blob: 462d10a4347dd22cea1092fba33eff4af704f2d4 [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Stefan Krah1919b7e2012-03-21 18:25:23 +010012.. moduleauthor:: Stefan Krah <skrah at bytereef.org>
Georg Brandl116aa622007-08-15 14:28:22 +000013.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
14
Christian Heimesfe337bf2008-03-23 21:54:12 +000015.. import modules for testing inline doctests with the Sphinx doctest builder
16.. testsetup:: *
17
18 import decimal
19 import math
20 from decimal import *
21 # make sure each group gets a fresh context
22 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000023
Stefan Krah1919b7e2012-03-21 18:25:23 +010024The :mod:`decimal` module provides support for fast correctly-rounded
25decimal floating point arithmetic. It offers several advantages over the
26:class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000027
Christian Heimes3feef612008-02-11 06:19:17 +000028* Decimal "is based on a floating-point model which was designed with people
29 in mind, and necessarily has a paramount guiding principle -- computers must
30 provide an arithmetic that works in the same way as the arithmetic that
31 people learn at school." -- excerpt from the decimal arithmetic specification.
32
Georg Brandl116aa622007-08-15 14:28:22 +000033* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedya9314632012-01-13 23:43:13 -050034 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000035 floating point. End users typically would not expect ``1.1 + 2.2`` to display
36 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000037
38* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000039 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000040 is :const:`5.5511151231257827e-017`. While near to zero, the differences
41 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000042 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000043 equality invariants.
44
45* The decimal module incorporates a notion of significant places so that ``1.30
46 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
47 This is the customary presentation for monetary applications. For
48 multiplication, the "schoolbook" approach uses all the figures in the
49 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
50 1.20`` gives :const:`1.5600`.
51
52* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000053 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000054 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000055
Mark Dickinson43ef32a2010-11-07 11:24:44 +000056 >>> from decimal import *
Georg Brandl116aa622007-08-15 14:28:22 +000057 >>> getcontext().prec = 6
58 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000059 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000060 >>> getcontext().prec = 28
61 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000062 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000063
64* Both binary and decimal floating point are implemented in terms of published
65 standards. While the built-in float type exposes only a modest portion of its
66 capabilities, the decimal module exposes all required parts of the standard.
67 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000068 This includes an option to enforce exact arithmetic by using exceptions
69 to block any inexact operations.
70
71* The decimal module was designed to support "without prejudice, both exact
72 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
73 and rounded floating-point arithmetic." -- excerpt from the decimal
74 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000075
76The module design is centered around three concepts: the decimal number, the
77context for arithmetic, and signals.
78
79A decimal number is immutable. It has a sign, coefficient digits, and an
80exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000081trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000082:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
83differentiates :const:`-0` from :const:`+0`.
84
85The context for arithmetic is an environment specifying precision, rounding
86rules, limits on exponents, flags indicating the results of operations, and trap
87enablers which determine whether signals are treated as exceptions. Rounding
88options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
89:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000090:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000091
92Signals are groups of exceptional conditions arising during the course of
93computation. Depending on the needs of the application, signals may be ignored,
94considered as informational, or treated as exceptions. The signals in the
95decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
96:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
Stefan Krah1919b7e2012-03-21 18:25:23 +010097:const:`Overflow`, :const:`Underflow` and :const:`FloatOperation`.
Georg Brandl116aa622007-08-15 14:28:22 +000098
99For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +0000100encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +0000101set to one, an exception is raised. Flags are sticky, so the user needs to
102reset them before monitoring a calculation.
103
104
105.. seealso::
106
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000107 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000108 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000109
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000110 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Christian Heimes77c02eb2008-02-09 02:18:51 +0000111 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000112
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000113.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000114
115
116.. _decimal-tutorial:
117
118Quick-start Tutorial
119--------------------
120
121The usual start to using decimals is importing the module, viewing the current
122context with :func:`getcontext` and, if necessary, setting new values for
123precision, rounding, or enabled traps::
124
125 >>> from decimal import *
126 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100127 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000128 capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000129 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000130
131 >>> getcontext().prec = 7 # Set a new precision
132
Mark Dickinsone534a072010-04-04 22:13:14 +0000133Decimal instances can be constructed from integers, strings, floats, or tuples.
134Construction from an integer or a float performs an exact conversion of the
135value of that integer or float. Decimal numbers include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +0000136:const:`NaN` which stands for "Not a number", positive and negative
Stefan Krah1919b7e2012-03-21 18:25:23 +0100137:const:`Infinity`, and :const:`-0`::
Georg Brandl116aa622007-08-15 14:28:22 +0000138
Facundo Batista789bdf02008-06-21 17:29:41 +0000139 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000140 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000141 Decimal('10')
142 >>> Decimal('3.14')
143 Decimal('3.14')
Mark Dickinsone534a072010-04-04 22:13:14 +0000144 >>> Decimal(3.14)
145 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl116aa622007-08-15 14:28:22 +0000146 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000147 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000148 >>> Decimal(str(2.0 ** 0.5))
Alexander Belopolsky287d1fd2011-01-12 16:37:14 +0000149 Decimal('1.4142135623730951')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000150 >>> Decimal(2) ** Decimal('0.5')
151 Decimal('1.414213562373095048801688724')
152 >>> Decimal('NaN')
153 Decimal('NaN')
154 >>> Decimal('-Infinity')
155 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000156
Stefan Krah1919b7e2012-03-21 18:25:23 +0100157If the :exc:`FloatOperation` signal is trapped, accidental mixing of
158decimals and floats in constructors or ordering comparisons raises
159an exception::
160
161 >>> c = getcontext()
162 >>> c.traps[FloatOperation] = True
163 >>> Decimal(3.14)
164 Traceback (most recent call last):
165 File "<stdin>", line 1, in <module>
166 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
167 >>> Decimal('3.5') < 3.7
168 Traceback (most recent call last):
169 File "<stdin>", line 1, in <module>
170 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
171 >>> Decimal('3.5') == 3.5
172 True
173
174.. versionadded:: 3.3
175
Georg Brandl116aa622007-08-15 14:28:22 +0000176The significance of a new Decimal is determined solely by the number of digits
177input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000178operations.
179
180.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000181
182 >>> getcontext().prec = 6
183 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000184 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000185 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000186 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000187 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000188 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000189 >>> getcontext().rounding = ROUND_UP
190 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000191 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000192
Stefan Krah1919b7e2012-03-21 18:25:23 +0100193If the internal limits of the C version are exceeded, constructing
194a decimal raises :class:`InvalidOperation`::
195
196 >>> Decimal("1e9999999999999999999")
197 Traceback (most recent call last):
198 File "<stdin>", line 1, in <module>
199 decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
200
201.. versionchanged:: 3.3
202
Georg Brandl116aa622007-08-15 14:28:22 +0000203Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000204floating point flying circus:
205
206.. doctest::
207 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000208
Facundo Batista789bdf02008-06-21 17:29:41 +0000209 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000210 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000211 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000212 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000213 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000214 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000215 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
216 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000217 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000218 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000219 >>> a,b,c = data[:3]
220 >>> str(a)
221 '1.34'
222 >>> float(a)
Mark Dickinson8dad7df2009-06-28 20:36:54 +0000223 1.34
224 >>> round(a, 1)
225 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000226 >>> int(a)
227 1
228 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000229 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000230 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000231 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000232 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000233 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000234
Christian Heimesfe337bf2008-03-23 21:54:12 +0000235And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000236
Facundo Batista789bdf02008-06-21 17:29:41 +0000237 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000238 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000239 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000240 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000241 Decimal('2.718281828459045235360287471')
242 >>> Decimal('10').ln()
243 Decimal('2.302585092994045684017991455')
244 >>> Decimal('10').log10()
245 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000246
Georg Brandl116aa622007-08-15 14:28:22 +0000247The :meth:`quantize` method rounds a number to a fixed exponent. This method is
248useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000249places:
Georg Brandl116aa622007-08-15 14:28:22 +0000250
251 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000252 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000253 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000254 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000255
256As shown above, the :func:`getcontext` function accesses the current context and
257allows the settings to be changed. This approach meets the needs of most
258applications.
259
260For more advanced work, it may be useful to create alternate contexts using the
261Context() constructor. To make an alternate active, use the :func:`setcontext`
262function.
263
264In accordance with the standard, the :mod:`Decimal` module provides two ready to
265use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
266former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000267enabled:
268
269.. doctest:: newcontext
270 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000271
272 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
273 >>> setcontext(myothercontext)
274 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000275 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000276
277 >>> ExtendedContext
Stefan Krah1919b7e2012-03-21 18:25:23 +0100278 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000279 capitals=1, clamp=0, flags=[], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000280 >>> setcontext(ExtendedContext)
281 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000282 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000283 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000284 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000285
286 >>> setcontext(BasicContext)
287 >>> Decimal(42) / Decimal(0)
288 Traceback (most recent call last):
289 File "<pyshell#143>", line 1, in -toplevel-
290 Decimal(42) / Decimal(0)
291 DivisionByZero: x / 0
292
293Contexts also have signal flags for monitoring exceptional conditions
294encountered during computations. The flags remain set until explicitly cleared,
295so it is best to clear the flags before each set of monitored computations by
296using the :meth:`clear_flags` method. ::
297
298 >>> setcontext(ExtendedContext)
299 >>> getcontext().clear_flags()
300 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000301 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000302 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100303 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000304 capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000305
306The *flags* entry shows that the rational approximation to :const:`Pi` was
307rounded (digits beyond the context precision were thrown away) and that the
308result is inexact (some of the discarded digits were non-zero).
