOV32rm:
Chris Lattnera22edc82008-01-10 23:08:24 +0000766 // Loads from stubs of global addresses are invariant.
Bill Wendling323cd292008-01-07 08:05:29 +0000767 if (MI->getOperand(1).isReg() &&
768 MI->getOperand(2).isImm() && MI->getOperand(3).isReg() &&
769 MI->getOperand(4).isGlobal() &&
770 TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad
771 (MI->getOperand(4).getGlobal(), TM, false) &&
772 MI->getOperand(2).getImm() == 1 &&
773 MI->getOperand(3).getReg() == 0)
774 return true;
Chris Lattnera83b34b2008-01-05 05:26:26 +0000775 // FALLTHROUGH
776 case X86::MOV8rm:
777 case X86::MOV16rm:
778 case X86::MOV16_rm:
779 case X86::MOV32_rm:
780 case X86::MOV64rm:
781 case X86::LD_Fp64m:
782 case X86::MOVSSrm:
783 case X86::MOVSDrm:
784 case X86::MOVAPSrm:
785 case X86::MOVAPDrm:
786 case X86::MMX_MOVD64rm:
787 case X86::MMX_MOVQ64rm:
Chris Lattnera22edc82008-01-10 23:08:24 +0000788 // Loads from constant pools are trivially invariant.
Chris Lattner3b5a2212008-01-05 05:28:30 +0000789 if (MI->getOperand(1).isReg() && MI->getOperand(2).isImm() &&
790 MI->getOperand(3).isReg() && MI->getOperand(4).isCPI() &&
791 MI->getOperand(1).getReg() == 0 &&
792 MI->getOperand(2).getImm() == 1 &&
793 MI->getOperand(3).getReg() == 0)
794 return true;
Chris Lattnerf29495a2008-01-05 06:10:42 +0000795
796 // If this is a load from a fixed argument slot, we know the value is
797 // invariant across the whole function, because we don't redefine argument
798 // values.
799 MachineFunction *MF = MI->getParent()->getParent();
Chris Lattner87943902008-01-10 04:16:31 +0000800 if (MI->getOperand(1).isFI()) {
801 const MachineFrameInfo &MFI = *MF->getFrameInfo();
802 int Idx = MI->getOperand(1).getIndex();
803 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
804 }
Chris Lattnerf29495a2008-01-05 06:10:42 +0000805
Chris Lattner3b5a2212008-01-05 05:28:30 +0000806 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000807 }
808
Chris Lattnera22edc82008-01-10 23:08:24 +0000809 // All other instances of these instructions are presumed to have other
810 // issues.
Chris Lattnera83b34b2008-01-05 05:26:26 +0000811 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000812}
813
Evan Cheng3f411c72007-10-05 08:04:01 +0000814/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
815/// is not marked dead.
816static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +0000817 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
818 MachineOperand &MO = MI->getOperand(i);
819 if (MO.isRegister() && MO.isDef() &&
820 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
821 return true;
822 }
823 }
824 return false;
825}
826
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000827/// convertToThreeAddress - This method must be implemented by targets that
828/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
829/// may be able to convert a two-address instruction into a true
830/// three-address instruction on demand. This allows the X86 target (for
831/// example) to convert ADD and SHL instructions into LEA instructions if they
832/// would require register copies due to two-addressness.
833///
834/// This method returns a null pointer if the transformation cannot be
835/// performed, otherwise it returns the new instruction.
836///
Evan Cheng258ff672006-12-01 21:52:41 +0000837MachineInstr *
838X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
839 MachineBasicBlock::iterator &MBBI,
840 LiveVariables &LV) const {
841 MachineInstr *MI = MBBI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000842 // All instructions input are two-addr instructions. Get the known operands.
843 unsigned Dest = MI->getOperand(0).getReg();
844 unsigned Src = MI->getOperand(1).getReg();
845
Evan Cheng6ce7dc22006-11-15 20:58:11 +0000846 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +0000847 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000848 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng258ff672006-12-01 21:52:41 +0000849 bool DisableLEA16 = true;
850
Evan Cheng559dc462007-10-05 20:34:26 +0000851 unsigned MIOpc = MI->getOpcode();
852 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +0000853 case X86::SHUFPSrri: {
854 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000855 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
856
Evan Chengaa3c1412006-05-30 21:45:53 +0000857 unsigned A = MI->getOperand(0).getReg();
858 unsigned B = MI->getOperand(1).getReg();
859 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000860 unsigned M = MI->getOperand(3).getImm();
861 if (B != C) return 0;
Evan Chengc0f64ff2006-11-27 23:37:22 +0000862 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000863 break;
864 }
Chris Lattner995f5502007-03-28 18:12:31 +0000865 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000866 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +0000867 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
868 // the flags produced by a shift yet, so this is safe.
869 unsigned Dest = MI->getOperand(0).getReg();
870 unsigned Src = MI->getOperand(1).getReg();
871 unsigned ShAmt = MI->getOperand(2).getImm();
872 if (ShAmt == 0 || ShAmt >= 4) return 0;
873
874 NewMI = BuildMI(get(X86::LEA64r), Dest)
875 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
876 break;
877 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000878 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000879 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000880 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
881 // the flags produced by a shift yet, so this is safe.
882 unsigned Dest = MI->getOperand(0).getReg();
883 unsigned Src = MI->getOperand(1).getReg();
884 unsigned ShAmt = MI->getOperand(2).getImm();
885 if (ShAmt == 0 || ShAmt >= 4) return 0;
886
Chris Lattnerf2177b82007-03-28 00:58:40 +0000887 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
888 X86::LEA64_32r : X86::LEA32r;
889 NewMI = BuildMI(get(Opc), Dest)
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000890 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
891 break;
892 }
893 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000894 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +0000895 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
896 // the flags produced by a shift yet, so this is safe.
