blob: fce4d49f709a774b8930e714d17a3d4bc8a742ed [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
36 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
37 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
38
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000082 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000083
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000085 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
87 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000088
Raymond Hettingerf3936f82009-02-19 05:48:05 +000089 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
90 typical case where the rounding mode is half-even. On some non-Windows
91 builds, the underlying C library uses extended precision addition and may
92 occasionally double-round an intermediate sum causing it to be off in its
93 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000094
Raymond Hettinger477be822009-02-19 06:44:30 +000095 For further discussion and two alternative approaches, see the `ASPN cookbook
96 recipes for accurate floating point summation
97 <http://code.activestate.com/recipes/393090/>`_\.
98
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000099
Christian Heimes072c0f12008-01-03 23:01:04 +0000100.. function:: isinf(x)
101
102 Checks if the float *x* is positive or negative infinite.
103
Christian Heimes072c0f12008-01-03 23:01:04 +0000104
105.. function:: isnan(x)
106
107 Checks if the float *x* is a NaN (not a number). NaNs are part of the
Georg Brandl48310cd2009-01-03 21:18:54 +0000108 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
Christian Heimes072c0f12008-01-03 23:01:04 +0000109 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
110 a NaN.
111
Christian Heimes072c0f12008-01-03 23:01:04 +0000112
Georg Brandl116aa622007-08-15 14:28:22 +0000113.. function:: ldexp(x, i)
114
115 Return ``x * (2**i)``. This is essentially the inverse of function
116 :func:`frexp`.
117
118
119.. function:: modf(x)
120
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000121 Return the fractional and integer parts of *x*. Both results carry the sign
122 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000123
Christian Heimes400adb02008-02-01 08:12:03 +0000124
125.. function:: trunc(x)
126
127 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000128 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000129
Christian Heimes400adb02008-02-01 08:12:03 +0000130
Georg Brandl116aa622007-08-15 14:28:22 +0000131Note that :func:`frexp` and :func:`modf` have a different call/return pattern
132than their C equivalents: they take a single argument and return a pair of
133values, rather than returning their second return value through an 'output
134parameter' (there is no such thing in Python).
135
136For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
137floating-point numbers of sufficiently large magnitude are exact integers.
138Python floats typically carry no more than 53 bits of precision (the same as the
139platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
140necessarily has no fractional bits.
141
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000142
143Power and logarithmic functions
144-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000145
Georg Brandl116aa622007-08-15 14:28:22 +0000146.. function:: exp(x)
147
148 Return ``e**x``.
149
150
Mark Dickinson664b5112009-12-16 20:23:42 +0000151.. function:: expm1(x)
152
153 Return ``e**x - 1``. For small floats *x*, the subtraction in
154 ``exp(x) - 1`` can result in a significant loss of precision; the
155 :func:`expm1` function provides a way to compute this quantity to
156 full precision::
157
158 >>> from math import exp, expm1
159 >>> exp(1e-5) - 1 # gives result accurate to 11 places
160 1.0000050000069649e-05
161 >>> expm1(1e-5) # result accurate to full precision
162 1.0000050000166668e-05
163
Mark Dickinson45f992a2009-12-19 11:20:49 +0000164 .. versionadded:: 3.2
165
Mark Dickinson664b5112009-12-16 20:23:42 +0000166
Georg Brandl116aa622007-08-15 14:28:22 +0000167.. function:: log(x[, base])
168
Georg Brandla6053b42009-09-01 08:11:14 +0000169 With one argument, return the natural logarithm of *x* (to base *e*).
170
171 With two arguments, return the logarithm of *x* to the given *base*,
172 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000173
Georg Brandl116aa622007-08-15 14:28:22 +0000174
Christian Heimes53876d92008-04-19 00:31:39 +0000175.. function:: log1p(x)
176
177 Return the natural logarithm of *1+x* (base *e*). The
178 result is calculated in a way which is accurate for *x* near zero.
179
Christian Heimes53876d92008-04-19 00:31:39 +0000180
Georg Brandl116aa622007-08-15 14:28:22 +0000181.. function:: log10(x)
182
Georg Brandla6053b42009-09-01 08:11:14 +0000183 Return the base-10 logarithm of *x*. This is usually more accurate
184 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000185
186
187.. function:: pow(x, y)
188
Christian Heimesa342c012008-04-20 21:01:16 +0000189 Return ``x`` raised to the power ``y``. Exceptional cases follow
190 Annex 'F' of the C99 standard as far as possible. In particular,
191 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
192 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
193 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
194 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000195
Georg Brandl116aa622007-08-15 14:28:22 +0000196
197.. function:: sqrt(x)
198
199 Return the square root of *x*.
200
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000201Trigonometric functions
202-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000203
204
205.. function:: acos(x)
206
207 Return the arc cosine of *x*, in radians.
208
209
210.. function:: asin(x)
211
212 Return the arc sine of *x*, in radians.
213
214
215.. function:: atan(x)
216
217 Return the arc tangent of *x*, in radians.
218
219
220.. function:: atan2(y, x)
221
222 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
223 The vector in the plane from the origin to point ``(x, y)`` makes this angle
224 with the positive X axis. The point of :func:`atan2` is that the signs of both
225 inputs are known to it, so it can compute the correct quadrant for the angle.
