blob: 849f7f0f013fc6b6b05a1066fe5589e5b1b38a33 [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes6f341092008-04-18 23:13:07 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Mark Dickinson9cae1782009-12-16 20:13:40 +000056#include "_math.h"
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Neal Norwitz5f95a792008-01-25 08:04:16 +000058#ifdef _OSF_SOURCE
59/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
60extern double copysign(double, double);
61#endif
62
Mark Dickinsonb93fff02009-09-28 18:54:55 +000063/*
64 sin(pi*x), giving accurate results for all finite x (especially x
65 integral or close to an integer). This is here for use in the
66 reflection formula for the gamma function. It conforms to IEEE
67 754-2008 for finite arguments, but not for infinities or nans.
68*/
Tim Petersa40c7932001-09-05 22:36:56 +000069
Mark Dickinsonb93fff02009-09-28 18:54:55 +000070static const double pi = 3.141592653589793238462643383279502884197;
Mark Dickinson5ff37ae2009-12-19 11:07:23 +000071static const double sqrtpi = 1.772453850905516027298167483341145182798;
Mark Dickinsonb93fff02009-09-28 18:54:55 +000072
73static double
74sinpi(double x)
75{
76 double y, r;
77 int n;
78 /* this function should only ever be called for finite arguments */
79 assert(Py_IS_FINITE(x));
80 y = fmod(fabs(x), 2.0);
81 n = (int)round(2.0*y);
82 assert(0 <= n && n <= 4);
83 switch (n) {
84 case 0:
85 r = sin(pi*y);
86 break;
87 case 1:
88 r = cos(pi*(y-0.5));
89 break;
90 case 2:
91 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
92 -0.0 instead of 0.0 when y == 1.0. */
93 r = sin(pi*(1.0-y));
94 break;
95 case 3:
96 r = -cos(pi*(y-1.5));
97 break;
98 case 4:
99 r = sin(pi*(y-2.0));
100 break;
101 default:
102 assert(0); /* should never get here */
103 r = -1.23e200; /* silence gcc warning */
Tim Peters1d120612000-10-12 06:10:25 +0000104 }
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000105 return copysign(1.0, x)*r;
106}
107
108/* Implementation of the real gamma function. In extensive but non-exhaustive
109 random tests, this function proved accurate to within <= 10 ulps across the
110 entire float domain. Note that accuracy may depend on the quality of the
111 system math functions, the pow function in particular. Special cases
112 follow C99 annex F. The parameters and method are tailored to platforms
113 whose double format is the IEEE 754 binary64 format.
114
115 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
116 and g=6.024680040776729583740234375; these parameters are amongst those
117 used by the Boost library. Following Boost (again), we re-express the
118 Lanczos sum as a rational function, and compute it that way. The
119 coefficients below were computed independently using MPFR, and have been
120 double-checked against the coefficients in the Boost source code.
121
122 For x < 0.0 we use the reflection formula.
123
124 There's one minor tweak that deserves explanation: Lanczos' formula for
125 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
126 values, x+g-0.5 can be represented exactly. However, in cases where it
127 can't be represented exactly the small error in x+g-0.5 can be magnified
128 significantly by the pow and exp calls, especially for large x. A cheap
129 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
130 involved in the computation of x+g-0.5 (that is, e = computed value of
131 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
132
133 Correction factor
134 -----------------
135 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
136 double, and e is tiny. Then:
137
138 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
139 = pow(y, x-0.5)/exp(y) * C,
140
141 where the correction_factor C is given by
142
143 C = pow(1-e/y, x-0.5) * exp(e)
144
145 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
146
147 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
148
149 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
150
151 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
152
153 Note that for accuracy, when computing r*C it's better to do
154
155 r + e*g/y*r;
156
157 than
158
159 r * (1 + e*g/y);
160
161 since the addition in the latter throws away most of the bits of
162 information in e*g/y.
163*/
164
165#define LANCZOS_N 13
166static const double lanczos_g = 6.024680040776729583740234375;
167static const double lanczos_g_minus_half = 5.524680040776729583740234375;
168static const double lanczos_num_coeffs[LANCZOS_N] = {
169 23531376880.410759688572007674451636754734846804940,
170 42919803642.649098768957899047001988850926355848959,
171 35711959237.355668049440185451547166705960488635843,
172 17921034426.037209699919755754458931112671403265390,
173 6039542586.3520280050642916443072979210699388420708,
174 1439720407.3117216736632230727949123939715485786772,
175 248874557.86205415651146038641322942321632125127801,
176 31426415.585400194380614231628318205362874684987640,
177 2876370.6289353724412254090516208496135991145378768,
178 186056.26539522349504029498971604569928220784236328,
179 8071.6720023658162106380029022722506138218516325024,
180 210.82427775157934587250973392071336271166969580291,
181 2.5066282746310002701649081771338373386264310793408
182};
183
184/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
185static const double lanczos_den_coeffs[LANCZOS_N] = {
186 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
187 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
188
189/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
190#define NGAMMA_INTEGRAL 23
191static const double gamma_integral[NGAMMA_INTEGRAL] = {
192 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
193 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
194 1307674368000.0, 20922789888000.0, 355687428096000.0,
195 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
196 51090942171709440000.0, 1124000727777607680000.0,
197};
198
199/* Lanczos' sum L_g(x), for positive x */
200
201static double
202lanczos_sum(double x)
203{
204 double num = 0.0, den = 0.0;
205 int i;
206 assert(x > 0.0);
207 /* evaluate the rational function lanczos_sum(x). For large
208 x, the obvious algorithm risks overflow, so we instead
209 rescale the denominator and numerator of the rational
210 function by x**(1-LANCZOS_N) and treat this as a
211 rational function in 1/x. This also reduces the error for
212 larger x values. The choice of cutoff point (5.0 below) is
213 somewhat arbitrary; in tests, smaller cutoff values than
214 this resulted in lower accuracy. */
215 if (x < 5.0) {
216 for (i = LANCZOS_N; --i >= 0; ) {
217 num = num * x + lanczos_num_coeffs[i];
218 den = den * x + lanczos_den_coeffs[i];
219 }
220 }
221 else {
222 for (i = 0; i < LANCZOS_N; i++) {
223 num = num / x + lanczos_num_coeffs[i];
224 den = den / x + lanczos_den_coeffs[i];
225 }
226 }
227 return num/den;
228}
229
230static double
231m_tgamma(double x)
232{
233 double absx, r, y, z, sqrtpow;
234
235 /* special cases */
236 if (!Py_IS_FINITE(x)) {
237 if (Py_IS_NAN(x) || x > 0.0)
238 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
239 else {
240 errno = EDOM;
241 return Py_NAN; /* tgamma(-inf) = nan, invalid */
242 }
243 }
244 if (x == 0.0) {
245 errno = EDOM;
246 return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */
247 }
248
249 /* integer arguments */
250 if (x == floor(x)) {
251 if (x < 0.0) {
252 errno = EDOM; /* tgamma(n) = nan, invalid for */
253 return Py_NAN; /* negative integers n */
254 }
255 if (x <= NGAMMA_INTEGRAL)
256 return gamma_integral[(int)x - 1];
257 }
258 absx = fabs(x);
259
260 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
261 if (absx < 1e-20) {
262 r = 1.0/x;
263 if (Py_IS_INFINITY(r))
264 errno = ERANGE;
265 return r;
266 }
267
268 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
269 x > 200, and underflows to +-0.0 for x < -200, not a negative
270 integer. */
271 if (absx > 200.0) {
272 if (x < 0.0) {
273 return 0.0/sinpi(x);
274 }
275 else {
276 errno = ERANGE;
277 return Py_HUGE_VAL;
278 }
279 }
280
281 y = absx + lanczos_g_minus_half;
282 /* compute error in sum */
283 if (absx > lanczos_g_minus_half) {
284 /* note: the correction can be foiled by an optimizing
285 compiler that (incorrectly) thinks that an expression like
286 a + b - a - b can be optimized to 0.0. This shouldn't
287 happen in a standards-conforming compiler. */
288 double q = y - absx;
289 z = q - lanczos_g_minus_half;
290 }
291 else {
292 double q = y - lanczos_g_minus_half;
293 z = q - absx;
294 }
295 z = z * lanczos_g / y;
296 if (x < 0.0) {
297 r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
298 r -= z * r;
299 if (absx < 140.0) {
300 r /= pow(y, absx - 0.5);
301 }
302 else {
303 sqrtpow = pow(y, absx / 2.0 - 0.25);
304 r /= sqrtpow;
305 r /= sqrtpow;
306 }
307 }
308 else {
309 r = lanczos_sum(absx) / exp(y);
310 r += z * r;
311 if (absx < 140.0) {
312 r *= pow(y, absx - 0.5);
313 }
314 else {
315 sqrtpow = pow(y, absx / 2.0 - 0.25);
316 r *= sqrtpow;
317 r *= sqrtpow;
318 }
319 }
320 if (Py_IS_INFINITY(r))
321 errno = ERANGE;
322 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000323}
324
Christian Heimes6f341092008-04-18 23:13:07 +0000325/*
Mark Dickinson9be87bc2009-12-11 17:29:33 +0000326 lgamma: natural log of the absolute value of the Gamma function.
