blob: 1b91886a9c86738fe4c146ca411dc996fe5814d7 [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Tim Petersd7b5e882001-01-25 03:36:26 +00003 integers
4 --------
5 uniform within range
6
7 sequences
8 ---------
9 pick random element
10 generate random permutation
11
Guido van Rossume7b146f2000-02-04 15:28:42 +000012 distributions on the real line:
13 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000014 uniform
Guido van Rossume7b146f2000-02-04 15:28:42 +000015 normal (Gaussian)
16 lognormal
17 negative exponential
18 gamma
19 beta
Guido van Rossumff03b1a1994-03-09 12:55:02 +000020
Guido van Rossume7b146f2000-02-04 15:28:42 +000021 distributions on the circle (angles 0 to 2pi)
22 ---------------------------------------------
23 circular uniform
24 von Mises
25
26Translated from anonymously contributed C/C++ source.
27
28Multi-threading note: the random number generator used here is not
29thread-safe; it is possible that two calls return the same random
Tim Petersd7b5e882001-01-25 03:36:26 +000030value.
Guido van Rossume7b146f2000-02-04 15:28:42 +000031"""
Tim Petersd7b5e882001-01-25 03:36:26 +000032# XXX The docstring sucks.
Guido van Rossumd03e1191998-05-29 17:51:31 +000033
Tim Petersd7b5e882001-01-25 03:36:26 +000034from math import log as _log, exp as _exp, pi as _pi, e as _e
35from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Guido van Rossumff03b1a1994-03-09 12:55:02 +000036
Tim Petersd7b5e882001-01-25 03:36:26 +000037def _verify(name, expected):
Tim Peters0c9886d2001-01-15 01:18:21 +000038 computed = eval(name)
39 if abs(computed - expected) > 1e-7:
Tim Petersd7b5e882001-01-25 03:36:26 +000040 raise ValueError(
41 "computed value for %s deviates too much "
42 "(computed %g, expected %g)" % (name, computed, expected))
43
44NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
45_verify('NV_MAGICCONST', 1.71552776992141)
46
47TWOPI = 2.0*_pi
48_verify('TWOPI', 6.28318530718)
49
50LOG4 = _log(4.0)
51_verify('LOG4', 1.38629436111989)
52
53SG_MAGICCONST = 1.0 + _log(4.5)
54_verify('SG_MAGICCONST', 2.50407739677627)
55
56del _verify
57
58# Translated by Guido van Rossum from C source provided by
59# Adrian Baddeley.
60
61class Random:
62
63 VERSION = 1 # used by getstate/setstate
64
65 def __init__(self, x=None):
66 """Initialize an instance.
67
68 Optional argument x controls seeding, as for Random.seed().
69 """
70
71 self.seed(x)
72 self.gauss_next = None
73
74 # Specific to Wichmann-Hill generator. Subclasses wishing to use a
Tim Petersd52269b2001-01-25 06:23:18 +000075 # different core generator should override the seed(), random(),
76 # getstate(), setstate(), and jumpahead() methods.
Tim Petersd7b5e882001-01-25 03:36:26 +000077
78 def __whseed(self, x=0, y=0, z=0):
79 """Set the Wichmann-Hill seed from (x, y, z).
80
81 These must be integers in the range [0, 256).
82 """
83
84 if not type(x) == type(y) == type(z) == type(0):
85 raise TypeError('seeds must be integers')
86 if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
87 raise ValueError('seeds must be in range(0, 256)')
88 if 0 == x == y == z:
89 # Initialize from current time
90 import time
91 t = long(time.time()) * 256
92 t = int((t&0xffffff) ^ (t>>24))
93 t, x = divmod(t, 256)
94 t, y = divmod(t, 256)
95 t, z = divmod(t, 256)
96 # Zero is a poor seed, so substitute 1
97 self._seed = (x or 1, y or 1, z or 1)
98
99 def seed(self, a=None):
100 """Seed from hashable value
101
102 None or no argument seeds from current time.
103 """
104
105 if a is None:
106 self.__whseed()
Tim Petersd52269b2001-01-25 06:23:18 +0000107 return
Tim Petersd7b5e882001-01-25 03:36:26 +0000108 a = hash(a)
109 a, x = divmod(a, 256)
110 a, y = divmod(a, 256)
111 a, z = divmod(a, 256)
112 x = (x + a) % 256 or 1
113 y = (y + a) % 256 or 1
114 z = (z + a) % 256 or 1
115 self.__whseed(x, y, z)
116
117 def getstate(self):
118 """Return internal state; can be passed to setstate() later."""
