blob: 0b498a1bbaf752c703056b53bee17f32da5487f7 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
38 :const:`1.1` do not have an exact representation in binary floating point. End
39 users typically would not expect :const:`1.1` to display as
40 :const:`1.1000000000000001` as it does with binary floating point.
41
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
60 >>> getcontext().prec = 6
61 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000062 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000063 >>> getcontext().prec = 28
64 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000065 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000066
67* Both binary and decimal floating point are implemented in terms of published
68 standards. While the built-in float type exposes only a modest portion of its
69 capabilities, the decimal module exposes all required parts of the standard.
70 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000071 This includes an option to enforce exact arithmetic by using exceptions
72 to block any inexact operations.
73
74* The decimal module was designed to support "without prejudice, both exact
75 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
76 and rounded floating-point arithmetic." -- excerpt from the decimal
77 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000078
79The module design is centered around three concepts: the decimal number, the
80context for arithmetic, and signals.
81
82A decimal number is immutable. It has a sign, coefficient digits, and an
83exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000084trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000085:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
86differentiates :const:`-0` from :const:`+0`.
87
88The context for arithmetic is an environment specifying precision, rounding
89rules, limits on exponents, flags indicating the results of operations, and trap
90enablers which determine whether signals are treated as exceptions. Rounding
91options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
92:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000093:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000094
95Signals are groups of exceptional conditions arising during the course of
96computation. Depending on the needs of the application, signals may be ignored,
97considered as informational, or treated as exceptions. The signals in the
98decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
99:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
100:const:`Overflow`, and :const:`Underflow`.
101
102For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000103encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000104set to one, an exception is raised. Flags are sticky, so the user needs to
105reset them before monitoring a calculation.
106
107
108.. seealso::
109
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000110 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettingerf345a212009-03-10 01:07:30 +0000111 Specification <http://speleotrove.com/decimal/>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000112
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000113 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000114 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115
Georg Brandlb19be572007-12-29 10:57:00 +0000116.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000117
118
119.. _decimal-tutorial:
120
121Quick-start Tutorial
122--------------------
123
124The usual start to using decimals is importing the module, viewing the current
125context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000126precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127
128 >>> from decimal import *
129 >>> getcontext()
130 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000131 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
132 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133
134 >>> getcontext().prec = 7 # Set a new precision
135
136Decimal instances can be constructed from integers, strings, or tuples. To
137create a Decimal from a :class:`float`, first convert it to a string. This
138serves as an explicit reminder of the details of the conversion (including
139representation error). Decimal numbers include special values such as
140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000148 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000149 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('1.41421356237')
152 >>> Decimal(2) ** Decimal('0.5')
153 Decimal('1.414213562373095048801688724')
154 >>> Decimal('NaN')
155 Decimal('NaN')
156 >>> Decimal('-Infinity')
157 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000158
159The significance of a new Decimal is determined solely by the number of digits
160input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000161operations.
162
163.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000164
165 >>> getcontext().prec = 6
166 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000167 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> getcontext().rounding = ROUND_UP
173 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000174 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000175
176Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000177floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000178
Georg Brandl838b4b02008-03-22 13:07:06 +0000179.. doctest::
180 :options: +NORMALIZE_WHITESPACE
181
Georg Brandl8ec7f652007-08-15 14:28:01 +0000182 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
183 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000184 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000187 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
189 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000191 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> a,b,c = data[:3]
193 >>> str(a)
194 '1.34'
195 >>> float(a)
196 1.3400000000000001
197 >>> round(a, 1) # round() first converts to binary floating point
198 1.3
199 >>> int(a)
200 1
201 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000202 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000203 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
Georg Brandl9f662322008-03-22 11:47:10 +0000208And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000209
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000210 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000212 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('2.718281828459045235360287471')
215 >>> Decimal('10').ln()
216 Decimal('2.302585092994045684017991455')
217 >>> Decimal('10').log10()
218 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000219
Georg Brandl8ec7f652007-08-15 14:28:01 +0000220The :meth:`quantize` method rounds a number to a fixed exponent. This method is
221useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000222places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000223
224 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000225 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000226 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
229As shown above, the :func:`getcontext` function accesses the current context and
230allows the settings to be changed. This approach meets the needs of most
231applications.
232
233For more advanced work, it may be useful to create alternate contexts using the
234Context() constructor. To make an alternate active, use the :func:`setcontext`
235function.
236
237In accordance with the standard, the :mod:`Decimal` module provides two ready to
238use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
239former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000240enabled:
241
242.. doctest:: newcontext
243 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000244
245 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
246 >>> setcontext(myothercontext)
247 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000248 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000249
250 >>> ExtendedContext
251 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
252 capitals=1, flags=[], traps=[])
253 >>> setcontext(ExtendedContext)
254 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000255 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258
259 >>> setcontext(BasicContext)
260 >>> Decimal(42) / Decimal(0)
261 Traceback (most recent call last):
262 File "<pyshell#143>", line 1, in -toplevel-
263 Decimal(42) / Decimal(0)
264 DivisionByZero: x / 0
265
266Contexts also have signal flags for monitoring exceptional conditions
267encountered during computations. The flags remain set until explicitly cleared,
268so it is best to clear the flags before each set of monitored computations by
269using the :meth:`clear_flags` method. ::
270
271 >>> setcontext(ExtendedContext)
272 >>> getcontext().clear_flags()
273 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000274 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000275 >>> getcontext()
276 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000277 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000278
279The *flags* entry shows that the rational approximation to :const:`Pi` was
280rounded (digits beyond the context precision were thrown away) and that the
281result is inexact (some of the discarded digits were non-zero).
282
283Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000284context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000285
Georg Brandl9f662322008-03-22 11:47:10 +0000286.. doctest:: newcontext
287
288 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000290 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> getcontext().traps[DivisionByZero] = 1
292 >>> Decimal(1) / Decimal(0)
293 Traceback (most recent call last):
294 File "<pyshell#112>", line 1, in -toplevel-
295 Decimal(1) / Decimal(0)
296 DivisionByZero: x / 0
297
298Most programs adjust the current context only once, at the beginning of the
299program. And, in many applications, data is converted to :class:`Decimal` with
300a single cast inside a loop. With context set and decimals created, the bulk of
301the program manipulates the data no differently than with other Python numeric
302types.