309
310Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000311context:
Georg Brandl116aa622007-08-15 14:28:22 +0000312
Christian Heimesfe337bf2008-03-23 21:54:12 +0000313.. doctest:: newcontext
314
315 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000316 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000317 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000318 >>> getcontext().traps[DivisionByZero] = 1
319 >>> Decimal(1) / Decimal(0)
320 Traceback (most recent call last):
321 File "<pyshell#112>", line 1, in -toplevel-
322 Decimal(1) / Decimal(0)
323 DivisionByZero: x / 0
324
325Most programs adjust the current context only once, at the beginning of the
326program. And, in many applications, data is converted to :class:`Decimal` with
327a single cast inside a loop. With context set and decimals created, the bulk of
328the program manipulates the data no differently than with other Python numeric
329types.
330
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000331.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000332
333
334.. _decimal-decimal:
335
336Decimal objects
337---------------
338
339
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000340.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000341
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000342 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000343
Raymond Hettinger96798592010-04-02 16:58:27 +0000344 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000345 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000346 string, it should conform to the decimal numeric string syntax after leading
347 and trailing whitespace characters are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000348
349 sign ::= '+' | '-'
350 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
351 indicator ::= 'e' | 'E'
352 digits ::= digit [digit]...
353 decimal-part ::= digits '.' [digits] | ['.'] digits
354 exponent-part ::= indicator [sign] digits
355 infinity ::= 'Infinity' | 'Inf'
356 nan ::= 'NaN' [digits] | 'sNaN' [digits]
357 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000358 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000359
Mark Dickinson345adc42009-08-02 10:14:23 +0000360 Other Unicode decimal digits are also permitted where ``digit``
361 appears above. These include decimal digits from various other
362 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
363 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
364
Georg Brandl116aa622007-08-15 14:28:22 +0000365 If *value* is a :class:`tuple`, it should have three components, a sign
366 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
367 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000368 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000369
Raymond Hettinger96798592010-04-02 16:58:27 +0000370 If *value* is a :class:`float`, the binary floating point value is losslessly
371 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsone534a072010-04-04 22:13:14 +0000372 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
373 converts to
374 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettinger96798592010-04-02 16:58:27 +0000375
Georg Brandl116aa622007-08-15 14:28:22 +0000376 The *context* precision does not affect how many digits are stored. That is
377 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000378 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000379 only three.
380
381 The purpose of the *context* argument is determining what to do if *value* is a
382 malformed string. If the context traps :const:`InvalidOperation`, an exception
383 is raised; otherwise, the constructor returns a new Decimal with the value of
384 :const:`NaN`.
385
386 Once constructed, :class:`Decimal` objects are immutable.
387
Mark Dickinsone534a072010-04-04 22:13:14 +0000388 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000389 The argument to the constructor is now permitted to be a :class:`float`
390 instance.
Mark Dickinsone534a072010-04-04 22:13:14 +0000391
Stefan Krah1919b7e2012-03-21 18:25:23 +0100392 .. versionchanged:: 3.3
393 :class:`float` arguments raise an exception if the :exc:`FloatOperation`
394 trap is set. By default the trap is off.
395
Benjamin Petersone41251e2008-04-25 01:59:09 +0000396 Decimal floating point objects share many properties with the other built-in
397 numeric types such as :class:`float` and :class:`int`. All of the usual math
398 operations and special methods apply. Likewise, decimal objects can be
399 copied, pickled, printed, used as dictionary keys, used as set elements,
400 compared, sorted, and coerced to another type (such as :class:`float` or
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000401 :class:`int`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000402
Mark Dickinsona3f37402012-11-18 10:22:05 +0000403 There are some small differences between arithmetic on Decimal objects and
404 arithmetic on integers and floats. When the remainder operator ``%`` is
405 applied to Decimal objects, the sign of the result is the sign of the
406 *dividend* rather than the sign of the divisor::
407
408 >>> (-7) % 4
409 1
410 >>> Decimal(-7) % Decimal(4)
411 Decimal('-3')
412
413 The integer division operator ``//`` behaves analogously, returning the
414 integer part of the true quotient (truncating towards zero) rather than its
Mark Dickinsonec967242012-11-18 10:42:07 +0000415 floor, so as to preserve the usual identity ``x == (x // y) * y + x % y``::
Mark Dickinsona3f37402012-11-18 10:22:05 +0000416
417 >>> -7 // 4
418 -2
419 >>> Decimal(-7) // Decimal(4)
420 Decimal('-1')
421
422 The ``%`` and ``//`` operators implement the ``remainder`` and
423 ``divide-integer`` operations (respectively) as described in the
424 specification.
425
Mark Dickinson08ade6f2010-06-11 10:44:52 +0000426 Decimal objects cannot generally be combined with floats or
427 instances of :class:`fractions.Fraction` in arithmetic operations:
428 an attempt to add a :class:`Decimal` to a :class:`float`, for
429 example, will raise a :exc:`TypeError`. However, it is possible to
430 use Python's comparison operators to compare a :class:`Decimal`
431 instance ``x`` with another number ``y``. This avoids confusing results
432 when doing equality comparisons between numbers of different types.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000433
Ezio Melotti993a5ee2010-04-04 06:30:08 +0000434 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000435 Mixed-type comparisons between :class:`Decimal` instances and other
436 numeric types are now fully supported.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000437
Benjamin Petersone41251e2008-04-25 01:59:09 +0000438 In addition to the standard numeric properties, decimal floating point
439 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000440
Georg Brandl116aa622007-08-15 14:28:22 +0000441
Benjamin Petersone41251e2008-04-25 01:59:09 +0000442 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000443
Benjamin Petersone41251e2008-04-25 01:59:09 +0000444 Return the adjusted exponent after shifting out the coefficient's
445 rightmost digits until only the lead digit remains:
446 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
447 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000448
Georg Brandl116aa622007-08-15 14:28:22 +0000449
Benjamin Petersone41251e2008-04-25 01:59:09 +0000450 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000451
Benjamin Petersone41251e2008-04-25 01:59:09 +0000452 Return a :term:`named tuple` representation of the number:
453 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000454
Christian Heimes25bb7832008-01-11 16:17:00 +0000455
Benjamin Petersone41251e2008-04-25 01:59:09 +0000456 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000457
Benjamin Petersone41251e2008-04-25 01:59:09 +0000458 Return the canonical encoding of the argument. Currently, the encoding of
459 a :class:`Decimal` instance is always canonical, so this operation returns
460 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000461
Benjamin Petersone41251e2008-04-25 01:59:09 +0000462 .. method:: compare(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000463
Georg Brandl05f5ab72008-09-24 09:11:47 +0000464 Compare the values of two Decimal instances. :meth:`compare` returns a
465 Decimal instance, and if either operand is a NaN then the result is a
466 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000467
Georg Brandl05f5ab72008-09-24 09:11:47 +0000468 a or b is a NaN ==> Decimal('NaN')
469 a < b ==> Decimal('-1')
470 a == b ==> Decimal('0')
471 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000472
Benjamin Petersone41251e2008-04-25 01:59:09 +0000473 .. method:: compare_signal(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000474
Benjamin Petersone41251e2008-04-25 01:59:09 +0000475 This operation is identical to the :meth:`compare` method, except that all
476 NaNs signal. That is, if neither operand is a signaling NaN then any
477 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000478
Benjamin Petersone41251e2008-04-25 01:59:09 +0000479 .. method:: compare_total(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000480
Benjamin Petersone41251e2008-04-25 01:59:09 +0000481 Compare two operands using their abstract representation rather than their
482 numerical value. Similar to the :meth:`compare` method, but the result
483 gives a total ordering on :class:`Decimal` instances. Two
484 :class:`Decimal` instances with the same numeric value but different
485 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000486
Benjamin Petersone41251e2008-04-25 01:59:09 +0000487 >>> Decimal('12.0').compare_total(Decimal('12'))
488 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000489
Benjamin Petersone41251e2008-04-25 01:59:09 +0000490 Quiet and signaling NaNs are also included in the total ordering. The
491 result of this function is ``Decimal('0')`` if both operands have the same
492 representation, ``Decimal('-1')`` if the first operand is lower in the
493 total order than the second, and ``Decimal('1')`` if the first operand is
494 higher in the total order than the second operand. See the specification
495 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000496
Benjamin Petersone41251e2008-04-25 01:59:09 +0000497 .. method:: compare_total_mag(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000498
Benjamin Petersone41251e2008-04-25 01:59:09 +0000499 Compare two operands using their abstract representation rather than their
500 value as in :meth:`compare_total`, but ignoring the sign of each operand.
501 ``x.compare_total_mag(y)`` is equivalent to
502 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000503
Facundo Batista789bdf02008-06-21 17:29:41 +0000504 .. method:: conjugate()
505
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000506 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000507 Specification.