226 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
227 -1)`` is ``-3*pi/4``.
228
229
230.. function:: cos(x)
231
232 Return the cosine of *x* radians.
233
234
235.. function:: hypot(x, y)
236
237 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
238 from the origin to point ``(x, y)``.
239
240
241.. function:: sin(x)
242
243 Return the sine of *x* radians.
244
245
246.. function:: tan(x)
247
248 Return the tangent of *x* radians.
249
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000250Angular conversion
251------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000252
253
254.. function:: degrees(x)
255
256 Converts angle *x* from radians to degrees.
257
258
259.. function:: radians(x)
260
261 Converts angle *x* from degrees to radians.
262
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000263Hyperbolic functions
264--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000265
266
Christian Heimesa342c012008-04-20 21:01:16 +0000267.. function:: acosh(x)
268
269 Return the inverse hyperbolic cosine of *x*.
270
Christian Heimesa342c012008-04-20 21:01:16 +0000271
272.. function:: asinh(x)
273
274 Return the inverse hyperbolic sine of *x*.
275
Christian Heimesa342c012008-04-20 21:01:16 +0000276
277.. function:: atanh(x)
278
279 Return the inverse hyperbolic tangent of *x*.
280
Christian Heimesa342c012008-04-20 21:01:16 +0000281
Georg Brandl116aa622007-08-15 14:28:22 +0000282.. function:: cosh(x)
283
284 Return the hyperbolic cosine of *x*.
285
286
287.. function:: sinh(x)
288
289 Return the hyperbolic sine of *x*.
290
291
292.. function:: tanh(x)
293
294 Return the hyperbolic tangent of *x*.
295
Christian Heimes53876d92008-04-19 00:31:39 +0000296
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000297Special functions
298-----------------
299
Mark Dickinson45f992a2009-12-19 11:20:49 +0000300.. function:: erf(x)
301
302 Return the error function at *x*.
303
304 .. versionadded:: 3.2
305
306
307.. function:: erfc(x)
308
309 Return the complementary error function at *x*.
310
311 .. versionadded:: 3.2
312
313
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000314.. function:: gamma(x)
315
316 Return the Gamma function at *x*.
317
Mark Dickinson56e09662009-10-01 16:13:29 +0000318 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000319
320
Mark Dickinson05d2e082009-12-11 20:17:17 +0000321.. function:: lgamma(x)
322
323 Return the natural logarithm of the absolute value of the Gamma
324 function at *x*.
325
Mark Dickinson45f992a2009-12-19 11:20:49 +0000326 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000327
328
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000329Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000330---------
Georg Brandl116aa622007-08-15 14:28:22 +0000331
332.. data:: pi
333
334 The mathematical constant *pi*.
335
336
337.. data:: e
338
339 The mathematical constant *e*.
340
Christian Heimes53876d92008-04-19 00:31:39 +0000341
Georg Brandl495f7b52009-10-27 15:28:25 +0000342.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000343
344 The :mod:`math` module consists mostly of thin wrappers around the platform C
345 math library functions. Behavior in exceptional cases is loosely specified
346 by the C standards, and Python inherits much of its math-function
347 error-reporting behavior from the platform C implementation. As a result,
348 the specific exceptions raised in error cases (and even whether some
349 arguments are considered to be exceptional at all) are not defined in any
350 useful cross-platform or cross-release way. For example, whether
351 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
352 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
353 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
354
Christian Heimesa342c012008-04-20 21:01:16 +0000355 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Benjamin Peterson3e4f0552008-09-02 00:31:15 +0000356 Signaling *NaN*\s raise an exception. The exception type still depends on the
Christian Heimes53876d92008-04-19 00:31:39 +0000357 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
358 and :exc:`OverflowError` for errno *ERANGE*.
359
Georg Brandl116aa622007-08-15 14:28:22 +0000360
361.. seealso::
362
363 Module :mod:`cmath`
364 Complex number versions of many of these functions.