303
Georg Brandlb19be572007-12-29 10:57:00 +0000304.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000305
306
307.. _decimal-decimal:
308
309Decimal objects
310---------------
311
312
313.. class:: Decimal([value [, context]])
314
Georg Brandlb19be572007-12-29 10:57:00 +0000315 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000317 *value* can be an integer, string, tuple, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000318 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000319 string, it should conform to the decimal numeric string syntax after leading
320 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000321
322 sign ::= '+' | '-'
323 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
324 indicator ::= 'e' | 'E'
325 digits ::= digit [digit]...
326 decimal-part ::= digits '.' [digits] | ['.'] digits
327 exponent-part ::= indicator [sign] digits
328 infinity ::= 'Infinity' | 'Inf'
329 nan ::= 'NaN' [digits] | 'sNaN' [digits]
330 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000331 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000332
333 If *value* is a :class:`tuple`, it should have three components, a sign
334 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
335 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000336 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000337
338 The *context* precision does not affect how many digits are stored. That is
339 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000340 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000341 only three.
342
343 The purpose of the *context* argument is determining what to do if *value* is a
344 malformed string. If the context traps :const:`InvalidOperation`, an exception
345 is raised; otherwise, the constructor returns a new Decimal with the value of
346 :const:`NaN`.
347
348 Once constructed, :class:`Decimal` objects are immutable.
349
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000350 .. versionchanged:: 2.6
351 leading and trailing whitespace characters are permitted when
352 creating a Decimal instance from a string.
353
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000354 Decimal floating point objects share many properties with the other built-in
355 numeric types such as :class:`float` and :class:`int`. All of the usual math
356 operations and special methods apply. Likewise, decimal objects can be
357 copied, pickled, printed, used as dictionary keys, used as set elements,
358 compared, sorted, and coerced to another type (such as :class:`float` or
359 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000360
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000361 In addition to the standard numeric properties, decimal floating point
362 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000363
364
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000365 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000366
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000367 Return the adjusted exponent after shifting out the coefficient's
368 rightmost digits until only the lead digit remains:
369 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
370 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000371
372
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000373 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000374
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000375 Return a :term:`named tuple` representation of the number:
376 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000377
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000378 .. versionchanged:: 2.6
379 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000380
381
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000382 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000383
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000384 Return the canonical encoding of the argument. Currently, the encoding of
385 a :class:`Decimal` instance is always canonical, so this operation returns
386 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000387
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000388 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000389
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000390 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000391
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000392 Compare the values of two Decimal instances. This operation behaves in
393 the same way as the usual comparison method :meth:`__cmp__`, except that
394 :meth:`compare` returns a Decimal instance rather than an integer, and if
395 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000396
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000397 a or b is a NaN ==> Decimal('NaN')
398 a < b ==> Decimal('-1')
399 a == b ==> Decimal('0')
400 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000401
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000402 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000403
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000404 This operation is identical to the :meth:`compare` method, except that all
405 NaNs signal. That is, if neither operand is a signaling NaN then any
406 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000411
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000412 Compare two operands using their abstract representation rather than their
413 numerical value. Similar to the :meth:`compare` method, but the result
414 gives a total ordering on :class:`Decimal` instances. Two
415 :class:`Decimal` instances with the same numeric value but different
416 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000417
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000418 >>> Decimal('12.0').compare_total(Decimal('12'))
419 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000420
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000421 Quiet and signaling NaNs are also included in the total ordering. The
422 result of this function is ``Decimal('0')`` if both operands have the same
423 representation, ``Decimal('-1')`` if the first operand is lower in the
424 total order than the second, and ``Decimal('1')`` if the first operand is
425 higher in the total order than the second operand. See the specification
426 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000427
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000428 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000429
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000430 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000431
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000432 Compare two operands using their abstract representation rather than their
433 value as in :meth:`compare_total`, but ignoring the sign of each operand.
434 ``x.compare_total_mag(y)`` is equivalent to
435 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000436
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000437 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000438
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000439 .. method:: conjugate()
440
441 Just returns self, this method is only to comply with the Decimal
442 Specification.
443
444 .. versionadded:: 2.6
445
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000446 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000447
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000448 Return the absolute value of the argument. This operation is unaffected
449 by the context and is quiet: no flags are changed and no rounding is
450 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000451
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000452 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000453
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000454 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000455
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000456 Return the negation of the argument. This operation is unaffected by the
457 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000458
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000459 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000460
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000461 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000462
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000463 Return a copy of the first operand with the sign set to be the same as the
464 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000465
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000466 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
467 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000468
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000469 This operation is unaffected by the context and is quiet: no flags are
470 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000473
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000474 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000475
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000476 Return the value of the (natural) exponential function ``e**x`` at the
477 given number. The result is correctly rounded using the
478 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000479
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000480 >>> Decimal(1).exp()
481 Decimal('2.718281828459045235360287471')
482 >>> Decimal(321).exp()
483 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000484
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000485 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000486
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000487 .. method:: from_float(f)
488
489 Classmethod that converts a float to a decimal number, exactly.
490
491 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
492 Since 0.1 is not exactly representable in binary floating point, the
493 value is stored as the nearest representable value which is
494 `0x1.999999999999ap-4`. That equivalent value in decimal is
495 `0.1000000000000000055511151231257827021181583404541015625`.
496
497 .. doctest::
498
499 >>> Decimal.from_float(0.1)
500 Decimal('0.1000000000000000055511151231257827021181583404541015625')
501 >>> Decimal.from_float(float('nan'))
502 Decimal('NaN')
503 >>> Decimal.from_float(float('inf'))
504 Decimal('Infinity')
505 >>> Decimal.from_float(float('-inf'))
506 Decimal('-Infinity')
507
508 .. versionadded:: 2.7
509
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000510 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000511
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000512 Fused multiply-add. Return self*other+third with no rounding of the
513 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000514
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000515 >>> Decimal(2).fma(3, 5)
516 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000517
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000518 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000519
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000520 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000521
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000522 Return :const:`True` if the argument is canonical and :const:`False`
523 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
524 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000525
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000526 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000527
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000528 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000529
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000530 Return :const:`True` if the argument is a finite number, and
531 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000532
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000533 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000534
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000535 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000536
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000537 Return :const:`True` if the argument is either positive or negative
538 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000539
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000540 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000541
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000542 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000543
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000544 Return :const:`True` if the argument is a (quiet or signaling) NaN and
545 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000546
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000547 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000548
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000549 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000550
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000551 Return :const:`True` if the argument is a *normal* finite non-zero
552 number with an adjusted exponent greater than or equal to *Emin*.