327 For large arguments, Lanczos' formula works extremely well here.
328*/
329
330static double
331m_lgamma(double x)
332{
333 double r, absx;
334
335 /* special cases */
336 if (!Py_IS_FINITE(x)) {
337 if (Py_IS_NAN(x))
338 return x; /* lgamma(nan) = nan */
339 else
340 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
341 }
342
343 /* integer arguments */
344 if (x == floor(x) && x <= 2.0) {
345 if (x <= 0.0) {
346 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
347 return Py_HUGE_VAL; /* integers n <= 0 */
348 }
349 else {
350 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
351 }
352 }
353
354 absx = fabs(x);
355 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
356 if (absx < 1e-20)
357 return -log(absx);
358
359 /* Lanczos' formula */
360 if (x > 0.0) {
361 /* we could save a fraction of a ulp in accuracy by having a
362 second set of numerator coefficients for lanczos_sum that
363 absorbed the exp(-lanczos_g) term, and throwing out the
364 lanczos_g subtraction below; it's probably not worth it. */
365 r = log(lanczos_sum(x)) - lanczos_g +
366 (x-0.5)*(log(x+lanczos_g-0.5)-1);
367 }
368 else {
369 r = log(pi) - log(fabs(sinpi(absx))) - log(absx) -
370 (log(lanczos_sum(absx)) - lanczos_g +
371 (absx-0.5)*(log(absx+lanczos_g-0.5)-1));
372 }
373 if (Py_IS_INFINITY(r))
374 errno = ERANGE;
375 return r;
376}
377
Mark Dickinson5ff37ae2009-12-19 11:07:23 +0000378/*
379 Implementations of the error function erf(x) and the complementary error
380 function erfc(x).
381
382 Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
383 Cambridge University Press), we use a series approximation for erf for
384 small x, and a continued fraction approximation for erfc(x) for larger x;
385 combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
386 this gives us erf(x) and erfc(x) for all x.
387
388 The series expansion used is:
389
390 erf(x) = x*exp(-x*x)/sqrt(pi) * [
391 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
392
393 The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
394 This series converges well for smallish x, but slowly for larger x.
395
396 The continued fraction expansion used is:
397
398 erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
399 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
400
401 after the first term, the general term has the form:
402
403 k*(k-0.5)/(2*k+0.5 + x**2 - ...).
404
405 This expansion converges fast for larger x, but convergence becomes
406 infinitely slow as x approaches 0.0. The (somewhat naive) continued
407 fraction evaluation algorithm used below also risks overflow for large x;
408 but for large x, erfc(x) == 0.0 to within machine precision. (For
409 example, erfc(30.0) is approximately 2.56e-393).
410
411 Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
412 continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
413 ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
414 numbers of terms to use for the relevant expansions. */
415
416#define ERF_SERIES_CUTOFF 1.5
417#define ERF_SERIES_TERMS 25
418#define ERFC_CONTFRAC_CUTOFF 30.0
419#define ERFC_CONTFRAC_TERMS 50
420
421/*
422 Error function, via power series.
423
424 Given a finite float x, return an approximation to erf(x).
425 Converges reasonably fast for small x.
426*/
427
428static double
429m_erf_series(double x)
430{
431 double x2, acc, fk;
432 int i;
433
434 x2 = x * x;
435 acc = 0.0;
436 fk = (double)ERF_SERIES_TERMS + 0.5;
437 for (i = 0; i < ERF_SERIES_TERMS; i++) {
438 acc = 2.0 + x2 * acc / fk;
439 fk -= 1.0;
440 }
441 return acc * x * exp(-x2) / sqrtpi;
442}
443
444/*
445 Complementary error function, via continued fraction expansion.
446
447 Given a positive float x, return an approximation to erfc(x). Converges
448 reasonably fast for x large (say, x > 2.0), and should be safe from
449 overflow if x and nterms are not too large. On an IEEE 754 machine, with x
450 <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
451 than the smallest representable nonzero float. */
452
453static double
454m_erfc_contfrac(double x)
455{
456 double x2, a, da, p, p_last, q, q_last, b;
457 int i;
458
459 if (x >= ERFC_CONTFRAC_CUTOFF)
460 return 0.0;
461
462 x2 = x*x;
463 a = 0.0;
464 da = 0.5;
465 p = 1.0; p_last = 0.0;
466 q = da + x2; q_last = 1.0;
467 for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
468 double temp;
469 a += da;
470 da += 2.0;
471 b = da + x2;
472 temp = p; p = b*p - a*p_last; p_last = temp;
473 temp = q; q = b*q - a*q_last; q_last = temp;
474 }
475 return p / q * x * exp(-x2) / sqrtpi;
476}
477
478/* Error function erf(x), for general x */
479
480static double
481m_erf(double x)
482{
483 double absx, cf;
484
485 if (Py_IS_NAN(x))
486 return x;
487 absx = fabs(x);
488 if (absx < ERF_SERIES_CUTOFF)
489 return m_erf_series(x);
490 else {
491 cf = m_erfc_contfrac(absx);
492 return x > 0.0 ? 1.0 - cf : cf - 1.0;
493 }
494}
495
496/* Complementary error function erfc(x), for general x. */
497
498static double
499m_erfc(double x)
500{
501 double absx, cf;
502
503 if (Py_IS_NAN(x))
504 return x;
505 absx = fabs(x);
506 if (absx < ERF_SERIES_CUTOFF)
507 return 1.0 - m_erf_series(x);
508 else {
509 cf = m_erfc_contfrac(absx);
510 return x > 0.0 ? cf : 2.0 - cf;
511 }
512}
Mark Dickinson9be87bc2009-12-11 17:29:33 +0000513
514/*
Mark Dickinson92483cd2008-04-20 21:39:04 +0000515 wrapper for atan2 that deals directly with special cases before
516 delegating to the platform libm for the remaining cases. This
517 is necessary to get consistent behaviour across platforms.
518 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
519 always follow C99.
520*/
521
522static double
523m_atan2(double y, double x)
524{
525 if (Py_IS_NAN(x) || Py_IS_NAN(y))
526 return Py_NAN;
527 if (Py_IS_INFINITY(y)) {
528 if (Py_IS_INFINITY(x)) {
529 if (copysign(1., x) == 1.)
530 /* atan2(+-inf, +inf) == +-pi/4 */
531 return copysign(0.25*Py_MATH_PI, y);
532 else
533 /* atan2(+-inf, -inf) == +-pi*3/4 */
534 return copysign(0.75*Py_MATH_PI, y);
535 }
536 /* atan2(+-inf, x) == +-pi/2 for finite x */
537 return copysign(0.5*Py_MATH_PI, y);
538 }
539 if (Py_IS_INFINITY(x) || y == 0.) {
540 if (copysign(1., x) == 1.)
