blob: f43bb96facce040d32a8d9f266f338dd0cee6a21 [file] [log] [blame]
Chandler Carruth713aa942012-09-14 09:22:59 +00001//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Constants.h"
29#include "llvm/DIBuilder.h"
30#include "llvm/DebugInfo.h"
31#include "llvm/DerivedTypes.h"
32#include "llvm/Function.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000033#include "llvm/IRBuilder.h"
34#include "llvm/Instructions.h"
35#include "llvm/IntrinsicInst.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/Module.h"
38#include "llvm/Operator.h"
39#include "llvm/Pass.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/STLExtras.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000044#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/Loads.h"
46#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1c8db502012-09-15 11:43:14 +000047#include "llvm/Support/CommandLine.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000048#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000053#include "llvm/Support/raw_ostream.h"
Micah Villmow3574eca2012-10-08 16:38:25 +000054#include "llvm/DataLayout.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000055#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
61STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
62STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
63STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
64STATISTIC(NumDeleted, "Number of instructions deleted");
65STATISTIC(NumVectorized, "Number of vectorized aggregates");
66
Chandler Carruth1c8db502012-09-15 11:43:14 +000067/// Hidden option to force the pass to not use DomTree and mem2reg, instead
68/// forming SSA values through the SSAUpdater infrastructure.
69static cl::opt<bool>
70ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
71
Chandler Carruth713aa942012-09-14 09:22:59 +000072namespace {
73/// \brief Alloca partitioning representation.
74///
75/// This class represents a partitioning of an alloca into slices, and
76/// information about the nature of uses of each slice of the alloca. The goal
77/// is that this information is sufficient to decide if and how to split the
78/// alloca apart and replace slices with scalars. It is also intended that this
Chandler Carruth7f5bede2012-09-14 10:18:49 +000079/// structure can capture the relevant information needed both to decide about
Chandler Carruth713aa942012-09-14 09:22:59 +000080/// and to enact these transformations.
81class AllocaPartitioning {
82public:
83 /// \brief A common base class for representing a half-open byte range.
84 struct ByteRange {
85 /// \brief The beginning offset of the range.
86 uint64_t BeginOffset;
87
88 /// \brief The ending offset, not included in the range.
89 uint64_t EndOffset;
90
91 ByteRange() : BeginOffset(), EndOffset() {}
92 ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
93 : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
94
95 /// \brief Support for ordering ranges.
96 ///
97 /// This provides an ordering over ranges such that start offsets are
98 /// always increasing, and within equal start offsets, the end offsets are
Chandler Carruth7f5bede2012-09-14 10:18:49 +000099 /// decreasing. Thus the spanning range comes first in a cluster with the
Chandler Carruth713aa942012-09-14 09:22:59 +0000100 /// same start position.
101 bool operator<(const ByteRange &RHS) const {
102 if (BeginOffset < RHS.BeginOffset) return true;
103 if (BeginOffset > RHS.BeginOffset) return false;
104 if (EndOffset > RHS.EndOffset) return true;
105 return false;
106 }
107
108 /// \brief Support comparison with a single offset to allow binary searches.
Benjamin Kramer2d1c2a22012-09-17 16:42:36 +0000109 friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
110 return LHS.BeginOffset < RHSOffset;
111 }
112
113 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
114 const ByteRange &RHS) {
115 return LHSOffset < RHS.BeginOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000116 }
117
118 bool operator==(const ByteRange &RHS) const {
119 return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
120 }
121 bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
122 };
123
124 /// \brief A partition of an alloca.
125 ///
126 /// This structure represents a contiguous partition of the alloca. These are
127 /// formed by examining the uses of the alloca. During formation, they may
128 /// overlap but once an AllocaPartitioning is built, the Partitions within it
129 /// are all disjoint.
130 struct Partition : public ByteRange {
131 /// \brief Whether this partition is splittable into smaller partitions.
132 ///
133 /// We flag partitions as splittable when they are formed entirely due to
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000134 /// accesses by trivially splittable operations such as memset and memcpy.
Chandler Carruth713aa942012-09-14 09:22:59 +0000135 ///
136 /// FIXME: At some point we should consider loads and stores of FCAs to be
137 /// splittable and eagerly split them into scalar values.
138 bool IsSplittable;
139
Chandler Carruthfca3f402012-10-05 01:29:09 +0000140 /// \brief Test whether a partition has been marked as dead.
141 bool isDead() const {
142 if (BeginOffset == UINT64_MAX) {
143 assert(EndOffset == UINT64_MAX);
144 return true;
145 }
146 return false;
147 }
148
149 /// \brief Kill a partition.
150 /// This is accomplished by setting both its beginning and end offset to
151 /// the maximum possible value.
152 void kill() {
153 assert(!isDead() && "He's Dead, Jim!");
154 BeginOffset = EndOffset = UINT64_MAX;
155 }
156
Chandler Carruth713aa942012-09-14 09:22:59 +0000157 Partition() : ByteRange(), IsSplittable() {}
158 Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
159 : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
160 };
161
162 /// \brief A particular use of a partition of the alloca.
163 ///
164 /// This structure is used to associate uses of a partition with it. They
165 /// mark the range of bytes which are referenced by a particular instruction,
166 /// and includes a handle to the user itself and the pointer value in use.
167 /// The bounds of these uses are determined by intersecting the bounds of the
168 /// memory use itself with a particular partition. As a consequence there is
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000169 /// intentionally overlap between various uses of the same partition.
Chandler Carruth713aa942012-09-14 09:22:59 +0000170 struct PartitionUse : public ByteRange {
Chandler Carruth77c12702012-10-01 01:49:22 +0000171 /// \brief The use in question. Provides access to both user and used value.
Chandler Carruthfdb15852012-10-02 18:57:13 +0000172 ///
173 /// Note that this may be null if the partition use is *dead*, that is, it
174 /// should be ignored.
175 Use *U;
Chandler Carruth713aa942012-09-14 09:22:59 +0000176
Chandler Carruth77c12702012-10-01 01:49:22 +0000177 PartitionUse() : ByteRange(), U() {}
178 PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
179 : ByteRange(BeginOffset, EndOffset), U(U) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000180 };
181
182 /// \brief Construct a partitioning of a particular alloca.
183 ///
184 /// Construction does most of the work for partitioning the alloca. This
185 /// performs the necessary walks of users and builds a partitioning from it.
Micah Villmow3574eca2012-10-08 16:38:25 +0000186 AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
Chandler Carruth713aa942012-09-14 09:22:59 +0000187
188 /// \brief Test whether a pointer to the allocation escapes our analysis.
189 ///
190 /// If this is true, the partitioning is never fully built and should be
191 /// ignored.
192 bool isEscaped() const { return PointerEscapingInstr; }
193
194 /// \brief Support for iterating over the partitions.
195 /// @{
196 typedef SmallVectorImpl<Partition>::iterator iterator;
197 iterator begin() { return Partitions.begin(); }
198 iterator end() { return Partitions.end(); }
199
200 typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
201 const_iterator begin() const { return Partitions.begin(); }
202 const_iterator end() const { return Partitions.end(); }
203 /// @}
204
205 /// \brief Support for iterating over and manipulating a particular
206 /// partition's uses.
207 ///
208 /// The iteration support provided for uses is more limited, but also
209 /// includes some manipulation routines to support rewriting the uses of
210 /// partitions during SROA.
211 /// @{
212 typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
213 use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
214 use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
215 use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
216 use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
Chandler Carruth713aa942012-09-14 09:22:59 +0000217
218 typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
219 const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
220 const_use_iterator use_begin(const_iterator I) const {
221 return Uses[I - begin()].begin();
222 }
223 const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
224 const_use_iterator use_end(const_iterator I) const {
225 return Uses[I - begin()].end();
226 }
Chandler Carrutha346f462012-10-02 17:49:47 +0000227
228 unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
229 unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
230 const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
231 return Uses[PIdx][UIdx];
232 }
233 const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
234 return Uses[I - begin()][UIdx];
235 }
236
237 void use_push_back(unsigned Idx, const PartitionUse &PU) {
238 Uses[Idx].push_back(PU);
239 }
240 void use_push_back(const_iterator I, const PartitionUse &PU) {
241 Uses[I - begin()].push_back(PU);
242 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000243 /// @}
244
245 /// \brief Allow iterating the dead users for this alloca.
246 ///
247 /// These are instructions which will never actually use the alloca as they
248 /// are outside the allocated range. They are safe to replace with undef and
249 /// delete.
250 /// @{
251 typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
252 dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
253 dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
254 /// @}
255
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000256 /// \brief Allow iterating the dead expressions referring to this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000257 ///
258 /// These are operands which have cannot actually be used to refer to the
259 /// alloca as they are outside its range and the user doesn't correct for
260 /// that. These mostly consist of PHI node inputs and the like which we just
261 /// need to replace with undef.
262 /// @{
263 typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
264 dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
265 dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
266 /// @}
267
268 /// \brief MemTransferInst auxiliary data.
269 /// This struct provides some auxiliary data about memory transfer
270 /// intrinsics such as memcpy and memmove. These intrinsics can use two
271 /// different ranges within the same alloca, and provide other challenges to
272 /// correctly represent. We stash extra data to help us untangle this
273 /// after the partitioning is complete.
274 struct MemTransferOffsets {
Chandler Carruthfca3f402012-10-05 01:29:09 +0000275 /// The destination begin and end offsets when the destination is within
276 /// this alloca. If the end offset is zero the destination is not within
277 /// this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000278 uint64_t DestBegin, DestEnd;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000279
280 /// The source begin and end offsets when the source is within this alloca.
281 /// If the end offset is zero, the source is not within this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000282 uint64_t SourceBegin, SourceEnd;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000283
284 /// Flag for whether an alloca is splittable.
Chandler Carruth713aa942012-09-14 09:22:59 +0000285 bool IsSplittable;
286 };
287 MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
288 return MemTransferInstData.lookup(&II);
289 }
290
291 /// \brief Map from a PHI or select operand back to a partition.
292 ///
293 /// When manipulating PHI nodes or selects, they can use more than one
294 /// partition of an alloca. We store a special mapping to allow finding the
295 /// partition referenced by each of these operands, if any.
Chandler Carruth77c12702012-10-01 01:49:22 +0000296 iterator findPartitionForPHIOrSelectOperand(Use *U) {
297 SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
298 = PHIOrSelectOpMap.find(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000299 if (MapIt == PHIOrSelectOpMap.end())
300 return end();
301
302 return begin() + MapIt->second.first;
303 }
304
305 /// \brief Map from a PHI or select operand back to the specific use of
306 /// a partition.
307 ///
308 /// Similar to mapping these operands back to the partitions, this maps
309 /// directly to the use structure of that partition.
Chandler Carruth77c12702012-10-01 01:49:22 +0000310 use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
311 SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
312 = PHIOrSelectOpMap.find(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000313 assert(MapIt != PHIOrSelectOpMap.end());
314 return Uses[MapIt->second.first].begin() + MapIt->second.second;
315 }
316
317 /// \brief Compute a common type among the uses of a particular partition.
318 ///
319 /// This routines walks all of the uses of a particular partition and tries
320 /// to find a common type between them. Untyped operations such as memset and
321 /// memcpy are ignored.
322 Type *getCommonType(iterator I) const;
323
Chandler Carruthba13d2e2012-09-14 10:18:51 +0000324#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chandler Carruth713aa942012-09-14 09:22:59 +0000325 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
326 void printUsers(raw_ostream &OS, const_iterator I,
327 StringRef Indent = " ") const;
328 void print(raw_ostream &OS) const;
NAKAMURA Takumiad9f5b82012-09-14 10:06:10 +0000329 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
330 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
Chandler Carruthba13d2e2012-09-14 10:18:51 +0000331#endif
Chandler Carruth713aa942012-09-14 09:22:59 +0000332
333private:
334 template <typename DerivedT, typename RetT = void> class BuilderBase;
335 class PartitionBuilder;
336 friend class AllocaPartitioning::PartitionBuilder;
337 class UseBuilder;
338 friend class AllocaPartitioning::UseBuilder;
339
Benjamin Kramerd0807692012-09-14 13:08:09 +0000340#ifndef NDEBUG
Chandler Carruth713aa942012-09-14 09:22:59 +0000341 /// \brief Handle to alloca instruction to simplify method interfaces.
342 AllocaInst &AI;
Benjamin Kramerd0807692012-09-14 13:08:09 +0000343#endif
Chandler Carruth713aa942012-09-14 09:22:59 +0000344
345 /// \brief The instruction responsible for this alloca having no partitioning.
346 ///
347 /// When an instruction (potentially) escapes the pointer to the alloca, we
348 /// store a pointer to that here and abort trying to partition the alloca.
349 /// This will be null if the alloca is partitioned successfully.
350 Instruction *PointerEscapingInstr;
351
352 /// \brief The partitions of the alloca.
353 ///
354 /// We store a vector of the partitions over the alloca here. This vector is
355 /// sorted by increasing begin offset, and then by decreasing end offset. See
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000356 /// the Partition inner class for more details. Initially (during
357 /// construction) there are overlaps, but we form a disjoint sequence of
358 /// partitions while finishing construction and a fully constructed object is
359 /// expected to always have this as a disjoint space.
Chandler Carruth713aa942012-09-14 09:22:59 +0000360 SmallVector<Partition, 8> Partitions;
361
362 /// \brief The uses of the partitions.
363 ///
364 /// This is essentially a mapping from each partition to a list of uses of
365 /// that partition. The mapping is done with a Uses vector that has the exact
366 /// same number of entries as the partition vector. Each entry is itself
367 /// a vector of the uses.
368 SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
369
370 /// \brief Instructions which will become dead if we rewrite the alloca.
371 ///
372 /// Note that these are not separated by partition. This is because we expect
373 /// a partitioned alloca to be completely rewritten or not rewritten at all.
374 /// If rewritten, all these instructions can simply be removed and replaced
375 /// with undef as they come from outside of the allocated space.
376 SmallVector<Instruction *, 8> DeadUsers;
377
378 /// \brief Operands which will become dead if we rewrite the alloca.
379 ///
380 /// These are operands that in their particular use can be replaced with
381 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
382 /// to PHI nodes and the like. They aren't entirely dead (there might be
383 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
384 /// want to swap this particular input for undef to simplify the use lists of
385 /// the alloca.
386 SmallVector<Use *, 8> DeadOperands;
387
388 /// \brief The underlying storage for auxiliary memcpy and memset info.
389 SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
390
391 /// \brief A side datastructure used when building up the partitions and uses.
392 ///
393 /// This mapping is only really used during the initial building of the
394 /// partitioning so that we can retain information about PHI and select nodes
395 /// processed.
396 SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
397
398 /// \brief Auxiliary information for particular PHI or select operands.
Chandler Carruth77c12702012-10-01 01:49:22 +0000399 SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
Chandler Carruth713aa942012-09-14 09:22:59 +0000400
401 /// \brief A utility routine called from the constructor.
402 ///
403 /// This does what it says on the tin. It is the key of the alloca partition
404 /// splitting and merging. After it is called we have the desired disjoint
405 /// collection of partitions.
406 void splitAndMergePartitions();
407};
408}
409
410template <typename DerivedT, typename RetT>
411class AllocaPartitioning::BuilderBase
412 : public InstVisitor<DerivedT, RetT> {
413public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000414 BuilderBase(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth713aa942012-09-14 09:22:59 +0000415 : TD(TD),
416 AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
417 P(P) {
418 enqueueUsers(AI, 0);
419 }
420
421protected:
Micah Villmow3574eca2012-10-08 16:38:25 +0000422 const DataLayout &TD;
Chandler Carruth713aa942012-09-14 09:22:59 +0000423 const uint64_t AllocSize;
424 AllocaPartitioning &P;
425
Chandler Carruth77c12702012-10-01 01:49:22 +0000426 SmallPtrSet<Use *, 8> VisitedUses;
427
Chandler Carruth713aa942012-09-14 09:22:59 +0000428 struct OffsetUse {
429 Use *U;
Chandler Carruth02e92a02012-09-23 11:43:14 +0000430 int64_t Offset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000431 };
432 SmallVector<OffsetUse, 8> Queue;
433
434 // The active offset and use while visiting.
435 Use *U;
Chandler Carruth02e92a02012-09-23 11:43:14 +0000436 int64_t Offset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000437
Chandler Carruth02e92a02012-09-23 11:43:14 +0000438 void enqueueUsers(Instruction &I, int64_t UserOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000439 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
440 UI != UE; ++UI) {
Chandler Carruth77c12702012-10-01 01:49:22 +0000441 if (VisitedUses.insert(&UI.getUse())) {
442 OffsetUse OU = { &UI.getUse(), UserOffset };
443 Queue.push_back(OU);
444 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000445 }
446 }
447
Chandler Carruth02e92a02012-09-23 11:43:14 +0000448 bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000449 GEPOffset = Offset;
Micah Villmowf3840d22012-10-11 17:21:41 +0000450 unsigned int AS = GEPI.getPointerAddressSpace();
Chandler Carruth713aa942012-09-14 09:22:59 +0000451 for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
452 GTI != GTE; ++GTI) {
453 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
454 if (!OpC)
455 return false;
456 if (OpC->isZero())
457 continue;
458
459 // Handle a struct index, which adds its field offset to the pointer.