553 Return :const:`False` if the argument is zero, subnormal, infinite or a
554 NaN. Note, the term *normal* is used here in a different sense with
555 the :meth:`normalize` method which is used to create canonical values.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000556
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000557 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000558
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000559 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000560
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000561 Return :const:`True` if the argument is a quiet NaN, and
562 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000563
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000564 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000565
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000566 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000567
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000568 Return :const:`True` if the argument has a negative sign and
569 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000570
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000571 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000572
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000573 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000574
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000575 Return :const:`True` if the argument is a signaling NaN and :const:`False`
576 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000577
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000578 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000579
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000580 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000581
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000582 Return :const:`True` if the argument is subnormal, and :const:`False`
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000583 otherwise. A number is subnormal is if it is nonzero, finite, and has an
584 adjusted exponent less than *Emin*.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000585
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000586 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000587
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000588 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000589
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000590 Return :const:`True` if the argument is a (positive or negative) zero and
591 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000592
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000593 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000594
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000595 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000596
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000597 Return the natural (base e) logarithm of the operand. The result is
598 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000599
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000600 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000601
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000602 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000603
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000604 Return the base ten logarithm of the operand. The result is correctly
605 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000606
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000607 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000608
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000609 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000610
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000611 For a nonzero number, return the adjusted exponent of its operand as a
612 :class:`Decimal` instance. If the operand is a zero then
613 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
614 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
615 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000616
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000617 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000618
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000619 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000620
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000621 :meth:`logical_and` is a logical operation which takes two *logical
622 operands* (see :ref:`logical_operands_label`). The result is the
623 digit-wise ``and`` of the two operands.
624
625 .. versionadded:: 2.6
626
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000627 .. method:: logical_invert([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000628
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000629 :meth:`logical_invert` is a logical operation. The
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000630 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000631
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000632 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000633
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000634 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000635
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000636 :meth:`logical_or` is a logical operation which takes two *logical
637 operands* (see :ref:`logical_operands_label`). The result is the
638 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000639
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000640 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000641
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000642 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000643
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000644 :meth:`logical_xor` is a logical operation which takes two *logical
645 operands* (see :ref:`logical_operands_label`). The result is the
646 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000647
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000648 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000649
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000650 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000651
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000652 Like ``max(self, other)`` except that the context rounding rule is applied
653 before returning and that :const:`NaN` values are either signaled or
654 ignored (depending on the context and whether they are signaling or
655 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000656
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000657 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000658
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000659 Similar to the :meth:`max` method, but the comparison is done using the
660 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000661
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000662 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000663
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000664 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000665
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000666 Like ``min(self, other)`` except that the context rounding rule is applied
667 before returning and that :const:`NaN` values are either signaled or
668 ignored (depending on the context and whether they are signaling or
669 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000670
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000671 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000672
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000673 Similar to the :meth:`min` method, but the comparison is done using the
674 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000675
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000676 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000677
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000678 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000679
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000680 Return the largest number representable in the given context (or in the
681 current thread's context if no context is given) that is smaller than the
682 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000683
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000684 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000685
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000686 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000687
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000688 Return the smallest number representable in the given context (or in the
689 current thread's context if no context is given) that is larger than the
690 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000691
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000692 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000693
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000694 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000695
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000696 If the two operands are unequal, return the number closest to the first
697 operand in the direction of the second operand. If both operands are
698 numerically equal, return a copy of the first operand with the sign set to
699 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000700
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000701 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000702
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000703 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000704
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000705 Normalize the number by stripping the rightmost trailing zeros and
706 converting any result equal to :const:`Decimal('0')` to
707 :const:`Decimal('0e0')`. Used for producing canonical values for members
708 of an equivalence class. For example, ``Decimal('32.100')`` and
709 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
710 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000711
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000712 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000713
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000714 Return a string describing the *class* of the operand. The returned value
715 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000716
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000717 * ``"-Infinity"``, indicating that the operand is negative infinity.
718 * ``"-Normal"``, indicating that the operand is a negative normal number.
719 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
720 * ``"-Zero"``, indicating that the operand is a negative zero.
721 * ``"+Zero"``, indicating that the operand is a positive zero.
722 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
723 * ``"+Normal"``, indicating that the operand is a positive normal number.
724 * ``"+Infinity"``, indicating that the operand is positive infinity.
725 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
726 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000727
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000728 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000729
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000730 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000731
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000732 Return a value equal to the first operand after rounding and having the
733 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000734
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000735 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
736 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000737
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000738 Unlike other operations, if the length of the coefficient after the
739 quantize operation would be greater than precision, then an
740 :const:`InvalidOperation` is signaled. This guarantees that, unless there
741 is an error condition, the quantized exponent is always equal to that of
742 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000743
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000744 Also unlike other operations, quantize never signals Underflow, even if
745 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000746
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000747 If the exponent of the second operand is larger than that of the first
748 then rounding may be necessary. In this case, the rounding mode is
749 determined by the ``rounding`` argument if given, else by the given
750 ``context`` argument; if neither argument is given the rounding mode of
751 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000752
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000753 If *watchexp* is set (default), then an error is returned whenever the
754 resulting exponent is greater than :attr:`Emax` or less than
755 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000756
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000757 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000758
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000759 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
760 class does all its arithmetic. Included for compatibility with the
761 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000762
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000763 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000764
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000765 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000766
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000767 Compute the modulo as either a positive or negative value depending on
768 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
769 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000770
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000771 If both are equally close, the one chosen will have the same sign as
772 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000773
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000774 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000775
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000776 Return the result of rotating the digits of the first operand by an amount
777 specified by the second operand. The second operand must be an integer in
778 the range -precision through precision. The absolute value of the second
779 operand gives the number of places to rotate. If the second operand is
780 positive then rotation is to the left; otherwise rotation is to the right.
781 The coefficient of the first operand is padded on the left with zeros to
782 length precision if necessary. The sign and exponent of the first operand
783 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000784
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000785 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000786
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000787 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000788
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000789 Test whether self and other have the same exponent or whether both are
790 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000791
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000792 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000793
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000794 Return the first operand with exponent adjusted by the second.