897 unsigned Dest = MI->getOperand(0).getReg();
898 unsigned Src = MI->getOperand(1).getReg();
899 unsigned ShAmt = MI->getOperand(2).getImm();
900 if (ShAmt == 0 || ShAmt >= 4) return 0;
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000901
Christopher Lambb8133712007-08-10 21:18:25 +0000902 if (DisableLEA16) {
903 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner84bc5422007-12-31 04:13:23 +0000904 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng61d9c862007-09-06 00:14:41 +0000905 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
906 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner84bc5422007-12-31 04:13:23 +0000907 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
908 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Christopher Lambb8133712007-08-10 21:18:25 +0000909
Evan Cheng61d9c862007-09-06 00:14:41 +0000910 MachineInstr *Ins =
911 BuildMI(get(X86::INSERT_SUBREG), leaInReg).addReg(Src).addImm(2);
Christopher Lambb8133712007-08-10 21:18:25 +0000912 Ins->copyKillDeadInfo(MI);
913
914 NewMI = BuildMI(get(Opc), leaOutReg)
915 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
916
Evan Cheng61d9c862007-09-06 00:14:41 +0000917 MachineInstr *Ext =
918 BuildMI(get(X86::EXTRACT_SUBREG), Dest).addReg(leaOutReg).addImm(2);
Christopher Lambb8133712007-08-10 21:18:25 +0000919 Ext->copyKillDeadInfo(MI);
920
921 MFI->insert(MBBI, Ins); // Insert the insert_subreg
922 LV.instructionChanged(MI, NewMI); // Update live variables
923 LV.addVirtualRegisterKilled(leaInReg, NewMI);
924 MFI->insert(MBBI, NewMI); // Insert the new inst
925 LV.addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng61d9c862007-09-06 00:14:41 +0000926 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lambb8133712007-08-10 21:18:25 +0000927 return Ext;
928 } else {
929 NewMI = BuildMI(get(X86::LEA16r), Dest)
930 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
931 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000932 break;
Evan Chengccba76b2006-05-30 20:26:50 +0000933 }
Evan Cheng559dc462007-10-05 20:34:26 +0000934 default: {
935 // The following opcodes also sets the condition code register(s). Only
936 // convert them to equivalent lea if the condition code register def's
937 // are dead!
938 if (hasLiveCondCodeDef(MI))
939 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +0000940
Evan Chengb76143c2007-10-09 07:14:53 +0000941 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng559dc462007-10-05 20:34:26 +0000942 switch (MIOpc) {
943 default: return 0;
944 case X86::INC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000945 case X86::INC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000946 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000947 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
948 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000949 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
950 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000951 }
Evan Cheng559dc462007-10-05 20:34:26 +0000952 case X86::INC16r:
953 case X86::INC64_16r:
954 if (DisableLEA16) return 0;
955 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
956 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
957 break;
958 case X86::DEC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000959 case X86::DEC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000960 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000961 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
962 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000963 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
964 break;
965 }
966 case X86::DEC16r:
967 case X86::DEC64_16r:
968 if (DisableLEA16) return 0;
969 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
970 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
971 break;
972 case X86::ADD64rr:
973 case X86::ADD32rr: {
974 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000975 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
976 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000977 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
978 MI->getOperand(2).getReg());
979 break;
980 }
981 case X86::ADD16rr:
982 if (DisableLEA16) return 0;
983 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
984 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
985 MI->getOperand(2).getReg());
986 break;
987 case X86::ADD64ri32:
988 case X86::ADD64ri8:
989 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
990 if (MI->getOperand(2).isImmediate())
991 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000992 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +0000993 break;
994 case X86::ADD32ri:
995 case X86::ADD32ri8:
996 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000997 if (MI->getOperand(2).isImmediate()) {
998 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
999 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001000 MI->getOperand(2).getImm());
Evan Chengb76143c2007-10-09 07:14:53 +00001001 }
Evan Cheng559dc462007-10-05 20:34:26 +00001002 break;
1003 case X86::ADD16ri:
1004 case X86::ADD16ri8:
1005 if (DisableLEA16) return 0;
1006 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1007 if (MI->getOperand(2).isImmediate())
1008 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001009 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001010 break;
1011 case X86::SHL16ri:
1012 if (DisableLEA16) return 0;
1013 case X86::SHL32ri:
1014 case X86::SHL64ri: {
1015 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1016 "Unknown shl instruction!");
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001017 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng559dc462007-10-05 20:34:26 +00001018 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1019 X86AddressMode AM;
1020 AM.Scale = 1 << ShAmt;
1021 AM.IndexReg = Src;
1022 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chengb76143c2007-10-09 07:14:53 +00001023 : (MIOpc == X86::SHL32ri
1024 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng559dc462007-10-05 20:34:26 +00001025 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1026 }
1027 break;
1028 }
1029 }
1030 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001031 }
1032
Evan Cheng559dc462007-10-05 20:34:26 +00001033 NewMI->copyKillDeadInfo(MI);
1034 LV.instructionChanged(MI, NewMI); // Update live variables
1035 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001036 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001037}
1038
Chris Lattner41e431b2005-01-19 07:11:01 +00001039/// commuteInstruction - We have a few instructions that must be hacked on to
1040/// commute them.