Tim Petersd7b5e882001-01-25 03:36:26 +0000119 return self.VERSION, self._seed, self.gauss_next
120
121 def __getstate__(self): # for pickle
Tim Petersd52269b2001-01-25 06:23:18 +0000122 return self.getstate()
Tim Petersd7b5e882001-01-25 03:36:26 +0000123
124 def setstate(self, state):
125 """Restore internal state from object returned by getstate()."""
126 version = state[0]
127 if version == 1:
128 version, self._seed, self.gauss_next = state
129 else:
130 raise ValueError("state with version %s passed to "
131 "Random.setstate() of version %s" %
132 (version, self.VERSION))
133
134 def __setstate__(self, state): # for pickle
135 self.setstate(state)
136
Tim Petersd52269b2001-01-25 06:23:18 +0000137 def jumpahead(self, n):
138 """Act as if n calls to random() were made, but quickly.
139
140 n is an int, greater than or equal to 0.
141
142 Example use: If you have 2 threads and know that each will
143 consume no more than a million random numbers, create two Random
144 objects r1 and r2, then do
145 r2.setstate(r1.getstate())
146 r2.jumpahead(1000000)
147 Then r1 and r2 will use guaranteed-disjoint segments of the full
148 period.
149 """
150
151 if not n >= 0:
152 raise ValueError("n must be >= 0")
153 x, y, z = self._seed
154 x = int(x * pow(171, n, 30269)) % 30269
155 y = int(y * pow(172, n, 30307)) % 30307
156 z = int(z * pow(170, n, 30323)) % 30323
157 self._seed = x, y, z
158
Tim Petersd7b5e882001-01-25 03:36:26 +0000159 def random(self):
160 """Get the next random number in the range [0.0, 1.0)."""
161
162 # Wichman-Hill random number generator.
163 #
164 # Wichmann, B. A. & Hill, I. D. (1982)
165 # Algorithm AS 183:
166 # An efficient and portable pseudo-random number generator
167 # Applied Statistics 31 (1982) 188-190
168 #
169 # see also:
170 # Correction to Algorithm AS 183
171 # Applied Statistics 33 (1984) 123
172 #
173 # McLeod, A. I. (1985)
174 # A remark on Algorithm AS 183
175 # Applied Statistics 34 (1985),198-200
176
177 # This part is thread-unsafe:
178 # BEGIN CRITICAL SECTION
179 x, y, z = self._seed
180 x = (171 * x) % 30269
181 y = (172 * y) % 30307
182 z = (170 * z) % 30323
183 self._seed = x, y, z
184 # END CRITICAL SECTION
185
186 # Note: on a platform using IEEE-754 double arithmetic, this can
187 # never return 0.0 (asserted by Tim; proof too long for a comment).
188 return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
189
190 def randrange(self, start, stop=None, step=1, int=int, default=None):
191 """Choose a random item from range(start, stop[, step]).
192
193 This fixes the problem with randint() which includes the
194 endpoint; in Python this is usually not what you want.
195 Do not supply the 'int' and 'default' arguments.
196 """
197
198 # This code is a bit messy to make it fast for the
199 # common case while still doing adequate error checking
200 istart = int(start)
201 if istart != start:
202 raise ValueError, "non-integer arg 1 for randrange()"
203 if stop is default:
204 if istart > 0:
205 return int(self.random() * istart)
206 raise ValueError, "empty range for randrange()"
207 istop = int(stop)
208 if istop != stop:
209 raise ValueError, "non-integer stop for randrange()"
210 if step == 1:
211 if istart < istop:
212 return istart + int(self.random() *
213 (istop - istart))
214 raise ValueError, "empty range for randrange()"
215 istep = int(step)
216 if istep != step:
217 raise ValueError, "non-integer step for randrange()"
218 if istep > 0:
219 n = (istop - istart + istep - 1) / istep
220 elif istep < 0:
221 n = (istop - istart + istep + 1) / istep
222 else:
223 raise ValueError, "zero step for randrange()"
224
225 if n <= 0:
226 raise ValueError, "empty range for randrange()"
227 return istart + istep*int(self.random() * n)
228
229 def randint(self, a, b):
230 """Get a random integer in the range [a, b] including
231 both end points.