508
Benjamin Petersone41251e2008-04-25 01:59:09 +0000509 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000510
Benjamin Petersone41251e2008-04-25 01:59:09 +0000511 Return the absolute value of the argument. This operation is unaffected
512 by the context and is quiet: no flags are changed and no rounding is
513 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000514
Benjamin Petersone41251e2008-04-25 01:59:09 +0000515 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000516
Benjamin Petersone41251e2008-04-25 01:59:09 +0000517 Return the negation of the argument. This operation is unaffected by the
518 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000519
Benjamin Petersone41251e2008-04-25 01:59:09 +0000520 .. method:: copy_sign(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000521
Benjamin Petersone41251e2008-04-25 01:59:09 +0000522 Return a copy of the first operand with the sign set to be the same as the
523 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000524
Benjamin Petersone41251e2008-04-25 01:59:09 +0000525 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
526 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000527
Benjamin Petersone41251e2008-04-25 01:59:09 +0000528 This operation is unaffected by the context and is quiet: no flags are
529 changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000530
Benjamin Petersone41251e2008-04-25 01:59:09 +0000531 .. method:: exp([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000532
Benjamin Petersone41251e2008-04-25 01:59:09 +0000533 Return the value of the (natural) exponential function ``e**x`` at the
534 given number. The result is correctly rounded using the
535 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000536
Benjamin Petersone41251e2008-04-25 01:59:09 +0000537 >>> Decimal(1).exp()
538 Decimal('2.718281828459045235360287471')
539 >>> Decimal(321).exp()
540 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000541
Raymond Hettinger771ed762009-01-03 19:20:32 +0000542 .. method:: from_float(f)
543
544 Classmethod that converts a float to a decimal number, exactly.
545
546 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
547 Since 0.1 is not exactly representable in binary floating point, the
548 value is stored as the nearest representable value which is
549 `0x1.999999999999ap-4`. That equivalent value in decimal is
550 `0.1000000000000000055511151231257827021181583404541015625`.
551
Mark Dickinsone534a072010-04-04 22:13:14 +0000552 .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
553 can also be constructed directly from a :class:`float`.
554
Raymond Hettinger771ed762009-01-03 19:20:32 +0000555 .. doctest::
556
557 >>> Decimal.from_float(0.1)
558 Decimal('0.1000000000000000055511151231257827021181583404541015625')
559 >>> Decimal.from_float(float('nan'))
560 Decimal('NaN')
561 >>> Decimal.from_float(float('inf'))
562 Decimal('Infinity')
563 >>> Decimal.from_float(float('-inf'))
564 Decimal('-Infinity')
565
Georg Brandl45f53372009-01-03 21:15:20 +0000566 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000567
Benjamin Petersone41251e2008-04-25 01:59:09 +0000568 .. method:: fma(other, third[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000569
Benjamin Petersone41251e2008-04-25 01:59:09 +0000570 Fused multiply-add. Return self*other+third with no rounding of the
571 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000572
Benjamin Petersone41251e2008-04-25 01:59:09 +0000573 >>> Decimal(2).fma(3, 5)
574 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000575
Benjamin Petersone41251e2008-04-25 01:59:09 +0000576 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000577
Benjamin Petersone41251e2008-04-25 01:59:09 +0000578 Return :const:`True` if the argument is canonical and :const:`False`
579 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
580 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000581
Benjamin Petersone41251e2008-04-25 01:59:09 +0000582 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000583
Benjamin Petersone41251e2008-04-25 01:59:09 +0000584 Return :const:`True` if the argument is a finite number, and
585 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000586
Benjamin Petersone41251e2008-04-25 01:59:09 +0000587 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000588
Benjamin Petersone41251e2008-04-25 01:59:09 +0000589 Return :const:`True` if the argument is either positive or negative
590 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000591
Benjamin Petersone41251e2008-04-25 01:59:09 +0000592 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000593
Benjamin Petersone41251e2008-04-25 01:59:09 +0000594 Return :const:`True` if the argument is a (quiet or signaling) NaN and
595 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000596
Benjamin Petersone41251e2008-04-25 01:59:09 +0000597 .. method:: is_normal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000598
Benjamin Petersone41251e2008-04-25 01:59:09 +0000599 Return :const:`True` if the argument is a *normal* finite number. Return
600 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000601
Benjamin Petersone41251e2008-04-25 01:59:09 +0000602 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000603
Benjamin Petersone41251e2008-04-25 01:59:09 +0000604 Return :const:`True` if the argument is a quiet NaN, and
605 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000606
Benjamin Petersone41251e2008-04-25 01:59:09 +0000607 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000608
Benjamin Petersone41251e2008-04-25 01:59:09 +0000609 Return :const:`True` if the argument has a negative sign and
610 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000611
Benjamin Petersone41251e2008-04-25 01:59:09 +0000612 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000613
Benjamin Petersone41251e2008-04-25 01:59:09 +0000614 Return :const:`True` if the argument is a signaling NaN and :const:`False`
615 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000616
Benjamin Petersone41251e2008-04-25 01:59:09 +0000617 .. method:: is_subnormal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000618
Benjamin Petersone41251e2008-04-25 01:59:09 +0000619 Return :const:`True` if the argument is subnormal, and :const:`False`
620 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000621
Benjamin Petersone41251e2008-04-25 01:59:09 +0000622 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000623
Benjamin Petersone41251e2008-04-25 01:59:09 +0000624 Return :const:`True` if the argument is a (positive or negative) zero and
625 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000626
Benjamin Petersone41251e2008-04-25 01:59:09 +0000627 .. method:: ln([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000628
Benjamin Petersone41251e2008-04-25 01:59:09 +0000629 Return the natural (base e) logarithm of the operand. The result is
630 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000631
Benjamin Petersone41251e2008-04-25 01:59:09 +0000632 .. method:: log10([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000633
Benjamin Petersone41251e2008-04-25 01:59:09 +0000634 Return the base ten logarithm of the operand. The result is correctly
635 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000636
Benjamin Petersone41251e2008-04-25 01:59:09 +0000637 .. method:: logb([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000638
Benjamin Petersone41251e2008-04-25 01:59:09 +0000639 For a nonzero number, return the adjusted exponent of its operand as a
640 :class:`Decimal` instance. If the operand is a zero then
641 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
642 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
643 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000644
Benjamin Petersone41251e2008-04-25 01:59:09 +0000645 .. method:: logical_and(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000646
Benjamin Petersone41251e2008-04-25 01:59:09 +0000647 :meth:`logical_and` is a logical operation which takes two *logical
648 operands* (see :ref:`logical_operands_label`). The result is the
649 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000650
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000651 .. method:: logical_invert([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000652
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000653 :meth:`logical_invert` is a logical operation. The
Benjamin Petersone41251e2008-04-25 01:59:09 +0000654 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000655
Benjamin Petersone41251e2008-04-25 01:59:09 +0000656 .. method:: logical_or(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000657
Benjamin Petersone41251e2008-04-25 01:59:09 +0000658 :meth:`logical_or` is a logical operation which takes two *logical
659 operands* (see :ref:`logical_operands_label`). The result is the
660 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000661
Benjamin Petersone41251e2008-04-25 01:59:09 +0000662 .. method:: logical_xor(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000663
Benjamin Petersone41251e2008-04-25 01:59:09 +0000664 :meth:`logical_xor` is a logical operation which takes two *logical
665 operands* (see :ref:`logical_operands_label`). The result is the
666 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000667
Benjamin Petersone41251e2008-04-25 01:59:09 +0000668 .. method:: max(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000669
Benjamin Petersone41251e2008-04-25 01:59:09 +0000670 Like ``max(self, other)`` except that the context rounding rule is applied
671 before returning and that :const:`NaN` values are either signaled or
672 ignored (depending on the context and whether they are signaling or
673 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000674
Benjamin Petersone41251e2008-04-25 01:59:09 +0000675 .. method:: max_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000676
Georg Brandl502d9a52009-07-26 15:02:41 +0000677 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000678 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000679
Benjamin Petersone41251e2008-04-25 01:59:09 +0000680 .. method:: min(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000681
Benjamin Petersone41251e2008-04-25 01:59:09 +0000682 Like ``min(self, other)`` except that the context rounding rule is applied
683 before returning and that :const:`NaN` values are either signaled or
684 ignored (depending on the context and whether they are signaling or
685 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000686
Benjamin Petersone41251e2008-04-25 01:59:09 +0000687 .. method:: min_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000688
Georg Brandl502d9a52009-07-26 15:02:41 +0000689 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000690 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000691
Benjamin Petersone41251e2008-04-25 01:59:09 +0000692 .. method:: next_minus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000693
Benjamin Petersone41251e2008-04-25 01:59:09 +0000694 Return the largest number representable in the given context (or in the
695 current thread's context if no context is given) that is smaller than the
696 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000697
Benjamin Petersone41251e2008-04-25 01:59:09 +0000698 .. method:: next_plus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000699
Benjamin Petersone41251e2008-04-25 01:59:09 +0000700 Return the smallest number representable in the given context (or in the
701 current thread's context if no context is given) that is larger than the
702 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000703
Benjamin Petersone41251e2008-04-25 01:59:09 +0000704 .. method:: next_toward(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000705
Benjamin Petersone41251e2008-04-25 01:59:09 +0000706 If the two operands are unequal, return the number closest to the first
707 operand in the direction of the second operand. If both operands are
708 numerically equal, return a copy of the first operand with the sign set to
709 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000710
Benjamin Petersone41251e2008-04-25 01:59:09 +0000711 .. method:: normalize([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000712
Benjamin Petersone41251e2008-04-25 01:59:09 +0000713 Normalize the number by stripping the rightmost trailing zeros and
714 converting any result equal to :const:`Decimal('0')` to
Senthil Kumarana6bac952011-07-04 11:28:30 -0700715 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersone41251e2008-04-25 01:59:09 +0000716 of an equivalence class. For example, ``Decimal('32.100')`` and
717 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
718 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000719
Benjamin Petersone41251e2008-04-25 01:59:09 +0000720 .. method:: number_class([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000721
Benjamin Petersone41251e2008-04-25 01:59:09 +0000722 Return a string describing the *class* of the operand. The returned value
723 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000724
Benjamin Petersone41251e2008-04-25 01:59:09 +0000725 * ``"-Infinity"``, indicating that the operand is negative infinity.