1041///
1042MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
1043 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001044 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1045 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001046 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001047 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1048 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1049 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001050 unsigned Opc;
1051 unsigned Size;
1052 switch (MI->getOpcode()) {
1053 default: assert(0 && "Unreachable!");
1054 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1055 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1056 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1057 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001058 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1059 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001060 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001061 unsigned Amt = MI->getOperand(3).getImm();
Chris Lattner41e431b2005-01-19 07:11:01 +00001062 unsigned A = MI->getOperand(0).getReg();
1063 unsigned B = MI->getOperand(1).getReg();
1064 unsigned C = MI->getOperand(2).getReg();
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001065 bool BisKill = MI->getOperand(1).isKill();
1066 bool CisKill = MI->getOperand(2).isKill();
Evan Chengc0f64ff2006-11-27 23:37:22 +00001067 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001068 .addReg(B, false, false, BisKill).addImm(Size-Amt);
Chris Lattner41e431b2005-01-19 07:11:01 +00001069 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001070 case X86::CMOVB16rr:
1071 case X86::CMOVB32rr:
1072 case X86::CMOVB64rr:
1073 case X86::CMOVAE16rr:
1074 case X86::CMOVAE32rr:
1075 case X86::CMOVAE64rr:
1076 case X86::CMOVE16rr:
1077 case X86::CMOVE32rr:
1078 case X86::CMOVE64rr:
1079 case X86::CMOVNE16rr:
1080 case X86::CMOVNE32rr:
1081 case X86::CMOVNE64rr:
1082 case X86::CMOVBE16rr:
1083 case X86::CMOVBE32rr:
1084 case X86::CMOVBE64rr:
1085 case X86::CMOVA16rr:
1086 case X86::CMOVA32rr:
1087 case X86::CMOVA64rr:
1088 case X86::CMOVL16rr:
1089 case X86::CMOVL32rr:
1090 case X86::CMOVL64rr:
1091 case X86::CMOVGE16rr:
1092 case X86::CMOVGE32rr:
1093 case X86::CMOVGE64rr:
1094 case X86::CMOVLE16rr:
1095 case X86::CMOVLE32rr:
1096 case X86::CMOVLE64rr:
1097 case X86::CMOVG16rr:
1098 case X86::CMOVG32rr:
1099 case X86::CMOVG64rr:
1100 case X86::CMOVS16rr:
1101 case X86::CMOVS32rr:
1102 case X86::CMOVS64rr:
1103 case X86::CMOVNS16rr:
1104 case X86::CMOVNS32rr:
1105 case X86::CMOVNS64rr:
1106 case X86::CMOVP16rr:
1107 case X86::CMOVP32rr:
1108 case X86::CMOVP64rr:
1109 case X86::CMOVNP16rr:
1110 case X86::CMOVNP32rr:
1111 case X86::CMOVNP64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001112 unsigned Opc = 0;
1113 switch (MI->getOpcode()) {
1114 default: break;
1115 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1116 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1117 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1118 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1119 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1120 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1121 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1122 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1123 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1124 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1125 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1126 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1127 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1128 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1129 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1130 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1131 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1132 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1133 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1134 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1135 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1136 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1137 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1138 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1139 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1140 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1141 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1142 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1143 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1144 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1145 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1146 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1147 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1148 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1149 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1150 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1151 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1152 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1153 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1154 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1155 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1156 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1157 }
1158
1159 MI->setInstrDescriptor(get(Opc));
1160 // Fallthrough intended.
1161 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001162 default:
Chris Lattner264e6fe2008-01-01 01:05:34 +00001163 return TargetInstrInfoImpl::commuteInstruction(MI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001164 }
1165}
1166
Chris Lattner7fbe9722006-10-20 17:42:20 +00001167static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1168 switch (BrOpc) {
1169 default: return X86::COND_INVALID;
1170 case X86::JE: return X86::COND_E;
1171 case X86::JNE: return X86::COND_NE;
1172 case X86::JL: return X86::COND_L;
1173 case X86::JLE: return X86::COND_LE;
1174 case X86::JG: return X86::COND_G;
1175 case X86::JGE: return X86::COND_GE;
1176 case X86::JB: return X86::COND_B;
1177 case X86::JBE: return X86::COND_BE;
1178 case X86::JA: return X86::COND_A;
1179 case X86::JAE: return X86::COND_AE;
1180 case X86::JS: return X86::COND_S;
1181 case X86::JNS: return X86::COND_NS;
1182 case X86::JP: return X86::COND_P;
1183 case X86::JNP: return X86::COND_NP;
1184 case X86::JO: return X86::COND_O;
1185 case X86::JNO: return X86::COND_NO;
1186 }
1187}
1188
1189unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1190 switch (CC) {
1191 default: assert(0 && "Illegal condition code!");
Evan Chenge5f62042007-09-29 00:00:36 +00001192 case X86::COND_E: return X86::JE;
1193 case X86::COND_NE: return X86::JNE;
1194 case X86::COND_L: return X86::JL;
1195 case X86::COND_LE: return X86::JLE;
1196 case X86::COND_G: return X86::JG;
1197 case X86::COND_GE: return X86::JGE;
1198 case X86::COND_B: return X86::JB;
1199 case X86::COND_BE: return X86::JBE;
1200 case X86::COND_A: return X86::JA;
1201 case X86::COND_AE: return X86::JAE;
1202 case X86::COND_S: return X86::JS;
1203 case X86::COND_NS: return X86::JNS;
1204 case X86::COND_P: return X86::JP;
1205 case X86::COND_NP: return X86::JNP;
1206 case X86::COND_O: return X86::JO;
1207 case X86::COND_NO: return X86::JNO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001208 }
1209}
1210
Chris Lattner9cd68752006-10-21 05:52:40 +00001211/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1212/// e.g. turning COND_E to COND_NE.
1213X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1214 switch (CC) {
1215 default: assert(0 && "Illegal condition code!");
1216 case X86::COND_E: return X86::COND_NE;
1217 case X86::COND_NE: return X86::COND_E;
1218 case X86::COND_L: return X86::COND_GE;
1219 case X86::COND_LE: return X86::COND_G;
1220 case X86::COND_G: return X86::COND_LE;
1221 case X86::COND_GE: return X86::COND_L;
1222 case X86::COND_B: return X86::COND_AE;
1223 case X86::COND_BE: return X86::COND_A;
1224 case X86::COND_A: return X86::COND_BE;
1225 case X86::COND_AE: return X86::COND_B;
1226 case X86::COND_S: return X86::COND_NS;
1227 case X86::COND_NS: return X86::COND_S;
1228 case X86::COND_P: return X86::COND_NP;
1229 case X86::COND_NP: return X86::COND_P;
1230 case X86::COND_O: return X86::COND_NO;
1231 case X86::COND_NO: return X86::COND_O;
1232 }
1233}
1234
Dale Johannesen318093b2007-06-14 22:03:45 +00001235bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner749c6f62008-01-07 07:27:27 +00001236 const TargetInstrDesc &TID = MI->getDesc();
1237 if (!TID.isTerminator()) return false;
Chris Lattner69244302008-01-07 01:56:04 +00001238
1239 // Conditional branch is a special case.