460 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
461 unsigned ElementIdx = OpC->getZExtValue();
462 const StructLayout *SL = TD.getStructLayout(STy);
Chandler Carruth02e92a02012-09-23 11:43:14 +0000463 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
464 // Check that we can continue to model this GEP in a signed 64-bit offset.
465 if (ElementOffset > INT64_MAX ||
466 (GEPOffset >= 0 &&
467 ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
468 DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
469 << "what can be represented in an int64_t!\n"
470 << " alloca: " << P.AI << "\n");
471 return false;
472 }
473 if (GEPOffset < 0)
474 GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
475 else
476 GEPOffset += ElementOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000477 continue;
478 }
479
Micah Villmowf3840d22012-10-11 17:21:41 +0000480 APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits(AS));
Chandler Carruth02e92a02012-09-23 11:43:14 +0000481 Index *= APInt(Index.getBitWidth(),
482 TD.getTypeAllocSize(GTI.getIndexedType()));
483 Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
484 /*isSigned*/true);
485 // Check if the result can be stored in our int64_t offset.
486 if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
487 DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
488 << "what can be represented in an int64_t!\n"
489 << " alloca: " << P.AI << "\n");
490 return false;
491 }
492
493 GEPOffset = Index.getSExtValue();
Chandler Carruth713aa942012-09-14 09:22:59 +0000494 }
495 return true;
496 }
497
498 Value *foldSelectInst(SelectInst &SI) {
499 // If the condition being selected on is a constant or the same value is
500 // being selected between, fold the select. Yes this does (rarely) happen
501 // early on.
502 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
503 return SI.getOperand(1+CI->isZero());
504 if (SI.getOperand(1) == SI.getOperand(2)) {
505 assert(*U == SI.getOperand(1));
506 return SI.getOperand(1);
507 }
508 return 0;
509 }
510};
511
512/// \brief Builder for the alloca partitioning.
513///
514/// This class builds an alloca partitioning by recursively visiting the uses
515/// of an alloca and splitting the partitions for each load and store at each
516/// offset.
517class AllocaPartitioning::PartitionBuilder
518 : public BuilderBase<PartitionBuilder, bool> {
519 friend class InstVisitor<PartitionBuilder, bool>;
520
521 SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
522
523public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000524 PartitionBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth2a9bf252012-09-14 09:30:33 +0000525 : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000526
527 /// \brief Run the builder over the allocation.
528 bool operator()() {
529 // Note that we have to re-evaluate size on each trip through the loop as
530 // the queue grows at the tail.
531 for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
532 U = Queue[Idx].U;
533 Offset = Queue[Idx].Offset;
534 if (!visit(cast<Instruction>(U->getUser())))
535 return false;
536 }
537 return true;
538 }
539
540private:
541 bool markAsEscaping(Instruction &I) {
542 P.PointerEscapingInstr = &I;
543 return false;
544 }
545
Chandler Carruth02e92a02012-09-23 11:43:14 +0000546 void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
Chandler Carruth63392ea2012-09-16 19:39:50 +0000547 bool IsSplittable = false) {
Chandler Carruthc3034632012-09-25 10:03:40 +0000548 // Completely skip uses which have a zero size or don't overlap the
549 // allocation.
550 if (Size == 0 ||
551 (Offset >= 0 && (uint64_t)Offset >= AllocSize) ||
Chandler Carruth02e92a02012-09-23 11:43:14 +0000552 (Offset < 0 && (uint64_t)-Offset >= Size)) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000553 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
554 << " which starts past the end of the " << AllocSize
555 << " byte alloca:\n"
556 << " alloca: " << P.AI << "\n"
557 << " use: " << I << "\n");
558 return;
559 }
560
Chandler Carruth02e92a02012-09-23 11:43:14 +0000561 // Clamp the start to the beginning of the allocation.
562 if (Offset < 0) {
563 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
564 << " to start at the beginning of the alloca:\n"
565 << " alloca: " << P.AI << "\n"
566 << " use: " << I << "\n");
567 Size -= (uint64_t)-Offset;
568 Offset = 0;
569 }
570
571 uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
572
573 // Clamp the end offset to the end of the allocation. Note that this is
574 // formulated to handle even the case where "BeginOffset + Size" overflows.
575 assert(AllocSize >= BeginOffset); // Established above.
576 if (Size > AllocSize - BeginOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000577 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
578 << " to remain within the " << AllocSize << " byte alloca:\n"
579 << " alloca: " << P.AI << "\n"
580 << " use: " << I << "\n");
581 EndOffset = AllocSize;
582 }
583
Chandler Carruth713aa942012-09-14 09:22:59 +0000584 Partition New(BeginOffset, EndOffset, IsSplittable);
585 P.Partitions.push_back(New);
586 }
587
Chandler Carruth02e92a02012-09-23 11:43:14 +0000588 bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000589 uint64_t Size = TD.getTypeStoreSize(Ty);
590
591 // If this memory access can be shown to *statically* extend outside the
592 // bounds of of the allocation, it's behavior is undefined, so simply
593 // ignore it. Note that this is more strict than the generic clamping
594 // behavior of insertUse. We also try to handle cases which might run the
595 // risk of overflow.
596 // FIXME: We should instead consider the pointer to have escaped if this
597 // function is being instrumented for addressing bugs or race conditions.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000598 if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
599 Size > (AllocSize - (uint64_t)Offset)) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000600 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
601 << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
602 << " which extends past the end of the " << AllocSize
603 << " byte alloca:\n"
604 << " alloca: " << P.AI << "\n"
605 << " use: " << I << "\n");
606 return true;
607 }
608
Chandler Carruth63392ea2012-09-16 19:39:50 +0000609 insertUse(I, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000610 return true;
611 }
612
613 bool visitBitCastInst(BitCastInst &BC) {
614 enqueueUsers(BC, Offset);
615 return true;
616 }
617
618 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
Chandler Carruth02e92a02012-09-23 11:43:14 +0000619 int64_t GEPOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000620 if (!computeConstantGEPOffset(GEPI, GEPOffset))
621 return markAsEscaping(GEPI);
622
623 enqueueUsers(GEPI, GEPOffset);
624 return true;
625 }
626
627 bool visitLoadInst(LoadInst &LI) {
Chandler Carruthc370acd2012-09-18 12:57:43 +0000628 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
629 "All simple FCA loads should have been pre-split");
Chandler Carruth63392ea2012-09-16 19:39:50 +0000630 return handleLoadOrStore(LI.getType(), LI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000631 }
632
633 bool visitStoreInst(StoreInst &SI) {
Chandler Carruthc370acd2012-09-18 12:57:43 +0000634 Value *ValOp = SI.getValueOperand();
635 if (ValOp == *U)
Chandler Carruth713aa942012-09-14 09:22:59 +0000636 return markAsEscaping(SI);
637
Chandler Carruthc370acd2012-09-18 12:57:43 +0000638 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
639 "All simple FCA stores should have been pre-split");
640 return handleLoadOrStore(ValOp->getType(), SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000641 }
642
643
644 bool visitMemSetInst(MemSetInst &II) {
Chandler Carruthb3dd9a12012-09-14 10:26:34 +0000645 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
Chandler Carruth713aa942012-09-14 09:22:59 +0000646 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000647 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
648 insertUse(II, Offset, Size, Length);
Chandler Carruth713aa942012-09-14 09:22:59 +0000649 return true;
650 }
651
652 bool visitMemTransferInst(MemTransferInst &II) {
653 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
654 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
655 if (!Size)
656 // Zero-length mem transfer intrinsics can be ignored entirely.
657 return true;
658
659 MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
660
661 // Only intrinsics with a constant length can be split.
662 Offsets.IsSplittable = Length;
663
Chandler Carruthfca3f402012-10-05 01:29:09 +0000664 if (*U == II.getRawDest()) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000665 Offsets.DestBegin = Offset;
666 Offsets.DestEnd = Offset + Size;
667 }
Chandler Carruthfca3f402012-10-05 01:29:09 +0000668 if (*U == II.getRawSource()) {
669 Offsets.SourceBegin = Offset;
670 Offsets.SourceEnd = Offset + Size;
671 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000672
Chandler Carruthfca3f402012-10-05 01:29:09 +0000673 // If we have set up end offsets for both the source and the destination,
674 // we have found both sides of this transfer pointing at the same alloca.
675 bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
676 if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
677 unsigned PrevIdx = MemTransferPartitionMap[&II];
Chandler Carruth713aa942012-09-14 09:22:59 +0000678
Chandler Carruthfca3f402012-10-05 01:29:09 +0000679 // Check if the begin offsets match and this is a non-volatile transfer.
680 // In that case, we can completely elide the transfer.
681 if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
682 P.Partitions[PrevIdx].kill();
683 return true;
684 }
685
686 // Otherwise we have an offset transfer within the same alloca. We can't
687 // split those.
688 P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
689 } else if (SeenBothEnds) {
690 // Handle the case where this exact use provides both ends of the
691 // operation.
692 assert(II.getRawDest() == II.getRawSource());
693
694 // For non-volatile transfers this is a no-op.
695 if (!II.isVolatile())
696 return true;
697
698 // Otherwise just suppress splitting.
Chandler Carruth713aa942012-09-14 09:22:59 +0000699 Offsets.IsSplittable = false;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000700 }
701
702
703 // Insert the use now that we've fixed up the splittable nature.
704 insertUse(II, Offset, Size, Offsets.IsSplittable);
705
706 // Setup the mapping from intrinsic to partition of we've not seen both
707 // ends of this transfer.
708 if (!SeenBothEnds) {
709 unsigned NewIdx = P.Partitions.size() - 1;
710 bool Inserted
711 = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
712 assert(Inserted &&
713 "Already have intrinsic in map but haven't seen both ends");
NAKAMURA Takumi0559d312012-10-05 13:56:23 +0000714 (void)Inserted;
Chandler Carruth713aa942012-09-14 09:22:59 +0000715 }
716
717 return true;
718 }
719
720 // Disable SRoA for any intrinsics except for lifetime invariants.
Chandler Carruth50754f02012-09-14 10:26:36 +0000721 // FIXME: What about debug instrinsics? This matches old behavior, but
722 // doesn't make sense.
Chandler Carruth713aa942012-09-14 09:22:59 +0000723 bool visitIntrinsicInst(IntrinsicInst &II) {
724 if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
725 II.getIntrinsicID() == Intrinsic::lifetime_end) {
726 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
727 uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000728 insertUse(II, Offset, Size, true);
Chandler Carruth713aa942012-09-14 09:22:59 +0000729 return true;
730 }
731
732 return markAsEscaping(II);
733 }
734
735 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
736 // We consider any PHI or select that results in a direct load or store of
737 // the same offset to be a viable use for partitioning purposes. These uses
738 // are considered unsplittable and the size is the maximum loaded or stored
739 // size.
740 SmallPtrSet<Instruction *, 4> Visited;
741 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
742 Visited.insert(Root);
743 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
Chandler Carruthc3034632012-09-25 10:03:40 +0000744 // If there are no loads or stores, the access is dead. We mark that as
745 // a size zero access.
746 Size = 0;
Chandler Carruth713aa942012-09-14 09:22:59 +0000747 do {
748 Instruction *I, *UsedI;
749 llvm::tie(UsedI, I) = Uses.pop_back_val();
750
751 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
752 Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
753 continue;
754 }
755 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
756 Value *Op = SI->getOperand(0);
757 if (Op == UsedI)
758 return SI;
759 Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
760 continue;
761 }
762
763 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
764 if (!GEP->hasAllZeroIndices())
765 return GEP;
766 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
767 !isa<SelectInst>(I)) {
768 return I;
769 }
770
771 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
772 ++UI)
773 if (Visited.insert(cast<Instruction>(*UI)))
774 Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
775 } while (!Uses.empty());
776
777 return 0;
778 }
779
780 bool visitPHINode(PHINode &PN) {
781 // See if we already have computed info on this node.
782 std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
783 if (PHIInfo.first) {
784 PHIInfo.second = true;
Chandler Carruth63392ea2012-09-16 19:39:50 +0000785 insertUse(PN, Offset, PHIInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000786 return true;
787 }
788
789 // Check for an unsafe use of the PHI node.
790 if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
791 return markAsEscaping(*EscapingI);
792
Chandler Carruth63392ea2012-09-16 19:39:50 +0000793 insertUse(PN, Offset, PHIInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000794 return true;
795 }
796
797 bool visitSelectInst(SelectInst &SI) {
798 if (Value *Result = foldSelectInst(SI)) {
799 if (Result == *U)
800 // If the result of the constant fold will be the pointer, recurse
801 // through the select as if we had RAUW'ed it.
802 enqueueUsers(SI, Offset);
803
804 return true;
805 }
806
807 // See if we already have computed info on this node.
808 std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
809 if (SelectInfo.first) {
810 SelectInfo.second = true;
Chandler Carruth63392ea2012-09-16 19:39:50 +0000811 insertUse(SI, Offset, SelectInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000812 return true;
813 }
814
815 // Check for an unsafe use of the PHI node.
816 if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
817 return markAsEscaping(*EscapingI);
818
Chandler Carruth63392ea2012-09-16 19:39:50 +0000819 insertUse(SI, Offset, SelectInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000820 return true;
821 }
822
823 /// \brief Disable SROA entirely if there are unhandled users of the alloca.
824 bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
825};
826
827
828/// \brief Use adder for the alloca partitioning.
829///
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000830/// This class adds the uses of an alloca to all of the partitions which they
831/// use. For splittable partitions, this can end up doing essentially a linear
Chandler Carruth713aa942012-09-14 09:22:59 +0000832/// walk of the partitions, but the number of steps remains bounded by the
833/// total result instruction size:
834/// - The number of partitions is a result of the number unsplittable
835/// instructions using the alloca.
836/// - The number of users of each partition is at worst the total number of
837/// splittable instructions using the alloca.
838/// Thus we will produce N * M instructions in the end, where N are the number
839/// of unsplittable uses and M are the number of splittable. This visitor does
840/// the exact same number of updates to the partitioning.
841///
842/// In the more common case, this visitor will leverage the fact that the
843/// partition space is pre-sorted, and do a logarithmic search for the
844/// partition needed, making the total visit a classical ((N + M) * log(N))
845/// complexity operation.
846class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
847 friend class InstVisitor<UseBuilder>;
848
849 /// \brief Set to de-duplicate dead instructions found in the use walk.
850 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
851
852public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000853 UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth2a9bf252012-09-14 09:30:33 +0000854 : BuilderBase<UseBuilder>(TD, AI, P) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000855
856 /// \brief Run the builder over the allocation.
857 void operator()() {
858 // Note that we have to re-evaluate size on each trip through the loop as
859 // the queue grows at the tail.
860 for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
861 U = Queue[Idx].U;
862 Offset = Queue[Idx].Offset;
863 this->visit(cast<Instruction>(U->getUser()));
864 }
865 }
866
867private:
868 void markAsDead(Instruction &I) {
869 if (VisitedDeadInsts.insert(&I))
870 P.DeadUsers.push_back(&I);
871 }
872
Chandler Carruth02e92a02012-09-23 11:43:14 +0000873 void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
Chandler Carruthc3034632012-09-25 10:03:40 +0000874 // If the use has a zero size or extends outside of the allocation, record
875 // it as a dead use for elimination later.
876 if (Size == 0 || (uint64_t)Offset >= AllocSize ||
Chandler Carruth02e92a02012-09-23 11:43:14 +0000877 (Offset < 0 && (uint64_t)-Offset >= Size))
Chandler Carruth713aa942012-09-14 09:22:59 +0000878 return markAsDead(User);
879
Chandler Carruth02e92a02012-09-23 11:43:14 +0000880 // Clamp the start to the beginning of the allocation.
881 if (Offset < 0) {
882 Size -= (uint64_t)-Offset;
883 Offset = 0;
884 }
885
886 uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
887
888 // Clamp the end offset to the end of the allocation. Note that this is
889 // formulated to handle even the case where "BeginOffset + Size" overflows.
890 assert(AllocSize >= BeginOffset); // Established above.
891 if (Size > AllocSize - BeginOffset)
Chandler Carruth713aa942012-09-14 09:22:59 +0000892 EndOffset = AllocSize;
893
894 // NB: This only works if we have zero overlapping partitions.