795 Equivalently, return the first operand multiplied by ``10**other``. The
796 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000797
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000798 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000799
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000800 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000801
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000802 Return the result of shifting the digits of the first operand by an amount
803 specified by the second operand. The second operand must be an integer in
804 the range -precision through precision. The absolute value of the second
805 operand gives the number of places to shift. If the second operand is
806 positive then the shift is to the left; otherwise the shift is to the
807 right. Digits shifted into the coefficient are zeros. The sign and
808 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000809
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000810 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000811
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000812 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000813
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000814 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000815
816
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000817 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000818
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000819 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000820
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000821 Engineering notation has an exponent which is a multiple of 3, so there
822 are up to 3 digits left of the decimal place. For example, converts
823 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000824
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000825 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000826
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000827 Identical to the :meth:`to_integral_value` method. The ``to_integral``
828 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000829
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000830 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000831
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000832 Round to the nearest integer, signaling :const:`Inexact` or
833 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
834 determined by the ``rounding`` parameter if given, else by the given
835 ``context``. If neither parameter is given then the rounding mode of the
836 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000837
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000838 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000839
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000840 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000841
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000842 Round to the nearest integer without signaling :const:`Inexact` or
843 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
844 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000845
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000846 .. versionchanged:: 2.6
847 renamed from ``to_integral`` to ``to_integral_value``. The old name
848 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000849
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000850.. _logical_operands_label:
851
852Logical operands
853^^^^^^^^^^^^^^^^
854
855The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
856and :meth:`logical_xor` methods expect their arguments to be *logical
857operands*. A *logical operand* is a :class:`Decimal` instance whose
858exponent and sign are both zero, and whose digits are all either
859:const:`0` or :const:`1`.
860
Georg Brandlb19be572007-12-29 10:57:00 +0000861.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000862
863
864.. _decimal-context:
865
866Context objects
867---------------
868
869Contexts are environments for arithmetic operations. They govern precision, set
870rules for rounding, determine which signals are treated as exceptions, and limit
871the range for exponents.
872
873Each thread has its own current context which is accessed or changed using the
874:func:`getcontext` and :func:`setcontext` functions:
875
876
877.. function:: getcontext()
878
879 Return the current context for the active thread.
880
881
882.. function:: setcontext(c)
883
884 Set the current context for the active thread to *c*.
885
886Beginning with Python 2.5, you can also use the :keyword:`with` statement and
887the :func:`localcontext` function to temporarily change the active context.
888
889
890.. function:: localcontext([c])
891
892 Return a context manager that will set the current context for the active thread
893 to a copy of *c* on entry to the with-statement and restore the previous context
894 when exiting the with-statement. If no context is specified, a copy of the
895 current context is used.
896
897 .. versionadded:: 2.5
898
899 For example, the following code sets the current decimal precision to 42 places,
900 performs a calculation, and then automatically restores the previous context::
901
Georg Brandl8ec7f652007-08-15 14:28:01 +0000902 from decimal import localcontext
903
904 with localcontext() as ctx:
905 ctx.prec = 42 # Perform a high precision calculation
906 s = calculate_something()
907 s = +s # Round the final result back to the default precision
908
909New contexts can also be created using the :class:`Context` constructor
910described below. In addition, the module provides three pre-made contexts:
911
912
913.. class:: BasicContext
914
915 This is a standard context defined by the General Decimal Arithmetic
916 Specification. Precision is set to nine. Rounding is set to
917 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
918 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
919 :const:`Subnormal`.
920
921 Because many of the traps are enabled, this context is useful for debugging.
922
923
924.. class:: ExtendedContext
925
926 This is a standard context defined by the General Decimal Arithmetic
927 Specification. Precision is set to nine. Rounding is set to
928 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
929 exceptions are not raised during computations).
930
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000931 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000932 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
933 raising exceptions. This allows an application to complete a run in the
934 presence of conditions that would otherwise halt the program.
935
936
937.. class:: DefaultContext
938
939 This context is used by the :class:`Context` constructor as a prototype for new
940 contexts. Changing a field (such a precision) has the effect of changing the
941 default for new contexts creating by the :class:`Context` constructor.
942
943 This context is most useful in multi-threaded environments. Changing one of the
944 fields before threads are started has the effect of setting system-wide
945 defaults. Changing the fields after threads have started is not recommended as
946 it would require thread synchronization to prevent race conditions.
947
948 In single threaded environments, it is preferable to not use this context at
949 all. Instead, simply create contexts explicitly as described below.
950
951 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
952 for Overflow, InvalidOperation, and DivisionByZero.
953
954In addition to the three supplied contexts, new contexts can be created with the
955:class:`Context` constructor.
956
957
958.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
959
960 Creates a new context. If a field is not specified or is :const:`None`, the
961 default values are copied from the :const:`DefaultContext`. If the *flags*
962 field is not specified or is :const:`None`, all flags are cleared.
963
964 The *prec* field is a positive integer that sets the precision for arithmetic
965 operations in the context.
966
967 The *rounding* option is one of:
968
969 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
970 * :const:`ROUND_DOWN` (towards zero),
971 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
972 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
973 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
974 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
975 * :const:`ROUND_UP` (away from zero).
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000976 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000977 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000978
979 The *traps* and *flags* fields list any signals to be set. Generally, new
980 contexts should only set traps and leave the flags clear.
981
982 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
983 for exponents.
984
985 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
986 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
987 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
988
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000989 .. versionchanged:: 2.6
990 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000991
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000992 The :class:`Context` class defines several general purpose methods as well as
993 a large number of methods for doing arithmetic directly in a given context.
994 In addition, for each of the :class:`Decimal` methods described above (with
995 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
996 a corresponding :class:`Context` method. For example, ``C.exp(x)`` is
997 equivalent to ``x.exp(context=C)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000998
999
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001000 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001001
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001002 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001003
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001004 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001005
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001006 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001007
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001008 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001009
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001010 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001011
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001012 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +00001013
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001014 Creates a new Decimal instance from *num* but using *self* as
1015 context. Unlike the :class:`Decimal` constructor, the context precision,
1016 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001017
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001018 This is useful because constants are often given to a greater precision
1019 than is needed by the application. Another benefit is that rounding
1020 immediately eliminates unintended effects from digits beyond the current
1021 precision. In the following example, using unrounded inputs means that
1022 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001023
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001024 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001025
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001026 >>> getcontext().prec = 3
1027 >>> Decimal('3.4445') + Decimal('1.0023')
1028 Decimal('4.45')
1029 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1030 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001031
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001032 This method implements the to-number operation of the IBM specification.