Chris Lattner749c6f62008-01-07 07:27:27 +00001240 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00001241 return true;
Chris Lattner749c6f62008-01-07 07:27:27 +00001242 if (!TID.isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00001243 return true;
1244 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00001245}
Chris Lattner9cd68752006-10-21 05:52:40 +00001246
Evan Cheng85dce6c2007-07-26 17:32:14 +00001247// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1248static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1249 const X86InstrInfo &TII) {
1250 if (MI->getOpcode() == X86::FP_REG_KILL)
1251 return false;
1252 return TII.isUnpredicatedTerminator(MI);
1253}
1254
Chris Lattner7fbe9722006-10-20 17:42:20 +00001255bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1256 MachineBasicBlock *&TBB,
1257 MachineBasicBlock *&FBB,
1258 std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001259 // If the block has no terminators, it just falls into the block after it.
1260 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng85dce6c2007-07-26 17:32:14 +00001261 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001262 return false;
1263
1264 // Get the last instruction in the block.
1265 MachineInstr *LastInst = I;
1266
1267 // If there is only one terminator instruction, process it.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001268 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner749c6f62008-01-07 07:27:27 +00001269 if (!LastInst->getDesc().isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00001270 return true;
1271
1272 // If the block ends with a branch there are 3 possibilities:
1273 // it's an unconditional, conditional, or indirect branch.
1274
1275 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001276 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001277 return false;
1278 }
1279 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1280 if (BranchCode == X86::COND_INVALID)
1281 return true; // Can't handle indirect branch.
1282
1283 // Otherwise, block ends with fall-through condbranch.
Chris Lattner8aa797a2007-12-30 23:10:15 +00001284 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001285 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1286 return false;
1287 }
1288
1289 // Get the instruction before it if it's a terminator.
1290 MachineInstr *SecondLastInst = I;
1291
1292 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001293 if (SecondLastInst && I != MBB.begin() &&
1294 isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001295 return true;
1296
Chris Lattner6ce64432006-10-30 22:27:23 +00001297 // If the block ends with X86::JMP and a conditional branch, handle it.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001298 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1299 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001300 TBB = SecondLastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001301 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner8aa797a2007-12-30 23:10:15 +00001302 FBB = LastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001303 return false;
1304 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001305
Dale Johannesen13e8b512007-06-13 17:59:52 +00001306 // If the block ends with two X86::JMPs, handle it. The second one is not
1307 // executed, so remove it.
1308 if (SecondLastInst->getOpcode() == X86::JMP &&
1309 LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001310 TBB = SecondLastInst->getOperand(0).getMBB();
Dale Johannesen13e8b512007-06-13 17:59:52 +00001311 I = LastInst;
1312 I->eraseFromParent();
1313 return false;
1314 }
1315
Chris Lattner7fbe9722006-10-20 17:42:20 +00001316 // Otherwise, can't handle this.
1317 return true;
1318}
1319
Evan Cheng6ae36262007-05-18 00:18:17 +00001320unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001321 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng6ae36262007-05-18 00:18:17 +00001322 if (I == MBB.begin()) return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001323 --I;
1324 if (I->getOpcode() != X86::JMP &&
1325 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001326 return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001327
1328 // Remove the branch.
1329 I->eraseFromParent();
1330
1331 I = MBB.end();
1332
Evan Cheng6ae36262007-05-18 00:18:17 +00001333 if (I == MBB.begin()) return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001334 --I;
1335 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001336 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001337
1338 // Remove the branch.
1339 I->eraseFromParent();
Evan Cheng6ae36262007-05-18 00:18:17 +00001340 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001341}
1342
Owen Andersonf6372aa2008-01-01 21:11:32 +00001343static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1344 MachineOperand &MO) {
1345 if (MO.isRegister())
1346 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1347 false, false, MO.getSubReg());
1348 else if (MO.isImmediate())
1349 MIB = MIB.addImm(MO.getImm());
1350 else if (MO.isFrameIndex())
1351 MIB = MIB.addFrameIndex(MO.getIndex());
1352 else if (MO.isGlobalAddress())
1353 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1354 else if (MO.isConstantPoolIndex())
1355 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1356 else if (MO.isJumpTableIndex())
1357 MIB = MIB.addJumpTableIndex(MO.getIndex());
1358 else if (MO.isExternalSymbol())
1359 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1360 else
1361 assert(0 && "Unknown operand for X86InstrAddOperand!");
1362
1363 return MIB;
1364}
1365
Evan Cheng6ae36262007-05-18 00:18:17 +00001366unsigned
1367X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1368 MachineBasicBlock *FBB,
1369 const std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001370 // Shouldn't be a fall through.
1371 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00001372 assert((Cond.size() == 1 || Cond.size() == 0) &&
1373 "X86 branch conditions have one component!");
1374
1375 if (FBB == 0) { // One way branch.
1376 if (Cond.empty()) {
1377 // Unconditional branch?
Evan Chengc0f64ff2006-11-27 23:37:22 +00001378 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001379 } else {
1380 // Conditional branch.
1381 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001382 BuildMI(&MBB, get(Opc)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001383 }
Evan Cheng6ae36262007-05-18 00:18:17 +00001384 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001385 }
1386
Chris Lattner879d09c2006-10-21 05:42:09 +00001387 // Two-way Conditional branch.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001388 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001389 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1390 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00001391 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001392}
1393
Owen Andersond10fd972007-12-31 06:32:00 +00001394void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1395 MachineBasicBlock::iterator MI,
1396 unsigned DestReg, unsigned SrcReg,
1397 const TargetRegisterClass *DestRC,
1398 const TargetRegisterClass *SrcRC) const {
1399 if (DestRC != SrcRC) {
1400 // Moving EFLAGS to / from another register requires a push and a pop.