232
233 (Deprecated; use randrange below.)
234 """
235
236 return self.randrange(a, b+1)
237
238 def choice(self, seq):
239 """Choose a random element from a non-empty sequence."""
240 return seq[int(self.random() * len(seq))]
241
242 def shuffle(self, x, random=None, int=int):
243 """x, random=random.random -> shuffle list x in place; return None.
244
245 Optional arg random is a 0-argument function returning a random
246 float in [0.0, 1.0); by default, the standard random.random.
247
248 Note that for even rather small len(x), the total number of
249 permutations of x is larger than the period of most random number
250 generators; this implies that "most" permutations of a long
251 sequence can never be generated.
252 """
253
254 if random is None:
255 random = self.random
256 for i in xrange(len(x)-1, 0, -1):
257 # pick an element in x[:i+1] with which to exchange x[i]
258 j = int(random() * (i+1))
259 x[i], x[j] = x[j], x[i]
260
261# -------------------- uniform distribution -------------------
262
263 def uniform(self, a, b):
264 """Get a random number in the range [a, b)."""
265 return a + (b-a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000266
267# -------------------- normal distribution --------------------
268
Tim Petersd7b5e882001-01-25 03:36:26 +0000269 def normalvariate(self, mu, sigma):
270 # mu = mean, sigma = standard deviation
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000271
Tim Petersd7b5e882001-01-25 03:36:26 +0000272 # Uses Kinderman and Monahan method. Reference: Kinderman,
273 # A.J. and Monahan, J.F., "Computer generation of random
274 # variables using the ratio of uniform deviates", ACM Trans
275 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000276
Tim Petersd7b5e882001-01-25 03:36:26 +0000277 random = self.random
Tim Peters0c9886d2001-01-15 01:18:21 +0000278 while 1:
279 u1 = random()
280 u2 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000281 z = NV_MAGICCONST*(u1-0.5)/u2
282 zz = z*z/4.0
283 if zz <= -_log(u2):
284 break
285 return mu + z*sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000286
Tim Petersd7b5e882001-01-25 03:36:26 +0000287# -------------------- lognormal distribution --------------------
288
289 def lognormvariate(self, mu, sigma):
290 return _exp(self.normalvariate(mu, sigma))
291
292# -------------------- circular uniform --------------------
293
294 def cunifvariate(self, mean, arc):
295 # mean: mean angle (in radians between 0 and pi)
296 # arc: range of distribution (in radians between 0 and pi)
297
298 return (mean + arc * (self.random() - 0.5)) % _pi
299
300# -------------------- exponential distribution --------------------
301
302 def expovariate(self, lambd):
303 # lambd: rate lambd = 1/mean
304 # ('lambda' is a Python reserved word)
305
306 random = self.random
Tim Peters0c9886d2001-01-15 01:18:21 +0000307 u = random()
308 while u <= 1e-7:
309 u = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000310 return -_log(u)/lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000311
Tim Petersd7b5e882001-01-25 03:36:26 +0000312# -------------------- von Mises distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000313
Tim Petersd7b5e882001-01-25 03:36:26 +0000314 def vonmisesvariate(self, mu, kappa):
315 # mu: mean angle (in radians between 0 and 2*pi)
316 # kappa: concentration parameter kappa (>= 0)
317 # if kappa = 0 generate uniform random angle
318
319 # Based upon an algorithm published in: Fisher, N.I.,
320 # "Statistical Analysis of Circular Data", Cambridge
321 # University Press, 1993.
322
323 # Thanks to Magnus Kessler for a correction to the
324 # implementation of step 4.