541 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
542 return copysign(0., y);
543 else
544 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
545 return copysign(Py_MATH_PI, y);
546 }
547 return atan2(y, x);
548}
549
550/*
Mark Dickinson4c96fa52008-12-11 19:28:08 +0000551 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
552 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
553 special values directly, passing positive non-special values through to
554 the system log/log10.
555 */
556
557static double
558m_log(double x)
559{
560 if (Py_IS_FINITE(x)) {
561 if (x > 0.0)
562 return log(x);
563 errno = EDOM;
564 if (x == 0.0)
565 return -Py_HUGE_VAL; /* log(0) = -inf */
566 else
567 return Py_NAN; /* log(-ve) = nan */
568 }
569 else if (Py_IS_NAN(x))
570 return x; /* log(nan) = nan */
571 else if (x > 0.0)
572 return x; /* log(inf) = inf */
573 else {
574 errno = EDOM;
575 return Py_NAN; /* log(-inf) = nan */
576 }
577}
578
579static double
580m_log10(double x)
581{
582 if (Py_IS_FINITE(x)) {
583 if (x > 0.0)
584 return log10(x);
585 errno = EDOM;
586 if (x == 0.0)
587 return -Py_HUGE_VAL; /* log10(0) = -inf */
588 else
589 return Py_NAN; /* log10(-ve) = nan */
590 }
591 else if (Py_IS_NAN(x))
592 return x; /* log10(nan) = nan */
593 else if (x > 0.0)
594 return x; /* log10(inf) = inf */
595 else {
596 errno = EDOM;
597 return Py_NAN; /* log10(-inf) = nan */
598 }
599}
600
601
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000602/* Call is_error when errno != 0, and where x is the result libm
603 * returned. is_error will usually set up an exception and return
604 * true (1), but may return false (0) without setting up an exception.
605 */
606static int
607is_error(double x)
608{
609 int result = 1; /* presumption of guilt */
610 assert(errno); /* non-zero errno is a precondition for calling */
611 if (errno == EDOM)
612 PyErr_SetString(PyExc_ValueError, "math domain error");
613
614 else if (errno == ERANGE) {
615 /* ANSI C generally requires libm functions to set ERANGE
616 * on overflow, but also generally *allows* them to set
617 * ERANGE on underflow too. There's no consistency about
618 * the latter across platforms.
619 * Alas, C99 never requires that errno be set.
620 * Here we suppress the underflow errors (libm functions
621 * should return a zero on underflow, and +- HUGE_VAL on
622 * overflow, so testing the result for zero suffices to
623 * distinguish the cases).
624 *
625 * On some platforms (Ubuntu/ia64) it seems that errno can be
626 * set to ERANGE for subnormal results that do *not* underflow
627 * to zero. So to be safe, we'll ignore ERANGE whenever the
628 * function result is less than one in absolute value.
629 */
630 if (fabs(x) < 1.0)
631 result = 0;
632 else
633 PyErr_SetString(PyExc_OverflowError,
634 "math range error");
635 }
636 else
637 /* Unexpected math error */
638 PyErr_SetFromErrno(PyExc_ValueError);
639 return result;
640}
641
Mark Dickinson4c96fa52008-12-11 19:28:08 +0000642/*
Christian Heimes6f341092008-04-18 23:13:07 +0000643 math_1 is used to wrap a libm function f that takes a double
644 arguments and returns a double.
645
646 The error reporting follows these rules, which are designed to do
647 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
648 platforms.
649
650 - a NaN result from non-NaN inputs causes ValueError to be raised
651 - an infinite result from finite inputs causes OverflowError to be
652 raised if can_overflow is 1, or raises ValueError if can_overflow
653 is 0.
654 - if the result is finite and errno == EDOM then ValueError is
655 raised
656 - if the result is finite and nonzero and errno == ERANGE then
657 OverflowError is raised
658
659 The last rule is used to catch overflow on platforms which follow
660 C89 but for which HUGE_VAL is not an infinity.
661
662 For the majority of one-argument functions these rules are enough
663 to ensure that Python's functions behave as specified in 'Annex F'
664 of the C99 standard, with the 'invalid' and 'divide-by-zero'
665 floating-point exceptions mapping to Python's ValueError and the
666 'overflow' floating-point exception mapping to OverflowError.
667 math_1 only works for functions that don't have singularities *and*
668 the possibility of overflow; fortunately, that covers everything we
669 care about right now.
670*/
671
Barry Warsaw8b43b191996-12-09 22:32:36 +0000672static PyObject *
Christian Heimes6f341092008-04-18 23:13:07 +0000673math_1(PyObject *arg, double (*func) (double), int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000674{
Christian Heimes6f341092008-04-18 23:13:07 +0000675 double x, r;
676 x = PyFloat_AsDouble(arg);
Neal Norwitz45e230a2006-11-19 21:26:53 +0000677 if (x == -1.0 && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000678 return NULL;
679 errno = 0;
Christian Heimes6f341092008-04-18 23:13:07 +0000680 PyFPE_START_PROTECT("in math_1", return 0);
681 r = (*func)(x);
682 PyFPE_END_PROTECT(r);
683 if (Py_IS_NAN(r)) {
684 if (!Py_IS_NAN(x))
685 errno = EDOM;
686 else
687 errno = 0;
688 }
689 else if (Py_IS_INFINITY(r)) {
690 if (Py_IS_FINITE(x))
691 errno = can_overflow ? ERANGE : EDOM;
692 else
693 errno = 0;
694 }
695 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000696 return NULL;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000697 else
Christian Heimes6f341092008-04-18 23:13:07 +0000698 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000699}
700
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000701/* variant of math_1, to be used when the function being wrapped is known to
702 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
703 errno = ERANGE for overflow). */
704
705static PyObject *
706math_1a(PyObject *arg, double (*func) (double))
707{
708 double x, r;
709 x = PyFloat_AsDouble(arg);
710 if (x == -1.0 && PyErr_Occurred())
711 return NULL;
712 errno = 0;
713 PyFPE_START_PROTECT("in math_1a", return 0);
714 r = (*func)(x);
715 PyFPE_END_PROTECT(r);
716 if (errno && is_error(r))
717 return NULL;
718 return PyFloat_FromDouble(r);
719}
720
Christian Heimes6f341092008-04-18 23:13:07 +0000721/*
722 math_2 is used to wrap a libm function f that takes two double
723 arguments and returns a double.
724
725 The error reporting follows these rules, which are designed to do
726 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
727 platforms.
728
729 - a NaN result from non-NaN inputs causes ValueError to be raised
730 - an infinite result from finite inputs causes OverflowError to be
731 raised.
