blob: a19059cbe8d202ad792e3f4e6aa8b25bd93089a4 [file] [log] [blame]
Guido van Rossumff03b1a1994-03-09 12:55:02 +00001# R A N D O M V A R I A B L E G E N E R A T O R S
2#
3# distributions on the real line:
4# ------------------------------
5# normal (Gaussian)
6# lognormal
7# negative exponential
8# gamma
Guido van Rossum95bfcda1994-03-09 14:21:05 +00009# beta
Guido van Rossumff03b1a1994-03-09 12:55:02 +000010#
11# distributions on the circle (angles 0 to 2pi)
12# ---------------------------------------------
13# circular uniform
14# von Mises
15
16# Translated from anonymously contributed C/C++ source.
17
Guido van Rossumd03e1191998-05-29 17:51:31 +000018# Multi-threading note: the random number generator used here is not
19# thread-safe; it is possible that two calls return the same random
20# value. See whrandom.py for more info.
21
Guido van Rossum33d7f1a1998-05-20 16:28:24 +000022import whrandom
Guido van Rossumff03b1a1994-03-09 12:55:02 +000023from whrandom import random, uniform, randint, choice # Also for export!
Guido van Rossum95bfcda1994-03-09 14:21:05 +000024from math import log, exp, pi, e, sqrt, acos, cos, sin
Guido van Rossumff03b1a1994-03-09 12:55:02 +000025
Guido van Rossum33d7f1a1998-05-20 16:28:24 +000026# Interfaces to replace remaining needs for importing whrandom
27# XXX TO DO: make the distribution functions below into methods.
28
29def makeseed(a=None):
30 """Turn a hashable value into three seed values for whrandom.seed().
31
32 None or no argument returns (0, 0, 0), to seed from current time.
33
34 """
35 if a is None:
36 return (0, 0, 0)
37 a = hash(a)
38 a, x = divmod(a, 256)
39 a, y = divmod(a, 256)
40 a, z = divmod(a, 256)
41 x = (x + a) % 256 or 1
42 y = (y + a) % 256 or 1
43 z = (z + a) % 256 or 1
44 return (x, y, z)
45
46def seed(a=None):
47 """Seed the default generator from any hashable value.
48
49 None or no argument returns (0, 0, 0) to seed from current time.
50
51 """
52 x, y, z = makeseed(a)
53 whrandom.seed(x, y, z)
54
55class generator(whrandom.whrandom):
56 """Random generator class."""
57
58 def __init__(self, a=None):
59 """Constructor. Seed from current time or hashable value."""
60 self.seed(a)
61
62 def seed(self, a=None):
63 """Seed the generator from current time or hashable value."""
64 x, y, z = makeseed(a)
65 whrandom.whrandom.seed(self, x, y, z)
66
67def new_generator(a=None):
68 """Return a new random generator instance."""
69 return generator(a)
70
Guido van Rossumff03b1a1994-03-09 12:55:02 +000071# Housekeeping function to verify that magic constants have been
72# computed correctly
73
74def verify(name, expected):
75 computed = eval(name)
76 if abs(computed - expected) > 1e-7:
77 raise ValueError, \
78 'computed value for %s deviates too much (computed %g, expected %g)' % \
79 (name, computed, expected)
80
81# -------------------- normal distribution --------------------
82
Guido van Rossumcc32ac91994-03-15 16:10:24 +000083NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +000084verify('NV_MAGICCONST', 1.71552776992141)
85def normalvariate(mu, sigma):
86 # mu = mean, sigma = standard deviation
87
88 # Uses Kinderman and Monahan method. Reference: Kinderman,
89 # A.J. and Monahan, J.F., "Computer generation of random
90 # variables using the ratio of uniform deviates", ACM Trans
91 # Math Software, 3, (1977), pp257-260.
92
93 while 1:
94 u1 = random()
95 u2 = random()
96 z = NV_MAGICCONST*(u1-0.5)/u2
Guido van Rossumcc32ac91994-03-15 16:10:24 +000097 zz = z*z/4.0
Guido van Rossumff03b1a1994-03-09 12:55:02 +000098 if zz <= -log(u2):
99 break
100 return mu+z*sigma
101
102# -------------------- lognormal distribution --------------------
103
104def lognormvariate(mu, sigma):
105 return exp(normalvariate(mu, sigma))
106
107# -------------------- circular uniform --------------------
108
109def cunifvariate(mean, arc):
110 # mean: mean angle (in radians between 0 and pi)
111 # arc: range of distribution (in radians between 0 and pi)
112
113 return (mean + arc * (random() - 0.5)) % pi
114
115# -------------------- exponential distribution --------------------
116
117def expovariate(lambd):
118 # lambd: rate lambd = 1/mean
119 # ('lambda' is a Python reserved word)
120
121 u = random()
122 while u <= 1e-7:
123 u = random()
124 return -log(u)/lambd
125
126# -------------------- von Mises distribution --------------------
127
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000128TWOPI = 2.0*pi
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000129verify('TWOPI', 6.28318530718)
130
131def vonmisesvariate(mu, kappa):
Guido van Rossum58102971998-04-06 14:12:13 +0000132 # mu: mean angle (in radians between 0 and 2*pi)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000133 # kappa: concentration parameter kappa (>= 0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000134 # if kappa = 0 generate uniform random angle
Guido van Rossum58102971998-04-06 14:12:13 +0000135
136 # Based upon an algorithm published in: Fisher, N.I.,
137 # "Statistical Analysis of Circular Data", Cambridge
138 # University Press, 1993.
