blob: 4ecd14efd2f10c3320b5afe68bf65b907ffdb26b [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
Georg Brandl8ec7f652007-08-15 14:28:01 +000024
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +000025Number-theoretic and representation functions
26---------------------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +000027
28.. function:: ceil(x)
29
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000030 Return the ceiling of *x* as a float, the smallest integer value greater than or
31 equal to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000032
33
Christian Heimeseebb79c2008-01-03 22:32:26 +000034.. function:: copysign(x, y)
35
36 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
37 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
38
Andrew M. Kuchling54966a52008-01-04 18:25:05 +000039 .. versionadded:: 2.6
Christian Heimeseebb79c2008-01-03 22:32:26 +000040
41
Georg Brandl8ec7f652007-08-15 14:28:01 +000042.. function:: fabs(x)
43
44 Return the absolute value of *x*.
45
Georg Brandl5da652e2008-06-18 09:28:22 +000046
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000047.. function:: factorial(x)
48
Mark Dickinsonf88f7392008-06-18 09:20:17 +000049 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000050 is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +000051
Georg Brandl5da652e2008-06-18 09:28:22 +000052 .. versionadded:: 2.6
53
54
Georg Brandl8ec7f652007-08-15 14:28:01 +000055.. function:: floor(x)
56
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000057 Return the floor of *x* as a float, the largest integer value less than or equal
58 to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
Georg Brandl9749e152008-01-05 19:28:16 +000060 .. versionchanged:: 2.6
61 Added :meth:`__floor__` delegation.
62
Georg Brandl8ec7f652007-08-15 14:28:01 +000063
64.. function:: fmod(x, y)
65
66 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
67 Python expression ``x % y`` may not return the same result. The intent of the C
68 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
69 precision) equal to ``x - n*y`` for some integer *n* such that the result has
70 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
71 returns a result with the sign of *y* instead, and may not be exactly computable
72 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
73 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
74 represented exactly as a float, and rounds to the surprising ``1e100``. For
75 this reason, function :func:`fmod` is generally preferred when working with
76 floats, while Python's ``x % y`` is preferred when working with integers.
77
78
79.. function:: frexp(x)
80
81 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
82 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
83 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
84 apart" the internal representation of a float in a portable way.
85
86
Mark Dickinsonfef6b132008-07-30 16:20:10 +000087.. function:: fsum(iterable)
88
89 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettinger7d854952009-02-19 05:51:41 +000090 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonfef6b132008-07-30 16:20:10 +000091
Raymond Hettinger7d854952009-02-19 05:51:41 +000092 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
93 0.99999999999999989
94 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
95 1.0
Mark Dickinson23957cb2008-07-30 20:23:15 +000096
Raymond Hettinger7d854952009-02-19 05:51:41 +000097 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
98 typical case where the rounding mode is half-even. On some non-Windows
99 builds, the underlying C library uses extended precision addition and may
100 occasionally double-round an intermediate sum causing it to be off in its
101 least significant bit.
Mark Dickinson23957cb2008-07-30 20:23:15 +0000102
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000103 .. versionadded:: 2.6
104
105
Christian Heimese2ca4242008-01-03 20:23:15 +0000106.. function:: isinf(x)
107
108 Checks if the float *x* is positive or negative infinite.
109
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000110 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000111
112
113.. function:: isnan(x)
114
115 Checks if the float *x* is a NaN (not a number). NaNs are part of the
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000116 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
Christian Heimese2ca4242008-01-03 20:23:15 +0000117 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
118 a NaN.
119
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000120 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000121
122
Georg Brandl8ec7f652007-08-15 14:28:01 +0000123.. function:: ldexp(x, i)
124
125 Return ``x * (2**i)``. This is essentially the inverse of function
126 :func:`frexp`.
127
128
129.. function:: modf(x)
130
Benjamin Peterson2d54e722008-12-20 02:48:02 +0000131 Return the fractional and integer parts of *x*. Both results carry the sign
Benjamin Peterson9de72982008-12-20 22:49:24 +0000132 of *x* and are floats.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133
Georg Brandl5da652e2008-06-18 09:28:22 +0000134
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000135.. function:: trunc(x)
136
137 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
138 a long integer). Delegates to ``x.__trunc__()``.
139
140 .. versionadded:: 2.6
141
Georg Brandl5da652e2008-06-18 09:28:22 +0000142
Georg Brandl8ec7f652007-08-15 14:28:01 +0000143Note that :func:`frexp` and :func:`modf` have a different call/return pattern
144than their C equivalents: they take a single argument and return a pair of
145values, rather than returning their second return value through an 'output
146parameter' (there is no such thing in Python).
147
148For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
149floating-point numbers of sufficiently large magnitude are exact integers.
150Python floats typically carry no more than 53 bits of precision (the same as the
151platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
152necessarily has no fractional bits.
153
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000154
155Power and logarithmic functions
156-------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000157
Georg Brandl8ec7f652007-08-15 14:28:01 +0000158.. function:: exp(x)
159
160 Return ``e**x``.
161
162
163.. function:: log(x[, base])
164
165 Return the logarithm of *x* to the given *base*. If the *base* is not specified,
166 return the natural logarithm of *x* (that is, the logarithm to base *e*).