732 - if the result is finite and errno == EDOM then ValueError is
733 raised
734 - if the result is finite and nonzero and errno == ERANGE then
735 OverflowError is raised
736
737 The last rule is used to catch overflow on platforms which follow
738 C89 but for which HUGE_VAL is not an infinity.
739
740 For most two-argument functions (copysign, fmod, hypot, atan2)
741 these rules are enough to ensure that Python's functions behave as
742 specified in 'Annex F' of the C99 standard, with the 'invalid' and
743 'divide-by-zero' floating-point exceptions mapping to Python's
744 ValueError and the 'overflow' floating-point exception mapping to
745 OverflowError.
746*/
747
Barry Warsaw8b43b191996-12-09 22:32:36 +0000748static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +0000749math_2(PyObject *args, double (*func) (double, double), char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000750{
Neal Norwitz45e230a2006-11-19 21:26:53 +0000751 PyObject *ox, *oy;
Christian Heimes6f341092008-04-18 23:13:07 +0000752 double x, y, r;
Neal Norwitz45e230a2006-11-19 21:26:53 +0000753 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
754 return NULL;
755 x = PyFloat_AsDouble(ox);
756 y = PyFloat_AsDouble(oy);
757 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000758 return NULL;
759 errno = 0;
Christian Heimes6f341092008-04-18 23:13:07 +0000760 PyFPE_START_PROTECT("in math_2", return 0);
761 r = (*func)(x, y);
762 PyFPE_END_PROTECT(r);
763 if (Py_IS_NAN(r)) {
764 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
765 errno = EDOM;
766 else
767 errno = 0;
768 }
769 else if (Py_IS_INFINITY(r)) {
770 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
771 errno = ERANGE;
772 else
773 errno = 0;
774 }
775 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000776 return NULL;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000777 else
Christian Heimes6f341092008-04-18 23:13:07 +0000778 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000779}
780
Christian Heimes6f341092008-04-18 23:13:07 +0000781#define FUNC1(funcname, func, can_overflow, docstring) \
Fred Drake40c48682000-07-03 18:11:56 +0000782 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Christian Heimes6f341092008-04-18 23:13:07 +0000783 return math_1(args, func, can_overflow); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000784 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000785 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000786
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000787#define FUNC1A(funcname, func, docstring) \
788 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
789 return math_1a(args, func); \
790 }\
791 PyDoc_STRVAR(math_##funcname##_doc, docstring);
792
Fred Drake40c48682000-07-03 18:11:56 +0000793#define FUNC2(funcname, func, docstring) \
794 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Neal Norwitz45e230a2006-11-19 21:26:53 +0000795 return math_2(args, func, #funcname); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000796 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000797 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000798
Christian Heimes6f341092008-04-18 23:13:07 +0000799FUNC1(acos, acos, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000800 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
Mark Dickinson12748b02009-12-21 15:22:00 +0000801FUNC1(acosh, m_acosh, 0,
Christian Heimes6f341092008-04-18 23:13:07 +0000802 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
803FUNC1(asin, asin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000804 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
Mark Dickinson12748b02009-12-21 15:22:00 +0000805FUNC1(asinh, m_asinh, 0,
Christian Heimes6f341092008-04-18 23:13:07 +0000806 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
807FUNC1(atan, atan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000808 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
Mark Dickinson92483cd2008-04-20 21:39:04 +0000809FUNC2(atan2, m_atan2,
Tim Petersfe71f812001-08-07 22:10:00 +0000810 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
811 "Unlike atan(y/x), the signs of both x and y are considered.")
Mark Dickinson12748b02009-12-21 15:22:00 +0000812FUNC1(atanh, m_atanh, 0,
Christian Heimes6f341092008-04-18 23:13:07 +0000813 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
814FUNC1(ceil, ceil, 0,
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +0000815 "ceil(x)\n\nReturn the ceiling of x as a float.\n"
816 "This is the smallest integral value >= x.")
Christian Heimeseebb79c2008-01-03 22:32:26 +0000817FUNC2(copysign, copysign,
Georg Brandla8f8bed22009-10-29 20:54:03 +0000818 "copysign(x, y)\n\nReturn x with the sign of y.")
Christian Heimes6f341092008-04-18 23:13:07 +0000819FUNC1(cos, cos, 0,
820 "cos(x)\n\nReturn the cosine of x (measured in radians).")
821FUNC1(cosh, cosh, 1,
822 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
Mark Dickinson5ff37ae2009-12-19 11:07:23 +0000823FUNC1A(erf, m_erf,
824 "erf(x)\n\nError function at x.")
825FUNC1A(erfc, m_erfc,
826 "erfc(x)\n\nComplementary error function at x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000827FUNC1(exp, exp, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000828 "exp(x)\n\nReturn e raised to the power of x.")
Mark Dickinson9cae1782009-12-16 20:13:40 +0000829FUNC1(expm1, m_expm1, 1,
830 "expm1(x)\n\nReturn exp(x)-1.\n"
831 "This function avoids the loss of precision involved in the direct "
832 "evaluation of exp(x)-1 for small x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000833FUNC1(fabs, fabs, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000834 "fabs(x)\n\nReturn the absolute value of the float x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000835FUNC1(floor, floor, 0,
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +0000836 "floor(x)\n\nReturn the floor of x as a float.\n"
837 "This is the largest integral value <= x.")
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000838FUNC1A(gamma, m_tgamma,
839 "gamma(x)\n\nGamma function at x.")
Mark Dickinson9be87bc2009-12-11 17:29:33 +0000840FUNC1A(lgamma, m_lgamma,
841 "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
Mark Dickinson12748b02009-12-21 15:22:00 +0000842FUNC1(log1p, m_log1p, 1,
Georg Brandla8f8bed22009-10-29 20:54:03 +0000843 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
844 "The result is computed in a way which is accurate for x near zero.")
Christian Heimes6f341092008-04-18 23:13:07 +0000845FUNC1(sin, sin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000846 "sin(x)\n\nReturn the sine of x (measured in radians).")
Christian Heimes6f341092008-04-18 23:13:07 +0000847FUNC1(sinh, sinh, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000848 "sinh(x)\n\nReturn the hyperbolic sine of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000849FUNC1(sqrt, sqrt, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000850 "sqrt(x)\n\nReturn the square root of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000851FUNC1(tan, tan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000852 "tan(x)\n\nReturn the tangent of x (measured in radians).")
Christian Heimes6f341092008-04-18 23:13:07 +0000853FUNC1(tanh, tanh, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000854 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000855
Mark Dickinson99dfe922008-05-23 01:35:30 +0000856/* Precision summation function as msum() by Raymond Hettinger in
857 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
858 enhanced with the exact partials sum and roundoff from Mark
859 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000860 See those links for more details, proofs and other references.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000861
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000862 Note 1: IEEE 754R floating point semantics are assumed,
863 but the current implementation does not re-establish special
864 value semantics across iterations (i.e. handling -Inf + Inf).
Mark Dickinson99dfe922008-05-23 01:35:30 +0000865
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000866 Note 2: No provision is made for intermediate overflow handling;
Raymond Hettinger2a9179a2008-05-29 08:38:23 +0000867 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000868 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
869 overflow of the first partial sum.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000870
Andrew M. Kuchling5f198be2008-06-20 02:11:42 +0000871 Note 3: The intermediate values lo, yr, and hi are declared volatile so
Mark Dickinson2fcd8c92008-06-20 15:26:19 +0000872 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Raymond Hettingerd6234142008-06-09 11:24:47 +0000873 Also, the volatile declaration forces the values to be stored in memory as
874 regular doubles instead of extended long precision (80-bit) values. This
Andrew M. Kuchling5f198be2008-06-20 02:11:42 +0000875 prevents double rounding because any addition or subtraction of two doubles
Raymond Hettingerd6234142008-06-09 11:24:47 +0000876 can be resolved exactly into double-sized hi and lo values. As long as the
877 hi value gets forced into a double before yr and lo are computed, the extra
878 bits in downstream extended precision operations (x87 for example) will be
879 exactly zero and therefore can be losslessly stored back into a double,
880 thereby preventing double rounding.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000881
Raymond Hettingerd6234142008-06-09 11:24:47 +0000882 Note 4: A similar implementation is in Modules/cmathmodule.c.
883 Be sure to update both when making changes.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000884
Mark Dickinsonff3fdce2008-07-30 16:25:16 +0000885 Note 5: The signature of math.fsum() differs from __builtin__.sum()
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000886 because the start argument doesn't make sense in the context of
887 accurate summation. Since the partials table is collapsed before
888 returning a result, sum(seq2, start=sum(seq1)) may not equal the
889 accurate result returned by sum(itertools.chain(seq1, seq2)).