1401 if (SrcRC == &X86::CCRRegClass) {
1402 assert(SrcReg == X86::EFLAGS);
1403 if (DestRC == &X86::GR64RegClass) {
1404 BuildMI(MBB, MI, get(X86::PUSHFQ));
1405 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1406 return;
1407 } else if (DestRC == &X86::GR32RegClass) {
1408 BuildMI(MBB, MI, get(X86::PUSHFD));
1409 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1410 return;
1411 }
1412 } else if (DestRC == &X86::CCRRegClass) {
1413 assert(DestReg == X86::EFLAGS);
1414 if (SrcRC == &X86::GR64RegClass) {
1415 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1416 BuildMI(MBB, MI, get(X86::POPFQ));
1417 return;
1418 } else if (SrcRC == &X86::GR32RegClass) {
1419 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1420 BuildMI(MBB, MI, get(X86::POPFD));
1421 return;
1422 }
1423 }
1424 cerr << "Not yet supported!";
1425 abort();
1426 }
1427
1428 unsigned Opc;
1429 if (DestRC == &X86::GR64RegClass) {
1430 Opc = X86::MOV64rr;
1431 } else if (DestRC == &X86::GR32RegClass) {
1432 Opc = X86::MOV32rr;
1433 } else if (DestRC == &X86::GR16RegClass) {
1434 Opc = X86::MOV16rr;
1435 } else if (DestRC == &X86::GR8RegClass) {
1436 Opc = X86::MOV8rr;
1437 } else if (DestRC == &X86::GR32_RegClass) {
1438 Opc = X86::MOV32_rr;
1439 } else if (DestRC == &X86::GR16_RegClass) {
1440 Opc = X86::MOV16_rr;
1441 } else if (DestRC == &X86::RFP32RegClass) {
1442 Opc = X86::MOV_Fp3232;
1443 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1444 Opc = X86::MOV_Fp6464;
1445 } else if (DestRC == &X86::RFP80RegClass) {
1446 Opc = X86::MOV_Fp8080;
1447 } else if (DestRC == &X86::FR32RegClass) {
1448 Opc = X86::FsMOVAPSrr;
1449 } else if (DestRC == &X86::FR64RegClass) {
1450 Opc = X86::FsMOVAPDrr;
1451 } else if (DestRC == &X86::VR128RegClass) {
1452 Opc = X86::MOVAPSrr;
1453 } else if (DestRC == &X86::VR64RegClass) {
1454 Opc = X86::MMX_MOVQ64rr;
1455 } else {
1456 assert(0 && "Unknown regclass");
1457 abort();
1458 }
1459 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1460}
1461
Owen Andersonf6372aa2008-01-01 21:11:32 +00001462static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1463 unsigned StackAlign) {
1464 unsigned Opc = 0;
1465 if (RC == &X86::GR64RegClass) {
1466 Opc = X86::MOV64mr;
1467 } else if (RC == &X86::GR32RegClass) {
1468 Opc = X86::MOV32mr;
1469 } else if (RC == &X86::GR16RegClass) {
1470 Opc = X86::MOV16mr;
1471 } else if (RC == &X86::GR8RegClass) {
1472 Opc = X86::MOV8mr;
1473 } else if (RC == &X86::GR32_RegClass) {
1474 Opc = X86::MOV32_mr;
1475 } else if (RC == &X86::GR16_RegClass) {
1476 Opc = X86::MOV16_mr;
1477 } else if (RC == &X86::RFP80RegClass) {
1478 Opc = X86::ST_FpP80m; // pops
1479 } else if (RC == &X86::RFP64RegClass) {
1480 Opc = X86::ST_Fp64m;
1481 } else if (RC == &X86::RFP32RegClass) {
1482 Opc = X86::ST_Fp32m;
1483 } else if (RC == &X86::FR32RegClass) {
1484 Opc = X86::MOVSSmr;
1485 } else if (RC == &X86::FR64RegClass) {
1486 Opc = X86::MOVSDmr;
1487 } else if (RC == &X86::VR128RegClass) {
1488 // FIXME: Use movaps once we are capable of selectively
1489 // aligning functions that spill SSE registers on 16-byte boundaries.
1490 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1491 } else if (RC == &X86::VR64RegClass) {
1492 Opc = X86::MMX_MOVQ64mr;
1493 } else {
1494 assert(0 && "Unknown regclass");
1495 abort();
1496 }
1497
1498 return Opc;
1499}
1500
1501void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1502 MachineBasicBlock::iterator MI,
1503 unsigned SrcReg, bool isKill, int FrameIdx,
1504 const TargetRegisterClass *RC) const {
1505 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1506 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1507 .addReg(SrcReg, false, false, isKill);
1508}
1509
1510void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1511 bool isKill,
1512 SmallVectorImpl<MachineOperand> &Addr,
1513 const TargetRegisterClass *RC,
1514 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1515 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1516 MachineInstrBuilder MIB = BuildMI(get(Opc));
1517 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1518 MIB = X86InstrAddOperand(MIB, Addr[i]);
1519 MIB.addReg(SrcReg, false, false, isKill);
1520 NewMIs.push_back(MIB);
1521}
1522
1523static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1524 unsigned StackAlign) {
1525 unsigned Opc = 0;
1526 if (RC == &X86::GR64RegClass) {
1527 Opc = X86::MOV64rm;
1528 } else if (RC == &X86::GR32RegClass) {
1529 Opc = X86::MOV32rm;
1530 } else if (RC == &X86::GR16RegClass) {
1531 Opc = X86::MOV16rm;
1532 } else if (RC == &X86::GR8RegClass) {
1533 Opc = X86::MOV8rm;
1534 } else if (RC == &X86::GR32_RegClass) {
1535 Opc = X86::MOV32_rm;
1536 } else if (RC == &X86::GR16_RegClass) {
1537 Opc = X86::MOV16_rm;
1538 } else if (RC == &X86::RFP80RegClass) {
1539 Opc = X86::LD_Fp80m;
1540 } else if (RC == &X86::RFP64RegClass) {
1541 Opc = X86::LD_Fp64m;
1542 } else if (RC == &X86::RFP32RegClass) {
1543 Opc = X86::LD_Fp32m;
1544 } else if (RC == &X86::FR32RegClass) {
1545 Opc = X86::MOVSSrm;
1546 } else if (RC == &X86::FR64RegClass) {
1547 Opc = X86::MOVSDrm;
1548 } else if (RC == &X86::VR128RegClass) {
1549 // FIXME: Use movaps once we are capable of selectively
1550 // aligning functions that spill SSE registers on 16-byte boundaries.