895 iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
896 if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
897 B = llvm::prior(B);
898 for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
899 ++I) {
Chandler Carruth77c12702012-10-01 01:49:22 +0000900 PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
901 std::min(I->EndOffset, EndOffset), U);
902 P.use_push_back(I, NewPU);
Chandler Carruth713aa942012-09-14 09:22:59 +0000903 if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
Chandler Carruth77c12702012-10-01 01:49:22 +0000904 P.PHIOrSelectOpMap[U]
Chandler Carruth713aa942012-09-14 09:22:59 +0000905 = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
906 }
907 }
908
Chandler Carruth02e92a02012-09-23 11:43:14 +0000909 void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000910 uint64_t Size = TD.getTypeStoreSize(Ty);
911
912 // If this memory access can be shown to *statically* extend outside the
913 // bounds of of the allocation, it's behavior is undefined, so simply
914 // ignore it. Note that this is more strict than the generic clamping
915 // behavior of insertUse.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000916 if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
917 Size > (AllocSize - (uint64_t)Offset))
Chandler Carruth713aa942012-09-14 09:22:59 +0000918 return markAsDead(I);
919
Chandler Carruth63392ea2012-09-16 19:39:50 +0000920 insertUse(I, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000921 }
922
923 void visitBitCastInst(BitCastInst &BC) {
924 if (BC.use_empty())
925 return markAsDead(BC);
926
927 enqueueUsers(BC, Offset);
928 }
929
930 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
931 if (GEPI.use_empty())
932 return markAsDead(GEPI);
933
Chandler Carruth02e92a02012-09-23 11:43:14 +0000934 int64_t GEPOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000935 if (!computeConstantGEPOffset(GEPI, GEPOffset))
936 llvm_unreachable("Unable to compute constant offset for use");
937
938 enqueueUsers(GEPI, GEPOffset);
939 }
940
941 void visitLoadInst(LoadInst &LI) {
Chandler Carruth63392ea2012-09-16 19:39:50 +0000942 handleLoadOrStore(LI.getType(), LI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000943 }
944
945 void visitStoreInst(StoreInst &SI) {
Chandler Carruth63392ea2012-09-16 19:39:50 +0000946 handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000947 }
948
949 void visitMemSetInst(MemSetInst &II) {
950 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000951 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
952 insertUse(II, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000953 }
954
955 void visitMemTransferInst(MemTransferInst &II) {
956 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000957 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000958 if (!Size)
959 return markAsDead(II);
960
961 MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
962 if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
963 Offsets.DestBegin == Offsets.SourceBegin)
964 return markAsDead(II); // Skip identity transfers without side-effects.
965
Chandler Carruth63392ea2012-09-16 19:39:50 +0000966 insertUse(II, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000967 }
968
969 void visitIntrinsicInst(IntrinsicInst &II) {
970 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
971 II.getIntrinsicID() == Intrinsic::lifetime_end);
972
973 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
Chandler Carruth63392ea2012-09-16 19:39:50 +0000974 insertUse(II, Offset,
975 std::min(AllocSize - Offset, Length->getLimitedValue()));
Chandler Carruth713aa942012-09-14 09:22:59 +0000976 }
977
Chandler Carruth63392ea2012-09-16 19:39:50 +0000978 void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000979 uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
980
981 // For PHI and select operands outside the alloca, we can't nuke the entire
982 // phi or select -- the other side might still be relevant, so we special
983 // case them here and use a separate structure to track the operands
984 // themselves which should be replaced with undef.
985 if (Offset >= AllocSize) {
986 P.DeadOperands.push_back(U);
987 return;
988 }
989
Chandler Carruth63392ea2012-09-16 19:39:50 +0000990 insertUse(User, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000991 }
992 void visitPHINode(PHINode &PN) {
993 if (PN.use_empty())
994 return markAsDead(PN);
995
Chandler Carruth63392ea2012-09-16 19:39:50 +0000996 insertPHIOrSelect(PN, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000997 }
998 void visitSelectInst(SelectInst &SI) {
999 if (SI.use_empty())
1000 return markAsDead(SI);
1001
1002 if (Value *Result = foldSelectInst(SI)) {
1003 if (Result == *U)
1004 // If the result of the constant fold will be the pointer, recurse
1005 // through the select as if we had RAUW'ed it.
1006 enqueueUsers(SI, Offset);
Chandler Carruthd54a6b52012-09-21 23:36:40 +00001007 else
1008 // Otherwise the operand to the select is dead, and we can replace it
1009 // with undef.
1010 P.DeadOperands.push_back(U);
Chandler Carruth713aa942012-09-14 09:22:59 +00001011
1012 return;
1013 }
1014
Chandler Carruth63392ea2012-09-16 19:39:50 +00001015 insertPHIOrSelect(SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +00001016 }
1017
1018 /// \brief Unreachable, we've already visited the alloca once.
1019 void visitInstruction(Instruction &I) {
1020 llvm_unreachable("Unhandled instruction in use builder.");
1021 }
1022};
1023
1024void AllocaPartitioning::splitAndMergePartitions() {
1025 size_t NumDeadPartitions = 0;
1026
1027 // Track the range of splittable partitions that we pass when accumulating
1028 // overlapping unsplittable partitions.
1029 uint64_t SplitEndOffset = 0ull;
1030
1031 Partition New(0ull, 0ull, false);
1032
1033 for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
1034 ++j;
1035
1036 if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
1037 assert(New.BeginOffset == New.EndOffset);
1038 New = Partitions[i];
1039 } else {
1040 assert(New.IsSplittable);
1041 New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
1042 }
1043 assert(New.BeginOffset != New.EndOffset);
1044
1045 // Scan the overlapping partitions.
1046 while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
1047 // If the new partition we are forming is splittable, stop at the first
1048 // unsplittable partition.
1049 if (New.IsSplittable && !Partitions[j].IsSplittable)
1050 break;
1051
1052 // Grow the new partition to include any equally splittable range. 'j' is
1053 // always equally splittable when New is splittable, but when New is not
1054 // splittable, we may subsume some (or part of some) splitable partition
1055 // without growing the new one.
1056 if (New.IsSplittable == Partitions[j].IsSplittable) {
1057 New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
1058 } else {
1059 assert(!New.IsSplittable);
1060 assert(Partitions[j].IsSplittable);
1061 SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
1062 }
1063
Chandler Carruthfca3f402012-10-05 01:29:09 +00001064 Partitions[j].kill();
Chandler Carruth713aa942012-09-14 09:22:59 +00001065 ++NumDeadPartitions;
1066 ++j;
1067 }
1068
1069 // If the new partition is splittable, chop off the end as soon as the
1070 // unsplittable subsequent partition starts and ensure we eventually cover
1071 // the splittable area.
1072 if (j != e && New.IsSplittable) {
1073 SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
1074 New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1075 }
1076
1077 // Add the new partition if it differs from the original one and is
1078 // non-empty. We can end up with an empty partition here if it was
1079 // splittable but there is an unsplittable one that starts at the same
1080 // offset.
1081 if (New != Partitions[i]) {
1082 if (New.BeginOffset != New.EndOffset)
1083 Partitions.push_back(New);
1084 // Mark the old one for removal.
Chandler Carruthfca3f402012-10-05 01:29:09 +00001085 Partitions[i].kill();
Chandler Carruth713aa942012-09-14 09:22:59 +00001086 ++NumDeadPartitions;
1087 }
1088
1089 New.BeginOffset = New.EndOffset;
1090 if (!New.IsSplittable) {
1091 New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1092 if (j != e && !Partitions[j].IsSplittable)
1093 New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1094 New.IsSplittable = true;
1095 // If there is a trailing splittable partition which won't be fused into
1096 // the next splittable partition go ahead and add it onto the partitions
1097 // list.
1098 if (New.BeginOffset < New.EndOffset &&
1099 (j == e || !Partitions[j].IsSplittable ||
1100 New.EndOffset < Partitions[j].BeginOffset)) {
1101 Partitions.push_back(New);
1102 New.BeginOffset = New.EndOffset = 0ull;
1103 }
1104 }
1105 }
1106
1107 // Re-sort the partitions now that they have been split and merged into
1108 // disjoint set of partitions. Also remove any of the dead partitions we've
1109 // replaced in the process.
1110 std::sort(Partitions.begin(), Partitions.end());
1111 if (NumDeadPartitions) {
Chandler Carruthfca3f402012-10-05 01:29:09 +00001112 assert(Partitions.back().isDead());
Chandler Carruth713aa942012-09-14 09:22:59 +00001113 assert((ptrdiff_t)NumDeadPartitions ==
1114 std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1115 }
1116 Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1117}
1118
Micah Villmow3574eca2012-10-08 16:38:25 +00001119AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
Benjamin Kramerd0807692012-09-14 13:08:09 +00001120 :
1121#ifndef NDEBUG
1122 AI(AI),
1123#endif
1124 PointerEscapingInstr(0) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001125 PartitionBuilder PB(TD, AI, *this);
1126 if (!PB())
1127 return;
1128
Chandler Carruthfca3f402012-10-05 01:29:09 +00001129 // Sort the uses. This arranges for the offsets to be in ascending order,
1130 // and the sizes to be in descending order.
1131 std::sort(Partitions.begin(), Partitions.end());
Chandler Carruth713aa942012-09-14 09:22:59 +00001132
Chandler Carruthfca3f402012-10-05 01:29:09 +00001133 // Remove any partitions from the back which are marked as dead.
1134 while (!Partitions.empty() && Partitions.back().isDead())
1135 Partitions.pop_back();
1136
1137 if (Partitions.size() > 1) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001138 // Intersect splittability for all partitions with equal offsets and sizes.
1139 // Then remove all but the first so that we have a sequence of non-equal but
1140 // potentially overlapping partitions.
1141 for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1142 I = J) {
1143 ++J;
1144 while (J != E && *I == *J) {
1145 I->IsSplittable &= J->IsSplittable;
1146 ++J;
1147 }
1148 }
1149 Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1150 Partitions.end());
1151
1152 // Split splittable and merge unsplittable partitions into a disjoint set
1153 // of partitions over the used space of the allocation.
1154 splitAndMergePartitions();
1155 }
1156
1157 // Now build up the user lists for each of these disjoint partitions by
1158 // re-walking the recursive users of the alloca.
1159 Uses.resize(Partitions.size());
1160 UseBuilder UB(TD, AI, *this);
1161 UB();
Chandler Carruth713aa942012-09-14 09:22:59 +00001162}
1163
1164Type *AllocaPartitioning::getCommonType(iterator I) const {
1165 Type *Ty = 0;
1166 for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001167 if (!UI->U)
1168 continue; // Skip dead uses.
Chandler Carruth77c12702012-10-01 01:49:22 +00001169 if (isa<IntrinsicInst>(*UI->U->getUser()))
Chandler Carruth713aa942012-09-14 09:22:59 +00001170 continue;
1171 if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
Chandler Carruth7c8df7a2012-09-18 17:49:37 +00001172 continue;
Chandler Carruth713aa942012-09-14 09:22:59 +00001173
1174 Type *UserTy = 0;
Chandler Carruth77c12702012-10-01 01:49:22 +00001175 if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001176 UserTy = LI->getType();
Chandler Carruth77c12702012-10-01 01:49:22 +00001177 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001178 UserTy = SI->getValueOperand()->getType();
Chandler Carruth713aa942012-09-14 09:22:59 +00001179 }
1180
1181 if (Ty && Ty != UserTy)
1182 return 0;
1183
1184 Ty = UserTy;
1185 }
1186 return Ty;
1187}
1188
Chandler Carruthba13d2e2012-09-14 10:18:51 +00001189#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1190
Chandler Carruth713aa942012-09-14 09:22:59 +00001191void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1192 StringRef Indent) const {
1193 OS << Indent << "partition #" << (I - begin())
1194 << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1195 << (I->IsSplittable ? " (splittable)" : "")
1196 << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1197 << "\n";
1198}
1199
1200void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1201 StringRef Indent) const {
1202 for (const_use_iterator UI = use_begin(I), UE = use_end(I);
1203 UI != UE; ++UI) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001204 if (!UI->U)
1205 continue; // Skip dead uses.
Chandler Carruth713aa942012-09-14 09:22:59 +00001206 OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") "
Chandler Carruth77c12702012-10-01 01:49:22 +00001207 << "used by: " << *UI->U->getUser() << "\n";
1208 if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001209 const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1210 bool IsDest;
1211 if (!MTO.IsSplittable)
1212 IsDest = UI->BeginOffset == MTO.DestBegin;
1213 else
1214 IsDest = MTO.DestBegin != 0u;
1215 OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": "
1216 << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1217 << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1218 }
1219 }
1220}
1221
1222void AllocaPartitioning::print(raw_ostream &OS) const {
1223 if (PointerEscapingInstr) {
1224 OS << "No partitioning for alloca: " << AI << "\n"
1225 << " A pointer to this alloca escaped by:\n"
1226 << " " << *PointerEscapingInstr << "\n";
1227 return;
1228 }
1229
1230 OS << "Partitioning of alloca: " << AI << "\n";
1231 unsigned Num = 0;
1232 for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
1233 print(OS, I);
1234 printUsers(OS, I);
1235 }
1236}
1237
1238void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1239void AllocaPartitioning::dump() const { print(dbgs()); }
1240
Chandler Carruthba13d2e2012-09-14 10:18:51 +00001241#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1242
Chandler Carruth713aa942012-09-14 09:22:59 +00001243
1244namespace {
Chandler Carruth1c8db502012-09-15 11:43:14 +00001245/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1246///
1247/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1248/// the loads and stores of an alloca instruction, as well as updating its
1249/// debug information. This is used when a domtree is unavailable and thus
1250/// mem2reg in its full form can't be used to handle promotion of allocas to
1251/// scalar values.
1252class AllocaPromoter : public LoadAndStorePromoter {
1253 AllocaInst &AI;
1254 DIBuilder &DIB;
1255
1256 SmallVector<DbgDeclareInst *, 4> DDIs;
1257 SmallVector<DbgValueInst *, 4> DVIs;
1258
1259public:
1260 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1261 AllocaInst &AI, DIBuilder &DIB)
1262 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1263
1264 void run(const SmallVectorImpl<Instruction*> &Insts) {
1265 // Remember which alloca we're promoting (for isInstInList).
1266 if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1267 for (Value::use_iterator UI = DebugNode->use_begin(),
1268 UE = DebugNode->use_end();
1269 UI != UE; ++UI)
1270 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1271 DDIs.push_back(DDI);
1272 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1273 DVIs.push_back(DVI);
1274 }
1275
1276 LoadAndStorePromoter::run(Insts);
1277 AI.eraseFromParent();
1278 while (!DDIs.empty())
1279 DDIs.pop_back_val()->eraseFromParent();
1280 while (!DVIs.empty())
1281 DVIs.pop_back_val()->eraseFromParent();
1282 }
1283
1284 virtual bool isInstInList(Instruction *I,
1285 const SmallVectorImpl<Instruction*> &Insts) const {
1286 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1287 return LI->getOperand(0) == &AI;
1288 return cast<StoreInst>(I)->getPointerOperand() == &AI;
1289 }
1290
1291 virtual void updateDebugInfo(Instruction *Inst) const {
1292 for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1293 E = DDIs.end(); I != E; ++I) {
1294 DbgDeclareInst *DDI = *I;
1295 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1296 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1297 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1298 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1299 }
1300 for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1301 E = DVIs.end(); I != E; ++I) {
1302 DbgValueInst *DVI = *I;
1303 Value *Arg = NULL;
1304 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1305 // If an argument is zero extended then use argument directly. The ZExt
1306 // may be zapped by an optimization pass in future.
1307 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1308 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1309 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1310 Arg = dyn_cast<Argument>(SExt->getOperand(0));
1311 if (!Arg)
1312 Arg = SI->getOperand(0);
1313 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1314 Arg = LI->getOperand(0);
1315 } else {
1316 continue;
1317 }
1318 Instruction *DbgVal =
1319 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1320 Inst);
1321 DbgVal->setDebugLoc(DVI->getDebugLoc());
1322 }
1323 }
1324};
1325} // end anon namespace
1326
1327
1328namespace {
Chandler Carruth713aa942012-09-14 09:22:59 +00001329/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1330///
1331/// This pass takes allocations which can be completely analyzed (that is, they
1332/// don't escape) and tries to turn them into scalar SSA values. There are
1333/// a few steps to this process.
1334///
1335/// 1) It takes allocations of aggregates and analyzes the ways in which they
1336/// are used to try to split them into smaller allocations, ideally of
1337/// a single scalar data type. It will split up memcpy and memset accesses
1338/// as necessary and try to isolate invidual scalar accesses.
1339/// 2) It will transform accesses into forms which are suitable for SSA value
1340/// promotion. This can be replacing a memset with a scalar store of an
1341/// integer value, or it can involve speculating operations on a PHI or
1342/// select to be a PHI or select of the results.
1343/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1344/// onto insert and extract operations on a vector value, and convert them to
1345/// this form. By doing so, it will enable promotion of vector aggregates to
1346/// SSA vector values.
1347class SROA : public FunctionPass {
Chandler Carruth1c8db502012-09-15 11:43:14 +00001348 const bool RequiresDomTree;
1349
Chandler Carruth713aa942012-09-14 09:22:59 +00001350 LLVMContext *C;
Micah Villmow3574eca2012-10-08 16:38:25 +00001351 const DataLayout *TD;
Chandler Carruth713aa942012-09-14 09:22:59 +00001352 DominatorTree *DT;
1353
1354 /// \brief Worklist of alloca instructions to simplify.
1355 ///
1356 /// Each alloca in the function is added to this. Each new alloca formed gets
1357 /// added to it as well to recursively simplify unless that alloca can be
1358 /// directly promoted. Finally, each time we rewrite a use of an alloca other
1359 /// the one being actively rewritten, we add it back onto the list if not
1360 /// already present to ensure it is re-visited.
1361 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1362
1363 /// \brief A collection of instructions to delete.
1364 /// We try to batch deletions to simplify code and make things a bit more
1365 /// efficient.
1366 SmallVector<Instruction *, 8> DeadInsts;
1367
1368 /// \brief A set to prevent repeatedly marking an instruction split into many
1369 /// uses as dead. Only used to guard insertion into DeadInsts.
1370 SmallPtrSet<Instruction *, 4> DeadSplitInsts;
1371
Chandler Carruthb2d98c22012-10-04 12:33:50 +00001372 /// \brief Post-promotion worklist.