726 * ``"-Normal"``, indicating that the operand is a negative normal number.
727 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
728 * ``"-Zero"``, indicating that the operand is a negative zero.
729 * ``"+Zero"``, indicating that the operand is a positive zero.
730 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
731 * ``"+Normal"``, indicating that the operand is a positive normal number.
732 * ``"+Infinity"``, indicating that the operand is positive infinity.
733 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
734 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000735
Benjamin Petersone41251e2008-04-25 01:59:09 +0000736 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000737
Benjamin Petersone41251e2008-04-25 01:59:09 +0000738 Return a value equal to the first operand after rounding and having the
739 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000740
Benjamin Petersone41251e2008-04-25 01:59:09 +0000741 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
742 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000743
Benjamin Petersone41251e2008-04-25 01:59:09 +0000744 Unlike other operations, if the length of the coefficient after the
745 quantize operation would be greater than precision, then an
746 :const:`InvalidOperation` is signaled. This guarantees that, unless there
747 is an error condition, the quantized exponent is always equal to that of
748 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000749
Benjamin Petersone41251e2008-04-25 01:59:09 +0000750 Also unlike other operations, quantize never signals Underflow, even if
751 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000752
Benjamin Petersone41251e2008-04-25 01:59:09 +0000753 If the exponent of the second operand is larger than that of the first
754 then rounding may be necessary. In this case, the rounding mode is
755 determined by the ``rounding`` argument if given, else by the given
756 ``context`` argument; if neither argument is given the rounding mode of
757 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000758
Benjamin Petersone41251e2008-04-25 01:59:09 +0000759 If *watchexp* is set (default), then an error is returned whenever the
760 resulting exponent is greater than :attr:`Emax` or less than
761 :attr:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +0000762
Stefan Krahaf3f3a72012-08-30 12:33:55 +0200763 .. deprecated:: 3.3
764 *watchexp* is an implementation detail from the pure Python version
765 and is not present in the C version. It will be removed in version
766 3.4, where it defaults to ``True``.
767
Benjamin Petersone41251e2008-04-25 01:59:09 +0000768 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000769
Benjamin Petersone41251e2008-04-25 01:59:09 +0000770 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
771 class does all its arithmetic. Included for compatibility with the
772 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000773
Benjamin Petersone41251e2008-04-25 01:59:09 +0000774 .. method:: remainder_near(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000775
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000776 Return the remainder from dividing *self* by *other*. This differs from
777 ``self % other`` in that the sign of the remainder is chosen so as to
778 minimize its absolute value. More precisely, the return value is
779 ``self - n * other`` where ``n`` is the integer nearest to the exact
780 value of ``self / other``, and if two integers are equally near then the
781 even one is chosen.
Georg Brandl116aa622007-08-15 14:28:22 +0000782
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000783 If the result is zero then its sign will be the sign of *self*.
784
785 >>> Decimal(18).remainder_near(Decimal(10))
786 Decimal('-2')
787 >>> Decimal(25).remainder_near(Decimal(10))
788 Decimal('5')
789 >>> Decimal(35).remainder_near(Decimal(10))
790 Decimal('-5')
Georg Brandl116aa622007-08-15 14:28:22 +0000791
Benjamin Petersone41251e2008-04-25 01:59:09 +0000792 .. method:: rotate(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000793
Benjamin Petersone41251e2008-04-25 01:59:09 +0000794 Return the result of rotating the digits of the first operand by an amount
795 specified by the second operand. The second operand must be an integer in
796 the range -precision through precision. The absolute value of the second
797 operand gives the number of places to rotate. If the second operand is
798 positive then rotation is to the left; otherwise rotation is to the right.
799 The coefficient of the first operand is padded on the left with zeros to
800 length precision if necessary. The sign and exponent of the first operand
801 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000802
Benjamin Petersone41251e2008-04-25 01:59:09 +0000803 .. method:: same_quantum(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000804
Benjamin Petersone41251e2008-04-25 01:59:09 +0000805 Test whether self and other have the same exponent or whether both are
806 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000807
Benjamin Petersone41251e2008-04-25 01:59:09 +0000808 .. method:: scaleb(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000809
Benjamin Petersone41251e2008-04-25 01:59:09 +0000810 Return the first operand with exponent adjusted by the second.
811 Equivalently, return the first operand multiplied by ``10**other``. The
812 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000813
Benjamin Petersone41251e2008-04-25 01:59:09 +0000814 .. method:: shift(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000815
Benjamin Petersone41251e2008-04-25 01:59:09 +0000816 Return the result of shifting the digits of the first operand by an amount
817 specified by the second operand. The second operand must be an integer in
818 the range -precision through precision. The absolute value of the second
819 operand gives the number of places to shift. If the second operand is
820 positive then the shift is to the left; otherwise the shift is to the
821 right. Digits shifted into the coefficient are zeros. The sign and
822 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000823
Benjamin Petersone41251e2008-04-25 01:59:09 +0000824 .. method:: sqrt([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000825
Benjamin Petersone41251e2008-04-25 01:59:09 +0000826 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000827
Georg Brandl116aa622007-08-15 14:28:22 +0000828
Benjamin Petersone41251e2008-04-25 01:59:09 +0000829 .. method:: to_eng_string([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000830
Benjamin Petersone41251e2008-04-25 01:59:09 +0000831 Convert to an engineering-type string.
Georg Brandl116aa622007-08-15 14:28:22 +0000832
Benjamin Petersone41251e2008-04-25 01:59:09 +0000833 Engineering notation has an exponent which is a multiple of 3, so there
834 are up to 3 digits left of the decimal place. For example, converts
835 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000836
Benjamin Petersone41251e2008-04-25 01:59:09 +0000837 .. method:: to_integral([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000838
Benjamin Petersone41251e2008-04-25 01:59:09 +0000839 Identical to the :meth:`to_integral_value` method. The ``to_integral``
840 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000841
Benjamin Petersone41251e2008-04-25 01:59:09 +0000842 .. method:: to_integral_exact([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000843
Benjamin Petersone41251e2008-04-25 01:59:09 +0000844 Round to the nearest integer, signaling :const:`Inexact` or
845 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
846 determined by the ``rounding`` parameter if given, else by the given
847 ``context``. If neither parameter is given then the rounding mode of the
848 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000849
Benjamin Petersone41251e2008-04-25 01:59:09 +0000850 .. method:: to_integral_value([rounding[, context]])
Georg Brandl116aa622007-08-15 14:28:22 +0000851
Benjamin Petersone41251e2008-04-25 01:59:09 +0000852 Round to the nearest integer without signaling :const:`Inexact` or
853 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
854 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000855
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000856
857.. _logical_operands_label:
858
859Logical operands
860^^^^^^^^^^^^^^^^
861
862The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
863and :meth:`logical_xor` methods expect their arguments to be *logical
864operands*. A *logical operand* is a :class:`Decimal` instance whose
865exponent and sign are both zero, and whose digits are all either
866:const:`0` or :const:`1`.
867
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000868.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000869
870
871.. _decimal-context:
872
873Context objects
874---------------
875
876Contexts are environments for arithmetic operations. They govern precision, set
877rules for rounding, determine which signals are treated as exceptions, and limit
878the range for exponents.
879
880Each thread has its own current context which is accessed or changed using the
881:func:`getcontext` and :func:`setcontext` functions:
882
883
884.. function:: getcontext()
885
886 Return the current context for the active thread.
887
888
889.. function:: setcontext(c)
890
891 Set the current context for the active thread to *c*.
892
Georg Brandle6bcc912008-05-12 18:05:20 +0000893You can also use the :keyword:`with` statement and the :func:`localcontext`
894function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000895
896.. function:: localcontext([c])
897
898 Return a context manager that will set the current context for the active thread
899 to a copy of *c* on entry to the with-statement and restore the previous context
900 when exiting the with-statement. If no context is specified, a copy of the
901 current context is used.
902
Georg Brandl116aa622007-08-15 14:28:22 +0000903 For example, the following code sets the current decimal precision to 42 places,
904 performs a calculation, and then automatically restores the previous context::
905
Georg Brandl116aa622007-08-15 14:28:22 +0000906 from decimal import localcontext
907
908 with localcontext() as ctx:
909 ctx.prec = 42 # Perform a high precision calculation
910 s = calculate_something()
911 s = +s # Round the final result back to the default precision
912
913New contexts can also be created using the :class:`Context` constructor
914described below. In addition, the module provides three pre-made contexts:
915
916
917.. class:: BasicContext
918
919 This is a standard context defined by the General Decimal Arithmetic
920 Specification. Precision is set to nine. Rounding is set to
921 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
922 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
923 :const:`Subnormal`.