1551 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1552 } else if (RC == &X86::VR64RegClass) {
1553 Opc = X86::MMX_MOVQ64rm;
1554 } else {
1555 assert(0 && "Unknown regclass");
1556 abort();
1557 }
1558
1559 return Opc;
1560}
1561
1562void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1563 MachineBasicBlock::iterator MI,
1564 unsigned DestReg, int FrameIdx,
1565 const TargetRegisterClass *RC) const{
1566 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1567 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1568}
1569
1570void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1571 SmallVectorImpl<MachineOperand> &Addr,
1572 const TargetRegisterClass *RC,
1573 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1574 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1575 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1576 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1577 MIB = X86InstrAddOperand(MIB, Addr[i]);
1578 NewMIs.push_back(MIB);
1579}
1580
Owen Andersond94b6a12008-01-04 23:57:37 +00001581bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1582 MachineBasicBlock::iterator MI,
1583 const std::vector<CalleeSavedInfo> &CSI) const {
1584 if (CSI.empty())
1585 return false;
1586
1587 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1588 unsigned SlotSize = is64Bit ? 8 : 4;
1589
1590 MachineFunction &MF = *MBB.getParent();
1591 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1592 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1593
1594 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1595 for (unsigned i = CSI.size(); i != 0; --i) {
1596 unsigned Reg = CSI[i-1].getReg();
1597 // Add the callee-saved register as live-in. It's killed at the spill.
1598 MBB.addLiveIn(Reg);
1599 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1600 }
1601 return true;
1602}
1603
1604bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1605 MachineBasicBlock::iterator MI,
1606 const std::vector<CalleeSavedInfo> &CSI) const {
1607 if (CSI.empty())
1608 return false;
1609
1610 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1611
1612 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1613 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1614 unsigned Reg = CSI[i].getReg();
1615 BuildMI(MBB, MI, get(Opc), Reg);
1616 }
1617 return true;
1618}
1619
Owen Anderson43dbe052008-01-07 01:35:02 +00001620static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1621 SmallVector<MachineOperand,4> &MOs,
1622 MachineInstr *MI, const TargetInstrInfo &TII) {
1623 // Create the base instruction with the memory operand as the first part.
1624 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1625 MachineInstrBuilder MIB(NewMI);
1626 unsigned NumAddrOps = MOs.size();
1627 for (unsigned i = 0; i != NumAddrOps; ++i)
1628 MIB = X86InstrAddOperand(MIB, MOs[i]);
1629 if (NumAddrOps < 4) // FrameIndex only
1630 MIB.addImm(1).addReg(0).addImm(0);
1631
1632 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00001633 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00001634 for (unsigned i = 0; i != NumOps; ++i) {
1635 MachineOperand &MO = MI->getOperand(i+2);
1636 MIB = X86InstrAddOperand(MIB, MO);
1637 }
1638 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1639 MachineOperand &MO = MI->getOperand(i);
1640 MIB = X86InstrAddOperand(MIB, MO);
1641 }
1642 return MIB;
1643}
1644
1645static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1646 SmallVector<MachineOperand,4> &MOs,
1647 MachineInstr *MI, const TargetInstrInfo &TII) {
1648 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1649 MachineInstrBuilder MIB(NewMI);
1650
1651 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1652 MachineOperand &MO = MI->getOperand(i);
1653 if (i == OpNo) {
1654 assert(MO.isRegister() && "Expected to fold into reg operand!");
1655 unsigned NumAddrOps = MOs.size();
1656 for (unsigned i = 0; i != NumAddrOps; ++i)
1657 MIB = X86InstrAddOperand(MIB, MOs[i]);
1658 if (NumAddrOps < 4) // FrameIndex only
1659 MIB.addImm(1).addReg(0).addImm(0);
1660 } else {
1661 MIB = X86InstrAddOperand(MIB, MO);
1662 }
1663 }
1664 return MIB;
1665}
1666
1667static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1668 SmallVector<MachineOperand,4> &MOs,
1669 MachineInstr *MI) {
1670 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1671
1672 unsigned NumAddrOps = MOs.size();
1673 for (unsigned i = 0; i != NumAddrOps; ++i)
1674 MIB = X86InstrAddOperand(MIB, MOs[i]);
1675 if (NumAddrOps < 4) // FrameIndex only
1676 MIB.addImm(1).addReg(0).addImm(0);
1677 return MIB.addImm(0);
1678}
1679
1680MachineInstr*
1681X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
1682 SmallVector<MachineOperand,4> &MOs) const {
1683 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1684 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00001685 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001686 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001687 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001688
1689 MachineInstr *NewMI = NULL;
1690 // Folding a memory location into the two-address part of a two-address
1691 // instruction is different than folding it other places. It requires
1692 // replacing the *two* registers with the memory location.
1693 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1694 MI->getOperand(0).isRegister() &&
1695 MI->getOperand(1).isRegister() &&
1696 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1697 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1698 isTwoAddrFold = true;
1699 } else if (i == 0) { // If operand 0
1700 if (MI->getOpcode() == X86::MOV16r0)
1701 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1702 else if (MI->getOpcode() == X86::MOV32r0)
1703 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1704 else if (MI->getOpcode() == X86::MOV64r0)
1705 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1706 else if (MI->getOpcode() == X86::MOV8r0)
1707 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1708 if (NewMI) {
1709 NewMI->copyKillDeadInfo(MI);
1710 return NewMI;
1711 }
1712
1713 OpcodeTablePtr = &RegOp2MemOpTable0;
1714 } else if (i == 1) {
1715 OpcodeTablePtr = &RegOp2MemOpTable1;
1716 } else if (i == 2) {
1717 OpcodeTablePtr = &RegOp2MemOpTable2;
1718 }
1719
1720 // If table selected...
