blob: 22f6f5fba9edb8db365d8db3bb6c7007638acbd6 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
Mark Dickinson603b7532010-04-06 19:55:03 +000036 Return *x* with the sign of *y*. On a platform that supports
37 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000038
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000082 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000083
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000085 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
87 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000088
Raymond Hettingerf3936f82009-02-19 05:48:05 +000089 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
90 typical case where the rounding mode is half-even. On some non-Windows
91 builds, the underlying C library uses extended precision addition and may
92 occasionally double-round an intermediate sum causing it to be off in its
93 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000094
Raymond Hettinger477be822009-02-19 06:44:30 +000095 For further discussion and two alternative approaches, see the `ASPN cookbook
96 recipes for accurate floating point summation
97 <http://code.activestate.com/recipes/393090/>`_\.
98
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000099
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000100.. function:: isfinite(x)
101
102 Return ``True`` if *x* is neither an infinity nor a NaN, and
103 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
104
105
Christian Heimes072c0f12008-01-03 23:01:04 +0000106.. function:: isinf(x)
107
Mark Dickinson603b7532010-04-06 19:55:03 +0000108 Check if the float *x* is positive or negative infinity.
Christian Heimes072c0f12008-01-03 23:01:04 +0000109
Christian Heimes072c0f12008-01-03 23:01:04 +0000110
111.. function:: isnan(x)
112
Mark Dickinson603b7532010-04-06 19:55:03 +0000113 Check if the float *x* is a NaN (not a number). For more information
114 on NaNs, see the IEEE 754 standards.
Christian Heimes072c0f12008-01-03 23:01:04 +0000115
Christian Heimes072c0f12008-01-03 23:01:04 +0000116
Georg Brandl116aa622007-08-15 14:28:22 +0000117.. function:: ldexp(x, i)
118
119 Return ``x * (2**i)``. This is essentially the inverse of function
120 :func:`frexp`.
121
122
123.. function:: modf(x)
124
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000125 Return the fractional and integer parts of *x*. Both results carry the sign
126 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000127
Christian Heimes400adb02008-02-01 08:12:03 +0000128
129.. function:: trunc(x)
130
131 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000132 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000133
Christian Heimes400adb02008-02-01 08:12:03 +0000134
Georg Brandl116aa622007-08-15 14:28:22 +0000135Note that :func:`frexp` and :func:`modf` have a different call/return pattern
136than their C equivalents: they take a single argument and return a pair of
137values, rather than returning their second return value through an 'output
138parameter' (there is no such thing in Python).
139
140For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
141floating-point numbers of sufficiently large magnitude are exact integers.
142Python floats typically carry no more than 53 bits of precision (the same as the
143platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
144necessarily has no fractional bits.
145
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000146
147Power and logarithmic functions
148-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000149
Georg Brandl116aa622007-08-15 14:28:22 +0000150.. function:: exp(x)
151
152 Return ``e**x``.
153
154
Mark Dickinson664b5112009-12-16 20:23:42 +0000155.. function:: expm1(x)
156
157 Return ``e**x - 1``. For small floats *x*, the subtraction in
158 ``exp(x) - 1`` can result in a significant loss of precision; the
159 :func:`expm1` function provides a way to compute this quantity to
160 full precision::
161
162 >>> from math import exp, expm1
163 >>> exp(1e-5) - 1 # gives result accurate to 11 places
164 1.0000050000069649e-05
165 >>> expm1(1e-5) # result accurate to full precision
166 1.0000050000166668e-05
167
Mark Dickinson45f992a2009-12-19 11:20:49 +0000168 .. versionadded:: 3.2
169
Mark Dickinson664b5112009-12-16 20:23:42 +0000170
Georg Brandl116aa622007-08-15 14:28:22 +0000171.. function:: log(x[, base])
172
Georg Brandla6053b42009-09-01 08:11:14 +0000173 With one argument, return the natural logarithm of *x* (to base *e*).
174
175 With two arguments, return the logarithm of *x* to the given *base*,
176 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000177
Georg Brandl116aa622007-08-15 14:28:22 +0000178
Christian Heimes53876d92008-04-19 00:31:39 +0000179.. function:: log1p(x)
180
181 Return the natural logarithm of *1+x* (base *e*). The
182 result is calculated in a way which is accurate for *x* near zero.