1033 If the argument is a string, no leading or trailing whitespace is
1034 permitted.
1035
Georg Brandlaa5bb322009-01-03 19:44:48 +00001036 .. method:: create_decimal_from_float(f)
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001037
1038 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandla24067e2009-01-03 20:15:14 +00001039 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001040 the context precision, rounding method, flags, and traps are applied to
1041 the conversion.
1042
1043 .. doctest::
1044
Georg Brandlaa5bb322009-01-03 19:44:48 +00001045 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1046 >>> context.create_decimal_from_float(math.pi)
1047 Decimal('3.1415')
1048 >>> context = Context(prec=5, traps=[Inexact])
1049 >>> context.create_decimal_from_float(math.pi)
1050 Traceback (most recent call last):
1051 ...
1052 Inexact: None
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001053
1054 .. versionadded:: 2.7
1055
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001056 .. method:: Etiny()
1057
1058 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1059 value for subnormal results. When underflow occurs, the exponent is set
1060 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001061
1062
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001063 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001064
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001065 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001066
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001067 The usual approach to working with decimals is to create :class:`Decimal`
1068 instances and then apply arithmetic operations which take place within the
1069 current context for the active thread. An alternative approach is to use
1070 context methods for calculating within a specific context. The methods are
1071 similar to those for the :class:`Decimal` class and are only briefly
1072 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001073
1074
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001075 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001076
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001077 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001078
1079
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001080 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001081
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001082 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001083
1084
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001085 .. method:: canonical(x)
1086
1087 Returns the same Decimal object *x*.
1088
1089
1090 .. method:: compare(x, y)
1091
1092 Compares *x* and *y* numerically.
1093
1094
1095 .. method:: compare_signal(x, y)
1096
1097 Compares the values of the two operands numerically.
1098
1099
1100 .. method:: compare_total(x, y)
1101
1102 Compares two operands using their abstract representation.
1103
1104
1105 .. method:: compare_total_mag(x, y)
1106
1107 Compares two operands using their abstract representation, ignoring sign.
1108
1109
1110 .. method:: copy_abs(x)
1111
1112 Returns a copy of *x* with the sign set to 0.
1113
1114
1115 .. method:: copy_negate(x)
1116
1117 Returns a copy of *x* with the sign inverted.
1118
1119
1120 .. method:: copy_sign(x, y)
1121
1122 Copies the sign from *y* to *x*.
1123
1124
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001125 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001126
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001127 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001128
1129
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001130 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001131
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001132 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001133
1134
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001135 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001136
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001137 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001138
1139
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001140 .. method:: exp(x)
1141
1142 Returns `e ** x`.
1143
1144
1145 .. method:: fma(x, y, z)
1146
1147 Returns *x* multiplied by *y*, plus *z*.
1148
1149
1150 .. method:: is_canonical(x)
1151
1152 Returns True if *x* is canonical; otherwise returns False.
1153
1154
1155 .. method:: is_finite(x)
1156
1157 Returns True if *x* is finite; otherwise returns False.
1158
1159
1160 .. method:: is_infinite(x)
1161
1162 Returns True if *x* is infinite; otherwise returns False.
1163
1164
1165 .. method:: is_nan(x)
1166
1167 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1168
1169
1170 .. method:: is_normal(x)
1171
1172 Returns True if *x* is a normal number; otherwise returns False.
1173
1174
1175 .. method:: is_qnan(x)
1176
1177 Returns True if *x* is a quiet NaN; otherwise returns False.
1178
1179
1180 .. method:: is_signed(x)
1181
1182 Returns True if *x* is negative; otherwise returns False.
1183
1184
1185 .. method:: is_snan(x)
1186
1187 Returns True if *x* is a signaling NaN; otherwise returns False.
1188
1189
1190 .. method:: is_subnormal(x)
1191
1192 Returns True if *x* is subnormal; otherwise returns False.
1193
1194
1195 .. method:: is_zero(x)
1196
1197 Returns True if *x* is a zero; otherwise returns False.
1198
1199
1200 .. method:: ln(x)
1201
1202 Returns the natural (base e) logarithm of *x*.
1203
1204
1205 .. method:: log10(x)
1206
1207 Returns the base 10 logarithm of *x*.
1208
1209
1210 .. method:: logb(x)
1211
1212 Returns the exponent of the magnitude of the operand's MSD.
1213
1214
1215 .. method:: logical_and(x, y)
1216
Georg Brandle92818f2009-01-03 20:47:01 +00001217 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001218
1219
1220 .. method:: logical_invert(x)
1221
1222 Invert all the digits in *x*.
1223
1224
1225 .. method:: logical_or(x, y)
1226
Georg Brandle92818f2009-01-03 20:47:01 +00001227 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001228
1229
1230 .. method:: logical_xor(x, y)
1231
Georg Brandle92818f2009-01-03 20:47:01 +00001232 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001233
1234
1235 .. method:: max(x, y)
1236
1237 Compares two values numerically and returns the maximum.
1238
1239
1240 .. method:: max_mag(x, y)
1241
1242 Compares the values numerically with their sign ignored.
1243
1244
1245 .. method:: min(x, y)
1246
1247 Compares two values numerically and returns the minimum.
1248
1249
1250 .. method:: min_mag(x, y)
1251
1252 Compares the values numerically with their sign ignored.
1253
1254
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001255 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001256
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001257 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001258
1259
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001260 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001261
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001262 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001263
1264
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001265 .. method:: next_minus(x)
1266
1267 Returns the largest representable number smaller than *x*.
1268
1269
1270 .. method:: next_plus(x)
1271
1272 Returns the smallest representable number larger than *x*.
1273
1274
1275 .. method:: next_toward(x, y)
1276
1277 Returns the number closest to *x*, in direction towards *y*.
1278
1279
1280 .. method:: normalize(x)
1281
1282 Reduces *x* to its simplest form.
1283
1284
1285 .. method:: number_class(x)
1286
1287 Returns an indication of the class of *x*.
1288
1289
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001290 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001291
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001292 Plus corresponds to the unary prefix plus operator in Python. This
1293 operation applies the context precision and rounding, so it is *not* an
1294 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001295
1296
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001297 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001298
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001299 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001300
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001301 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1302 must be integral. The result will be inexact unless ``y`` is integral and
1303 the result is finite and can be expressed exactly in 'precision' digits.