Mark Dickinson99dfe922008-05-23 01:35:30 +0000890*/
891
892#define NUM_PARTIALS 32 /* initial partials array size, on stack */
893
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000894/* Extend the partials array p[] by doubling its size. */
895static int /* non-zero on error */
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000896_fsum_realloc(double **p_ptr, Py_ssize_t n,
Raymond Hettingerd6234142008-06-09 11:24:47 +0000897 double *ps, Py_ssize_t *m_ptr)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000898{
899 void *v = NULL;
900 Py_ssize_t m = *m_ptr;
901
Raymond Hettingerd6234142008-06-09 11:24:47 +0000902 m += m; /* double */
903 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
904 double *p = *p_ptr;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000905 if (p == ps) {
Raymond Hettingerd6234142008-06-09 11:24:47 +0000906 v = PyMem_Malloc(sizeof(double) * m);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000907 if (v != NULL)
Raymond Hettingerd6234142008-06-09 11:24:47 +0000908 memcpy(v, ps, sizeof(double) * n);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000909 }
910 else
Raymond Hettingerd6234142008-06-09 11:24:47 +0000911 v = PyMem_Realloc(p, sizeof(double) * m);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000912 }
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000913 if (v == NULL) { /* size overflow or no memory */
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000914 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
Mark Dickinson99dfe922008-05-23 01:35:30 +0000915 return 1;
916 }
Raymond Hettingerd6234142008-06-09 11:24:47 +0000917 *p_ptr = (double*) v;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000918 *m_ptr = m;
919 return 0;
920}
921
922/* Full precision summation of a sequence of floats.
923
924 def msum(iterable):
925 partials = [] # sorted, non-overlapping partial sums
926 for x in iterable:
927 i = 0
928 for y in partials:
929 if abs(x) < abs(y):
930 x, y = y, x
931 hi = x + y
932 lo = y - (hi - x)
933 if lo:
934 partials[i] = lo
935 i += 1
936 x = hi
937 partials[i:] = [x]
938 return sum_exact(partials)
939
940 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
941 are exactly equal to x+y. The inner loop applies hi/lo summation to each
942 partial so that the list of partial sums remains exact.
943
944 Sum_exact() adds the partial sums exactly and correctly rounds the final
945 result (using the round-half-to-even rule). The items in partials remain
946 non-zero, non-special, non-overlapping and strictly increasing in
947 magnitude, but possibly not all having the same sign.
948
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000949 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
950*/
951
Mark Dickinson99dfe922008-05-23 01:35:30 +0000952static PyObject*
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000953math_fsum(PyObject *self, PyObject *seq)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000954{
955 PyObject *item, *iter, *sum = NULL;
956 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
Raymond Hettingerd6234142008-06-09 11:24:47 +0000957 double x, y, t, ps[NUM_PARTIALS], *p = ps;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000958 double xsave, special_sum = 0.0, inf_sum = 0.0;
Raymond Hettingerd6234142008-06-09 11:24:47 +0000959 volatile double hi, yr, lo;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000960
961 iter = PyObject_GetIter(seq);
962 if (iter == NULL)
963 return NULL;
964
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000965 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000966
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000967 for(;;) { /* for x in iterable */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000968 assert(0 <= n && n <= m);
969 assert((m == NUM_PARTIALS && p == ps) ||
970 (m > NUM_PARTIALS && p != NULL));
971
972 item = PyIter_Next(iter);
973 if (item == NULL) {
974 if (PyErr_Occurred())
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000975 goto _fsum_error;
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000976 break;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000977 }
Raymond Hettingerd6234142008-06-09 11:24:47 +0000978 x = PyFloat_AsDouble(item);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000979 Py_DECREF(item);
980 if (PyErr_Occurred())
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000981 goto _fsum_error;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000982
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000983 xsave = x;
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000984 for (i = j = 0; j < n; j++) { /* for y in partials */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000985 y = p[j];
Raymond Hettingeref712d62008-05-30 18:20:50 +0000986 if (fabs(x) < fabs(y)) {
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000987 t = x; x = y; y = t;
Raymond Hettingeref712d62008-05-30 18:20:50 +0000988 }
Mark Dickinson99dfe922008-05-23 01:35:30 +0000989 hi = x + y;
Raymond Hettingeref712d62008-05-30 18:20:50 +0000990 yr = hi - x;
991 lo = y - yr;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000992 if (lo != 0.0)
993 p[i++] = lo;
994 x = hi;
995 }
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000996
997 n = i; /* ps[i:] = [x] */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000998 if (x != 0.0) {
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000999 if (! Py_IS_FINITE(x)) {
1000 /* a nonfinite x could arise either as
1001 a result of intermediate overflow, or
1002 as a result of a nan or inf in the
1003 summands */
1004 if (Py_IS_FINITE(xsave)) {
1005 PyErr_SetString(PyExc_OverflowError,
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001006 "intermediate overflow in fsum");
1007 goto _fsum_error;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +00001008 }
1009 if (Py_IS_INFINITY(xsave))
1010 inf_sum += xsave;
1011 special_sum += xsave;
1012 /* reset partials */
Mark Dickinson99dfe922008-05-23 01:35:30 +00001013 n = 0;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +00001014 }
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001015 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
1016 goto _fsum_error;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +00001017 else
1018 p[n++] = x;
Mark Dickinson99dfe922008-05-23 01:35:30 +00001019 }
1020 }
Mark Dickinson99dfe922008-05-23 01:35:30 +00001021
Mark Dickinsonabe0aee2008-07-30 12:01:41 +00001022 if (special_sum != 0.0) {
1023 if (Py_IS_NAN(inf_sum))
1024 PyErr_SetString(PyExc_ValueError,
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001025 "-inf + inf in fsum");
Mark Dickinsonabe0aee2008-07-30 12:01:41 +00001026 else
1027 sum = PyFloat_FromDouble(special_sum);
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001028 goto _fsum_error;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +00001029 }
1030
Raymond Hettingeref712d62008-05-30 18:20:50 +00001031 hi = 0.0;
Mark Dickinson99dfe922008-05-23 01:35:30 +00001032 if (n > 0) {
1033 hi = p[--n];
Mark Dickinsonabe0aee2008-07-30 12:01:41 +00001034 /* sum_exact(ps, hi) from the top, stop when the sum becomes
1035 inexact. */
1036 while (n > 0) {
1037 x = hi;
1038 y = p[--n];
1039 assert(fabs(y) < fabs(x));
1040 hi = x + y;
1041 yr = hi - x;
1042 lo = y - yr;
1043 if (lo != 0.0)
1044 break;
Mark Dickinson99dfe922008-05-23 01:35:30 +00001045 }
Mark Dickinsonabe0aee2008-07-30 12:01:41 +00001046 /* Make half-even rounding work across multiple partials.