924
925 Because many of the traps are enabled, this context is useful for debugging.
926
927
928.. class:: ExtendedContext
929
930 This is a standard context defined by the General Decimal Arithmetic
931 Specification. Precision is set to nine. Rounding is set to
932 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
933 exceptions are not raised during computations).
934
Christian Heimes3feef612008-02-11 06:19:17 +0000935 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000936 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
937 raising exceptions. This allows an application to complete a run in the
938 presence of conditions that would otherwise halt the program.
939
940
941.. class:: DefaultContext
942
943 This context is used by the :class:`Context` constructor as a prototype for new
944 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Kraha1193932010-05-29 12:59:18 +0000945 default for new contexts created by the :class:`Context` constructor.
Georg Brandl116aa622007-08-15 14:28:22 +0000946
947 This context is most useful in multi-threaded environments. Changing one of the
948 fields before threads are started has the effect of setting system-wide
949 defaults. Changing the fields after threads have started is not recommended as
950 it would require thread synchronization to prevent race conditions.
951
952 In single threaded environments, it is preferable to not use this context at
953 all. Instead, simply create contexts explicitly as described below.
954
Stefan Krah1919b7e2012-03-21 18:25:23 +0100955 The default values are :attr:`prec`\ =\ :const:`28`,
956 :attr:`rounding`\ =\ :const:`ROUND_HALF_EVEN`,
957 and enabled traps for :class:`Overflow`, :class:`InvalidOperation`, and
958 :class:`DivisionByZero`.
Georg Brandl116aa622007-08-15 14:28:22 +0000959
960In addition to the three supplied contexts, new contexts can be created with the
961:class:`Context` constructor.
962
963
Stefan Krah1919b7e2012-03-21 18:25:23 +0100964.. class:: Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000965
966 Creates a new context. If a field is not specified or is :const:`None`, the
967 default values are copied from the :const:`DefaultContext`. If the *flags*
968 field is not specified or is :const:`None`, all flags are cleared.
969
Stefan Krah1919b7e2012-03-21 18:25:23 +0100970 *prec* is an integer in the range [:const:`1`, :const:`MAX_PREC`] that sets
971 the precision for arithmetic operations in the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000972
Stefan Krah1919b7e2012-03-21 18:25:23 +0100973 The *rounding* option is one of the constants listed in the section
974 `Rounding Modes`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000975
976 The *traps* and *flags* fields list any signals to be set. Generally, new
977 contexts should only set traps and leave the flags clear.
978
979 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
Stefan Krah1919b7e2012-03-21 18:25:23 +0100980 for exponents. *Emin* must be in the range [:const:`MIN_EMIN`, :const:`0`],
981 *Emax* in the range [:const:`0`, :const:`MAX_EMAX`].
Georg Brandl116aa622007-08-15 14:28:22 +0000982
983 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
984 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
985 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
986
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000987 The *clamp* field is either :const:`0` (the default) or :const:`1`.
988 If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
989 instance representable in this context is strictly limited to the
990 range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
991 :const:`0` then a weaker condition holds: the adjusted exponent of
992 the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
993 :const:`1`, a large normal number will, where possible, have its
994 exponent reduced and a corresponding number of zeros added to its
995 coefficient, in order to fit the exponent constraints; this
996 preserves the value of the number but loses information about
997 significant trailing zeros. For example::
998
999 >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
1000 Decimal('1.23000E+999')
1001
1002 A *clamp* value of :const:`1` allows compatibility with the
1003 fixed-width decimal interchange formats specified in IEEE 754.
Georg Brandl116aa622007-08-15 14:28:22 +00001004
Benjamin Petersone41251e2008-04-25 01:59:09 +00001005 The :class:`Context` class defines several general purpose methods as well as
1006 a large number of methods for doing arithmetic directly in a given context.
1007 In addition, for each of the :class:`Decimal` methods described above (with
1008 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson84230a12010-02-18 14:49:50 +00001009 a corresponding :class:`Context` method. For example, for a :class:`Context`
1010 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1011 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Mark Dickinson5d233fd2010-02-18 14:54:37 +00001012 Python integer (an instance of :class:`int`) anywhere that a
Mark Dickinson84230a12010-02-18 14:49:50 +00001013 Decimal instance is accepted.
Georg Brandl116aa622007-08-15 14:28:22 +00001014
1015
Benjamin Petersone41251e2008-04-25 01:59:09 +00001016 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +00001017
Benjamin Petersone41251e2008-04-25 01:59:09 +00001018 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001019
Stefan Krah1919b7e2012-03-21 18:25:23 +01001020 .. method:: clear_traps()
1021
1022 Resets all of the traps to :const:`0`.
1023
1024 .. versionadded:: 3.3
1025
Benjamin Petersone41251e2008-04-25 01:59:09 +00001026 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001027
Benjamin Petersone41251e2008-04-25 01:59:09 +00001028 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +00001029
Benjamin Petersone41251e2008-04-25 01:59:09 +00001030 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +00001031
Benjamin Petersone41251e2008-04-25 01:59:09 +00001032 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +00001033
Benjamin Petersone41251e2008-04-25 01:59:09 +00001034 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +00001035
Benjamin Petersone41251e2008-04-25 01:59:09 +00001036 Creates a new Decimal instance from *num* but using *self* as
1037 context. Unlike the :class:`Decimal` constructor, the context precision,
1038 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +00001039
Benjamin Petersone41251e2008-04-25 01:59:09 +00001040 This is useful because constants are often given to a greater precision
1041 than is needed by the application. Another benefit is that rounding
1042 immediately eliminates unintended effects from digits beyond the current
1043 precision. In the following example, using unrounded inputs means that
1044 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +00001045
Benjamin Petersone41251e2008-04-25 01:59:09 +00001046 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001047
Benjamin Petersone41251e2008-04-25 01:59:09 +00001048 >>> getcontext().prec = 3
1049 >>> Decimal('3.4445') + Decimal('1.0023')
1050 Decimal('4.45')
1051 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1052 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +00001053
Benjamin Petersone41251e2008-04-25 01:59:09 +00001054 This method implements the to-number operation of the IBM specification.
1055 If the argument is a string, no leading or trailing whitespace is
1056 permitted.
1057
Georg Brandl45f53372009-01-03 21:15:20 +00001058 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +00001059
1060 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +00001061 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +00001062 the context precision, rounding method, flags, and traps are applied to
1063 the conversion.
1064
1065 .. doctest::
1066
Georg Brandl45f53372009-01-03 21:15:20 +00001067 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1068 >>> context.create_decimal_from_float(math.pi)
1069 Decimal('3.1415')
1070 >>> context = Context(prec=5, traps=[Inexact])
1071 >>> context.create_decimal_from_float(math.pi)
1072 Traceback (most recent call last):
1073 ...
1074 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +00001075
Georg Brandl45f53372009-01-03 21:15:20 +00001076 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +00001077
Benjamin Petersone41251e2008-04-25 01:59:09 +00001078 .. method:: Etiny()
1079
1080 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1081 value for subnormal results. When underflow occurs, the exponent is set
1082 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +00001083
Benjamin Petersone41251e2008-04-25 01:59:09 +00001084 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +00001085
Benjamin Petersone41251e2008-04-25 01:59:09 +00001086 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +00001087
Benjamin Petersone41251e2008-04-25 01:59:09 +00001088 The usual approach to working with decimals is to create :class:`Decimal`
1089 instances and then apply arithmetic operations which take place within the
1090 current context for the active thread. An alternative approach is to use
1091 context methods for calculating within a specific context. The methods are
1092 similar to those for the :class:`Decimal` class and are only briefly
1093 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +00001094
1095
Benjamin Petersone41251e2008-04-25 01:59:09 +00001096 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001097
Benjamin Petersone41251e2008-04-25 01:59:09 +00001098 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +00001099
1100
Benjamin Petersone41251e2008-04-25 01:59:09 +00001101 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001102
Benjamin Petersone41251e2008-04-25 01:59:09 +00001103 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001104
1105
Facundo Batista789bdf02008-06-21 17:29:41 +00001106 .. method:: canonical(x)
1107
1108 Returns the same Decimal object *x*.
1109
1110
1111 .. method:: compare(x, y)
1112
1113 Compares *x* and *y* numerically.
1114
1115
1116 .. method:: compare_signal(x, y)
1117
1118 Compares the values of the two operands numerically.
1119
1120
1121 .. method:: compare_total(x, y)
1122
1123 Compares two operands using their abstract representation.
1124
1125
1126 .. method:: compare_total_mag(x, y)
1127
1128 Compares two operands using their abstract representation, ignoring sign.
1129
1130
1131 .. method:: copy_abs(x)
1132
1133 Returns a copy of *x* with the sign set to 0.
1134
1135
1136 .. method:: copy_negate(x)
1137
1138 Returns a copy of *x* with the sign inverted.
1139
1140
1141 .. method:: copy_sign(x, y)
1142
1143 Copies the sign from *y* to *x*.
1144
1145
Benjamin Petersone41251e2008-04-25 01:59:09 +00001146 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001147
Benjamin Petersone41251e2008-04-25 01:59:09 +00001148 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001149
1150
Benjamin Petersone41251e2008-04-25 01:59:09 +00001151 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001152
Benjamin Petersone41251e2008-04-25 01:59:09 +00001153 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001154
1155
Benjamin Petersone41251e2008-04-25 01:59:09 +00001156 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001157
Benjamin Petersone41251e2008-04-25 01:59:09 +00001158 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001159
1160
Facundo Batista789bdf02008-06-21 17:29:41 +00001161 .. method:: exp(x)