1304 The result should always be correctly rounded, using the rounding mode of
1305 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001306
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001307 With three arguments, compute ``(x**y) % modulo``. For the three argument
1308 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001309
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001310 - all three arguments must be integral
1311 - ``y`` must be nonnegative
1312 - at least one of ``x`` or ``y`` must be nonzero
1313 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001314
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001315 The result of ``Context.power(x, y, modulo)`` is identical to the result
1316 that would be obtained by computing ``(x**y) % modulo`` with unbounded
1317 precision, but is computed more efficiently. It is always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001318
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001319 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001320 ``y`` may now be nonintegral in ``x**y``.
1321 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001322
1323
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001324 .. method:: quantize(x, y)
1325
1326 Returns a value equal to *x* (rounded), having the exponent of *y*.
1327
1328
1329 .. method:: radix()
1330
1331 Just returns 10, as this is Decimal, :)
1332
1333
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001334 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001335
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001336 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001337
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001338 The sign of the result, if non-zero, is the same as that of the original
1339 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001340
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001341 .. method:: remainder_near(x, y)
1342
Georg Brandle92818f2009-01-03 20:47:01 +00001343 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1344 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001345
1346
1347 .. method:: rotate(x, y)
1348
1349 Returns a rotated copy of *x*, *y* times.
1350
1351
1352 .. method:: same_quantum(x, y)
1353
1354 Returns True if the two operands have the same exponent.
1355
1356
1357 .. method:: scaleb (x, y)
1358
1359 Returns the first operand after adding the second value its exp.
1360
1361
1362 .. method:: shift(x, y)
1363
1364 Returns a shifted copy of *x*, *y* times.
1365
1366
1367 .. method:: sqrt(x)
1368
1369 Square root of a non-negative number to context precision.
1370
1371
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001372 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001373
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001374 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001375
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001376
1377 .. method:: to_eng_string(x)
1378
1379 Converts a number to a string, using scientific notation.
1380
1381
1382 .. method:: to_integral_exact(x)
1383
1384 Rounds to an integer.
1385
1386
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001387 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001388
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001389 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001390
Georg Brandlb19be572007-12-29 10:57:00 +00001391.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001392
1393
1394.. _decimal-signals:
1395
1396Signals
1397-------
1398
1399Signals represent conditions that arise during computation. Each corresponds to
1400one context flag and one context trap enabler.
1401
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001402The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001403computation, flags may be checked for informational purposes (for instance, to
1404determine whether a computation was exact). After checking the flags, be sure to
1405clear all flags before starting the next computation.
1406
1407If the context's trap enabler is set for the signal, then the condition causes a
1408Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1409is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1410condition.
1411
1412
1413.. class:: Clamped
1414
1415 Altered an exponent to fit representation constraints.
1416
1417 Typically, clamping occurs when an exponent falls outside the context's
1418 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001419 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001420
1421
1422.. class:: DecimalException
1423
1424 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1425
1426
1427.. class:: DivisionByZero
1428
1429 Signals the division of a non-infinite number by zero.
1430
1431 Can occur with division, modulo division, or when raising a number to a negative
1432 power. If this signal is not trapped, returns :const:`Infinity` or
1433 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1434
1435
1436.. class:: Inexact
1437
1438 Indicates that rounding occurred and the result is not exact.
1439
1440 Signals when non-zero digits were discarded during rounding. The rounded result
1441 is returned. The signal flag or trap is used to detect when results are
1442 inexact.
1443
1444
1445.. class:: InvalidOperation
1446
1447 An invalid operation was performed.
1448
1449 Indicates that an operation was requested that does not make sense. If not
1450 trapped, returns :const:`NaN`. Possible causes include::
1451
1452 Infinity - Infinity
1453 0 * Infinity
1454 Infinity / Infinity
1455 x % 0
1456 Infinity % x
1457 x._rescale( non-integer )
1458 sqrt(-x) and x > 0
1459 0 ** 0
1460 x ** (non-integer)
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001461 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001462
1463
1464.. class:: Overflow
1465
1466 Numerical overflow.
1467
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001468 Indicates the exponent is larger than :attr:`Emax` after rounding has
1469 occurred. If not trapped, the result depends on the rounding mode, either
1470 pulling inward to the largest representable finite number or rounding outward
1471 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1472 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001473
1474
1475.. class:: Rounded
1476
1477 Rounding occurred though possibly no information was lost.
1478
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001479 Signaled whenever rounding discards digits; even if those digits are zero
1480 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1481 the result unchanged. This signal is used to detect loss of significant
1482 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001483
1484
1485.. class:: Subnormal
1486
1487 Exponent was lower than :attr:`Emin` prior to rounding.
1488
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001489 Occurs when an operation result is subnormal (the exponent is too small). If
1490 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001491
1492
1493.. class:: Underflow
1494
1495 Numerical underflow with result rounded to zero.
1496
1497 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1498 and :class:`Subnormal` are also signaled.
1499
1500The following table summarizes the hierarchy of signals::
1501
1502 exceptions.ArithmeticError(exceptions.StandardError)
1503 DecimalException
1504 Clamped
1505 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1506 Inexact
1507 Overflow(Inexact, Rounded)
1508 Underflow(Inexact, Rounded, Subnormal)
1509 InvalidOperation
1510 Rounded
1511 Subnormal
1512
Georg Brandlb19be572007-12-29 10:57:00 +00001513.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001514
1515
1516.. _decimal-notes:
1517
1518Floating Point Notes
1519--------------------
1520
1521
1522Mitigating round-off error with increased precision
1523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1524
1525The use of decimal floating point eliminates decimal representation error
1526(making it possible to represent :const:`0.1` exactly); however, some operations
1527can still incur round-off error when non-zero digits exceed the fixed precision.
1528
1529The effects of round-off error can be amplified by the addition or subtraction
1530of nearly offsetting quantities resulting in loss of significance. Knuth
1531provides two instructive examples where rounded floating point arithmetic with
1532insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001533properties of addition:
1534
1535.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001536
1537 # Examples from Seminumerical Algorithms, Section 4.2.2.