1047 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
1048 digit to two instead of down to zero (the 1e-16 makes the 1
1049 slightly closer to two). With a potential 1 ULP rounding
Mark Dickinsonff3fdce2008-07-30 16:25:16 +00001050 error fixed-up, math.fsum() can guarantee commutativity. */
Mark Dickinsonabe0aee2008-07-30 12:01:41 +00001051 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
1052 (lo > 0.0 && p[n-1] > 0.0))) {
1053 y = lo * 2.0;
1054 x = hi + y;
1055 yr = x - hi;
1056 if (y == yr)
1057 hi = x;
Mark Dickinson99dfe922008-05-23 01:35:30 +00001058 }
1059 }
Raymond Hettingerd6234142008-06-09 11:24:47 +00001060 sum = PyFloat_FromDouble(hi);
Mark Dickinson99dfe922008-05-23 01:35:30 +00001061
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001062_fsum_error:
Mark Dickinson99dfe922008-05-23 01:35:30 +00001063 PyFPE_END_PROTECT(hi)
Mark Dickinson99dfe922008-05-23 01:35:30 +00001064 Py_DECREF(iter);
1065 if (p != ps)
1066 PyMem_Free(p);
1067 return sum;
1068}
1069
1070#undef NUM_PARTIALS
1071
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001072PyDoc_STRVAR(math_fsum_doc,
Georg Brandl40777e62009-10-29 20:38:32 +00001073"fsum(iterable)\n\n\
Raymond Hettinger778d5cc2008-05-23 04:32:43 +00001074Return an accurate floating point sum of values in the iterable.\n\
1075Assumes IEEE-754 floating point arithmetic.");
Mark Dickinson99dfe922008-05-23 01:35:30 +00001076
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001077static PyObject *
1078math_factorial(PyObject *self, PyObject *arg)
1079{
1080 long i, x;
1081 PyObject *result, *iobj, *newresult;
1082
1083 if (PyFloat_Check(arg)) {
Mark Dickinson56989772009-12-20 13:58:18 +00001084 PyObject *lx;
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001085 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
Mark Dickinson56989772009-12-20 13:58:18 +00001086 if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001087 PyErr_SetString(PyExc_ValueError,
1088 "factorial() only accepts integral values");
1089 return NULL;
1090 }
Mark Dickinson56989772009-12-20 13:58:18 +00001091 lx = PyLong_FromDouble(dx);
1092 if (lx == NULL)
1093 return NULL;
1094 x = PyLong_AsLong(lx);
1095 Py_DECREF(lx);
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001096 }
Mark Dickinson56989772009-12-20 13:58:18 +00001097 else
1098 x = PyInt_AsLong(arg);
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001099
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001100 if (x == -1 && PyErr_Occurred())
1101 return NULL;
1102 if (x < 0) {
1103 PyErr_SetString(PyExc_ValueError,
1104 "factorial() not defined for negative values");
1105 return NULL;
1106 }
1107
1108 result = (PyObject *)PyInt_FromLong(1);
1109 if (result == NULL)
1110 return NULL;
1111 for (i=1 ; i<=x ; i++) {
1112 iobj = (PyObject *)PyInt_FromLong(i);
1113 if (iobj == NULL)
1114 goto error;
1115 newresult = PyNumber_Multiply(result, iobj);
1116 Py_DECREF(iobj);
1117 if (newresult == NULL)
1118 goto error;
1119 Py_DECREF(result);
1120 result = newresult;
1121 }
1122 return result;
1123
1124error:
1125 Py_DECREF(result);
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001126 return NULL;
1127}
1128
Benjamin Petersonfed67fd2008-12-20 02:57:19 +00001129PyDoc_STRVAR(math_factorial_doc,
1130"factorial(x) -> Integral\n"
1131"\n"
1132"Find x!. Raise a ValueError if x is negative or non-integral.");
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001133
Barry Warsaw8b43b191996-12-09 22:32:36 +00001134static PyObject *
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +00001135math_trunc(PyObject *self, PyObject *number)
1136{
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +00001137 return PyObject_CallMethod(number, "__trunc__", NULL);
1138}
1139
1140PyDoc_STRVAR(math_trunc_doc,
1141"trunc(x:Real) -> Integral\n"
1142"\n"
Raymond Hettingerfe424f72008-02-02 05:24:44 +00001143"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +00001144
1145static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001146math_frexp(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001147{
Guido van Rossumd18ad581991-10-24 14:57:21 +00001148 int i;
Neal Norwitz45e230a2006-11-19 21:26:53 +00001149 double x = PyFloat_AsDouble(arg);
1150 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +00001151 return NULL;
Christian Heimes6f341092008-04-18 23:13:07 +00001152 /* deal with special cases directly, to sidestep platform
1153 differences */
1154 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
1155 i = 0;
1156 }
1157 else {
1158 PyFPE_START_PROTECT("in math_frexp", return 0);
1159 x = frexp(x, &i);
1160 PyFPE_END_PROTECT(x);
1161 }
1162 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001163}
1164
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001165PyDoc_STRVAR(math_frexp_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001166"frexp(x)\n"
1167"\n"
1168"Return the mantissa and exponent of x, as pair (m, e).\n"
1169"m is a float and e is an int, such that x = m * 2.**e.\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001170"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001171
Barry Warsaw8b43b191996-12-09 22:32:36 +00001172static PyObject *
Fred Drake40c48682000-07-03 18:11:56 +00001173math_ldexp(PyObject *self, PyObject *args)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001174{
Christian Heimes6f341092008-04-18 23:13:07 +00001175 double x, r;
Mark Dickinsonf8476c12008-05-09 17:54:23 +00001176 PyObject *oexp;
1177 long exp;
1178 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
Guido van Rossumd18ad581991-10-24 14:57:21 +00001179 return NULL;
Mark Dickinsonf8476c12008-05-09 17:54:23 +00001180
1181 if (PyLong_Check(oexp)) {
1182 /* on overflow, replace exponent with either LONG_MAX
1183 or LONG_MIN, depending on the sign. */
1184 exp = PyLong_AsLong(oexp);
1185 if (exp == -1 && PyErr_Occurred()) {
1186 if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
1187 if (Py_SIZE(oexp) < 0) {
1188 exp = LONG_MIN;
1189 }
1190 else {
1191 exp = LONG_MAX;
1192 }
1193 PyErr_Clear();
1194 }
1195 else {
1196 /* propagate any unexpected exception */
1197 return NULL;
1198 }
1199 }
1200 }
1201 else if (PyInt_Check(oexp)) {
1202 exp = PyInt_AS_LONG(oexp);
1203 }
1204 else {
1205 PyErr_SetString(PyExc_TypeError,
1206 "Expected an int or long as second argument "
1207 "to ldexp.");
1208 return NULL;
1209 }
1210
1211 if (x == 0. || !Py_IS_FINITE(x)) {
1212 /* NaNs, zeros and infinities are returned unchanged */
1213 r = x;
Christian Heimes6f341092008-04-18 23:13:07 +00001214 errno = 0;
Mark Dickinsonf8476c12008-05-09 17:54:23 +00001215 } else if (exp > INT_MAX) {
1216 /* overflow */
1217 r = copysign(Py_HUGE_VAL, x);
1218 errno = ERANGE;
1219 } else if (exp < INT_MIN) {
1220 /* underflow to +-0 */
1221 r = copysign(0., x);
1222 errno = 0;
1223 } else {
1224 errno = 0;
1225 PyFPE_START_PROTECT("in math_ldexp", return 0);
1226 r = ldexp(x, (int)exp);
1227 PyFPE_END_PROTECT(r);
1228 if (Py_IS_INFINITY(r))
1229 errno = ERANGE;
1230 }
1231
Christian Heimes6f341092008-04-18 23:13:07 +00001232 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +00001233 return NULL;
Mark Dickinsonf8476c12008-05-09 17:54:23 +00001234 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001235}
1236
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001237PyDoc_STRVAR(math_ldexp_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001238"ldexp(x, i)\n\n\
1239Return x * (2**i).");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001240
Barry Warsaw8b43b191996-12-09 22:32:36 +00001241static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001242math_modf(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001243{
Neal Norwitz45e230a2006-11-19 21:26:53 +00001244 double y, x = PyFloat_AsDouble(arg);
1245 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +00001246 return NULL;
Mark Dickinsonb2f70902008-04-20 01:39:24 +00001247 /* some platforms don't do the right thing for NaNs and
1248 infinities, so we take care of special cases directly. */
1249 if (!Py_IS_FINITE(x)) {
1250 if (Py_IS_INFINITY(x))
1251 return Py_BuildValue("(dd)", copysign(0., x), x);
1252 else if (Py_IS_NAN(x))
1253 return Py_BuildValue("(dd)", x, x);
1254 }
1255
Guido van Rossumd18ad581991-10-24 14:57:21 +00001256 errno = 0;
Christian Heimes6f341092008-04-18 23:13:07 +00001257 PyFPE_START_PROTECT("in math_modf", return 0);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001258 x = modf(x, &y);
Christian Heimes6f341092008-04-18 23:13:07 +00001259 PyFPE_END_PROTECT(x);
1260 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001261}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001262
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001263PyDoc_STRVAR(math_modf_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001264"modf(x)\n"
1265"\n"
1266"Return the fractional and integer parts of x. Both results carry the sign\n"
Benjamin Peterson9de72982008-12-20 22:49:24 +00001267"of x and are floats.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001268
Tim Peters78526162001-09-05 00:53:45 +00001269/* A decent logarithm is easy to compute even for huge longs, but libm can't
1270 do that by itself -- loghelper can. func is log or log10, and name is
Mark Dickinsond3e32322010-01-02 14:45:40 +00001271 "log" or "log10". Note that overflow of the result isn't possible: a long
1272 can contain no more than INT_MAX * SHIFT bits, so has value certainly less
1273 than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
Tim Peters78526162001-09-05 00:53:45 +00001274 small enough to fit in an IEEE single. log and log10 are even smaller.