167
168 .. versionchanged:: 2.3
169 *base* argument added.
170
171
Christian Heimes6f341092008-04-18 23:13:07 +0000172.. function:: log1p(x)
173
174 Return the natural logarithm of *1+x* (base *e*). The
175 result is calculated in a way which is accurate for *x* near zero.
176
177 .. versionadded:: 2.6
178
179
Georg Brandl8ec7f652007-08-15 14:28:01 +0000180.. function:: log10(x)
181
182 Return the base-10 logarithm of *x*.
183
184
185.. function:: pow(x, y)
186
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000187 Return ``x`` raised to the power ``y``. Exceptional cases follow
188 Annex 'F' of the C99 standard as far as possible. In particular,
189 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
190 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
191 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
192 is undefined, and raises :exc:`ValueError`.
Christian Heimes6f341092008-04-18 23:13:07 +0000193
194 .. versionchanged:: 2.6
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000195 The outcome of ``1**nan`` and ``nan**0`` was undefined.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000196
197
198.. function:: sqrt(x)
199
200 Return the square root of *x*.
201
Georg Brandl8ec7f652007-08-15 14:28:01 +0000202
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000203Trigonometric functions
204-----------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205
206.. function:: acos(x)
207
208 Return the arc cosine of *x*, in radians.
209
210
211.. function:: asin(x)
212
213 Return the arc sine of *x*, in radians.
214
215
216.. function:: atan(x)
217
218 Return the arc tangent of *x*, in radians.
219
220
221.. function:: atan2(y, x)
222
223 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
224 The vector in the plane from the origin to point ``(x, y)`` makes this angle
225 with the positive X axis. The point of :func:`atan2` is that the signs of both
226 inputs are known to it, so it can compute the correct quadrant for the angle.
227 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
228 -1)`` is ``-3*pi/4``.
229
230
231.. function:: cos(x)
232
233 Return the cosine of *x* radians.
234
235
236.. function:: hypot(x, y)
237
238 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
239 from the origin to point ``(x, y)``.
240
241
242.. function:: sin(x)
243
244 Return the sine of *x* radians.
245
246
247.. function:: tan(x)
248
249 Return the tangent of *x* radians.
250
Georg Brandl8ec7f652007-08-15 14:28:01 +0000251
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000252Angular conversion
253------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000254
255.. function:: degrees(x)
256
257 Converts angle *x* from radians to degrees.
258
259
260.. function:: radians(x)
261
262 Converts angle *x* from degrees to radians.
263
Georg Brandl8ec7f652007-08-15 14:28:01 +0000264
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000265Hyperbolic functions
266--------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000267
Mark Dickinson47a84aa2008-04-19 21:49:22 +0000268.. function:: acosh(x)
269
270 Return the inverse hyperbolic cosine of *x*.
271
272 .. versionadded:: 2.6
273
274
275.. function:: asinh(x)
276
277 Return the inverse hyperbolic sine of *x*.
278
279 .. versionadded:: 2.6
280
281
282.. function:: atanh(x)
283
284 Return the inverse hyperbolic tangent of *x*.
285
286 .. versionadded:: 2.6
287
288
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289.. function:: cosh(x)
290
291 Return the hyperbolic cosine of *x*.
292
293
294.. function:: sinh(x)
295
296 Return the hyperbolic sine of *x*.
297
298
299.. function:: tanh(x)
300
301 Return the hyperbolic tangent of *x*.
302
Christian Heimes6f341092008-04-18 23:13:07 +0000303
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000304Constants
305---------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000306
Georg Brandl8ec7f652007-08-15 14:28:01 +0000307.. data:: pi
308
309 The mathematical constant *pi*.
310
311
312.. data:: e
313
314 The mathematical constant *e*.
315
Christian Heimes6f341092008-04-18 23:13:07 +0000316
Georg Brandl8ec7f652007-08-15 14:28:01 +0000317.. note::
318
319 The :mod:`math` module consists mostly of thin wrappers around the platform C
320 math library functions. Behavior in exceptional cases is loosely specified
321 by the C standards, and Python inherits much of its math-function
322 error-reporting behavior from the platform C implementation. As a result,
323 the specific exceptions raised in error cases (and even whether some
324 arguments are considered to be exceptional at all) are not defined in any
325 useful cross-platform or cross-release way. For example, whether
326 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
327 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
328 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
329
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000330 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Georg Brandl9481ba32008-08-30 22:00:28 +0000331 Signaling *NaN*\s raise an exception. The exception type still depends on the
Christian Heimes6f341092008-04-18 23:13:07 +0000332 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
333 and :exc:`OverflowError` for errno *ERANGE*.
334
Georg Brandl173b7392008-05-12 17:43:13 +0000335 .. versionchanged:: 2.6
Christian Heimes6f341092008-04-18 23:13:07 +0000336 In earlier versions of Python the outcome of an operation with NaN as
337 input depended on platform and libm implementation.
338
Georg Brandl8ec7f652007-08-15 14:28:01 +0000339
340.. seealso::
341
342 Module :mod:`cmath`
343 Complex number versions of many of these functions.