1721 if (OpcodeTablePtr) {
1722 // Find the Opcode to fuse
1723 DenseMap<unsigned*, unsigned>::iterator I =
1724 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1725 if (I != OpcodeTablePtr->end()) {
1726 if (isTwoAddrFold)
1727 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1728 else
1729 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1730 NewMI->copyKillDeadInfo(MI);
1731 return NewMI;
1732 }
1733 }
1734
1735 // No fusion
1736 if (PrintFailedFusing)
Chris Lattner269f0592008-01-09 00:37:18 +00001737 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00001738 return NULL;
1739}
1740
1741
1742MachineInstr* X86InstrInfo::foldMemoryOperand(MachineInstr *MI,
1743 SmallVectorImpl<unsigned> &Ops,
1744 int FrameIndex) const {
1745 // Check switch flag
1746 if (NoFusing) return NULL;
1747
1748 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1749 unsigned NewOpc = 0;
1750 switch (MI->getOpcode()) {
1751 default: return NULL;
1752 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1753 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1754 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1755 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1756 }
1757 // Change to CMPXXri r, 0 first.
1758 MI->setInstrDescriptor(get(NewOpc));
1759 MI->getOperand(1).ChangeToImmediate(0);
1760 } else if (Ops.size() != 1)
1761 return NULL;
1762
1763 SmallVector<MachineOperand,4> MOs;
1764 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1765 return foldMemoryOperand(MI, Ops[0], MOs);
1766}
1767
1768MachineInstr* X86InstrInfo::foldMemoryOperand(MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001769 SmallVectorImpl<unsigned> &Ops,
1770 MachineInstr *LoadMI) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001771 // Check switch flag
1772 if (NoFusing) return NULL;
1773
1774 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1775 unsigned NewOpc = 0;
1776 switch (MI->getOpcode()) {
1777 default: return NULL;
1778 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1779 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1780 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1781 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1782 }
1783 // Change to CMPXXri r, 0 first.
1784 MI->setInstrDescriptor(get(NewOpc));
1785 MI->getOperand(1).ChangeToImmediate(0);
1786 } else if (Ops.size() != 1)
1787 return NULL;
1788
1789 SmallVector<MachineOperand,4> MOs;
Chris Lattner749c6f62008-01-07 07:27:27 +00001790 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001791 for (unsigned i = NumOps - 4; i != NumOps; ++i)
1792 MOs.push_back(LoadMI->getOperand(i));
1793 return foldMemoryOperand(MI, Ops[0], MOs);
1794}
1795
1796
1797bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001798 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001799 // Check switch flag
1800 if (NoFusing) return 0;
1801
1802 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1803 switch (MI->getOpcode()) {
1804 default: return false;
1805 case X86::TEST8rr:
1806 case X86::TEST16rr:
1807 case X86::TEST32rr:
1808 case X86::TEST64rr:
1809 return true;
1810 }
1811 }
1812
1813 if (Ops.size() != 1)
1814 return false;
1815
1816 unsigned OpNum = Ops[0];
1817 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00001818 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001819 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001820 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001821
1822 // Folding a memory location into the two-address part of a two-address
1823 // instruction is different than folding it other places. It requires
1824 // replacing the *two* registers with the memory location.
1825 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1826 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
1827 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1828 } else if (OpNum == 0) { // If operand 0
1829 switch (Opc) {
1830 case X86::MOV16r0:
1831 case X86::MOV32r0:
1832 case X86::MOV64r0:
1833 case X86::MOV8r0:
1834 return true;
1835 default: break;
1836 }
1837 OpcodeTablePtr = &RegOp2MemOpTable0;
1838 } else if (OpNum == 1) {
1839 OpcodeTablePtr = &RegOp2MemOpTable1;
1840 } else if (OpNum == 2) {
1841 OpcodeTablePtr = &RegOp2MemOpTable2;
1842 }
1843
1844 if (OpcodeTablePtr) {
1845 // Find the Opcode to fuse
1846 DenseMap<unsigned*, unsigned>::iterator I =
1847 OpcodeTablePtr->find((unsigned*)Opc);
1848 if (I != OpcodeTablePtr->end())
1849 return true;
1850 }
1851 return false;
1852}
1853
1854bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
1855 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
1856 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1857 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1858 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
1859 if (I == MemOp2RegOpTable.end())
1860 return false;
1861 unsigned Opc = I->second.first;
1862 unsigned Index = I->second.second & 0xf;
1863 bool FoldedLoad = I->second.second & (1 << 4);
1864 bool FoldedStore = I->second.second & (1 << 5);
1865 if (UnfoldLoad && !FoldedLoad)
1866 return false;
1867 UnfoldLoad &= FoldedLoad;
1868 if (UnfoldStore && !FoldedStore)
1869 return false;
1870 UnfoldStore &= FoldedStore;
1871
Chris Lattner749c6f62008-01-07 07:27:27 +00001872 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00001873 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00001874 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00001875 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
1876 SmallVector<MachineOperand,4> AddrOps;
1877 SmallVector<MachineOperand,2> BeforeOps;
1878 SmallVector<MachineOperand,2> AfterOps;
1879 SmallVector<MachineOperand,4> ImpOps;
1880 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1881 MachineOperand &Op = MI->getOperand(i);
1882 if (i >= Index && i < Index+4)
1883 AddrOps.push_back(Op);
1884 else if (Op.isRegister() && Op.isImplicit())
1885 ImpOps.push_back(Op);
1886 else if (i < Index)
1887 BeforeOps.push_back(Op);
1888 else if (i > Index)
1889 AfterOps.push_back(Op);
1890 }
1891
1892 // Emit the load instruction.
1893 if (UnfoldLoad) {
1894 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
1895 if (UnfoldStore) {
1896 // Address operands cannot be marked isKill.
1897 for (unsigned i = 1; i != 5; ++i) {
1898 MachineOperand &MO = NewMIs[0]->getOperand(i);
1899 if (MO.isRegister())
1900 MO.setIsKill(false);
1901 }
1902 }
1903 }
1904
1905 // Emit the data processing instruction.