325
326 random = self.random
327 if kappa <= 1e-6:
328 return TWOPI * random()
329
330 a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
331 b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
332 r = (1.0 + b * b)/(2.0 * b)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000333
Tim Peters0c9886d2001-01-15 01:18:21 +0000334 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000335 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000336
337 z = _cos(_pi * u1)
338 f = (1.0 + r * z)/(r + z)
339 c = kappa * (r - f)
340
341 u2 = random()
342
343 if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
Tim Peters0c9886d2001-01-15 01:18:21 +0000344 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000345
346 u3 = random()
347 if u3 > 0.5:
348 theta = (mu % TWOPI) + _acos(f)
349 else:
350 theta = (mu % TWOPI) - _acos(f)
351
352 return theta
353
354# -------------------- gamma distribution --------------------
355
356 def gammavariate(self, alpha, beta):
357 # beta times standard gamma
358 ainv = _sqrt(2.0 * alpha - 1.0)
359 return beta * self.stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
360
361 def stdgamma(self, alpha, ainv, bbb, ccc):
362 # ainv = sqrt(2 * alpha - 1)
363 # bbb = alpha - log(4)
364 # ccc = alpha + ainv
365
366 random = self.random
367 if alpha <= 0.0:
368 raise ValueError, 'stdgamma: alpha must be > 0.0'
369
370 if alpha > 1.0:
371
372 # Uses R.C.H. Cheng, "The generation of Gamma
373 # variables with non-integral shape parameters",
374 # Applied Statistics, (1977), 26, No. 1, p71-74
375
376 while 1:
377 u1 = random()
378 u2 = random()
379 v = _log(u1/(1.0-u1))/ainv
380 x = alpha*_exp(v)
381 z = u1*u1*u2
382 r = bbb+ccc*v-x
383 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
384 return x
385
386 elif alpha == 1.0:
387 # expovariate(1)
388 u = random()
389 while u <= 1e-7:
390 u = random()
391 return -_log(u)
392
393 else: # alpha is between 0 and 1 (exclusive)
394
395 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
396
397 while 1:
398 u = random()
399 b = (_e + alpha)/_e
400 p = b*u
401 if p <= 1.0:
402 x = pow(p, 1.0/alpha)
403 else:
404 # p > 1
405 x = -_log((b-p)/alpha)
406 u1 = random()
407 if not (((p <= 1.0) and (u1 > _exp(-x))) or
408 ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
409 break
410 return x
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000411
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000412
413# -------------------- Gauss (faster alternative) --------------------
414
Tim Petersd7b5e882001-01-25 03:36:26 +0000415 def gauss(self, mu, sigma):
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000416
Tim Petersd7b5e882001-01-25 03:36:26 +0000417 # When x and y are two variables from [0, 1), uniformly
418 # distributed, then
419 #
420 # cos(2*pi*x)*sqrt(-2*log(1-y))
421 # sin(2*pi*x)*sqrt(-2*log(1-y))
422 #
423 # are two *independent* variables with normal distribution
424 # (mu = 0, sigma = 1).
425 # (Lambert Meertens)
426 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000427
Tim Petersd7b5e882001-01-25 03:36:26 +0000428 # Multithreading note: When two threads call this function
429 # simultaneously, it is possible that they will receive the
430 # same return value. The window is very small though. To
431 # avoid this, you have to use a lock around all calls. (I
432 # didn't want to slow this down in the serial case by using a
433 # lock here.)
Guido van Rossumd03e1191998-05-29 17:51:31 +0000434
Tim Petersd7b5e882001-01-25 03:36:26 +0000435 random = self.random
436 z = self.gauss_next
437 self.gauss_next = None
438 if z is None:
439 x2pi = random() * TWOPI
440 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
441 z = _cos(x2pi) * g2rad
442 self.gauss_next = _sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000443
Tim Petersd7b5e882001-01-25 03:36:26 +0000444 return mu + z*sigma
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000445
446# -------------------- beta --------------------
447
Tim Petersd7b5e882001-01-25 03:36:26 +0000448 def betavariate(self, alpha, beta):
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000449
Tim Petersd7b5e882001-01-25 03:36:26 +0000450 # Discrete Event Simulation in C, pp 87-88.