1538 >>> from decimal import Decimal, getcontext
1539 >>> getcontext().prec = 8
1540
1541 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1542 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001543 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001544 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001545 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001546
1547 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1548 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001549 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001550 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001551 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001552
1553The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001554expanding the precision sufficiently to avoid loss of significance:
1555
1556.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001557
1558 >>> getcontext().prec = 20
1559 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1560 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001561 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001562 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001563 Decimal('9.51111111')
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001564 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001565 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1566 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001567 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001568 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001569 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001570
1571
1572Special values
1573^^^^^^^^^^^^^^
1574
1575The number system for the :mod:`decimal` module provides special values
1576including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001577and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001578
1579Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1580they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1581not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1582can result from rounding beyond the limits of the largest representable number.
1583
1584The infinities are signed (affine) and can be used in arithmetic operations
1585where they get treated as very large, indeterminate numbers. For instance,
1586adding a constant to infinity gives another infinite result.
1587
1588Some operations are indeterminate and return :const:`NaN`, or if the
1589:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1590``0/0`` returns :const:`NaN` which means "not a number". This variety of
1591:const:`NaN` is quiet and, once created, will flow through other computations
1592always resulting in another :const:`NaN`. This behavior can be useful for a
1593series of computations that occasionally have missing inputs --- it allows the
1594calculation to proceed while flagging specific results as invalid.
1595
1596A variant is :const:`sNaN` which signals rather than remaining quiet after every
1597operation. This is a useful return value when an invalid result needs to
1598interrupt a calculation for special handling.
1599
Mark Dickinson2fc92632008-02-06 22:10:50 +00001600The behavior of Python's comparison operators can be a little surprising where a
1601:const:`NaN` is involved. A test for equality where one of the operands is a
1602quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1603``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001604:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001605``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1606if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001607not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001608specify the behavior of direct comparisons; these rules for comparisons
1609involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1610section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001611and :meth:`compare-signal` methods instead.
1612
Georg Brandl8ec7f652007-08-15 14:28:01 +00001613The signed zeros can result from calculations that underflow. They keep the sign
1614that would have resulted if the calculation had been carried out to greater
1615precision. Since their magnitude is zero, both positive and negative zeros are
1616treated as equal and their sign is informational.
1617
1618In addition to the two signed zeros which are distinct yet equal, there are
1619various representations of zero with differing precisions yet equivalent in
1620value. This takes a bit of getting used to. For an eye accustomed to
1621normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001622the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001623
1624 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001625 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001626
Georg Brandlb19be572007-12-29 10:57:00 +00001627.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001628
1629
1630.. _decimal-threads:
1631
1632Working with threads
1633--------------------
1634
1635The :func:`getcontext` function accesses a different :class:`Context` object for
1636each thread. Having separate thread contexts means that threads may make
1637changes (such as ``getcontext.prec=10``) without interfering with other threads.
1638
1639Likewise, the :func:`setcontext` function automatically assigns its target to
1640the current thread.
1641
1642If :func:`setcontext` has not been called before :func:`getcontext`, then
1643:func:`getcontext` will automatically create a new context for use in the
1644current thread.
1645
1646The new context is copied from a prototype context called *DefaultContext*. To
1647control the defaults so that each thread will use the same values throughout the
1648application, directly modify the *DefaultContext* object. This should be done
1649*before* any threads are started so that there won't be a race condition between
1650threads calling :func:`getcontext`. For example::
1651
1652 # Set applicationwide defaults for all threads about to be launched
1653 DefaultContext.prec = 12
1654 DefaultContext.rounding = ROUND_DOWN
1655 DefaultContext.traps = ExtendedContext.traps.copy()
1656 DefaultContext.traps[InvalidOperation] = 1
1657 setcontext(DefaultContext)
1658
1659 # Afterwards, the threads can be started
1660 t1.start()
1661 t2.start()
1662 t3.start()
1663 . . .
1664
Georg Brandlb19be572007-12-29 10:57:00 +00001665.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001666
1667
1668.. _decimal-recipes:
1669
1670Recipes
1671-------
1672
1673Here are a few recipes that serve as utility functions and that demonstrate ways
1674to work with the :class:`Decimal` class::
1675
1676 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1677 pos='', neg='-', trailneg=''):
1678 """Convert Decimal to a money formatted string.
1679
1680 places: required number of places after the decimal point
1681 curr: optional currency symbol before the sign (may be blank)
1682 sep: optional grouping separator (comma, period, space, or blank)
1683 dp: decimal point indicator (comma or period)
1684 only specify as blank when places is zero
1685 pos: optional sign for positive numbers: '+', space or blank
1686 neg: optional sign for negative numbers: '-', '(', space or blank
1687 trailneg:optional trailing minus indicator: '-', ')', space or blank
1688
1689 >>> d = Decimal('-1234567.8901')
1690 >>> moneyfmt(d, curr='$')
1691 '-$1,234,567.89'
1692 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1693 '1.234.568-'
1694 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1695 '($1,234,567.89)'
1696 >>> moneyfmt(Decimal(123456789), sep=' ')
1697 '123 456 789.00'
1698 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001699 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001700
1701 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001702 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001703 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001704 result = []
1705 digits = map(str, digits)
1706 build, next = result.append, digits.pop
1707 if sign:
1708 build(trailneg)
1709 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001710 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001711 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001712 if not digits:
1713 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001714 i = 0
1715 while digits:
1716 build(next())
1717 i += 1
1718 if i == 3 and digits:
1719 i = 0
1720 build(sep)
1721 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001722 build(neg if sign else pos)
1723 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001724
1725 def pi():
1726 """Compute Pi to the current precision.
1727
1728 >>> print pi()
1729 3.141592653589793238462643383
1730
1731 """
1732 getcontext().prec += 2 # extra digits for intermediate steps
1733 three = Decimal(3) # substitute "three=3.0" for regular floats
1734 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1735 while s != lasts:
1736 lasts = s
1737 n, na = n+na, na+8
1738 d, da = d+da, da+32
1739 t = (t * n) / d
1740 s += t
1741 getcontext().prec -= 2
1742 return +s # unary plus applies the new precision
1743
1744 def exp(x):
1745 """Return e raised to the power of x. Result type matches input type.