1373 ///
1374 /// Sometimes we discover an alloca which has a high probability of becoming
1375 /// viable for SROA after a round of promotion takes place. In those cases,
1376 /// the alloca is enqueued here for re-processing.
1377 ///
1378 /// Note that we have to be very careful to clear allocas out of this list in
1379 /// the event they are deleted.
1380 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
1381
Chandler Carruth713aa942012-09-14 09:22:59 +00001382 /// \brief A collection of alloca instructions we can directly promote.
1383 std::vector<AllocaInst *> PromotableAllocas;
1384
1385public:
Chandler Carruth1c8db502012-09-15 11:43:14 +00001386 SROA(bool RequiresDomTree = true)
1387 : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1388 C(0), TD(0), DT(0) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001389 initializeSROAPass(*PassRegistry::getPassRegistry());
1390 }
1391 bool runOnFunction(Function &F);
1392 void getAnalysisUsage(AnalysisUsage &AU) const;
1393
1394 const char *getPassName() const { return "SROA"; }
1395 static char ID;
1396
1397private:
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00001398 friend class PHIOrSelectSpeculator;
Chandler Carruth713aa942012-09-14 09:22:59 +00001399 friend class AllocaPartitionRewriter;
1400 friend class AllocaPartitionVectorRewriter;
1401
1402 bool rewriteAllocaPartition(AllocaInst &AI,
1403 AllocaPartitioning &P,
1404 AllocaPartitioning::iterator PI);
1405 bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1406 bool runOnAlloca(AllocaInst &AI);
Chandler Carruth8615cd22012-09-14 10:26:38 +00001407 void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
Chandler Carruth1c8db502012-09-15 11:43:14 +00001408 bool promoteAllocas(Function &F);
Chandler Carruth713aa942012-09-14 09:22:59 +00001409};
1410}
1411
1412char SROA::ID = 0;
1413
Chandler Carruth1c8db502012-09-15 11:43:14 +00001414FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1415 return new SROA(RequiresDomTree);
Chandler Carruth713aa942012-09-14 09:22:59 +00001416}
1417
1418INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1419 false, false)
1420INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1421INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1422 false, false)
1423
Chandler Carruth0e9da582012-10-05 01:29:06 +00001424namespace {
1425/// \brief Visitor to speculate PHIs and Selects where possible.
1426class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
1427 // Befriend the base class so it can delegate to private visit methods.
1428 friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
1429
Micah Villmow3574eca2012-10-08 16:38:25 +00001430 const DataLayout &TD;
Chandler Carruth0e9da582012-10-05 01:29:06 +00001431 AllocaPartitioning &P;
1432 SROA &Pass;
1433
1434public:
Micah Villmow3574eca2012-10-08 16:38:25 +00001435 PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
Chandler Carruth0e9da582012-10-05 01:29:06 +00001436 : TD(TD), P(P), Pass(Pass) {}
1437
1438 /// \brief Visit the users of an alloca partition and rewrite them.
1439 void visitUsers(AllocaPartitioning::const_iterator PI) {
1440 // Note that we need to use an index here as the underlying vector of uses
1441 // may be grown during speculation. However, we never need to re-visit the
1442 // new uses, and so we can use the initial size bound.
1443 for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
1444 const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
1445 if (!PU.U)
1446 continue; // Skip dead use.
1447
1448 visit(cast<Instruction>(PU.U->getUser()));
1449 }
1450 }
1451
1452private:
1453 // By default, skip this instruction.
1454 void visitInstruction(Instruction &I) {}
1455
1456 /// PHI instructions that use an alloca and are subsequently loaded can be
1457 /// rewritten to load both input pointers in the pred blocks and then PHI the
1458 /// results, allowing the load of the alloca to be promoted.
1459 /// From this:
1460 /// %P2 = phi [i32* %Alloca, i32* %Other]
1461 /// %V = load i32* %P2
1462 /// to:
1463 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1464 /// ...
1465 /// %V2 = load i32* %Other
1466 /// ...
1467 /// %V = phi [i32 %V1, i32 %V2]
1468 ///
1469 /// We can do this to a select if its only uses are loads and if the operands
1470 /// to the select can be loaded unconditionally.
1471 ///
1472 /// FIXME: This should be hoisted into a generic utility, likely in
1473 /// Transforms/Util/Local.h
1474 bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
1475 // For now, we can only do this promotion if the load is in the same block
1476 // as the PHI, and if there are no stores between the phi and load.
1477 // TODO: Allow recursive phi users.
1478 // TODO: Allow stores.
1479 BasicBlock *BB = PN.getParent();
1480 unsigned MaxAlign = 0;
1481 for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
1482 UI != UE; ++UI) {
1483 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1484 if (LI == 0 || !LI->isSimple()) return false;
1485
1486 // For now we only allow loads in the same block as the PHI. This is
1487 // a common case that happens when instcombine merges two loads through
1488 // a PHI.
1489 if (LI->getParent() != BB) return false;
1490
1491 // Ensure that there are no instructions between the PHI and the load that
1492 // could store.
1493 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1494 if (BBI->mayWriteToMemory())
1495 return false;
1496
1497 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1498 Loads.push_back(LI);
1499 }
1500
1501 // We can only transform this if it is safe to push the loads into the
1502 // predecessor blocks. The only thing to watch out for is that we can't put
1503 // a possibly trapping load in the predecessor if it is a critical edge.
1504 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
1505 ++Idx) {
1506 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1507 Value *InVal = PN.getIncomingValue(Idx);
1508
1509 // If the value is produced by the terminator of the predecessor (an
1510 // invoke) or it has side-effects, there is no valid place to put a load
1511 // in the predecessor.
1512 if (TI == InVal || TI->mayHaveSideEffects())
1513 return false;
1514
1515 // If the predecessor has a single successor, then the edge isn't
1516 // critical.
1517 if (TI->getNumSuccessors() == 1)
1518 continue;
1519
1520 // If this pointer is always safe to load, or if we can prove that there
1521 // is already a load in the block, then we can move the load to the pred
1522 // block.
1523 if (InVal->isDereferenceablePointer() ||
1524 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
1525 continue;
1526
1527 return false;
1528 }
1529
1530 return true;
1531 }
1532
1533 void visitPHINode(PHINode &PN) {
1534 DEBUG(dbgs() << " original: " << PN << "\n");
1535
1536 SmallVector<LoadInst *, 4> Loads;
1537 if (!isSafePHIToSpeculate(PN, Loads))
1538 return;
1539
1540 assert(!Loads.empty());
1541
1542 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1543 IRBuilder<> PHIBuilder(&PN);
1544 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1545 PN.getName() + ".sroa.speculated");
1546
1547 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1548 // matter which one we get and if any differ, it doesn't matter.
1549 LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
1550 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1551 unsigned Align = SomeLoad->getAlignment();
1552
1553 // Rewrite all loads of the PN to use the new PHI.
1554 do {
1555 LoadInst *LI = Loads.pop_back_val();
1556 LI->replaceAllUsesWith(NewPN);
1557 Pass.DeadInsts.push_back(LI);
1558 } while (!Loads.empty());
1559
1560 // Inject loads into all of the pred blocks.
1561 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1562 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1563 TerminatorInst *TI = Pred->getTerminator();
1564 Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
1565 Value *InVal = PN.getIncomingValue(Idx);
1566 IRBuilder<> PredBuilder(TI);
1567
1568 LoadInst *Load
1569 = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
1570 Pred->getName()));
1571 ++NumLoadsSpeculated;
1572 Load->setAlignment(Align);
1573 if (TBAATag)
1574 Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1575 NewPN->addIncoming(Load, Pred);
1576
1577 Instruction *Ptr = dyn_cast<Instruction>(InVal);
1578 if (!Ptr)
1579 // No uses to rewrite.
1580 continue;
1581
1582 // Try to lookup and rewrite any partition uses corresponding to this phi
1583 // input.
1584 AllocaPartitioning::iterator PI
1585 = P.findPartitionForPHIOrSelectOperand(InUse);
1586 if (PI == P.end())
1587 continue;
1588
1589 // Replace the Use in the PartitionUse for this operand with the Use
1590 // inside the load.
1591 AllocaPartitioning::use_iterator UI
1592 = P.findPartitionUseForPHIOrSelectOperand(InUse);
1593 assert(isa<PHINode>(*UI->U->getUser()));
1594 UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
1595 }
1596 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1597 }
1598
1599 /// Select instructions that use an alloca and are subsequently loaded can be
1600 /// rewritten to load both input pointers and then select between the result,
1601 /// allowing the load of the alloca to be promoted.
1602 /// From this:
1603 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1604 /// %V = load i32* %P2
1605 /// to:
1606 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1607 /// %V2 = load i32* %Other
1608 /// %V = select i1 %cond, i32 %V1, i32 %V2
1609 ///
1610 /// We can do this to a select if its only uses are loads and if the operand
1611 /// to the select can be loaded unconditionally.
1612 bool isSafeSelectToSpeculate(SelectInst &SI,
1613 SmallVectorImpl<LoadInst *> &Loads) {
1614 Value *TValue = SI.getTrueValue();
1615 Value *FValue = SI.getFalseValue();
1616 bool TDerefable = TValue->isDereferenceablePointer();
1617 bool FDerefable = FValue->isDereferenceablePointer();
1618
1619 for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
1620 UI != UE; ++UI) {
1621 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1622 if (LI == 0 || !LI->isSimple()) return false;
1623
1624 // Both operands to the select need to be dereferencable, either
1625 // absolutely (e.g. allocas) or at this point because we can see other
1626 // accesses to it.
1627 if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
1628 LI->getAlignment(), &TD))
1629 return false;
1630 if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
1631 LI->getAlignment(), &TD))
1632 return false;
1633 Loads.push_back(LI);
1634 }
1635
1636 return true;
1637 }
1638
1639 void visitSelectInst(SelectInst &SI) {
1640 DEBUG(dbgs() << " original: " << SI << "\n");
1641 IRBuilder<> IRB(&SI);
1642
1643 // If the select isn't safe to speculate, just use simple logic to emit it.
1644 SmallVector<LoadInst *, 4> Loads;
1645 if (!isSafeSelectToSpeculate(SI, Loads))
1646 return;
1647
1648 Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
1649 AllocaPartitioning::iterator PIs[2];
1650 AllocaPartitioning::PartitionUse PUs[2];
1651 for (unsigned i = 0, e = 2; i != e; ++i) {
1652 PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
1653 if (PIs[i] != P.end()) {
1654 // If the pointer is within the partitioning, remove the select from
1655 // its uses. We'll add in the new loads below.
1656 AllocaPartitioning::use_iterator UI
1657 = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
1658 PUs[i] = *UI;
1659 // Clear out the use here so that the offsets into the use list remain
1660 // stable but this use is ignored when rewriting.
1661 UI->U = 0;
1662 }
1663 }
1664
1665 Value *TV = SI.getTrueValue();
1666 Value *FV = SI.getFalseValue();
1667 // Replace the loads of the select with a select of two loads.
1668 while (!Loads.empty()) {
1669 LoadInst *LI = Loads.pop_back_val();
1670
1671 IRB.SetInsertPoint(LI);
1672 LoadInst *TL =
1673 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1674 LoadInst *FL =
1675 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1676 NumLoadsSpeculated += 2;
1677
1678 // Transfer alignment and TBAA info if present.
1679 TL->setAlignment(LI->getAlignment());
1680 FL->setAlignment(LI->getAlignment());
1681 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1682 TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1683 FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1684 }
1685
1686 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1687 LI->getName() + ".sroa.speculated");
1688
1689 LoadInst *Loads[2] = { TL, FL };
1690 for (unsigned i = 0, e = 2; i != e; ++i) {
1691 if (PIs[i] != P.end()) {
1692 Use *LoadUse = &Loads[i]->getOperandUse(0);
1693 assert(PUs[i].U->get() == LoadUse->get());
1694 PUs[i].U = LoadUse;
1695 P.use_push_back(PIs[i], PUs[i]);
1696 }
1697 }
1698
1699 DEBUG(dbgs() << " speculated to: " << *V << "\n");
1700 LI->replaceAllUsesWith(V);
1701 Pass.DeadInsts.push_back(LI);
1702 }
1703 }
1704};
1705}
1706
Chandler Carruth713aa942012-09-14 09:22:59 +00001707/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
1708///
1709/// If the provided GEP is all-constant, the total byte offset formed by the
1710/// GEP is computed and Offset is set to it. If the GEP has any non-constant
1711/// operands, the function returns false and the value of Offset is unmodified.
Micah Villmow3574eca2012-10-08 16:38:25 +00001712static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP,
Chandler Carruth713aa942012-09-14 09:22:59 +00001713 APInt &Offset) {
1714 APInt GEPOffset(Offset.getBitWidth(), 0);
1715 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1716 GTI != GTE; ++GTI) {
1717 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1718 if (!OpC)
1719 return false;
1720 if (OpC->isZero()) continue;
1721
1722 // Handle a struct index, which adds its field offset to the pointer.
1723 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1724 unsigned ElementIdx = OpC->getZExtValue();
1725 const StructLayout *SL = TD.getStructLayout(STy);
1726 GEPOffset += APInt(Offset.getBitWidth(),
1727 SL->getElementOffset(ElementIdx));
1728 continue;
1729 }
1730
1731 APInt TypeSize(Offset.getBitWidth(),
1732 TD.getTypeAllocSize(GTI.getIndexedType()));
1733 if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
1734 assert((VTy->getScalarSizeInBits() % 8) == 0 &&
1735 "vector element size is not a multiple of 8, cannot GEP over it");
1736 TypeSize = VTy->getScalarSizeInBits() / 8;
1737 }
1738
1739 GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
1740 }
1741 Offset = GEPOffset;
1742 return true;
1743}
1744
1745/// \brief Build a GEP out of a base pointer and indices.
1746///
1747/// This will return the BasePtr if that is valid, or build a new GEP
1748/// instruction using the IRBuilder if GEP-ing is needed.
1749static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1750 SmallVectorImpl<Value *> &Indices,
1751 const Twine &Prefix) {
1752 if (Indices.empty())
1753 return BasePtr;
1754
1755 // A single zero index is a no-op, so check for this and avoid building a GEP
1756 // in that case.
1757 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1758 return BasePtr;
1759
1760 return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1761}
1762
1763/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1764/// TargetTy without changing the offset of the pointer.
1765///
1766/// This routine assumes we've already established a properly offset GEP with
1767/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1768/// zero-indices down through type layers until we find one the same as
1769/// TargetTy. If we can't find one with the same type, we at least try to use
1770/// one with the same size. If none of that works, we just produce the GEP as
1771/// indicated by Indices to have the correct offset.
Micah Villmow3574eca2012-10-08 16:38:25 +00001772static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001773 Value *BasePtr, Type *Ty, Type *TargetTy,
1774 SmallVectorImpl<Value *> &Indices,
1775 const Twine &Prefix) {
1776 if (Ty == TargetTy)
1777 return buildGEP(IRB, BasePtr, Indices, Prefix);
1778
1779 // See if we can descend into a struct and locate a field with the correct
1780 // type.
1781 unsigned NumLayers = 0;
1782 Type *ElementTy = Ty;
1783 do {
1784 if (ElementTy->isPointerTy())
1785 break;
1786 if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1787 ElementTy = SeqTy->getElementType();
Micah Villmowf3840d22012-10-11 17:21:41 +00001788 Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(
1789 ElementTy->isPointerTy() ?
1790 cast<PointerType>(ElementTy)->getAddressSpace(): 0), 0)));
Chandler Carruth713aa942012-09-14 09:22:59 +00001791 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
Chandler Carruth2fdb25b2012-10-09 01:58:35 +00001792 if (STy->element_begin() == STy->element_end())
1793 break; // Nothing left to descend into.
Chandler Carruth713aa942012-09-14 09:22:59 +00001794 ElementTy = *STy->element_begin();
1795 Indices.push_back(IRB.getInt32(0));
1796 } else {
1797 break;
1798 }
1799 ++NumLayers;
1800 } while (ElementTy != TargetTy);
1801 if (ElementTy != TargetTy)
1802 Indices.erase(Indices.end() - NumLayers, Indices.end());
1803
1804 return buildGEP(IRB, BasePtr, Indices, Prefix);
1805}
1806
1807/// \brief Recursively compute indices for a natural GEP.
1808///
1809/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1810/// element types adding appropriate indices for the GEP.
Micah Villmow3574eca2012-10-08 16:38:25 +00001811static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001812 Value *Ptr, Type *Ty, APInt &Offset,
1813 Type *TargetTy,
1814 SmallVectorImpl<Value *> &Indices,
1815 const Twine &Prefix) {
1816 if (Offset == 0)
1817 return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1818
1819 // We can't recurse through pointer types.
1820 if (Ty->isPointerTy())
1821 return 0;
1822
Chandler Carruth8ed1ed82012-09-14 10:30:40 +00001823 // We try to analyze GEPs over vectors here, but note that these GEPs are
1824 // extremely poorly defined currently. The long-term goal is to remove GEPing
1825 // over a vector from the IR completely.