1162
1163 Returns `e ** x`.
1164
1165
1166 .. method:: fma(x, y, z)
1167
1168 Returns *x* multiplied by *y*, plus *z*.
1169
1170
1171 .. method:: is_canonical(x)
1172
1173 Returns True if *x* is canonical; otherwise returns False.
1174
1175
1176 .. method:: is_finite(x)
1177
1178 Returns True if *x* is finite; otherwise returns False.
1179
1180
1181 .. method:: is_infinite(x)
1182
1183 Returns True if *x* is infinite; otherwise returns False.
1184
1185
1186 .. method:: is_nan(x)
1187
1188 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1189
1190
1191 .. method:: is_normal(x)
1192
1193 Returns True if *x* is a normal number; otherwise returns False.
1194
1195
1196 .. method:: is_qnan(x)
1197
1198 Returns True if *x* is a quiet NaN; otherwise returns False.
1199
1200
1201 .. method:: is_signed(x)
1202
1203 Returns True if *x* is negative; otherwise returns False.
1204
1205
1206 .. method:: is_snan(x)
1207
1208 Returns True if *x* is a signaling NaN; otherwise returns False.
1209
1210
1211 .. method:: is_subnormal(x)
1212
1213 Returns True if *x* is subnormal; otherwise returns False.
1214
1215
1216 .. method:: is_zero(x)
1217
1218 Returns True if *x* is a zero; otherwise returns False.
1219
1220
1221 .. method:: ln(x)
1222
1223 Returns the natural (base e) logarithm of *x*.
1224
1225
1226 .. method:: log10(x)
1227
1228 Returns the base 10 logarithm of *x*.
1229
1230
1231 .. method:: logb(x)
1232
1233 Returns the exponent of the magnitude of the operand's MSD.
1234
1235
1236 .. method:: logical_and(x, y)
1237
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001238 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001239
1240
1241 .. method:: logical_invert(x)
1242
1243 Invert all the digits in *x*.
1244
1245
1246 .. method:: logical_or(x, y)
1247
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001248 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001249
1250
1251 .. method:: logical_xor(x, y)
1252
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001253 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001254
1255
1256 .. method:: max(x, y)
1257
1258 Compares two values numerically and returns the maximum.
1259
1260
1261 .. method:: max_mag(x, y)
1262
1263 Compares the values numerically with their sign ignored.
1264
1265
1266 .. method:: min(x, y)
1267
1268 Compares two values numerically and returns the minimum.
1269
1270
1271 .. method:: min_mag(x, y)
1272
1273 Compares the values numerically with their sign ignored.
1274
1275
Benjamin Petersone41251e2008-04-25 01:59:09 +00001276 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001277
Benjamin Petersone41251e2008-04-25 01:59:09 +00001278 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001279
1280
Benjamin Petersone41251e2008-04-25 01:59:09 +00001281 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001282
Benjamin Petersone41251e2008-04-25 01:59:09 +00001283 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001284
1285
Facundo Batista789bdf02008-06-21 17:29:41 +00001286 .. method:: next_minus(x)
1287
1288 Returns the largest representable number smaller than *x*.
1289
1290
1291 .. method:: next_plus(x)
1292
1293 Returns the smallest representable number larger than *x*.
1294
1295
1296 .. method:: next_toward(x, y)
1297
1298 Returns the number closest to *x*, in direction towards *y*.
1299
1300
1301 .. method:: normalize(x)
1302
1303 Reduces *x* to its simplest form.
1304
1305
1306 .. method:: number_class(x)
1307
1308 Returns an indication of the class of *x*.
1309
1310
Benjamin Petersone41251e2008-04-25 01:59:09 +00001311 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001312
Benjamin Petersone41251e2008-04-25 01:59:09 +00001313 Plus corresponds to the unary prefix plus operator in Python. This
1314 operation applies the context precision and rounding, so it is *not* an
1315 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001316
1317
Benjamin Petersone41251e2008-04-25 01:59:09 +00001318 .. method:: power(x, y[, modulo])
Georg Brandl116aa622007-08-15 14:28:22 +00001319
Benjamin Petersone41251e2008-04-25 01:59:09 +00001320 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001321
Benjamin Petersone41251e2008-04-25 01:59:09 +00001322 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1323 must be integral. The result will be inexact unless ``y`` is integral and
1324 the result is finite and can be expressed exactly in 'precision' digits.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001325 The rounding mode of the context is used. Results are always correctly-rounded
1326 in the Python version.
1327
1328 .. versionchanged:: 3.3
1329 The C module computes :meth:`power` in terms of the correctly-rounded
1330 :meth:`exp` and :meth:`ln` functions. The result is well-defined but
1331 only "almost always correctly-rounded".
Georg Brandl116aa622007-08-15 14:28:22 +00001332
Benjamin Petersone41251e2008-04-25 01:59:09 +00001333 With three arguments, compute ``(x**y) % modulo``. For the three argument
1334 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001335
Benjamin Petersone41251e2008-04-25 01:59:09 +00001336 - all three arguments must be integral
1337 - ``y`` must be nonnegative
1338 - at least one of ``x`` or ``y`` must be nonzero
1339 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001340
Mark Dickinson5961b0e2010-02-22 15:41:48 +00001341 The value resulting from ``Context.power(x, y, modulo)`` is
1342 equal to the value that would be obtained by computing ``(x**y)
1343 % modulo`` with unbounded precision, but is computed more
1344 efficiently. The exponent of the result is zero, regardless of
1345 the exponents of ``x``, ``y`` and ``modulo``. The result is
1346 always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001347
Facundo Batista789bdf02008-06-21 17:29:41 +00001348
1349 .. method:: quantize(x, y)
1350
1351 Returns a value equal to *x* (rounded), having the exponent of *y*.
1352
1353
1354 .. method:: radix()
1355
1356 Just returns 10, as this is Decimal, :)
1357
1358
Benjamin Petersone41251e2008-04-25 01:59:09 +00001359 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001360
Benjamin Petersone41251e2008-04-25 01:59:09 +00001361 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001362
Benjamin Petersone41251e2008-04-25 01:59:09 +00001363 The sign of the result, if non-zero, is the same as that of the original
1364 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001365
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001366
Facundo Batista789bdf02008-06-21 17:29:41 +00001367 .. method:: remainder_near(x, y)
1368
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001369 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1370 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001371
1372
1373 .. method:: rotate(x, y)
1374
1375 Returns a rotated copy of *x*, *y* times.
1376
1377
1378 .. method:: same_quantum(x, y)
1379
1380 Returns True if the two operands have the same exponent.
1381
1382
1383 .. method:: scaleb (x, y)
1384
1385 Returns the first operand after adding the second value its exp.
1386
1387
1388 .. method:: shift(x, y)
1389
1390 Returns a shifted copy of *x*, *y* times.
1391
1392
1393 .. method:: sqrt(x)
1394
1395 Square root of a non-negative number to context precision.
1396
1397
Benjamin Petersone41251e2008-04-25 01:59:09 +00001398 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001399
Benjamin Petersone41251e2008-04-25 01:59:09 +00001400 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001401
Facundo Batista789bdf02008-06-21 17:29:41 +00001402
1403 .. method:: to_eng_string(x)
1404
1405 Converts a number to a string, using scientific notation.
1406
1407
1408 .. method:: to_integral_exact(x)
1409
1410 Rounds to an integer.
1411
1412
Benjamin Petersone41251e2008-04-25 01:59:09 +00001413 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001414
Benjamin Petersone41251e2008-04-25 01:59:09 +00001415 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001416
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001417.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001418
Stefan Krah1919b7e2012-03-21 18:25:23 +01001419.. _decimal-rounding-modes:
1420
1421Constants
1422---------
1423
1424The constants in this section are only relevant for the C module. They
1425are also included in the pure Python version for compatibility.
1426
Stefan Krah851a07e2012-03-21 18:47:20 +01001427+---------------------+---------------------+-------------------------------+
1428| | 32-bit | 64-bit |
1429+=====================+=====================+===============================+
1430| .. data:: MAX_PREC | :const:`425000000` | :const:`999999999999999999` |
1431+---------------------+---------------------+-------------------------------+
1432| .. data:: MAX_EMAX | :const:`425000000` | :const:`999999999999999999` |
1433+---------------------+---------------------+-------------------------------+
1434| .. data:: MIN_EMIN | :const:`-425000000` | :const:`-999999999999999999` |
1435+---------------------+---------------------+-------------------------------+
1436| .. data:: MIN_ETINY | :const:`-849999999` | :const:`-1999999999999999997` |
1437+---------------------+---------------------+-------------------------------+
1438
Stefan Krah1919b7e2012-03-21 18:25:23 +01001439
1440.. data:: HAVE_THREADS
1441
1442 The default value is True. If Python is compiled without threads, the
1443 C version automatically disables the expensive thread local context
1444 machinery. In this case, the value is False.