Mark Dickinsond3e32322010-01-02 14:45:40 +00001275 However, intermediate overflow is possible for a long if the number of bits
1276 in that long is larger than PY_SSIZE_T_MAX. */
Tim Peters78526162001-09-05 00:53:45 +00001277
1278static PyObject*
Neal Norwitz45e230a2006-11-19 21:26:53 +00001279loghelper(PyObject* arg, double (*func)(double), char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00001280{
Tim Peters78526162001-09-05 00:53:45 +00001281 /* If it is long, do it ourselves. */
1282 if (PyLong_Check(arg)) {
1283 double x;
Mark Dickinsond3e32322010-01-02 14:45:40 +00001284 Py_ssize_t e;
1285 x = _PyLong_Frexp((PyLongObject *)arg, &e);
1286 if (x == -1.0 && PyErr_Occurred())
1287 return NULL;
Tim Peters78526162001-09-05 00:53:45 +00001288 if (x <= 0.0) {
1289 PyErr_SetString(PyExc_ValueError,
1290 "math domain error");
1291 return NULL;
1292 }
Mark Dickinsond3e32322010-01-02 14:45:40 +00001293 /* Special case for log(1), to make sure we get an
1294 exact result there. */
1295 if (e == 1 && x == 0.5)
1296 return PyFloat_FromDouble(0.0);
1297 /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
1298 x = func(x) + func(2.0) * e;
Tim Peters78526162001-09-05 00:53:45 +00001299 return PyFloat_FromDouble(x);
1300 }
1301
1302 /* Else let libm handle it by itself. */
Christian Heimes6f341092008-04-18 23:13:07 +00001303 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00001304}
1305
1306static PyObject *
1307math_log(PyObject *self, PyObject *args)
1308{
Raymond Hettinger866964c2002-12-14 19:51:34 +00001309 PyObject *arg;
1310 PyObject *base = NULL;
1311 PyObject *num, *den;
1312 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001313
Raymond Hettingerea3fdf42002-12-29 16:33:45 +00001314 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
Raymond Hettinger866964c2002-12-14 19:51:34 +00001315 return NULL;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001316
Mark Dickinson4c96fa52008-12-11 19:28:08 +00001317 num = loghelper(arg, m_log, "log");
Neal Norwitz45e230a2006-11-19 21:26:53 +00001318 if (num == NULL || base == NULL)
1319 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001320
Mark Dickinson4c96fa52008-12-11 19:28:08 +00001321 den = loghelper(base, m_log, "log");
Raymond Hettinger866964c2002-12-14 19:51:34 +00001322 if (den == NULL) {
1323 Py_DECREF(num);
1324 return NULL;
1325 }
1326
1327 ans = PyNumber_Divide(num, den);
1328 Py_DECREF(num);
1329 Py_DECREF(den);
1330 return ans;
Tim Peters78526162001-09-05 00:53:45 +00001331}
1332
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001333PyDoc_STRVAR(math_log_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001334"log(x[, base])\n\n\
1335Return the logarithm of x to the given base.\n\
Raymond Hettinger866964c2002-12-14 19:51:34 +00001336If the base not specified, returns the natural logarithm (base e) of x.");
Tim Peters78526162001-09-05 00:53:45 +00001337
1338static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001339math_log10(PyObject *self, PyObject *arg)
Tim Peters78526162001-09-05 00:53:45 +00001340{
Mark Dickinson4c96fa52008-12-11 19:28:08 +00001341 return loghelper(arg, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00001342}
1343
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001344PyDoc_STRVAR(math_log10_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001345"log10(x)\n\nReturn the base 10 logarithm of x.");
Tim Peters78526162001-09-05 00:53:45 +00001346
Christian Heimes6f341092008-04-18 23:13:07 +00001347static PyObject *
1348math_fmod(PyObject *self, PyObject *args)
1349{
1350 PyObject *ox, *oy;
1351 double r, x, y;
1352 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
1353 return NULL;
1354 x = PyFloat_AsDouble(ox);
1355 y = PyFloat_AsDouble(oy);
1356 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1357 return NULL;
1358 /* fmod(x, +/-Inf) returns x for finite x. */
1359 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
1360 return PyFloat_FromDouble(x);
1361 errno = 0;
1362 PyFPE_START_PROTECT("in math_fmod", return 0);
1363 r = fmod(x, y);
1364 PyFPE_END_PROTECT(r);
1365 if (Py_IS_NAN(r)) {
1366 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1367 errno = EDOM;
1368 else
1369 errno = 0;
1370 }
1371 if (errno && is_error(r))
1372 return NULL;
1373 else
1374 return PyFloat_FromDouble(r);
1375}
1376
1377PyDoc_STRVAR(math_fmod_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001378"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
Christian Heimes6f341092008-04-18 23:13:07 +00001379" x % y may differ.");
1380
1381static PyObject *
1382math_hypot(PyObject *self, PyObject *args)
1383{
1384 PyObject *ox, *oy;
1385 double r, x, y;
1386 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
1387 return NULL;
1388 x = PyFloat_AsDouble(ox);
1389 y = PyFloat_AsDouble(oy);
1390 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1391 return NULL;
1392 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
1393 if (Py_IS_INFINITY(x))
1394 return PyFloat_FromDouble(fabs(x));
1395 if (Py_IS_INFINITY(y))
1396 return PyFloat_FromDouble(fabs(y));
1397 errno = 0;
1398 PyFPE_START_PROTECT("in math_hypot", return 0);
1399 r = hypot(x, y);
1400 PyFPE_END_PROTECT(r);
1401 if (Py_IS_NAN(r)) {
1402 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1403 errno = EDOM;
1404 else
1405 errno = 0;
1406 }
1407 else if (Py_IS_INFINITY(r)) {
1408 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1409 errno = ERANGE;
1410 else
1411 errno = 0;
1412 }
1413 if (errno && is_error(r))
1414 return NULL;
1415 else
1416 return PyFloat_FromDouble(r);
1417}
1418
1419PyDoc_STRVAR(math_hypot_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001420"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
Christian Heimes6f341092008-04-18 23:13:07 +00001421
1422/* pow can't use math_2, but needs its own wrapper: the problem is
1423 that an infinite result can arise either as a result of overflow
1424 (in which case OverflowError should be raised) or as a result of
1425 e.g. 0.**-5. (for which ValueError needs to be raised.)
1426*/
1427
1428static PyObject *
1429math_pow(PyObject *self, PyObject *args)
1430{
1431 PyObject *ox, *oy;
1432 double r, x, y;
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001433 int odd_y;
Christian Heimes6f341092008-04-18 23:13:07 +00001434
1435 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
1436 return NULL;
1437 x = PyFloat_AsDouble(ox);
1438 y = PyFloat_AsDouble(oy);
1439 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1440 return NULL;
Mark Dickinsona1293eb2008-04-19 19:41:52 +00001441
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001442 /* deal directly with IEEE specials, to cope with problems on various
1443 platforms whose semantics don't exactly match C99 */
Mark Dickinson0da94c82008-04-21 01:55:50 +00001444 r = 0.; /* silence compiler warning */
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001445 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
1446 errno = 0;
1447 if (Py_IS_NAN(x))
1448 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
1449 else if (Py_IS_NAN(y))
1450 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
1451 else if (Py_IS_INFINITY(x)) {
1452 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
1453 if (y > 0.)
1454 r = odd_y ? x : fabs(x);
1455 else if (y == 0.)