Chandler Carruth713aa942012-09-14 09:22:59 +00001826 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1827 unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
1828 if (ElementSizeInBits % 8)
Chandler Carruth8ed1ed82012-09-14 10:30:40 +00001829 return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
Chandler Carruth713aa942012-09-14 09:22:59 +00001830 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1831 APInt NumSkippedElements = Offset.udiv(ElementSize);
1832 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1833 return 0;
1834 Offset -= NumSkippedElements * ElementSize;
1835 Indices.push_back(IRB.getInt(NumSkippedElements));
1836 return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1837 Offset, TargetTy, Indices, Prefix);
1838 }
1839
1840 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1841 Type *ElementTy = ArrTy->getElementType();
1842 APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1843 APInt NumSkippedElements = Offset.udiv(ElementSize);
1844 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1845 return 0;
1846
1847 Offset -= NumSkippedElements * ElementSize;
1848 Indices.push_back(IRB.getInt(NumSkippedElements));
1849 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1850 Indices, Prefix);
1851 }
1852
1853 StructType *STy = dyn_cast<StructType>(Ty);
1854 if (!STy)
1855 return 0;
1856
1857 const StructLayout *SL = TD.getStructLayout(STy);
1858 uint64_t StructOffset = Offset.getZExtValue();
Chandler Carruthad41dcf2012-09-14 10:30:42 +00001859 if (StructOffset >= SL->getSizeInBytes())
Chandler Carruth713aa942012-09-14 09:22:59 +00001860 return 0;
1861 unsigned Index = SL->getElementContainingOffset(StructOffset);
1862 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1863 Type *ElementTy = STy->getElementType(Index);
1864 if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1865 return 0; // The offset points into alignment padding.
1866
1867 Indices.push_back(IRB.getInt32(Index));
1868 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1869 Indices, Prefix);
1870}
1871
1872/// \brief Get a natural GEP from a base pointer to a particular offset and
1873/// resulting in a particular type.
1874///
1875/// The goal is to produce a "natural" looking GEP that works with the existing
1876/// composite types to arrive at the appropriate offset and element type for
1877/// a pointer. TargetTy is the element type the returned GEP should point-to if
1878/// possible. We recurse by decreasing Offset, adding the appropriate index to
1879/// Indices, and setting Ty to the result subtype.
1880///
Chandler Carruth7f5bede2012-09-14 10:18:49 +00001881/// If no natural GEP can be constructed, this function returns null.
Micah Villmow3574eca2012-10-08 16:38:25 +00001882static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001883 Value *Ptr, APInt Offset, Type *TargetTy,
1884 SmallVectorImpl<Value *> &Indices,
1885 const Twine &Prefix) {
1886 PointerType *Ty = cast<PointerType>(Ptr->getType());
1887
1888 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1889 // an i8.
1890 if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1891 return 0;
1892
1893 Type *ElementTy = Ty->getElementType();
Chandler Carruth38f35fd2012-09-18 22:37:19 +00001894 if (!ElementTy->isSized())
1895 return 0; // We can't GEP through an unsized element.
Chandler Carruth713aa942012-09-14 09:22:59 +00001896 APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1897 if (ElementSize == 0)
1898 return 0; // Zero-length arrays can't help us build a natural GEP.
1899 APInt NumSkippedElements = Offset.udiv(ElementSize);
1900
1901 Offset -= NumSkippedElements * ElementSize;
1902 Indices.push_back(IRB.getInt(NumSkippedElements));
1903 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1904 Indices, Prefix);
1905}
1906
1907/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1908/// resulting pointer has PointerTy.
1909///
1910/// This tries very hard to compute a "natural" GEP which arrives at the offset
1911/// and produces the pointer type desired. Where it cannot, it will try to use
1912/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1913/// fails, it will try to use an existing i8* and GEP to the byte offset and
1914/// bitcast to the type.
1915///
1916/// The strategy for finding the more natural GEPs is to peel off layers of the
1917/// pointer, walking back through bit casts and GEPs, searching for a base
1918/// pointer from which we can compute a natural GEP with the desired
1919/// properities. The algorithm tries to fold as many constant indices into
1920/// a single GEP as possible, thus making each GEP more independent of the
1921/// surrounding code.
Micah Villmow3574eca2012-10-08 16:38:25 +00001922static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001923 Value *Ptr, APInt Offset, Type *PointerTy,
1924 const Twine &Prefix) {
1925 // Even though we don't look through PHI nodes, we could be called on an
1926 // instruction in an unreachable block, which may be on a cycle.
1927 SmallPtrSet<Value *, 4> Visited;
1928 Visited.insert(Ptr);
1929 SmallVector<Value *, 4> Indices;
1930
1931 // We may end up computing an offset pointer that has the wrong type. If we
1932 // never are able to compute one directly that has the correct type, we'll
1933 // fall back to it, so keep it around here.
1934 Value *OffsetPtr = 0;
1935
1936 // Remember any i8 pointer we come across to re-use if we need to do a raw
1937 // byte offset.
1938 Value *Int8Ptr = 0;
1939 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1940
1941 Type *TargetTy = PointerTy->getPointerElementType();
1942
1943 do {
1944 // First fold any existing GEPs into the offset.
1945 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1946 APInt GEPOffset(Offset.getBitWidth(), 0);
1947 if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
1948 break;
1949 Offset += GEPOffset;
1950 Ptr = GEP->getPointerOperand();
1951 if (!Visited.insert(Ptr))
1952 break;
1953 }
1954
1955 // See if we can perform a natural GEP here.
1956 Indices.clear();
1957 if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1958 Indices, Prefix)) {
1959 if (P->getType() == PointerTy) {
1960 // Zap any offset pointer that we ended up computing in previous rounds.
1961 if (OffsetPtr && OffsetPtr->use_empty())
1962 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1963 I->eraseFromParent();
1964 return P;
1965 }
1966 if (!OffsetPtr) {
1967 OffsetPtr = P;
1968 }
1969 }
1970
1971 // Stash this pointer if we've found an i8*.
1972 if (Ptr->getType()->isIntegerTy(8)) {
1973 Int8Ptr = Ptr;
1974 Int8PtrOffset = Offset;
1975 }
1976
1977 // Peel off a layer of the pointer and update the offset appropriately.
1978 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1979 Ptr = cast<Operator>(Ptr)->getOperand(0);
1980 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1981 if (GA->mayBeOverridden())
1982 break;
1983 Ptr = GA->getAliasee();
1984 } else {
1985 break;
1986 }
1987 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1988 } while (Visited.insert(Ptr));
1989
1990 if (!OffsetPtr) {
1991 if (!Int8Ptr) {
1992 Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1993 Prefix + ".raw_cast");
1994 Int8PtrOffset = Offset;
1995 }
1996
1997 OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1998 IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1999 Prefix + ".raw_idx");
2000 }
2001 Ptr = OffsetPtr;
2002
2003 // On the off chance we were targeting i8*, guard the bitcast here.
2004 if (Ptr->getType() != PointerTy)
2005 Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
2006
2007 return Ptr;
2008}
2009
2010/// \brief Test whether the given alloca partition can be promoted to a vector.
2011///
2012/// This is a quick test to check whether we can rewrite a particular alloca
2013/// partition (and its newly formed alloca) into a vector alloca with only
2014/// whole-vector loads and stores such that it could be promoted to a vector
2015/// SSA value. We only can ensure this for a limited set of operations, and we
2016/// don't want to do the rewrites unless we are confident that the result will
2017/// be promotable, so we have an early test here.
Micah Villmow3574eca2012-10-08 16:38:25 +00002018static bool isVectorPromotionViable(const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00002019 Type *AllocaTy,
2020 AllocaPartitioning &P,
2021 uint64_t PartitionBeginOffset,
2022 uint64_t PartitionEndOffset,
2023 AllocaPartitioning::const_use_iterator I,
2024 AllocaPartitioning::const_use_iterator E) {
2025 VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
2026 if (!Ty)
2027 return false;
2028
2029 uint64_t VecSize = TD.getTypeSizeInBits(Ty);
2030 uint64_t ElementSize = Ty->getScalarSizeInBits();
2031
2032 // While the definition of LLVM vectors is bitpacked, we don't support sizes
2033 // that aren't byte sized.
2034 if (ElementSize % 8)
2035 return false;
2036 assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
2037 VecSize /= 8;
2038 ElementSize /= 8;
2039
2040 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002041 if (!I->U)
2042 continue; // Skip dead use.
2043
Chandler Carruth713aa942012-09-14 09:22:59 +00002044 uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
2045 uint64_t BeginIndex = BeginOffset / ElementSize;
2046 if (BeginIndex * ElementSize != BeginOffset ||
2047 BeginIndex >= Ty->getNumElements())
2048 return false;
2049 uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
2050 uint64_t EndIndex = EndOffset / ElementSize;
2051 if (EndIndex * ElementSize != EndOffset ||
2052 EndIndex > Ty->getNumElements())
2053 return false;
2054
2055 // FIXME: We should build shuffle vector instructions to handle
2056 // non-element-sized accesses.
2057 if ((EndOffset - BeginOffset) != ElementSize &&
2058 (EndOffset - BeginOffset) != VecSize)
2059 return false;
2060
Chandler Carruth77c12702012-10-01 01:49:22 +00002061 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002062 if (MI->isVolatile())
2063 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002064 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002065 const AllocaPartitioning::MemTransferOffsets &MTO
2066 = P.getMemTransferOffsets(*MTI);
2067 if (!MTO.IsSplittable)
2068 return false;
2069 }
Chandler Carruth77c12702012-10-01 01:49:22 +00002070 } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002071 // Disable vector promotion when there are loads or stores of an FCA.
2072 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002073 } else if (!isa<LoadInst>(I->U->getUser()) &&
2074 !isa<StoreInst>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002075 return false;
2076 }
2077 }
2078 return true;
2079}
2080
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002081/// \brief Test whether the given alloca partition can be promoted to an int.
2082///
2083/// This is a quick test to check whether we can rewrite a particular alloca
2084/// partition (and its newly formed alloca) into an integer alloca suitable for
2085/// promotion to an SSA value. We only can ensure this for a limited set of
2086/// operations, and we don't want to do the rewrites unless we are confident
2087/// that the result will be promotable, so we have an early test here.
Micah Villmow3574eca2012-10-08 16:38:25 +00002088static bool isIntegerPromotionViable(const DataLayout &TD,
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002089 Type *AllocaTy,
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002090 uint64_t AllocBeginOffset,
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002091 AllocaPartitioning &P,
2092 AllocaPartitioning::const_use_iterator I,
2093 AllocaPartitioning::const_use_iterator E) {
2094 IntegerType *Ty = dyn_cast<IntegerType>(AllocaTy);
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002095 if (!Ty || 8*TD.getTypeStoreSize(Ty) != Ty->getBitWidth())
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002096 return false;
2097
2098 // Check the uses to ensure the uses are (likely) promoteable integer uses.
2099 // Also ensure that the alloca has a covering load or store. We don't want
2100 // promote because of some other unsplittable entry (which we may make
2101 // splittable later) and lose the ability to promote each element access.
2102 bool WholeAllocaOp = false;
2103 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002104 if (!I->U)
2105 continue; // Skip dead use.
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002106
2107 // We can't reasonably handle cases where the load or store extends past
2108 // the end of the aloca's type and into its padding.
2109 if ((I->EndOffset - AllocBeginOffset) > TD.getTypeStoreSize(Ty))
2110 return false;
2111
Chandler Carruth77c12702012-10-01 01:49:22 +00002112 if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002113 if (LI->isVolatile() || !LI->getType()->isIntegerTy())
2114 return false;
2115 if (LI->getType() == Ty)
2116 WholeAllocaOp = true;
Chandler Carruth77c12702012-10-01 01:49:22 +00002117 } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002118 if (SI->isVolatile() || !SI->getValueOperand()->getType()->isIntegerTy())
2119 return false;
2120 if (SI->getValueOperand()->getType() == Ty)
2121 WholeAllocaOp = true;
Chandler Carruth77c12702012-10-01 01:49:22 +00002122 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002123 if (MI->isVolatile())
2124 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002125 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002126 const AllocaPartitioning::MemTransferOffsets &MTO
2127 = P.getMemTransferOffsets(*MTI);
2128 if (!MTO.IsSplittable)
2129 return false;
2130 }
2131 } else {
2132 return false;
2133 }
2134 }
2135 return WholeAllocaOp;
2136}
2137
Chandler Carruth713aa942012-09-14 09:22:59 +00002138namespace {
2139/// \brief Visitor to rewrite instructions using a partition of an alloca to
2140/// use a new alloca.
2141///
2142/// Also implements the rewriting to vector-based accesses when the partition
2143/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2144/// lives here.
2145class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
2146 bool> {
2147 // Befriend the base class so it can delegate to private visit methods.
2148 friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
2149
Micah Villmow3574eca2012-10-08 16:38:25 +00002150 const DataLayout &TD;
Chandler Carruth713aa942012-09-14 09:22:59 +00002151 AllocaPartitioning &P;
2152 SROA &Pass;
2153 AllocaInst &OldAI, &NewAI;
2154 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2155
2156 // If we are rewriting an alloca partition which can be written as pure
2157 // vector operations, we stash extra information here. When VecTy is
2158 // non-null, we have some strict guarantees about the rewriten alloca:
2159 // - The new alloca is exactly the size of the vector type here.
2160 // - The accesses all either map to the entire vector or to a single
2161 // element.
2162 // - The set of accessing instructions is only one of those handled above
2163 // in isVectorPromotionViable. Generally these are the same access kinds
2164 // which are promotable via mem2reg.
2165 VectorType *VecTy;
2166 Type *ElementTy;
2167 uint64_t ElementSize;
2168
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002169 // This is a convenience and flag variable that will be null unless the new
2170 // alloca has a promotion-targeted integer type due to passing
2171 // isIntegerPromotionViable above. If it is non-null does, the desired
2172 // integer type will be stored here for easy access during rewriting.
2173 IntegerType *IntPromotionTy;
2174
Chandler Carruth713aa942012-09-14 09:22:59 +00002175 // The offset of the partition user currently being rewritten.
2176 uint64_t BeginOffset, EndOffset;
Chandler Carruth77c12702012-10-01 01:49:22 +00002177 Use *OldUse;
Chandler Carruth713aa942012-09-14 09:22:59 +00002178 Instruction *OldPtr;
2179
2180 // The name prefix to use when rewriting instructions for this alloca.
2181 std::string NamePrefix;
2182
2183public:
Micah Villmow3574eca2012-10-08 16:38:25 +00002184 AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
Chandler Carruth713aa942012-09-14 09:22:59 +00002185 AllocaPartitioning::iterator PI,
2186 SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
2187 uint64_t NewBeginOffset, uint64_t NewEndOffset)
2188 : TD(TD), P(P), Pass(Pass),
2189 OldAI(OldAI), NewAI(NewAI),
2190 NewAllocaBeginOffset(NewBeginOffset),
2191 NewAllocaEndOffset(NewEndOffset),
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002192 VecTy(), ElementTy(), ElementSize(), IntPromotionTy(),
Chandler Carruth713aa942012-09-14 09:22:59 +00002193 BeginOffset(), EndOffset() {
2194 }
2195
2196 /// \brief Visit the users of the alloca partition and rewrite them.
2197 bool visitUsers(AllocaPartitioning::const_use_iterator I,
2198 AllocaPartitioning::const_use_iterator E) {
2199 if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
2200 NewAllocaBeginOffset, NewAllocaEndOffset,
2201 I, E)) {
2202 ++NumVectorized;
2203 VecTy = cast<VectorType>(NewAI.getAllocatedType());
2204 ElementTy = VecTy->getElementType();
2205 assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
2206 "Only multiple-of-8 sized vector elements are viable");
2207 ElementSize = VecTy->getScalarSizeInBits() / 8;
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002208 } else if (isIntegerPromotionViable(TD, NewAI.getAllocatedType(),
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002209 NewAllocaBeginOffset, P, I, E)) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002210 IntPromotionTy = cast<IntegerType>(NewAI.getAllocatedType());
Chandler Carruth713aa942012-09-14 09:22:59 +00002211 }
2212 bool CanSROA = true;
2213 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002214 if (!I->U)
2215 continue; // Skip dead uses.
Chandler Carruth713aa942012-09-14 09:22:59 +00002216 BeginOffset = I->BeginOffset;
2217 EndOffset = I->EndOffset;
Chandler Carruth77c12702012-10-01 01:49:22 +00002218 OldUse = I->U;
2219 OldPtr = cast<Instruction>(I->U->get());
Chandler Carruth713aa942012-09-14 09:22:59 +00002220 NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
Chandler Carruth77c12702012-10-01 01:49:22 +00002221 CanSROA &= visit(cast<Instruction>(I->U->getUser()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002222 }
2223 if (VecTy) {
2224 assert(CanSROA);
2225 VecTy = 0;
2226 ElementTy = 0;
2227 ElementSize = 0;
2228 }
2229 return CanSROA;
2230 }
2231
2232private:
2233 // Every instruction which can end up as a user must have a rewrite rule.
2234 bool visitInstruction(Instruction &I) {
2235 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
2236 llvm_unreachable("No rewrite rule for this instruction!");
2237 }
2238
2239 Twine getName(const Twine &Suffix) {
2240 return NamePrefix + Suffix;
2241 }
2242
2243 Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
2244 assert(BeginOffset >= NewAllocaBeginOffset);
Micah Villmowf3840d22012-10-11 17:21:41 +00002245 unsigned AS = cast<PointerType>(PointerTy)->getAddressSpace();
2246 APInt Offset(TD.getPointerSizeInBits(AS), BeginOffset - NewAllocaBeginOffset);
Chandler Carruth713aa942012-09-14 09:22:59 +00002247 return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
2248 }
2249
Chandler Carruthf710fb12012-10-03 08:14:02 +00002250 /// \brief Compute suitable alignment to access an offset into the new alloca.