1906 MachineInstr *DataMI = new MachineInstr(TID, true);
1907 MachineInstrBuilder MIB(DataMI);
1908
1909 if (FoldedStore)
1910 MIB.addReg(Reg, true);
1911 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
1912 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
1913 if (FoldedLoad)
1914 MIB.addReg(Reg);
1915 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
1916 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
1917 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
1918 MachineOperand &MO = ImpOps[i];
1919 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
1920 }
1921 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
1922 unsigned NewOpc = 0;
1923 switch (DataMI->getOpcode()) {
1924 default: break;
1925 case X86::CMP64ri32:
1926 case X86::CMP32ri:
1927 case X86::CMP16ri:
1928 case X86::CMP8ri: {
1929 MachineOperand &MO0 = DataMI->getOperand(0);
1930 MachineOperand &MO1 = DataMI->getOperand(1);
1931 if (MO1.getImm() == 0) {
1932 switch (DataMI->getOpcode()) {
1933 default: break;
1934 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
1935 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
1936 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
1937 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
1938 }
1939 DataMI->setInstrDescriptor(get(NewOpc));
1940 MO1.ChangeToRegister(MO0.getReg(), false);
1941 }
1942 }
1943 }
1944 NewMIs.push_back(DataMI);
1945
1946 // Emit the store instruction.
1947 if (UnfoldStore) {
1948 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00001949 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00001950 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
1951 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
1952 }
1953
1954 return true;
1955}
1956
1957bool
1958X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1959 SmallVectorImpl<SDNode*> &NewNodes) const {
1960 if (!N->isTargetOpcode())
1961 return false;
1962
1963 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1964 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
1965 if (I == MemOp2RegOpTable.end())
1966 return false;
1967 unsigned Opc = I->second.first;
1968 unsigned Index = I->second.second & 0xf;
1969 bool FoldedLoad = I->second.second & (1 << 4);
1970 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner749c6f62008-01-07 07:27:27 +00001971 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00001972 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00001973 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00001974 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
1975 std::vector<SDOperand> AddrOps;
1976 std::vector<SDOperand> BeforeOps;
1977 std::vector<SDOperand> AfterOps;
1978 unsigned NumOps = N->getNumOperands();
1979 for (unsigned i = 0; i != NumOps-1; ++i) {
1980 SDOperand Op = N->getOperand(i);
1981 if (i >= Index && i < Index+4)
1982 AddrOps.push_back(Op);
1983 else if (i < Index)
1984 BeforeOps.push_back(Op);
1985 else if (i > Index)
1986 AfterOps.push_back(Op);
1987 }
1988 SDOperand Chain = N->getOperand(NumOps-1);
1989 AddrOps.push_back(Chain);
1990
1991 // Emit the load instruction.
1992 SDNode *Load = 0;
1993 if (FoldedLoad) {
1994 MVT::ValueType VT = *RC->vt_begin();
1995 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
1996 MVT::Other, &AddrOps[0], AddrOps.size());
1997 NewNodes.push_back(Load);
1998 }
1999
2000 // Emit the data processing instruction.
2001 std::vector<MVT::ValueType> VTs;
2002 const TargetRegisterClass *DstRC = 0;
Chris Lattner349c4952008-01-07 03:13:06 +00002003 if (TID.getNumDefs() > 0) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002004 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002005 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002006 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2007 VTs.push_back(*DstRC->vt_begin());
2008 }
2009 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2010 MVT::ValueType VT = N->getValueType(i);
Chris Lattner349c4952008-01-07 03:13:06 +00002011 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00002012 VTs.push_back(VT);
2013 }
2014 if (Load)
2015 BeforeOps.push_back(SDOperand(Load, 0));
2016 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2017 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2018 NewNodes.push_back(NewNode);
2019
2020 // Emit the store instruction.
2021 if (FoldedStore) {
2022 AddrOps.pop_back();
2023 AddrOps.push_back(SDOperand(NewNode, 0));
2024 AddrOps.push_back(Chain);
2025 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2026 MVT::Other, &AddrOps[0], AddrOps.size());
2027 NewNodes.push_back(Store);
2028 }
2029
2030 return true;
2031}
2032
2033unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2034 bool UnfoldLoad, bool UnfoldStore) const {
2035 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2036 MemOp2RegOpTable.find((unsigned*)Opc);
2037 if (I == MemOp2RegOpTable.end())
2038 return 0;
2039 bool FoldedLoad = I->second.second & (1 << 4);
2040 bool FoldedStore = I->second.second & (1 << 5);
2041 if (UnfoldLoad && !FoldedLoad)
2042 return 0;
2043 if (UnfoldStore && !FoldedStore)
2044 return 0;
2045 return I->second.first;
2046}
2047
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002048bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2049 if (MBB.empty()) return false;
2050
2051 switch (MBB.back().getOpcode()) {
Arnold Schwaighoferc85e1712007-10-11 19:40:01 +00002052 case X86::TCRETURNri:
2053 case X86::TCRETURNdi:
Evan Cheng126f17a2007-05-21 18:44:17 +00002054 case X86::RET: // Return.
2055 case X86::RETI:
2056 case X86::TAILJMPd:
2057 case X86::TAILJMPr:
2058 case X86::TAILJMPm:
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002059 case X86::JMP: // Uncond branch.
2060 case X86::JMP32r: // Indirect branch.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002061 case X86::JMP64r: // Indirect branch (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002062 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002063 case X86::JMP64m: // Indirect branch through mem (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002064 return true;
2065 default: return false;
2066 }
2067}
2068
Chris Lattner7fbe9722006-10-20 17:42:20 +00002069bool X86InstrInfo::
2070ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00002071 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2072 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2073 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002074}
2075
Evan Cheng25ab6902006-09-08 06:48:29 +00002076const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2077 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2078 if (Subtarget->is64Bit())
2079 return &X86::GR64RegClass;
2080 else
2081 return &X86::GR32RegClass;
2082}