1445
1446Rounding modes
1447--------------
1448
1449.. data:: ROUND_CEILING
1450
1451 Round towards :const:`Infinity`.
1452
1453.. data:: ROUND_DOWN
1454
1455 Round towards zero.
1456
1457.. data:: ROUND_FLOOR
1458
1459 Round towards :const:`-Infinity`.
1460
1461.. data:: ROUND_HALF_DOWN
1462
1463 Round to nearest with ties going towards zero.
1464
1465.. data:: ROUND_HALF_EVEN
1466
1467 Round to nearest with ties going to nearest even integer.
1468
1469.. data:: ROUND_HALF_UP
1470
1471 Round to nearest with ties going away from zero.
1472
1473.. data:: ROUND_UP
1474
1475 Round away from zero.
1476
1477.. data:: ROUND_05UP
1478
1479 Round away from zero if last digit after rounding towards zero would have
1480 been 0 or 5; otherwise round towards zero.
1481
Georg Brandl116aa622007-08-15 14:28:22 +00001482
1483.. _decimal-signals:
1484
1485Signals
1486-------
1487
1488Signals represent conditions that arise during computation. Each corresponds to
1489one context flag and one context trap enabler.
1490
Raymond Hettinger86173da2008-02-01 20:38:12 +00001491The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001492computation, flags may be checked for informational purposes (for instance, to
1493determine whether a computation was exact). After checking the flags, be sure to
1494clear all flags before starting the next computation.
1495
1496If the context's trap enabler is set for the signal, then the condition causes a
1497Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1498is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1499condition.
1500
1501
1502.. class:: Clamped
1503
1504 Altered an exponent to fit representation constraints.
1505
1506 Typically, clamping occurs when an exponent falls outside the context's
1507 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001508 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001509
1510
1511.. class:: DecimalException
1512
1513 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1514
1515
1516.. class:: DivisionByZero
1517
1518 Signals the division of a non-infinite number by zero.
1519
1520 Can occur with division, modulo division, or when raising a number to a negative
1521 power. If this signal is not trapped, returns :const:`Infinity` or
1522 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1523
1524
1525.. class:: Inexact
1526
1527 Indicates that rounding occurred and the result is not exact.
1528
1529 Signals when non-zero digits were discarded during rounding. The rounded result
1530 is returned. The signal flag or trap is used to detect when results are
1531 inexact.
1532
1533
1534.. class:: InvalidOperation
1535
1536 An invalid operation was performed.
1537
1538 Indicates that an operation was requested that does not make sense. If not
1539 trapped, returns :const:`NaN`. Possible causes include::
1540
1541 Infinity - Infinity
1542 0 * Infinity
1543 Infinity / Infinity
1544 x % 0
1545 Infinity % x
Georg Brandl116aa622007-08-15 14:28:22 +00001546 sqrt(-x) and x > 0
1547 0 ** 0
1548 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001549 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001550
1551
1552.. class:: Overflow
1553
1554 Numerical overflow.
1555
Benjamin Petersone41251e2008-04-25 01:59:09 +00001556 Indicates the exponent is larger than :attr:`Emax` after rounding has
1557 occurred. If not trapped, the result depends on the rounding mode, either
1558 pulling inward to the largest representable finite number or rounding outward
1559 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1560 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001561
1562
1563.. class:: Rounded
1564
1565 Rounding occurred though possibly no information was lost.
1566
Benjamin Petersone41251e2008-04-25 01:59:09 +00001567 Signaled whenever rounding discards digits; even if those digits are zero
1568 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1569 the result unchanged. This signal is used to detect loss of significant
1570 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001571
1572
1573.. class:: Subnormal
1574
1575 Exponent was lower than :attr:`Emin` prior to rounding.
1576
Benjamin Petersone41251e2008-04-25 01:59:09 +00001577 Occurs when an operation result is subnormal (the exponent is too small). If
1578 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001579
1580
1581.. class:: Underflow
1582
1583 Numerical underflow with result rounded to zero.
1584
1585 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1586 and :class:`Subnormal` are also signaled.
1587
Stefan Krah1919b7e2012-03-21 18:25:23 +01001588
1589.. class:: FloatOperation
1590
1591 Enable stricter semantics for mixing floats and Decimals.
1592
1593 If the signal is not trapped (default), mixing floats and Decimals is
1594 permitted in the :class:`~decimal.Decimal` constructor,
1595 :meth:`~decimal.Context.create_decimal` and all comparison operators.
1596 Both conversion and comparisons are exact. Any occurrence of a mixed
1597 operation is silently recorded by setting :exc:`FloatOperation` in the
1598 context flags. Explicit conversions with :meth:`~decimal.Decimal.from_float`
1599 or :meth:`~decimal.Context.create_decimal_from_float` do not set the flag.
1600
1601 Otherwise (the signal is trapped), only equality comparisons and explicit
1602 conversions are silent. All other mixed operations raise :exc:`FloatOperation`.
1603
1604
Georg Brandl116aa622007-08-15 14:28:22 +00001605The following table summarizes the hierarchy of signals::
1606
1607 exceptions.ArithmeticError(exceptions.Exception)
1608 DecimalException
1609 Clamped
1610 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1611 Inexact
1612 Overflow(Inexact, Rounded)
1613 Underflow(Inexact, Rounded, Subnormal)
1614 InvalidOperation
1615 Rounded
1616 Subnormal
Stefan Krahb6405ef2012-03-23 14:46:48 +01001617 FloatOperation(DecimalException, exceptions.TypeError)
Georg Brandl116aa622007-08-15 14:28:22 +00001618
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001619.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001620
1621
Stefan Krah1919b7e2012-03-21 18:25:23 +01001622
Georg Brandl116aa622007-08-15 14:28:22 +00001623.. _decimal-notes:
1624
1625Floating Point Notes
1626--------------------
1627
1628
1629Mitigating round-off error with increased precision
1630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1631
1632The use of decimal floating point eliminates decimal representation error
1633(making it possible to represent :const:`0.1` exactly); however, some operations
1634can still incur round-off error when non-zero digits exceed the fixed precision.
1635
1636The effects of round-off error can be amplified by the addition or subtraction
1637of nearly offsetting quantities resulting in loss of significance. Knuth
1638provides two instructive examples where rounded floating point arithmetic with
1639insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001640properties of addition:
1641
1642.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001643
1644 # Examples from Seminumerical Algorithms, Section 4.2.2.
1645 >>> from decimal import Decimal, getcontext
1646 >>> getcontext().prec = 8
1647
1648 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1649 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001650 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001651 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001652 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001653
1654 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1655 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001656 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001657 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001658 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001659
1660The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001661expanding the precision sufficiently to avoid loss of significance:
1662
1663.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001664
1665 >>> getcontext().prec = 20
1666 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1667 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001668 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001669 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001670 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001671 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001672 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1673 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001674 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001675 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001676 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001677
1678
1679Special values
1680^^^^^^^^^^^^^^
1681
1682The number system for the :mod:`decimal` module provides special values
1683including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001684and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001685
1686Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1687they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1688not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1689can result from rounding beyond the limits of the largest representable number.
1690
1691The infinities are signed (affine) and can be used in arithmetic operations
1692where they get treated as very large, indeterminate numbers. For instance,
1693adding a constant to infinity gives another infinite result.
1694
1695Some operations are indeterminate and return :const:`NaN`, or if the
1696:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1697``0/0`` returns :const:`NaN` which means "not a number". This variety of
1698:const:`NaN` is quiet and, once created, will flow through other computations
1699always resulting in another :const:`NaN`. This behavior can be useful for a
1700series of computations that occasionally have missing inputs --- it allows the
1701calculation to proceed while flagging specific results as invalid.
1702
1703A variant is :const:`sNaN` which signals rather than remaining quiet after every
1704operation. This is a useful return value when an invalid result needs to
1705interrupt a calculation for special handling.
1706
Christian Heimes77c02eb2008-02-09 02:18:51 +00001707The behavior of Python's comparison operators can be a little surprising where a
1708:const:`NaN` is involved. A test for equality where one of the operands is a
1709quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1710``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1711:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1712``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1713if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001714not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001715specify the behavior of direct comparisons; these rules for comparisons
1716involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1717section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1718and :meth:`compare-signal` methods instead.
1719
Georg Brandl116aa622007-08-15 14:28:22 +00001720The signed zeros can result from calculations that underflow. They keep the sign
1721that would have resulted if the calculation had been carried out to greater
1722precision. Since their magnitude is zero, both positive and negative zeros are
1723treated as equal and their sign is informational.
1724
1725In addition to the two signed zeros which are distinct yet equal, there are
1726various representations of zero with differing precisions yet equivalent in
1727value. This takes a bit of getting used to. For an eye accustomed to
1728normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001729the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001730
1731 >>> 1 / Decimal('Infinity')
Stefan Krah1919b7e2012-03-21 18:25:23 +01001732 Decimal('0E-1000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001733
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001734.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001735
1736
1737.. _decimal-threads:
1738
1739Working with threads
1740--------------------
1741
1742The :func:`getcontext` function accesses a different :class:`Context` object for
1743each thread. Having separate thread contexts means that threads may make
Stefan Krah1919b7e2012-03-21 18:25:23 +01001744changes (such as ``getcontext().prec=10``) without interfering with other threads.
Georg Brandl116aa622007-08-15 14:28:22 +00001745
1746Likewise, the :func:`setcontext` function automatically assigns its target to
1747the current thread.
1748
1749If :func:`setcontext` has not been called before :func:`getcontext`, then
1750:func:`getcontext` will automatically create a new context for use in the
1751current thread.