2251 unsigned getOffsetAlign(uint64_t Offset) {
Chandler Carruth673850a2012-10-01 12:16:54 +00002252 unsigned NewAIAlign = NewAI.getAlignment();
2253 if (!NewAIAlign)
2254 NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
2255 return MinAlign(NewAIAlign, Offset);
2256 }
Chandler Carruthf710fb12012-10-03 08:14:02 +00002257
2258 /// \brief Compute suitable alignment to access this partition of the new
2259 /// alloca.
2260 unsigned getPartitionAlign() {
2261 return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
Chandler Carruth673850a2012-10-01 12:16:54 +00002262 }
2263
Chandler Carruthf710fb12012-10-03 08:14:02 +00002264 /// \brief Compute suitable alignment to access a type at an offset of the
2265 /// new alloca.
2266 ///
2267 /// \returns zero if the type's ABI alignment is a suitable alignment,
2268 /// otherwise returns the maximal suitable alignment.
2269 unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2270 unsigned Align = getOffsetAlign(Offset);
2271 return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
2272 }
2273
2274 /// \brief Compute suitable alignment to access a type at the beginning of
2275 /// this partition of the new alloca.
2276 ///
2277 /// See \c getOffsetTypeAlign for details; this routine delegates to it.
2278 unsigned getPartitionTypeAlign(Type *Ty) {
2279 return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
Chandler Carruth673850a2012-10-01 12:16:54 +00002280 }
2281
Chandler Carruth713aa942012-09-14 09:22:59 +00002282 ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
2283 assert(VecTy && "Can only call getIndex when rewriting a vector");
2284 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2285 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2286 uint32_t Index = RelOffset / ElementSize;
2287 assert(Index * ElementSize == RelOffset);
2288 return IRB.getInt32(Index);
2289 }
2290
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002291 Value *extractInteger(IRBuilder<> &IRB, IntegerType *TargetTy,
2292 uint64_t Offset) {
2293 assert(IntPromotionTy && "Alloca is not an integer we can extract from");
Chandler Carruth81b001a2012-09-26 10:27:46 +00002294 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2295 getName(".load"));
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002296 assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
2297 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002298 assert(TD.getTypeStoreSize(TargetTy) + RelOffset <=
2299 TD.getTypeStoreSize(IntPromotionTy) &&
2300 "Element load outside of alloca store");
2301 uint64_t ShAmt = 8*RelOffset;
2302 if (TD.isBigEndian())
2303 ShAmt = 8*(TD.getTypeStoreSize(IntPromotionTy) -
2304 TD.getTypeStoreSize(TargetTy) - RelOffset);
2305 if (ShAmt)
2306 V = IRB.CreateLShr(V, ShAmt, getName(".shift"));
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002307 if (TargetTy != IntPromotionTy) {
2308 assert(TargetTy->getBitWidth() < IntPromotionTy->getBitWidth() &&
2309 "Cannot extract to a larger integer!");
2310 V = IRB.CreateTrunc(V, TargetTy, getName(".trunc"));
2311 }
2312 return V;
2313 }
2314
2315 StoreInst *insertInteger(IRBuilder<> &IRB, Value *V, uint64_t Offset) {
2316 IntegerType *Ty = cast<IntegerType>(V->getType());
2317 if (Ty == IntPromotionTy)
Chandler Carruth81b001a2012-09-26 10:27:46 +00002318 return IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002319
2320 assert(Ty->getBitWidth() < IntPromotionTy->getBitWidth() &&
2321 "Cannot insert a larger integer!");
2322 V = IRB.CreateZExt(V, IntPromotionTy, getName(".ext"));
2323 assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
2324 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002325 assert(TD.getTypeStoreSize(Ty) + RelOffset <=
2326 TD.getTypeStoreSize(IntPromotionTy) &&
2327 "Element store outside of alloca store");
2328 uint64_t ShAmt = 8*RelOffset;
2329 if (TD.isBigEndian())
2330 ShAmt = 8*(TD.getTypeStoreSize(IntPromotionTy) - TD.getTypeStoreSize(Ty)
2331 - RelOffset);
2332 if (ShAmt)
2333 V = IRB.CreateShl(V, ShAmt, getName(".shift"));
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002334
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002335 APInt Mask = ~Ty->getMask().zext(IntPromotionTy->getBitWidth()).shl(ShAmt);
Chandler Carruth81b001a2012-09-26 10:27:46 +00002336 Value *Old = IRB.CreateAnd(IRB.CreateAlignedLoad(&NewAI,
2337 NewAI.getAlignment(),
2338 getName(".oldload")),
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002339 Mask, getName(".mask"));
Chandler Carruth81b001a2012-09-26 10:27:46 +00002340 return IRB.CreateAlignedStore(IRB.CreateOr(Old, V, getName(".insert")),
2341 &NewAI, NewAI.getAlignment());
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002342 }
2343
Chandler Carruth713aa942012-09-14 09:22:59 +00002344 void deleteIfTriviallyDead(Value *V) {
2345 Instruction *I = cast<Instruction>(V);
2346 if (isInstructionTriviallyDead(I))
2347 Pass.DeadInsts.push_back(I);
2348 }
2349
2350 Value *getValueCast(IRBuilder<> &IRB, Value *V, Type *Ty) {
2351 if (V->getType()->isIntegerTy() && Ty->isPointerTy())
2352 return IRB.CreateIntToPtr(V, Ty);
2353 if (V->getType()->isPointerTy() && Ty->isIntegerTy())
2354 return IRB.CreatePtrToInt(V, Ty);
2355
2356 return IRB.CreateBitCast(V, Ty);
2357 }
2358
2359 bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
2360 Value *Result;
2361 if (LI.getType() == VecTy->getElementType() ||
2362 BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002363 Result = IRB.CreateExtractElement(
2364 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2365 getIndex(IRB, BeginOffset), getName(".extract"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002366 } else {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002367 Result = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2368 getName(".load"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002369 }
2370 if (Result->getType() != LI.getType())
2371 Result = getValueCast(IRB, Result, LI.getType());
2372 LI.replaceAllUsesWith(Result);
2373 Pass.DeadInsts.push_back(&LI);
2374
2375 DEBUG(dbgs() << " to: " << *Result << "\n");
2376 return true;
2377 }
2378
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002379 bool rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
2380 assert(!LI.isVolatile());
2381 Value *Result = extractInteger(IRB, cast<IntegerType>(LI.getType()),
2382 BeginOffset);
2383 LI.replaceAllUsesWith(Result);
2384 Pass.DeadInsts.push_back(&LI);
2385 DEBUG(dbgs() << " to: " << *Result << "\n");
2386 return true;
2387 }
2388
Chandler Carruth713aa942012-09-14 09:22:59 +00002389 bool visitLoadInst(LoadInst &LI) {
2390 DEBUG(dbgs() << " original: " << LI << "\n");
2391 Value *OldOp = LI.getOperand(0);
2392 assert(OldOp == OldPtr);
2393 IRBuilder<> IRB(&LI);
2394
2395 if (VecTy)
2396 return rewriteVectorizedLoadInst(IRB, LI, OldOp);
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002397 if (IntPromotionTy)
2398 return rewriteIntegerLoad(IRB, LI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002399
2400 Value *NewPtr = getAdjustedAllocaPtr(IRB,
2401 LI.getPointerOperand()->getType());
2402 LI.setOperand(0, NewPtr);
Chandler Carruthf710fb12012-10-03 08:14:02 +00002403 LI.setAlignment(getPartitionTypeAlign(LI.getType()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002404 DEBUG(dbgs() << " to: " << LI << "\n");
2405
2406 deleteIfTriviallyDead(OldOp);
2407 return NewPtr == &NewAI && !LI.isVolatile();
2408 }
2409
2410 bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI,
2411 Value *OldOp) {
2412 Value *V = SI.getValueOperand();
2413 if (V->getType() == ElementTy ||
2414 BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
2415 if (V->getType() != ElementTy)
2416 V = getValueCast(IRB, V, ElementTy);
Chandler Carruth81b001a2012-09-26 10:27:46 +00002417 LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2418 getName(".load"));
2419 V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset),
Chandler Carruth713aa942012-09-14 09:22:59 +00002420 getName(".insert"));
2421 } else if (V->getType() != VecTy) {
2422 V = getValueCast(IRB, V, VecTy);
2423 }
Chandler Carruth81b001a2012-09-26 10:27:46 +00002424 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruth713aa942012-09-14 09:22:59 +00002425 Pass.DeadInsts.push_back(&SI);
2426
2427 (void)Store;
2428 DEBUG(dbgs() << " to: " << *Store << "\n");
2429 return true;
2430 }
2431
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002432 bool rewriteIntegerStore(IRBuilder<> &IRB, StoreInst &SI) {
2433 assert(!SI.isVolatile());
2434 StoreInst *Store = insertInteger(IRB, SI.getValueOperand(), BeginOffset);
2435 Pass.DeadInsts.push_back(&SI);
2436 (void)Store;
2437 DEBUG(dbgs() << " to: " << *Store << "\n");
2438 return true;
2439 }
2440
Chandler Carruth713aa942012-09-14 09:22:59 +00002441 bool visitStoreInst(StoreInst &SI) {
2442 DEBUG(dbgs() << " original: " << SI << "\n");
2443 Value *OldOp = SI.getOperand(1);
2444 assert(OldOp == OldPtr);
2445 IRBuilder<> IRB(&SI);
2446
2447 if (VecTy)
2448 return rewriteVectorizedStoreInst(IRB, SI, OldOp);
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002449 if (IntPromotionTy)
2450 return rewriteIntegerStore(IRB, SI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002451
Chandler Carruthb2d98c22012-10-04 12:33:50 +00002452 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2453 // alloca that should be re-examined after promoting this alloca.
2454 if (SI.getValueOperand()->getType()->isPointerTy())
2455 if (AllocaInst *AI = dyn_cast<AllocaInst>(SI.getValueOperand()
2456 ->stripInBoundsOffsets()))
2457 Pass.PostPromotionWorklist.insert(AI);
2458
Chandler Carruth713aa942012-09-14 09:22:59 +00002459 Value *NewPtr = getAdjustedAllocaPtr(IRB,
2460 SI.getPointerOperand()->getType());
2461 SI.setOperand(1, NewPtr);
Chandler Carruthf710fb12012-10-03 08:14:02 +00002462 SI.setAlignment(getPartitionTypeAlign(SI.getValueOperand()->getType()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002463 DEBUG(dbgs() << " to: " << SI << "\n");
2464
2465 deleteIfTriviallyDead(OldOp);
2466 return NewPtr == &NewAI && !SI.isVolatile();
2467 }
2468
2469 bool visitMemSetInst(MemSetInst &II) {
2470 DEBUG(dbgs() << " original: " << II << "\n");
2471 IRBuilder<> IRB(&II);
2472 assert(II.getRawDest() == OldPtr);
2473
2474 // If the memset has a variable size, it cannot be split, just adjust the
2475 // pointer to the new alloca.
2476 if (!isa<Constant>(II.getLength())) {
2477 II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002478 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruthf710fb12012-10-03 08:14:02 +00002479 II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002480
Chandler Carruth713aa942012-09-14 09:22:59 +00002481 deleteIfTriviallyDead(OldPtr);
2482 return false;
2483 }
2484
2485 // Record this instruction for deletion.
2486 if (Pass.DeadSplitInsts.insert(&II))
2487 Pass.DeadInsts.push_back(&II);
2488
2489 Type *AllocaTy = NewAI.getAllocatedType();
2490 Type *ScalarTy = AllocaTy->getScalarType();
2491
2492 // If this doesn't map cleanly onto the alloca type, and that type isn't
2493 // a single value type, just emit a memset.
2494 if (!VecTy && (BeginOffset != NewAllocaBeginOffset ||
2495 EndOffset != NewAllocaEndOffset ||
2496 !AllocaTy->isSingleValueType() ||
2497 !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
2498 Type *SizeTy = II.getLength()->getType();
2499 Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
Chandler Carruth713aa942012-09-14 09:22:59 +00002500 CallInst *New
2501 = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2502 II.getRawDest()->getType()),
Chandler Carruthf710fb12012-10-03 08:14:02 +00002503 II.getValue(), Size, getPartitionAlign(),
Chandler Carruth713aa942012-09-14 09:22:59 +00002504 II.isVolatile());
2505 (void)New;
2506 DEBUG(dbgs() << " to: " << *New << "\n");
2507 return false;
2508 }
2509
2510 // If we can represent this as a simple value, we have to build the actual
2511 // value to store, which requires expanding the byte present in memset to
2512 // a sensible representation for the alloca type. This is essentially
2513 // splatting the byte to a sufficiently wide integer, bitcasting to the
2514 // desired scalar type, and splatting it across any desired vector type.
2515 Value *V = II.getValue();
2516 IntegerType *VTy = cast<IntegerType>(V->getType());
2517 Type *IntTy = Type::getIntNTy(VTy->getContext(),
2518 TD.getTypeSizeInBits(ScalarTy));
2519 if (TD.getTypeSizeInBits(ScalarTy) > VTy->getBitWidth())
2520 V = IRB.CreateMul(IRB.CreateZExt(V, IntTy, getName(".zext")),
2521 ConstantExpr::getUDiv(
2522 Constant::getAllOnesValue(IntTy),
2523 ConstantExpr::getZExt(
2524 Constant::getAllOnesValue(V->getType()),
2525 IntTy)),
2526 getName(".isplat"));
2527 if (V->getType() != ScalarTy) {
2528 if (ScalarTy->isPointerTy())
2529 V = IRB.CreateIntToPtr(V, ScalarTy);
2530 else if (ScalarTy->isPrimitiveType() || ScalarTy->isVectorTy())
2531 V = IRB.CreateBitCast(V, ScalarTy);
2532 else if (ScalarTy->isIntegerTy())
2533 llvm_unreachable("Computed different integer types with equal widths");
2534 else
2535 llvm_unreachable("Invalid scalar type");
2536 }
2537
2538 // If this is an element-wide memset of a vectorizable alloca, insert it.
2539 if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
2540 EndOffset < NewAllocaEndOffset)) {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002541 StoreInst *Store = IRB.CreateAlignedStore(
2542 IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
2543 NewAI.getAlignment(),
2544 getName(".load")),
2545 V, getIndex(IRB, BeginOffset),
Chandler Carruth713aa942012-09-14 09:22:59 +00002546 getName(".insert")),
Chandler Carruth81b001a2012-09-26 10:27:46 +00002547 &NewAI, NewAI.getAlignment());
Chandler Carruth713aa942012-09-14 09:22:59 +00002548 (void)Store;
2549 DEBUG(dbgs() << " to: " << *Store << "\n");
2550 return true;
2551 }
2552
2553 // Splat to a vector if needed.
2554 if (VectorType *VecTy = dyn_cast<VectorType>(AllocaTy)) {
2555 VectorType *SplatSourceTy = VectorType::get(V->getType(), 1);
2556 V = IRB.CreateShuffleVector(
2557 IRB.CreateInsertElement(UndefValue::get(SplatSourceTy), V,
2558 IRB.getInt32(0), getName(".vsplat.insert")),
2559 UndefValue::get(SplatSourceTy),
2560 ConstantVector::getSplat(VecTy->getNumElements(), IRB.getInt32(0)),
2561 getName(".vsplat.shuffle"));
2562 assert(V->getType() == VecTy);
2563 }
2564
Chandler Carruth81b001a2012-09-26 10:27:46 +00002565 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2566 II.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +00002567 (void)New;
2568 DEBUG(dbgs() << " to: " << *New << "\n");
2569 return !II.isVolatile();
2570 }
2571
2572 bool visitMemTransferInst(MemTransferInst &II) {
2573 // Rewriting of memory transfer instructions can be a bit tricky. We break
2574 // them into two categories: split intrinsics and unsplit intrinsics.
2575
2576 DEBUG(dbgs() << " original: " << II << "\n");
2577 IRBuilder<> IRB(&II);
2578
2579 assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2580 bool IsDest = II.getRawDest() == OldPtr;
2581
2582 const AllocaPartitioning::MemTransferOffsets &MTO
2583 = P.getMemTransferOffsets(II);
2584
Micah Villmowf3840d22012-10-11 17:21:41 +00002585 assert(OldPtr->getType()->isPointerTy() && "Must be a pointer type!");
2586 unsigned AS = cast<PointerType>(OldPtr->getType())->getAddressSpace();
Chandler Carruth673850a2012-10-01 12:16:54 +00002587 // Compute the relative offset within the transfer.
Micah Villmowf3840d22012-10-11 17:21:41 +00002588 unsigned IntPtrWidth = TD.getPointerSizeInBits(AS);
Chandler Carruth673850a2012-10-01 12:16:54 +00002589 APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2590 : MTO.SourceBegin));
2591
2592 unsigned Align = II.getAlignment();
2593 if (Align > 1)
2594 Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
Chandler Carruthf710fb12012-10-03 08:14:02 +00002595 MinAlign(II.getAlignment(), getPartitionAlign()));
Chandler Carruth673850a2012-10-01 12:16:54 +00002596
Chandler Carruth713aa942012-09-14 09:22:59 +00002597 // For unsplit intrinsics, we simply modify the source and destination
2598 // pointers in place. This isn't just an optimization, it is a matter of
2599 // correctness. With unsplit intrinsics we may be dealing with transfers
2600 // within a single alloca before SROA ran, or with transfers that have
2601 // a variable length. We may also be dealing with memmove instead of
2602 // memcpy, and so simply updating the pointers is the necessary for us to
2603 // update both source and dest of a single call.