1746
1747 >>> print exp(Decimal(1))
1748 2.718281828459045235360287471
1749 >>> print exp(Decimal(2))
1750 7.389056098930650227230427461
1751 >>> print exp(2.0)
1752 7.38905609893
1753 >>> print exp(2+0j)
1754 (7.38905609893+0j)
1755
1756 """
1757 getcontext().prec += 2
1758 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1759 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001760 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001761 i += 1
1762 fact *= i
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001763 num *= x
1764 s += num / fact
1765 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001766 return +s
1767
1768 def cos(x):
1769 """Return the cosine of x as measured in radians.
1770
1771 >>> print cos(Decimal('0.5'))
1772 0.8775825618903727161162815826
1773 >>> print cos(0.5)
1774 0.87758256189
1775 >>> print cos(0.5+0j)
1776 (0.87758256189+0j)
1777
1778 """
1779 getcontext().prec += 2
1780 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1781 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001782 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001783 i += 2
1784 fact *= i * (i-1)
1785 num *= x * x
1786 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001787 s += num / fact * sign
1788 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001789 return +s
1790
1791 def sin(x):
1792 """Return the sine of x as measured in radians.
1793
1794 >>> print sin(Decimal('0.5'))
1795 0.4794255386042030002732879352
1796 >>> print sin(0.5)
1797 0.479425538604
1798 >>> print sin(0.5+0j)
1799 (0.479425538604+0j)
1800
1801 """
1802 getcontext().prec += 2
1803 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1804 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001805 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001806 i += 2
1807 fact *= i * (i-1)
1808 num *= x * x
1809 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001810 s += num / fact * sign
1811 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001812 return +s
1813
1814
Georg Brandlb19be572007-12-29 10:57:00 +00001815.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001816
1817
1818.. _decimal-faq:
1819
1820Decimal FAQ
1821-----------
1822
1823Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1824minimize typing when using the interactive interpreter?
1825
Georg Brandl9f662322008-03-22 11:47:10 +00001826A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001827
1828 >>> D = decimal.Decimal
1829 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001830 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001831
1832Q. In a fixed-point application with two decimal places, some inputs have many
1833places and need to be rounded. Others are not supposed to have excess digits
1834and need to be validated. What methods should be used?
1835
1836A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001837the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001838
1839 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1840
1841 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001842 >>> Decimal('3.214').quantize(TWOPLACES)
1843 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001844
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001845 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001846 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1847 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001848
Raymond Hettingerabe32372008-02-14 02:41:22 +00001849 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001850 Traceback (most recent call last):
1851 ...
Georg Brandlf6dab952009-04-28 21:48:35 +00001852 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001853
1854Q. Once I have valid two place inputs, how do I maintain that invariant
1855throughout an application?
1856
Raymond Hettinger46314812008-02-14 10:46:57 +00001857A. Some operations like addition, subtraction, and multiplication by an integer
1858will automatically preserve fixed point. Others operations, like division and
1859non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001860be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001861
1862 >>> a = Decimal('102.72') # Initial fixed-point values
1863 >>> b = Decimal('3.17')
1864 >>> a + b # Addition preserves fixed-point
1865 Decimal('105.89')
1866 >>> a - b
1867 Decimal('99.55')
1868 >>> a * 42 # So does integer multiplication
1869 Decimal('4314.24')
1870 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1871 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001872 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001873 Decimal('0.03')
1874
1875In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001876to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001877
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001878 >>> def mul(x, y, fp=TWOPLACES):
1879 ... return (x * y).quantize(fp)
1880 >>> def div(x, y, fp=TWOPLACES):
1881 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001882
Raymond Hettinger46314812008-02-14 10:46:57 +00001883 >>> mul(a, b) # Automatically preserve fixed-point
1884 Decimal('325.62')
1885 >>> div(b, a)
1886 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001887
1888Q. There are many ways to express the same value. The numbers :const:`200`,
1889:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1890various precisions. Is there a way to transform them to a single recognizable
1891canonical value?
1892
1893A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001894representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001895
1896 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1897 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001898 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001899
1900Q. Some decimal values always print with exponential notation. Is there a way
1901to get a non-exponential representation?
1902
1903A. For some values, exponential notation is the only way to express the number
1904of significant places in the coefficient. For example, expressing
1905:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1906original's two-place significance.
1907
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001908If an application does not care about tracking significance, it is easy to
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001909remove the exponent and trailing zeros, losing significance, but keeping the
1910value unchanged::
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001911
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001912 def remove_exponent(d):
1913 '''Remove exponent and trailing zeros.
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001914
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001915 >>> remove_exponent(Decimal('5E+3'))
1916 Decimal('5000')
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001917
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001918 '''
1919 return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001920
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001921Q. Is there a way to convert a regular float to a Decimal?
Georg Brandl9f662322008-03-22 11:47:10 +00001922
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001923A. Yes, the classmethod :meth:`from_float` makes an exact conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001924
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001925The regular decimal constructor does not do this by default because there is
1926some question about whether it is advisable to mix binary and decimal floating
1927point. Also, its use requires some care to avoid the representation issues
1928associated with binary floating point:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001929
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001930 >>> Decimal.from_float(1.1)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001931 Decimal('1.100000000000000088817841970012523233890533447265625')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001932
1933Q. Within a complex calculation, how can I make sure that I haven't gotten a
1934spurious result because of insufficient precision or rounding anomalies.
1935
1936A. The decimal module makes it easy to test results. A best practice is to
1937re-run calculations using greater precision and with various rounding modes.
1938Widely differing results indicate insufficient precision, rounding mode issues,
1939ill-conditioned inputs, or a numerically unstable algorithm.
1940
1941Q. I noticed that context precision is applied to the results of operations but
1942not to the inputs. Is there anything to watch out for when mixing values of
1943different precisions?
1944
1945A. Yes. The principle is that all values are considered to be exact and so is
1946the arithmetic on those values. Only the results are rounded. The advantage
1947for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001948results can look odd if you forget that the inputs haven't been rounded:
1949
1950.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001951
1952 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00001953 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001954 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00001955 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001956 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001957
1958The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00001959using the unary plus operation:
1960
1961.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001962
1963 >>> getcontext().prec = 3
1964 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00001965 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001966
1967Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00001968:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001969
1970 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001971 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001972