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000451
Tim Petersd7b5e882001-01-25 03:36:26 +0000452 y = self.expovariate(alpha)
453 z = self.expovariate(1.0/beta)
454 return z/(y+z)
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000455
Guido van Rossum5bdea891997-12-09 19:43:18 +0000456# -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000457
Tim Petersd7b5e882001-01-25 03:36:26 +0000458 def paretovariate(self, alpha):
459 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000460
Tim Petersd7b5e882001-01-25 03:36:26 +0000461 u = self.random()
462 return 1.0 / pow(u, 1.0/alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000463
Guido van Rossum5bdea891997-12-09 19:43:18 +0000464# -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000465
Tim Petersd7b5e882001-01-25 03:36:26 +0000466 def weibullvariate(self, alpha, beta):
467 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000468
Tim Petersd7b5e882001-01-25 03:36:26 +0000469 u = self.random()
470 return alpha * pow(-_log(u), 1.0/beta)
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000471
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000472# -------------------- test program --------------------
473
Tim Petersd7b5e882001-01-25 03:36:26 +0000474def _test_generator(n, funccall):
Tim Peters0c9886d2001-01-15 01:18:21 +0000475 import time
476 print n, 'times', funccall
477 code = compile(funccall, funccall, 'eval')
478 sum = 0.0
479 sqsum = 0.0
480 smallest = 1e10
481 largest = -1e10
482 t0 = time.time()
483 for i in range(n):
484 x = eval(code)
485 sum = sum + x
486 sqsum = sqsum + x*x
487 smallest = min(x, smallest)
488 largest = max(x, largest)
489 t1 = time.time()
490 print round(t1-t0, 3), 'sec,',
491 avg = sum/n
Tim Petersd7b5e882001-01-25 03:36:26 +0000492 stddev = _sqrt(sqsum/n - avg*avg)
Tim Peters0c9886d2001-01-15 01:18:21 +0000493 print 'avg %g, stddev %g, min %g, max %g' % \
494 (avg, stddev, smallest, largest)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000495
Tim Petersd52269b2001-01-25 06:23:18 +0000496 s = getstate()
497 N = 1019
498 jumpahead(N)
499 r1 = random()
500 setstate(s)
501 for i in range(N): # now do it the slow way
502 random()
503 r2 = random()
504 if r1 != r2:
505 raise ValueError("jumpahead test failed " + `(N, r1, r2)`)
506
Tim Petersd7b5e882001-01-25 03:36:26 +0000507def _test(N=200):
508 print 'TWOPI =', TWOPI
509 print 'LOG4 =', LOG4
510 print 'NV_MAGICCONST =', NV_MAGICCONST
511 print 'SG_MAGICCONST =', SG_MAGICCONST
512 _test_generator(N, 'random()')
513 _test_generator(N, 'normalvariate(0.0, 1.0)')
514 _test_generator(N, 'lognormvariate(0.0, 1.0)')
515 _test_generator(N, 'cunifvariate(0.0, 1.0)')
516 _test_generator(N, 'expovariate(1.0)')
517 _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
518 _test_generator(N, 'gammavariate(0.5, 1.0)')
519 _test_generator(N, 'gammavariate(0.9, 1.0)')
520 _test_generator(N, 'gammavariate(1.0, 1.0)')
521 _test_generator(N, 'gammavariate(2.0, 1.0)')
522 _test_generator(N, 'gammavariate(20.0, 1.0)')
523 _test_generator(N, 'gammavariate(200.0, 1.0)')
524 _test_generator(N, 'gauss(0.0, 1.0)')
525 _test_generator(N, 'betavariate(3.0, 3.0)')
526 _test_generator(N, 'paretovariate(1.0)')
527 _test_generator(N, 'weibullvariate(1.0, 1.0)')
528
529# Initialize from current time.
530_inst = Random()
531seed = _inst.seed
532random = _inst.random
533uniform = _inst.uniform
534randint = _inst.randint
535choice = _inst.choice
536randrange = _inst.randrange
537shuffle = _inst.shuffle
538normalvariate = _inst.normalvariate
539lognormvariate = _inst.lognormvariate
540cunifvariate = _inst.cunifvariate
541expovariate = _inst.expovariate
542vonmisesvariate = _inst.vonmisesvariate
543gammavariate = _inst.gammavariate
544stdgamma = _inst.stdgamma
545gauss = _inst.gauss
546betavariate = _inst.betavariate
547paretovariate = _inst.paretovariate
548weibullvariate = _inst.weibullvariate
549getstate = _inst.getstate
550setstate = _inst.setstate
Tim Petersd52269b2001-01-25 06:23:18 +0000551jumpahead = _inst.jumpahead
Tim Petersd7b5e882001-01-25 03:36:26 +0000552
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000553if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000554 _test()