2604 if (!MTO.IsSplittable) {
2605 Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2606 if (IsDest)
2607 II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2608 else
2609 II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2610
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002611 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruth673850a2012-10-01 12:16:54 +00002612 II.setAlignment(ConstantInt::get(CstTy, Align));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002613
Chandler Carruth713aa942012-09-14 09:22:59 +00002614 DEBUG(dbgs() << " to: " << II << "\n");
2615 deleteIfTriviallyDead(OldOp);
2616 return false;
2617 }
2618 // For split transfer intrinsics we have an incredibly useful assurance:
2619 // the source and destination do not reside within the same alloca, and at
2620 // least one of them does not escape. This means that we can replace
2621 // memmove with memcpy, and we don't need to worry about all manner of
2622 // downsides to splitting and transforming the operations.
2623
Chandler Carruth713aa942012-09-14 09:22:59 +00002624 // If this doesn't map cleanly onto the alloca type, and that type isn't
2625 // a single value type, just emit a memcpy.
2626 bool EmitMemCpy
2627 = !VecTy && (BeginOffset != NewAllocaBeginOffset ||
2628 EndOffset != NewAllocaEndOffset ||
2629 !NewAI.getAllocatedType()->isSingleValueType());
2630
2631 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2632 // size hasn't been shrunk based on analysis of the viable range, this is
2633 // a no-op.
2634 if (EmitMemCpy && &OldAI == &NewAI) {
2635 uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2636 uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2637 // Ensure the start lines up.
2638 assert(BeginOffset == OrigBegin);
Benjamin Kramerd0807692012-09-14 13:08:09 +00002639 (void)OrigBegin;
Chandler Carruth713aa942012-09-14 09:22:59 +00002640
2641 // Rewrite the size as needed.
2642 if (EndOffset != OrigEnd)
2643 II.setLength(ConstantInt::get(II.getLength()->getType(),
2644 EndOffset - BeginOffset));
2645 return false;
2646 }
2647 // Record this instruction for deletion.
2648 if (Pass.DeadSplitInsts.insert(&II))
2649 Pass.DeadInsts.push_back(&II);
2650
2651 bool IsVectorElement = VecTy && (BeginOffset > NewAllocaBeginOffset ||
2652 EndOffset < NewAllocaEndOffset);
2653
2654 Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2655 : II.getRawDest()->getType();
2656 if (!EmitMemCpy)
2657 OtherPtrTy = IsVectorElement ? VecTy->getElementType()->getPointerTo()
2658 : NewAI.getType();
2659
2660 // Compute the other pointer, folding as much as possible to produce
2661 // a single, simple GEP in most cases.
2662 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2663 OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2664 getName("." + OtherPtr->getName()));
2665
2666 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2667 // alloca that should be re-examined after rewriting this instruction.
2668 if (AllocaInst *AI
2669 = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Chandler Carruthb3dca3f2012-09-26 07:41:40 +00002670 Pass.Worklist.insert(AI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002671
2672 if (EmitMemCpy) {
2673 Value *OurPtr
2674 = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2675 : II.getRawSource()->getType());
2676 Type *SizeTy = II.getLength()->getType();
2677 Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2678
2679 CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2680 IsDest ? OtherPtr : OurPtr,
Chandler Carruth81b001a2012-09-26 10:27:46 +00002681 Size, Align, II.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +00002682 (void)New;
2683 DEBUG(dbgs() << " to: " << *New << "\n");
2684 return false;
2685 }
2686
Chandler Carruth322e9ba2012-10-03 08:26:28 +00002687 // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2688 // is equivalent to 1, but that isn't true if we end up rewriting this as
2689 // a load or store.
2690 if (!Align)
2691 Align = 1;
2692
Chandler Carruth713aa942012-09-14 09:22:59 +00002693 Value *SrcPtr = OtherPtr;
2694 Value *DstPtr = &NewAI;
2695 if (!IsDest)
2696 std::swap(SrcPtr, DstPtr);
2697
2698 Value *Src;
2699 if (IsVectorElement && !IsDest) {
2700 // We have to extract rather than load.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002701 Src = IRB.CreateExtractElement(
2702 IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
2703 getIndex(IRB, BeginOffset),
2704 getName(".copyextract"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002705 } else {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002706 Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2707 getName(".copyload"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002708 }
2709
2710 if (IsVectorElement && IsDest) {
2711 // We have to insert into a loaded copy before storing.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002712 Src = IRB.CreateInsertElement(
2713 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2714 Src, getIndex(IRB, BeginOffset),
2715 getName(".insert"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002716 }
2717
Chandler Carruth81b001a2012-09-26 10:27:46 +00002718 StoreInst *Store = cast<StoreInst>(
2719 IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2720 (void)Store;
Chandler Carruth713aa942012-09-14 09:22:59 +00002721 DEBUG(dbgs() << " to: " << *Store << "\n");
2722 return !II.isVolatile();
2723 }
2724
2725 bool visitIntrinsicInst(IntrinsicInst &II) {
2726 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2727 II.getIntrinsicID() == Intrinsic::lifetime_end);
2728 DEBUG(dbgs() << " original: " << II << "\n");
2729 IRBuilder<> IRB(&II);
2730 assert(II.getArgOperand(1) == OldPtr);
2731
2732 // Record this instruction for deletion.
2733 if (Pass.DeadSplitInsts.insert(&II))
2734 Pass.DeadInsts.push_back(&II);
2735
2736 ConstantInt *Size
2737 = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2738 EndOffset - BeginOffset);
2739 Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2740 Value *New;
2741 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2742 New = IRB.CreateLifetimeStart(Ptr, Size);
2743 else
2744 New = IRB.CreateLifetimeEnd(Ptr, Size);
2745
2746 DEBUG(dbgs() << " to: " << *New << "\n");
2747 return true;
2748 }
2749
Chandler Carruth713aa942012-09-14 09:22:59 +00002750 bool visitPHINode(PHINode &PN) {
2751 DEBUG(dbgs() << " original: " << PN << "\n");
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002752
Chandler Carruth713aa942012-09-14 09:22:59 +00002753 // We would like to compute a new pointer in only one place, but have it be
2754 // as local as possible to the PHI. To do that, we re-use the location of
2755 // the old pointer, which necessarily must be in the right position to
2756 // dominate the PHI.
2757 IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
2758
Chandler Carruth713aa942012-09-14 09:22:59 +00002759 Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002760 // Replace the operands which were using the old pointer.
2761 User::op_iterator OI = PN.op_begin(), OE = PN.op_end();
2762 for (; OI != OE; ++OI)
2763 if (*OI == OldPtr)
2764 *OI = NewPtr;
Chandler Carruth713aa942012-09-14 09:22:59 +00002765
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002766 DEBUG(dbgs() << " to: " << PN << "\n");
2767 deleteIfTriviallyDead(OldPtr);
2768 return false;
Chandler Carruth713aa942012-09-14 09:22:59 +00002769 }
2770
2771 bool visitSelectInst(SelectInst &SI) {
2772 DEBUG(dbgs() << " original: " << SI << "\n");
2773 IRBuilder<> IRB(&SI);
2774
2775 // Find the operand we need to rewrite here.
2776 bool IsTrueVal = SI.getTrueValue() == OldPtr;
2777 if (IsTrueVal)
2778 assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
2779 else
2780 assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002781
Chandler Carruth713aa942012-09-14 09:22:59 +00002782 Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002783 SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
2784 DEBUG(dbgs() << " to: " << SI << "\n");
Chandler Carruth713aa942012-09-14 09:22:59 +00002785 deleteIfTriviallyDead(OldPtr);
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002786 return false;
Chandler Carruth713aa942012-09-14 09:22:59 +00002787 }
2788
2789};
2790}
2791
Chandler Carruthc370acd2012-09-18 12:57:43 +00002792namespace {
2793/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2794///
2795/// This pass aggressively rewrites all aggregate loads and stores on
2796/// a particular pointer (or any pointer derived from it which we can identify)
2797/// with scalar loads and stores.
2798class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2799 // Befriend the base class so it can delegate to private visit methods.
2800 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2801
Micah Villmow3574eca2012-10-08 16:38:25 +00002802 const DataLayout &TD;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002803
2804 /// Queue of pointer uses to analyze and potentially rewrite.
2805 SmallVector<Use *, 8> Queue;
2806
2807 /// Set to prevent us from cycling with phi nodes and loops.
2808 SmallPtrSet<User *, 8> Visited;
2809
2810 /// The current pointer use being rewritten. This is used to dig up the used
2811 /// value (as opposed to the user).
2812 Use *U;
2813
2814public:
Micah Villmow3574eca2012-10-08 16:38:25 +00002815 AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
Chandler Carruthc370acd2012-09-18 12:57:43 +00002816
2817 /// Rewrite loads and stores through a pointer and all pointers derived from
2818 /// it.
2819 bool rewrite(Instruction &I) {
2820 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
2821 enqueueUsers(I);
2822 bool Changed = false;
2823 while (!Queue.empty()) {
2824 U = Queue.pop_back_val();
2825 Changed |= visit(cast<Instruction>(U->getUser()));
2826 }
2827 return Changed;
2828 }
2829
2830private:
2831 /// Enqueue all the users of the given instruction for further processing.
2832 /// This uses a set to de-duplicate users.
2833 void enqueueUsers(Instruction &I) {
2834 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2835 ++UI)
2836 if (Visited.insert(*UI))
2837 Queue.push_back(&UI.getUse());
2838 }
2839
2840 // Conservative default is to not rewrite anything.
2841 bool visitInstruction(Instruction &I) { return false; }
2842
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002843 /// \brief Generic recursive split emission class.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002844 template <typename Derived>
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002845 class OpSplitter {
2846 protected:
2847 /// The builder used to form new instructions.
2848 IRBuilder<> IRB;
2849 /// The indices which to be used with insert- or extractvalue to select the
2850 /// appropriate value within the aggregate.
2851 SmallVector<unsigned, 4> Indices;
2852 /// The indices to a GEP instruction which will move Ptr to the correct slot
2853 /// within the aggregate.
2854 SmallVector<Value *, 4> GEPIndices;
2855 /// The base pointer of the original op, used as a base for GEPing the
2856 /// split operations.
2857 Value *Ptr;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002858
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002859 /// Initialize the splitter with an insertion point, Ptr and start with a
2860 /// single zero GEP index.
2861 OpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002862 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002863
2864 public:
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002865 /// \brief Generic recursive split emission routine.
2866 ///
2867 /// This method recursively splits an aggregate op (load or store) into
2868 /// scalar or vector ops. It splits recursively until it hits a single value
2869 /// and emits that single value operation via the template argument.
2870 ///
2871 /// The logic of this routine relies on GEPs and insertvalue and
2872 /// extractvalue all operating with the same fundamental index list, merely
2873 /// formatted differently (GEPs need actual values).
2874 ///
2875 /// \param Ty The type being split recursively into smaller ops.
2876 /// \param Agg The aggregate value being built up or stored, depending on
2877 /// whether this is splitting a load or a store respectively.
2878 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2879 if (Ty->isSingleValueType())
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002880 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002881
2882 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2883 unsigned OldSize = Indices.size();
2884 (void)OldSize;
2885 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2886 ++Idx) {
2887 assert(Indices.size() == OldSize && "Did not return to the old size");
2888 Indices.push_back(Idx);
2889 GEPIndices.push_back(IRB.getInt32(Idx));
2890 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2891 GEPIndices.pop_back();
2892 Indices.pop_back();
2893 }
2894 return;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002895 }
Chandler Carruthc370acd2012-09-18 12:57:43 +00002896
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002897 if (StructType *STy = dyn_cast<StructType>(Ty)) {
2898 unsigned OldSize = Indices.size();
2899 (void)OldSize;
2900 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2901 ++Idx) {
2902 assert(Indices.size() == OldSize && "Did not return to the old size");
2903 Indices.push_back(Idx);
2904 GEPIndices.push_back(IRB.getInt32(Idx));
2905 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2906 GEPIndices.pop_back();
2907 Indices.pop_back();
2908 }
2909 return;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002910 }
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002911
2912 llvm_unreachable("Only arrays and structs are aggregate loadable types");
Chandler Carruthc370acd2012-09-18 12:57:43 +00002913 }
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002914 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00002915
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002916 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002917 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer3b682bd2012-09-18 17:11:47 +00002918 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
Chandler Carruthc370acd2012-09-18 12:57:43 +00002919
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002920 /// Emit a leaf load of a single value. This is called at the leaves of the
2921 /// recursive emission to actually load values.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002922 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002923 assert(Ty->isSingleValueType());
2924 // Load the single value and insert it using the indices.
2925 Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
2926 Name + ".gep"),
2927 Name + ".load");
2928 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2929 DEBUG(dbgs() << " to: " << *Load << "\n");
2930 }
2931 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00002932
2933 bool visitLoadInst(LoadInst &LI) {
2934 assert(LI.getPointerOperand() == *U);
2935 if (!LI.isSimple() || LI.getType()->isSingleValueType())
2936 return false;
2937
2938 // We have an aggregate being loaded, split it apart.
2939 DEBUG(dbgs() << " original: " << LI << "\n");
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002940 LoadOpSplitter Splitter(&LI, *U);
Chandler Carruthc370acd2012-09-18 12:57:43 +00002941 Value *V = UndefValue::get(LI.getType());
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002942 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
Chandler Carruthc370acd2012-09-18 12:57:43 +00002943 LI.replaceAllUsesWith(V);
2944 LI.eraseFromParent();
2945 return true;
2946 }
2947
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002948 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002949 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer3b682bd2012-09-18 17:11:47 +00002950 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002951
2952 /// Emit a leaf store of a single value. This is called at the leaves of the
2953 /// recursive emission to actually produce stores.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002954 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002955 assert(Ty->isSingleValueType());
2956 // Extract the single value and store it using the indices.
2957 Value *Store = IRB.CreateStore(
2958 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2959 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2960 (void)Store;
2961 DEBUG(dbgs() << " to: " << *Store << "\n");
2962 }
2963 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00002964
2965 bool visitStoreInst(StoreInst &SI) {
2966 if (!SI.isSimple() || SI.getPointerOperand() != *U)
2967 return false;
2968 Value *V = SI.getValueOperand();
2969 if (V->getType()->isSingleValueType())
2970 return false;
2971
2972 // We have an aggregate being stored, split it apart.
2973 DEBUG(dbgs() << " original: " << SI << "\n");
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002974 StoreOpSplitter Splitter(&SI, *U);
2975 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
Chandler Carruthc370acd2012-09-18 12:57:43 +00002976 SI.eraseFromParent();
2977 return true;
2978 }
2979
2980 bool visitBitCastInst(BitCastInst &BC) {
2981 enqueueUsers(BC);
2982 return false;
2983 }
2984
2985 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2986 enqueueUsers(GEPI);
2987 return false;
2988 }
2989
2990 bool visitPHINode(PHINode &PN) {
2991 enqueueUsers(PN);
2992 return false;
2993 }
2994
2995 bool visitSelectInst(SelectInst &SI) {
2996 enqueueUsers(SI);
2997 return false;
2998 }
2999};
3000}
3001
Chandler Carruth713aa942012-09-14 09:22:59 +00003002/// \brief Try to find a partition of the aggregate type passed in for a given
3003/// offset and size.
3004///
3005/// This recurses through the aggregate type and tries to compute a subtype
3006/// based on the offset and size. When the offset and size span a sub-section
Chandler Carruth6b547a22012-09-14 11:08:31 +00003007/// of an array, it will even compute a new array type for that sub-section,
3008/// and the same for structs.
3009///
3010/// Note that this routine is very strict and tries to find a partition of the
3011/// type which produces the *exact* right offset and size. It is not forgiving
3012/// when the size or offset cause either end of type-based partition to be off.
3013/// Also, this is a best-effort routine. It is reasonable to give up and not
3014/// return a type if necessary.
Micah Villmow3574eca2012-10-08 16:38:25 +00003015static Type *getTypePartition(const DataLayout &TD, Type *Ty,
Chandler Carruth713aa942012-09-14 09:22:59 +00003016 uint64_t Offset, uint64_t Size) {
3017 if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
3018 return Ty;
3019
3020 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3021 // We can't partition pointers...
3022 if (SeqTy->isPointerTy())
3023 return 0;
3024
3025 Type *ElementTy = SeqTy->getElementType();
3026 uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3027 uint64_t NumSkippedElements = Offset / ElementSize;
3028 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
3029 if (NumSkippedElements >= ArrTy->getNumElements())
3030 return 0;
3031 if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
3032 if (NumSkippedElements >= VecTy->getNumElements())
3033 return 0;
3034 Offset -= NumSkippedElements * ElementSize;
3035
3036 // First check if we need to recurse.
3037 if (Offset > 0 || Size < ElementSize) {
3038 // Bail if the partition ends in a different array element.
3039 if ((Offset + Size) > ElementSize)
3040 return 0;
3041 // Recurse through the element type trying to peel off offset bytes.