1752
1753The new context is copied from a prototype context called *DefaultContext*. To
1754control the defaults so that each thread will use the same values throughout the
1755application, directly modify the *DefaultContext* object. This should be done
1756*before* any threads are started so that there won't be a race condition between
1757threads calling :func:`getcontext`. For example::
1758
1759 # Set applicationwide defaults for all threads about to be launched
1760 DefaultContext.prec = 12
1761 DefaultContext.rounding = ROUND_DOWN
1762 DefaultContext.traps = ExtendedContext.traps.copy()
1763 DefaultContext.traps[InvalidOperation] = 1
1764 setcontext(DefaultContext)
1765
1766 # Afterwards, the threads can be started
1767 t1.start()
1768 t2.start()
1769 t3.start()
1770 . . .
1771
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001772.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001773
1774
1775.. _decimal-recipes:
1776
1777Recipes
1778-------
1779
1780Here are a few recipes that serve as utility functions and that demonstrate ways
1781to work with the :class:`Decimal` class::
1782
1783 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1784 pos='', neg='-', trailneg=''):
1785 """Convert Decimal to a money formatted string.
1786
1787 places: required number of places after the decimal point
1788 curr: optional currency symbol before the sign (may be blank)
1789 sep: optional grouping separator (comma, period, space, or blank)
1790 dp: decimal point indicator (comma or period)
1791 only specify as blank when places is zero
1792 pos: optional sign for positive numbers: '+', space or blank
1793 neg: optional sign for negative numbers: '-', '(', space or blank
1794 trailneg:optional trailing minus indicator: '-', ')', space or blank
1795
1796 >>> d = Decimal('-1234567.8901')
1797 >>> moneyfmt(d, curr='$')
1798 '-$1,234,567.89'
1799 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1800 '1.234.568-'
1801 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1802 '($1,234,567.89)'
1803 >>> moneyfmt(Decimal(123456789), sep=' ')
1804 '123 456 789.00'
1805 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001806 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001807
1808 """
Christian Heimesa156e092008-02-16 07:38:31 +00001809 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001810 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001811 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001812 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001813 build, next = result.append, digits.pop
1814 if sign:
1815 build(trailneg)
1816 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001817 build(next() if digits else '0')
Raymond Hettinger0ab10e42011-01-08 09:03:11 +00001818 if places:
1819 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001820 if not digits:
1821 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001822 i = 0
1823 while digits:
1824 build(next())
1825 i += 1
1826 if i == 3 and digits:
1827 i = 0
1828 build(sep)
1829 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001830 build(neg if sign else pos)
1831 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001832
1833 def pi():
1834 """Compute Pi to the current precision.
1835
Georg Brandl6911e3c2007-09-04 07:15:32 +00001836 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001837 3.141592653589793238462643383
1838
1839 """
1840 getcontext().prec += 2 # extra digits for intermediate steps
1841 three = Decimal(3) # substitute "three=3.0" for regular floats
1842 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1843 while s != lasts:
1844 lasts = s
1845 n, na = n+na, na+8
1846 d, da = d+da, da+32
1847 t = (t * n) / d
1848 s += t
1849 getcontext().prec -= 2
1850 return +s # unary plus applies the new precision
1851
1852 def exp(x):
1853 """Return e raised to the power of x. Result type matches input type.
1854
Georg Brandl6911e3c2007-09-04 07:15:32 +00001855 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001856 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001857 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001858 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001859 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001860 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001861 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001862 (7.38905609893+0j)
1863
1864 """
1865 getcontext().prec += 2
1866 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1867 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001868 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001869 i += 1
1870 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001871 num *= x
1872 s += num / fact
1873 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001874 return +s
1875
1876 def cos(x):
1877 """Return the cosine of x as measured in radians.
1878
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001879 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001880 For larger values, first compute x = x % (2 * pi).
1881
Georg Brandl6911e3c2007-09-04 07:15:32 +00001882 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001883 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001884 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001885 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001886 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001887 (0.87758256189+0j)
1888
1889 """
1890 getcontext().prec += 2
1891 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1892 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001893 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001894 i += 2
1895 fact *= i * (i-1)
1896 num *= x * x
1897 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001898 s += num / fact * sign
1899 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001900 return +s
1901
1902 def sin(x):
1903 """Return the sine of x as measured in radians.
1904
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001905 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001906 For larger values, first compute x = x % (2 * pi).
1907
Georg Brandl6911e3c2007-09-04 07:15:32 +00001908 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001909 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001910 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001911 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001912 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001913 (0.479425538604+0j)
1914
1915 """
1916 getcontext().prec += 2
1917 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1918 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001919 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001920 i += 2
1921 fact *= i * (i-1)
1922 num *= x * x
1923 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001924 s += num / fact * sign
1925 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001926 return +s
1927
1928
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001929.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001930
1931
1932.. _decimal-faq:
1933
1934Decimal FAQ
1935-----------
1936
1937Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1938minimize typing when using the interactive interpreter?
1939
Christian Heimesfe337bf2008-03-23 21:54:12 +00001940A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001941
1942 >>> D = decimal.Decimal
1943 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001944 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001945
1946Q. In a fixed-point application with two decimal places, some inputs have many
1947places and need to be rounded. Others are not supposed to have excess digits
1948and need to be validated. What methods should be used?
1949
1950A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001951the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001952
1953 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1954
1955 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001956 >>> Decimal('3.214').quantize(TWOPLACES)
1957 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001958
Georg Brandl48310cd2009-01-03 21:18:54 +00001959 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001960 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1961 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001962
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001963 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001964 Traceback (most recent call last):
1965 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001966 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001967
1968Q. Once I have valid two place inputs, how do I maintain that invariant
1969throughout an application?
1970
Christian Heimesa156e092008-02-16 07:38:31 +00001971A. Some operations like addition, subtraction, and multiplication by an integer
1972will automatically preserve fixed point. Others operations, like division and
1973non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00001974be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001975
1976 >>> a = Decimal('102.72') # Initial fixed-point values
1977 >>> b = Decimal('3.17')
1978 >>> a + b # Addition preserves fixed-point
1979 Decimal('105.89')
1980 >>> a - b
1981 Decimal('99.55')
1982 >>> a * 42 # So does integer multiplication
1983 Decimal('4314.24')
1984 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1985 Decimal('325.62')
1986 >>> (b / a).quantize(TWOPLACES) # And quantize division
1987 Decimal('0.03')
1988
1989In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00001990to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001991
1992 >>> def mul(x, y, fp=TWOPLACES):
1993 ... return (x * y).quantize(fp)
1994 >>> def div(x, y, fp=TWOPLACES):
1995 ... return (x / y).quantize(fp)
1996
1997 >>> mul(a, b) # Automatically preserve fixed-point
1998 Decimal('325.62')
1999 >>> div(b, a)
2000 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00002001
2002Q. There are many ways to express the same value. The numbers :const:`200`,
2003:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
2004various precisions. Is there a way to transform them to a single recognizable
2005canonical value?
2006
2007A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00002008representative:
Georg Brandl116aa622007-08-15 14:28:22 +00002009
2010 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
2011 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002012 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00002013
2014Q. Some decimal values always print with exponential notation. Is there a way
2015to get a non-exponential representation?
2016
2017A. For some values, exponential notation is the only way to express the number
2018of significant places in the coefficient. For example, expressing
2019:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
2020original's two-place significance.
2021
Christian Heimesa156e092008-02-16 07:38:31 +00002022If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00002023remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002024value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00002025
2026 >>> def remove_exponent(d):
2027 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
2028
2029 >>> remove_exponent(Decimal('5E+3'))
2030 Decimal('5000')
2031
Georg Brandl116aa622007-08-15 14:28:22 +00002032Q. Is there a way to convert a regular float to a :class:`Decimal`?
2033
Mark Dickinsone534a072010-04-04 22:13:14 +00002034A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettinger96798592010-04-02 16:58:27 +00002035Decimal though an exact conversion may take more precision than intuition would
2036suggest:
Georg Brandl116aa622007-08-15 14:28:22 +00002037
Christian Heimesfe337bf2008-03-23 21:54:12 +00002038.. doctest::
2039
Raymond Hettinger96798592010-04-02 16:58:27 +00002040 >>> Decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002041 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00002042
Georg Brandl116aa622007-08-15 14:28:22 +00002043Q. Within a complex calculation, how can I make sure that I haven't gotten a
2044spurious result because of insufficient precision or rounding anomalies.
2045
2046A. The decimal module makes it easy to test results. A best practice is to
2047re-run calculations using greater precision and with various rounding modes.
2048Widely differing results indicate insufficient precision, rounding mode issues,
2049ill-conditioned inputs, or a numerically unstable algorithm.
2050
2051Q. I noticed that context precision is applied to the results of operations but
2052not to the inputs. Is there anything to watch out for when mixing values of
2053different precisions?
2054
2055A. Yes. The principle is that all values are considered to be exact and so is
2056the arithmetic on those values. Only the results are rounded. The advantage
2057for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002058results can look odd if you forget that the inputs haven't been rounded:
2059
2060.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002061
2062 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00002063 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002064 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00002065 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002066 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00002067
2068The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00002069using the unary plus operation:
2070
2071.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002072
2073 >>> getcontext().prec = 3
2074 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002075 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00002076
2077Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002078:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00002079
2080 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002081 Decimal('1.2345')
Georg Brandl116aa622007-08-15 14:28:22 +00002082