1456 r = 1.;
1457 else /* y < 0. */
1458 r = odd_y ? copysign(0., x) : 0.;
1459 }
1460 else if (Py_IS_INFINITY(y)) {
1461 if (fabs(x) == 1.0)
1462 r = 1.;
1463 else if (y > 0. && fabs(x) > 1.0)
1464 r = y;
1465 else if (y < 0. && fabs(x) < 1.0) {
1466 r = -y; /* result is +inf */
1467 if (x == 0.) /* 0**-inf: divide-by-zero */
1468 errno = EDOM;
1469 }
1470 else
1471 r = 0.;
1472 }
Mark Dickinsone941d972008-04-19 18:51:48 +00001473 }
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001474 else {
1475 /* let libm handle finite**finite */
1476 errno = 0;
1477 PyFPE_START_PROTECT("in math_pow", return 0);
1478 r = pow(x, y);
1479 PyFPE_END_PROTECT(r);
1480 /* a NaN result should arise only from (-ve)**(finite
1481 non-integer); in this case we want to raise ValueError. */
1482 if (!Py_IS_FINITE(r)) {
1483 if (Py_IS_NAN(r)) {
1484 errno = EDOM;
1485 }
1486 /*
1487 an infinite result here arises either from:
1488 (A) (+/-0.)**negative (-> divide-by-zero)
1489 (B) overflow of x**y with x and y finite
1490 */
1491 else if (Py_IS_INFINITY(r)) {
1492 if (x == 0.)
1493 errno = EDOM;
1494 else
1495 errno = ERANGE;
1496 }
1497 }
Christian Heimes6f341092008-04-18 23:13:07 +00001498 }
1499
1500 if (errno && is_error(r))
1501 return NULL;
1502 else
1503 return PyFloat_FromDouble(r);
1504}
1505
1506PyDoc_STRVAR(math_pow_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001507"pow(x, y)\n\nReturn x**y (x to the power of y).");
Christian Heimes6f341092008-04-18 23:13:07 +00001508
Christian Heimese2ca4242008-01-03 20:23:15 +00001509static const double degToRad = Py_MATH_PI / 180.0;
1510static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001511
1512static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001513math_degrees(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001514{
Neal Norwitz45e230a2006-11-19 21:26:53 +00001515 double x = PyFloat_AsDouble(arg);
1516 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001517 return NULL;
Christian Heimese2ca4242008-01-03 20:23:15 +00001518 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001519}
1520
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001521PyDoc_STRVAR(math_degrees_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001522"degrees(x)\n\n\
1523Convert angle x from radians to degrees.");
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001524
1525static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001526math_radians(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001527{
Neal Norwitz45e230a2006-11-19 21:26:53 +00001528 double x = PyFloat_AsDouble(arg);
1529 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001530 return NULL;
1531 return PyFloat_FromDouble(x * degToRad);
1532}
1533
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001534PyDoc_STRVAR(math_radians_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001535"radians(x)\n\n\
1536Convert angle x from degrees to radians.");
Tim Peters78526162001-09-05 00:53:45 +00001537
Christian Heimese2ca4242008-01-03 20:23:15 +00001538static PyObject *
1539math_isnan(PyObject *self, PyObject *arg)
1540{
1541 double x = PyFloat_AsDouble(arg);
1542 if (x == -1.0 && PyErr_Occurred())
1543 return NULL;
1544 return PyBool_FromLong((long)Py_IS_NAN(x));
1545}
1546
1547PyDoc_STRVAR(math_isnan_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001548"isnan(x) -> bool\n\n\
1549Check if float x is not a number (NaN).");
Christian Heimese2ca4242008-01-03 20:23:15 +00001550
1551static PyObject *
1552math_isinf(PyObject *self, PyObject *arg)
1553{
1554 double x = PyFloat_AsDouble(arg);
1555 if (x == -1.0 && PyErr_Occurred())
1556 return NULL;
1557 return PyBool_FromLong((long)Py_IS_INFINITY(x));
1558}
1559
1560PyDoc_STRVAR(math_isinf_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001561"isinf(x) -> bool\n\n\
1562Check if float x is infinite (positive or negative).");
Christian Heimese2ca4242008-01-03 20:23:15 +00001563
Barry Warsaw8b43b191996-12-09 22:32:36 +00001564static PyMethodDef math_methods[] = {
Neal Norwitz45e230a2006-11-19 21:26:53 +00001565 {"acos", math_acos, METH_O, math_acos_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001566 {"acosh", math_acosh, METH_O, math_acosh_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001567 {"asin", math_asin, METH_O, math_asin_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001568 {"asinh", math_asinh, METH_O, math_asinh_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001569 {"atan", math_atan, METH_O, math_atan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001570 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001571 {"atanh", math_atanh, METH_O, math_atanh_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001572 {"ceil", math_ceil, METH_O, math_ceil_doc},
Christian Heimeseebb79c2008-01-03 22:32:26 +00001573 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001574 {"cos", math_cos, METH_O, math_cos_doc},
1575 {"cosh", math_cosh, METH_O, math_cosh_doc},
1576 {"degrees", math_degrees, METH_O, math_degrees_doc},
Mark Dickinson5ff37ae2009-12-19 11:07:23 +00001577 {"erf", math_erf, METH_O, math_erf_doc},
1578 {"erfc", math_erfc, METH_O, math_erfc_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001579 {"exp", math_exp, METH_O, math_exp_doc},
Mark Dickinson9cae1782009-12-16 20:13:40 +00001580 {"expm1", math_expm1, METH_O, math_expm1_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001581 {"fabs", math_fabs, METH_O, math_fabs_doc},
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001582 {"factorial", math_factorial, METH_O, math_factorial_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001583 {"floor", math_floor, METH_O, math_floor_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001584 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001585 {"frexp", math_frexp, METH_O, math_frexp_doc},
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001586 {"fsum", math_fsum, METH_O, math_fsum_doc},
Mark Dickinsonb93fff02009-09-28 18:54:55 +00001587 {"gamma", math_gamma, METH_O, math_gamma_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001588 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
Christian Heimese2ca4242008-01-03 20:23:15 +00001589 {"isinf", math_isinf, METH_O, math_isinf_doc},
1590 {"isnan", math_isnan, METH_O, math_isnan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001591 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
Mark Dickinson9be87bc2009-12-11 17:29:33 +00001592 {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001593 {"log", math_log, METH_VARARGS, math_log_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001594 {"log1p", math_log1p, METH_O, math_log1p_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001595 {"log10", math_log10, METH_O, math_log10_doc},
1596 {"modf", math_modf, METH_O, math_modf_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001597 {"pow", math_pow, METH_VARARGS, math_pow_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001598 {"radians", math_radians, METH_O, math_radians_doc},
1599 {"sin", math_sin, METH_O, math_sin_doc},
1600 {"sinh", math_sinh, METH_O, math_sinh_doc},
1601 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
1602 {"tan", math_tan, METH_O, math_tan_doc},
1603 {"tanh", math_tanh, METH_O, math_tanh_doc},
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001604 {"trunc", math_trunc, METH_O, math_trunc_doc},
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001605 {NULL, NULL} /* sentinel */
1606};
1607
Guido van Rossumc6e22901998-12-04 19:26:43 +00001608
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001609PyDoc_STRVAR(module_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001610"This module is always available. It provides access to the\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001611"mathematical functions defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001612
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001613PyMODINIT_FUNC
Thomas Woutersf3f33dc2000-07-21 06:00:07 +00001614initmath(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001615{
Christian Heimes6f341092008-04-18 23:13:07 +00001616 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00001617
Guido van Rossumc6e22901998-12-04 19:26:43 +00001618 m = Py_InitModule3("math", math_methods, module_doc);
Neal Norwitz1ac754f2006-01-19 06:09:39 +00001619 if (m == NULL)
1620 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00001621
Christian Heimes6f341092008-04-18 23:13:07 +00001622 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
1623 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Barry Warsawfc93f751996-12-17 00:47:03 +00001624
Christian Heimes6f341092008-04-18 23:13:07 +00001625 finally:
Barry Warsaw9bfd2bf2000-09-01 09:01:32 +00001626 return;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001627}