3042 return getTypePartition(TD, ElementTy, Offset, Size);
3043 }
3044 assert(Offset == 0);
3045
3046 if (Size == ElementSize)
3047 return ElementTy;
3048 assert(Size > ElementSize);
3049 uint64_t NumElements = Size / ElementSize;
3050 if (NumElements * ElementSize != Size)
3051 return 0;
3052 return ArrayType::get(ElementTy, NumElements);
3053 }
3054
3055 StructType *STy = dyn_cast<StructType>(Ty);
3056 if (!STy)
3057 return 0;
3058
3059 const StructLayout *SL = TD.getStructLayout(STy);
Chandler Carruth6b547a22012-09-14 11:08:31 +00003060 if (Offset >= SL->getSizeInBytes())
Chandler Carruth713aa942012-09-14 09:22:59 +00003061 return 0;
3062 uint64_t EndOffset = Offset + Size;
3063 if (EndOffset > SL->getSizeInBytes())
3064 return 0;
3065
3066 unsigned Index = SL->getElementContainingOffset(Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +00003067 Offset -= SL->getElementOffset(Index);
3068
3069 Type *ElementTy = STy->getElementType(Index);
3070 uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3071 if (Offset >= ElementSize)
3072 return 0; // The offset points into alignment padding.
3073
3074 // See if any partition must be contained by the element.
3075 if (Offset > 0 || Size < ElementSize) {
3076 if ((Offset + Size) > ElementSize)
3077 return 0;
Chandler Carruth713aa942012-09-14 09:22:59 +00003078 return getTypePartition(TD, ElementTy, Offset, Size);
3079 }
3080 assert(Offset == 0);
3081
3082 if (Size == ElementSize)
3083 return ElementTy;
3084
3085 StructType::element_iterator EI = STy->element_begin() + Index,
3086 EE = STy->element_end();
3087 if (EndOffset < SL->getSizeInBytes()) {
3088 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3089 if (Index == EndIndex)
3090 return 0; // Within a single element and its padding.
Chandler Carruth6b547a22012-09-14 11:08:31 +00003091
3092 // Don't try to form "natural" types if the elements don't line up with the
3093 // expected size.
3094 // FIXME: We could potentially recurse down through the last element in the
3095 // sub-struct to find a natural end point.
3096 if (SL->getElementOffset(EndIndex) != EndOffset)
3097 return 0;
3098
Chandler Carruth713aa942012-09-14 09:22:59 +00003099 assert(Index < EndIndex);
Chandler Carruth713aa942012-09-14 09:22:59 +00003100 EE = STy->element_begin() + EndIndex;
3101 }
3102
3103 // Try to build up a sub-structure.
3104 SmallVector<Type *, 4> ElementTys;
3105 do {
3106 ElementTys.push_back(*EI++);
3107 } while (EI != EE);
3108 StructType *SubTy = StructType::get(STy->getContext(), ElementTys,
3109 STy->isPacked());
3110 const StructLayout *SubSL = TD.getStructLayout(SubTy);
Chandler Carruth6b547a22012-09-14 11:08:31 +00003111 if (Size != SubSL->getSizeInBytes())
3112 return 0; // The sub-struct doesn't have quite the size needed.
Chandler Carruth713aa942012-09-14 09:22:59 +00003113
Chandler Carruth6b547a22012-09-14 11:08:31 +00003114 return SubTy;
Chandler Carruth713aa942012-09-14 09:22:59 +00003115}
3116
3117/// \brief Rewrite an alloca partition's users.
3118///
3119/// This routine drives both of the rewriting goals of the SROA pass. It tries
3120/// to rewrite uses of an alloca partition to be conducive for SSA value
3121/// promotion. If the partition needs a new, more refined alloca, this will
3122/// build that new alloca, preserving as much type information as possible, and
3123/// rewrite the uses of the old alloca to point at the new one and have the
3124/// appropriate new offsets. It also evaluates how successful the rewrite was
3125/// at enabling promotion and if it was successful queues the alloca to be
3126/// promoted.
3127bool SROA::rewriteAllocaPartition(AllocaInst &AI,
3128 AllocaPartitioning &P,
3129 AllocaPartitioning::iterator PI) {
3130 uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
Chandler Carruthfdb15852012-10-02 18:57:13 +00003131 bool IsLive = false;
3132 for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
3133 UE = P.use_end(PI);
3134 UI != UE && !IsLive; ++UI)
3135 if (UI->U)
3136 IsLive = true;
3137 if (!IsLive)
Chandler Carruth713aa942012-09-14 09:22:59 +00003138 return false; // No live uses left of this partition.
3139
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003140 DEBUG(dbgs() << "Speculating PHIs and selects in partition "
3141 << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
3142
3143 PHIOrSelectSpeculator Speculator(*TD, P, *this);
3144 DEBUG(dbgs() << " speculating ");
3145 DEBUG(P.print(dbgs(), PI, ""));
Chandler Carrutha346f462012-10-02 17:49:47 +00003146 Speculator.visitUsers(PI);
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003147
Chandler Carruth713aa942012-09-14 09:22:59 +00003148 // Try to compute a friendly type for this partition of the alloca. This
3149 // won't always succeed, in which case we fall back to a legal integer type
3150 // or an i8 array of an appropriate size.
3151 Type *AllocaTy = 0;
3152 if (Type *PartitionTy = P.getCommonType(PI))
3153 if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
3154 AllocaTy = PartitionTy;
3155 if (!AllocaTy)
3156 if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
3157 PI->BeginOffset, AllocaSize))
3158 AllocaTy = PartitionTy;
3159 if ((!AllocaTy ||
3160 (AllocaTy->isArrayTy() &&
3161 AllocaTy->getArrayElementType()->isIntegerTy())) &&
3162 TD->isLegalInteger(AllocaSize * 8))
3163 AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
3164 if (!AllocaTy)
3165 AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
Chandler Carruthb3dd9a12012-09-14 10:26:34 +00003166 assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00003167
3168 // Check for the case where we're going to rewrite to a new alloca of the
3169 // exact same type as the original, and with the same access offsets. In that
3170 // case, re-use the existing alloca, but still run through the rewriter to
3171 // performe phi and select speculation.
3172 AllocaInst *NewAI;
3173 if (AllocaTy == AI.getAllocatedType()) {
3174 assert(PI->BeginOffset == 0 &&
3175 "Non-zero begin offset but same alloca type");
3176 assert(PI == P.begin() && "Begin offset is zero on later partition");
3177 NewAI = &AI;
3178 } else {
Chandler Carruthb67c9a52012-09-29 10:41:21 +00003179 unsigned Alignment = AI.getAlignment();
3180 if (!Alignment) {
3181 // The minimum alignment which users can rely on when the explicit
3182 // alignment is omitted or zero is that required by the ABI for this
3183 // type.
3184 Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
3185 }
3186 Alignment = MinAlign(Alignment, PI->BeginOffset);
3187 // If we will get at least this much alignment from the type alone, leave
3188 // the alloca's alignment unconstrained.
3189 if (Alignment <= TD->getABITypeAlignment(AllocaTy))
3190 Alignment = 0;
3191 NewAI = new AllocaInst(AllocaTy, 0, Alignment,
Chandler Carruth713aa942012-09-14 09:22:59 +00003192 AI.getName() + ".sroa." + Twine(PI - P.begin()),
3193 &AI);
3194 ++NumNewAllocas;
3195 }
3196
3197 DEBUG(dbgs() << "Rewriting alloca partition "
3198 << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
3199 << *NewAI << "\n");
3200
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003201 // Track the high watermark of the post-promotion worklist. We will reset it
3202 // to this point if the alloca is not in fact scheduled for promotion.
3203 unsigned PPWOldSize = PostPromotionWorklist.size();
3204
Chandler Carruth713aa942012-09-14 09:22:59 +00003205 AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
3206 PI->BeginOffset, PI->EndOffset);
3207 DEBUG(dbgs() << " rewriting ");
3208 DEBUG(P.print(dbgs(), PI, ""));
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003209 bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
3210 if (Promotable) {
Chandler Carruth713aa942012-09-14 09:22:59 +00003211 DEBUG(dbgs() << " and queuing for promotion\n");
3212 PromotableAllocas.push_back(NewAI);
3213 } else if (NewAI != &AI) {
3214 // If we can't promote the alloca, iterate on it to check for new
3215 // refinements exposed by splitting the current alloca. Don't iterate on an
3216 // alloca which didn't actually change and didn't get promoted.
3217 Worklist.insert(NewAI);
3218 }
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003219
3220 // Drop any post-promotion work items if promotion didn't happen.
3221 if (!Promotable)
3222 while (PostPromotionWorklist.size() > PPWOldSize)
3223 PostPromotionWorklist.pop_back();
3224
Chandler Carruth713aa942012-09-14 09:22:59 +00003225 return true;
3226}
3227
3228/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3229bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
3230 bool Changed = false;
3231 for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
3232 ++PI)
3233 Changed |= rewriteAllocaPartition(AI, P, PI);
3234
3235 return Changed;
3236}
3237
3238/// \brief Analyze an alloca for SROA.
3239///
3240/// This analyzes the alloca to ensure we can reason about it, builds
3241/// a partitioning of the alloca, and then hands it off to be split and
3242/// rewritten as needed.
3243bool SROA::runOnAlloca(AllocaInst &AI) {
3244 DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3245 ++NumAllocasAnalyzed;
3246
3247 // Special case dead allocas, as they're trivial.
3248 if (AI.use_empty()) {
3249 AI.eraseFromParent();
3250 return true;
3251 }
3252
3253 // Skip alloca forms that this analysis can't handle.
3254 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3255 TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3256 return false;
3257
Chandler Carruthc370acd2012-09-18 12:57:43 +00003258 bool Changed = false;
3259
3260 // First, split any FCA loads and stores touching this alloca to promote
3261 // better splitting and promotion opportunities.
3262 AggLoadStoreRewriter AggRewriter(*TD);
3263 Changed |= AggRewriter.rewrite(AI);
3264
Chandler Carruth713aa942012-09-14 09:22:59 +00003265 // Build the partition set using a recursive instruction-visiting builder.
3266 AllocaPartitioning P(*TD, AI);
3267 DEBUG(P.print(dbgs()));
3268 if (P.isEscaped())
Chandler Carruthc370acd2012-09-18 12:57:43 +00003269 return Changed;
Chandler Carruth713aa942012-09-14 09:22:59 +00003270
Chandler Carruth713aa942012-09-14 09:22:59 +00003271 // Delete all the dead users of this alloca before splitting and rewriting it.
Chandler Carruth713aa942012-09-14 09:22:59 +00003272 for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3273 DE = P.dead_user_end();
3274 DI != DE; ++DI) {
3275 Changed = true;
3276 (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3277 DeadInsts.push_back(*DI);
3278 }
3279 for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3280 DE = P.dead_op_end();
3281 DO != DE; ++DO) {
3282 Value *OldV = **DO;
3283 // Clobber the use with an undef value.
3284 **DO = UndefValue::get(OldV->getType());
3285 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3286 if (isInstructionTriviallyDead(OldI)) {
3287 Changed = true;
3288 DeadInsts.push_back(OldI);
3289 }
3290 }
3291
Chandler Carruthfca3f402012-10-05 01:29:09 +00003292 // No partitions to split. Leave the dead alloca for a later pass to clean up.
3293 if (P.begin() == P.end())
3294 return Changed;
3295
Chandler Carruth713aa942012-09-14 09:22:59 +00003296 return splitAlloca(AI, P) || Changed;
3297}
3298
Chandler Carruth8615cd22012-09-14 10:26:38 +00003299/// \brief Delete the dead instructions accumulated in this run.
3300///
3301/// Recursively deletes the dead instructions we've accumulated. This is done
3302/// at the very end to maximize locality of the recursive delete and to
3303/// minimize the problems of invalidated instruction pointers as such pointers
3304/// are used heavily in the intermediate stages of the algorithm.
3305///
3306/// We also record the alloca instructions deleted here so that they aren't
3307/// subsequently handed to mem2reg to promote.
3308void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
Chandler Carruth713aa942012-09-14 09:22:59 +00003309 DeadSplitInsts.clear();
3310 while (!DeadInsts.empty()) {
3311 Instruction *I = DeadInsts.pop_back_val();
3312 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3313
3314 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3315 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3316 // Zero out the operand and see if it becomes trivially dead.
3317 *OI = 0;
3318 if (isInstructionTriviallyDead(U))
3319 DeadInsts.push_back(U);
3320 }
3321
3322 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3323 DeletedAllocas.insert(AI);
3324
3325 ++NumDeleted;
3326 I->eraseFromParent();
3327 }
3328}
3329
Chandler Carruth1c8db502012-09-15 11:43:14 +00003330/// \brief Promote the allocas, using the best available technique.
3331///
3332/// This attempts to promote whatever allocas have been identified as viable in
3333/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3334/// If there is a domtree available, we attempt to promote using the full power
3335/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3336/// based on the SSAUpdater utilities. This function returns whether any
3337/// promotion occured.
3338bool SROA::promoteAllocas(Function &F) {
3339 if (PromotableAllocas.empty())
3340 return false;
3341
3342 NumPromoted += PromotableAllocas.size();
3343
3344 if (DT && !ForceSSAUpdater) {
3345 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3346 PromoteMemToReg(PromotableAllocas, *DT);
3347 PromotableAllocas.clear();
3348 return true;
3349 }
3350
3351 DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3352 SSAUpdater SSA;
3353 DIBuilder DIB(*F.getParent());
3354 SmallVector<Instruction*, 64> Insts;
3355
3356 for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3357 AllocaInst *AI = PromotableAllocas[Idx];
3358 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3359 UI != UE;) {
3360 Instruction *I = cast<Instruction>(*UI++);
3361 // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3362 // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3363 // leading to them) here. Eventually it should use them to optimize the
3364 // scalar values produced.
3365 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3366 assert(onlyUsedByLifetimeMarkers(I) &&
3367 "Found a bitcast used outside of a lifetime marker.");
3368 while (!I->use_empty())
3369 cast<Instruction>(*I->use_begin())->eraseFromParent();
3370 I->eraseFromParent();
3371 continue;
3372 }
3373 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3374 assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3375 II->getIntrinsicID() == Intrinsic::lifetime_end);
3376 II->eraseFromParent();
3377 continue;
3378 }
3379
3380 Insts.push_back(I);
3381 }
3382 AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3383 Insts.clear();
3384 }
3385
3386 PromotableAllocas.clear();
3387 return true;
3388}
3389
Chandler Carruth713aa942012-09-14 09:22:59 +00003390namespace {
3391 /// \brief A predicate to test whether an alloca belongs to a set.
3392 class IsAllocaInSet {
3393 typedef SmallPtrSet<AllocaInst *, 4> SetType;
3394 const SetType &Set;
3395
3396 public:
Chandler Carruth75eac5f2012-10-03 00:03:00 +00003397 typedef AllocaInst *argument_type;
3398
Chandler Carruth713aa942012-09-14 09:22:59 +00003399 IsAllocaInSet(const SetType &Set) : Set(Set) {}
Chandler Carruth75eac5f2012-10-03 00:03:00 +00003400 bool operator()(AllocaInst *AI) const { return Set.count(AI); }
Chandler Carruth713aa942012-09-14 09:22:59 +00003401 };
3402}
3403
3404bool SROA::runOnFunction(Function &F) {
3405 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3406 C = &F.getContext();
Micah Villmow3574eca2012-10-08 16:38:25 +00003407 TD = getAnalysisIfAvailable<DataLayout>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003408 if (!TD) {
3409 DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
3410 return false;
3411 }
Chandler Carruth1c8db502012-09-15 11:43:14 +00003412 DT = getAnalysisIfAvailable<DominatorTree>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003413
3414 BasicBlock &EntryBB = F.getEntryBlock();
3415 for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3416 I != E; ++I)
3417 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3418 Worklist.insert(AI);
3419
3420 bool Changed = false;
Chandler Carruth8615cd22012-09-14 10:26:38 +00003421 // A set of deleted alloca instruction pointers which should be removed from
3422 // the list of promotable allocas.
3423 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3424
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003425 do {
3426 while (!Worklist.empty()) {
3427 Changed |= runOnAlloca(*Worklist.pop_back_val());
3428 deleteDeadInstructions(DeletedAllocas);
Chandler Carruth5c5b3cf2012-10-02 22:46:45 +00003429
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003430 // Remove the deleted allocas from various lists so that we don't try to
3431 // continue processing them.
3432 if (!DeletedAllocas.empty()) {
3433 Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3434 PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3435 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3436 PromotableAllocas.end(),
3437 IsAllocaInSet(DeletedAllocas)),
3438 PromotableAllocas.end());
3439 DeletedAllocas.clear();
3440 }
Chandler Carruth713aa942012-09-14 09:22:59 +00003441 }
Chandler Carruth713aa942012-09-14 09:22:59 +00003442
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003443 Changed |= promoteAllocas(F);
3444
3445 Worklist = PostPromotionWorklist;
3446 PostPromotionWorklist.clear();
3447 } while (!Worklist.empty());
Chandler Carruth713aa942012-09-14 09:22:59 +00003448
3449 return Changed;
3450}
3451
3452void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth1c8db502012-09-15 11:43:14 +00003453 if (RequiresDomTree)
3454 AU.addRequired<DominatorTree>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003455 AU.setPreservesCFG();
3456}