183
Christian Heimes53876d92008-04-19 00:31:39 +0000184
Georg Brandl116aa622007-08-15 14:28:22 +0000185.. function:: log10(x)
186
Georg Brandla6053b42009-09-01 08:11:14 +0000187 Return the base-10 logarithm of *x*. This is usually more accurate
188 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000189
190
191.. function:: pow(x, y)
192
Christian Heimesa342c012008-04-20 21:01:16 +0000193 Return ``x`` raised to the power ``y``. Exceptional cases follow
194 Annex 'F' of the C99 standard as far as possible. In particular,
195 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
196 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
197 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
198 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000199
Georg Brandl116aa622007-08-15 14:28:22 +0000200
201.. function:: sqrt(x)
202
203 Return the square root of *x*.
204
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000205Trigonometric functions
206-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000207
208
209.. function:: acos(x)
210
211 Return the arc cosine of *x*, in radians.
212
213
214.. function:: asin(x)
215
216 Return the arc sine of *x*, in radians.
217
218
219.. function:: atan(x)
220
221 Return the arc tangent of *x*, in radians.
222
223
224.. function:: atan2(y, x)
225
226 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
227 The vector in the plane from the origin to point ``(x, y)`` makes this angle
228 with the positive X axis. The point of :func:`atan2` is that the signs of both
229 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000230 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000231 -1)`` is ``-3*pi/4``.
232
233
234.. function:: cos(x)
235
236 Return the cosine of *x* radians.
237
238
239.. function:: hypot(x, y)
240
241 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
242 from the origin to point ``(x, y)``.
243
244
245.. function:: sin(x)
246
247 Return the sine of *x* radians.
248
249
250.. function:: tan(x)
251
252 Return the tangent of *x* radians.
253
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000254Angular conversion
255------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000256
257
258.. function:: degrees(x)
259
260 Converts angle *x* from radians to degrees.
261
262
263.. function:: radians(x)
264
265 Converts angle *x* from degrees to radians.
266
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000267Hyperbolic functions
268--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000269
270
Christian Heimesa342c012008-04-20 21:01:16 +0000271.. function:: acosh(x)
272
273 Return the inverse hyperbolic cosine of *x*.
274
Christian Heimesa342c012008-04-20 21:01:16 +0000275
276.. function:: asinh(x)
277
278 Return the inverse hyperbolic sine of *x*.
279
Christian Heimesa342c012008-04-20 21:01:16 +0000280
281.. function:: atanh(x)
282
283 Return the inverse hyperbolic tangent of *x*.
284
Christian Heimesa342c012008-04-20 21:01:16 +0000285
Georg Brandl116aa622007-08-15 14:28:22 +0000286.. function:: cosh(x)
287
288 Return the hyperbolic cosine of *x*.
289
290
291.. function:: sinh(x)
292
293 Return the hyperbolic sine of *x*.
294
295
296.. function:: tanh(x)
297
298 Return the hyperbolic tangent of *x*.
299
Christian Heimes53876d92008-04-19 00:31:39 +0000300
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000301Special functions
302-----------------
303
Mark Dickinson45f992a2009-12-19 11:20:49 +0000304.. function:: erf(x)
305
306 Return the error function at *x*.
307
308 .. versionadded:: 3.2
309
310
311.. function:: erfc(x)
312
313 Return the complementary error function at *x*.
314
315 .. versionadded:: 3.2
316
317
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000318.. function:: gamma(x)
319
320 Return the Gamma function at *x*.
321
Mark Dickinson56e09662009-10-01 16:13:29 +0000322 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000323
324
Mark Dickinson05d2e082009-12-11 20:17:17 +0000325.. function:: lgamma(x)
326
327 Return the natural logarithm of the absolute value of the Gamma
328 function at *x*.
329
Mark Dickinson45f992a2009-12-19 11:20:49 +0000330 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000331
332
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000333Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000334---------
Georg Brandl116aa622007-08-15 14:28:22 +0000335
336.. data:: pi
337
Mark Dickinson603b7532010-04-06 19:55:03 +0000338 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000339
340
341.. data:: e
342
Mark Dickinson603b7532010-04-06 19:55:03 +0000343 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000344
Christian Heimes53876d92008-04-19 00:31:39 +0000345
Georg Brandl495f7b52009-10-27 15:28:25 +0000346.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000347
348 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000349 math library functions. Behavior in exceptional cases follows Annex F of
350 the C99 standard where appropriate. The current implementation will raise
351 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
352 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
353 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000354 ``exp(1000.0)``). A NaN will not be returned from any of the functions
355 above unless one or more of the input arguments was a NaN; in that case,
356 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000357 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
358 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000359
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000360 Note that Python makes no effort to distinguish signaling NaNs from
361 quiet NaNs, and behavior for signaling NaNs remains unspecified.
362 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000363
Georg Brandl116aa622007-08-15 14:28:22 +0000364
365.. seealso::
366
367 Module :mod:`cmath`
368 Complex number versions of many of these functions.