139
140 # Thanks to Magnus Kessler for a correction to the
141 # implementation of step 4.
142
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000143 if kappa <= 1e-6:
144 return TWOPI * random()
145
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000146 a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
147 b = (a - sqrt(2.0 * a))/(2.0 * kappa)
148 r = (1.0 + b * b)/(2.0 * b)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000149
150 while 1:
151 u1 = random()
152
153 z = cos(pi * u1)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000154 f = (1.0 + r * z)/(r + z)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000155 c = kappa * (r - f)
156
157 u2 = random()
158
159 if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
160 break
161
162 u3 = random()
163 if u3 > 0.5:
Guido van Rossum58102971998-04-06 14:12:13 +0000164 theta = (mu % TWOPI) + acos(f)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000165 else:
Guido van Rossum58102971998-04-06 14:12:13 +0000166 theta = (mu % TWOPI) - acos(f)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000167
Guido van Rossum58102971998-04-06 14:12:13 +0000168 return theta
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000169
170# -------------------- gamma distribution --------------------
171
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000172LOG4 = log(4.0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000173verify('LOG4', 1.38629436111989)
174
175def gammavariate(alpha, beta):
176 # beta times standard gamma
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000177 ainv = sqrt(2.0 * alpha - 1.0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000178 return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
179
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000180SG_MAGICCONST = 1.0 + log(4.5)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000181verify('SG_MAGICCONST', 2.50407739677627)
182
183def stdgamma(alpha, ainv, bbb, ccc):
184 # ainv = sqrt(2 * alpha - 1)
185 # bbb = alpha - log(4)
186 # ccc = alpha + ainv
187
188 if alpha <= 0.0:
189 raise ValueError, 'stdgamma: alpha must be > 0.0'
190
191 if alpha > 1.0:
192
193 # Uses R.C.H. Cheng, "The generation of Gamma
194 # variables with non-integral shape parameters",
195 # Applied Statistics, (1977), 26, No. 1, p71-74
196
197 while 1:
198 u1 = random()
199 u2 = random()
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000200 v = log(u1/(1.0-u1))/ainv
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000201 x = alpha*exp(v)
202 z = u1*u1*u2
203 r = bbb+ccc*v-x
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000204 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000205 return x
206
207 elif alpha == 1.0:
208 # expovariate(1)
209 u = random()
210 while u <= 1e-7:
211 u = random()
212 return -log(u)
213
214 else: # alpha is between 0 and 1 (exclusive)
215
216 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
217
218 while 1:
219 u = random()
220 b = (e + alpha)/e
221 p = b*u
222 if p <= 1.0:
223 x = pow(p, 1.0/alpha)
224 else:
225 # p > 1
226 x = -log((b-p)/alpha)
227 u1 = random()
228 if not (((p <= 1.0) and (u1 > exp(-x))) or
229 ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
230 break
231 return x
232
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000233
234# -------------------- Gauss (faster alternative) --------------------
235
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000236gauss_next = None
237def gauss(mu, sigma):
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000238
239 # When x and y are two variables from [0, 1), uniformly
240 # distributed, then
241 #
Guido van Rossum72c2e1b1998-02-19 21:17:42 +0000242 # cos(2*pi*x)*sqrt(-2*log(1-y))
243 # sin(2*pi*x)*sqrt(-2*log(1-y))
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000244 #
245 # are two *independent* variables with normal distribution
246 # (mu = 0, sigma = 1).
247 # (Lambert Meertens)
Guido van Rossum72c2e1b1998-02-19 21:17:42 +0000248 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000249
Guido van Rossumd03e1191998-05-29 17:51:31 +0000250 # Multithreading note: When two threads call this function
251 # simultaneously, it is possible that they will receive the
252 # same return value. The window is very small though. To
253 # avoid this, you have to use a lock around all calls. (I
254 # didn't want to slow this down in the serial case by using a
255 # lock here.)
256
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000257 global gauss_next
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000258
Guido van Rossumd03e1191998-05-29 17:51:31 +0000259 z = gauss_next
260 gauss_next = None
261 if z is None:
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000262 x2pi = random() * TWOPI
Guido van Rossum72c2e1b1998-02-19 21:17:42 +0000263 g2rad = sqrt(-2.0 * log(1.0 - random()))
264 z = cos(x2pi) * g2rad
265 gauss_next = sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000266
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000267 return mu + z*sigma
268
269# -------------------- beta --------------------
270
271def betavariate(alpha, beta):
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000272
273 # Discrete Event Simulation in C, pp 87-88.
274
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000275 y = expovariate(alpha)
276 z = expovariate(1.0/beta)
277 return z/(y+z)
278
Guido van Rossum5bdea891997-12-09 19:43:18 +0000279# -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000280
281def paretovariate(alpha):
282 # Jain, pg. 495
283
284 u = random()
285 return 1.0 / pow(u, 1.0/alpha)
286
Guido van Rossum5bdea891997-12-09 19:43:18 +0000287# -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000288
289def weibullvariate(alpha, beta):
290 # Jain, pg. 499; bug fix courtesy Bill Arms
291
292 u = random()
293 return alpha * pow(-log(u), 1.0/beta)
294
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000295# -------------------- test program --------------------
296
Guido van Rossum2922c6d1994-05-06 14:28:19 +0000297def test(N = 200):
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000298 print 'TWOPI =', TWOPI
299 print 'LOG4 =', LOG4
300 print 'NV_MAGICCONST =', NV_MAGICCONST
301 print 'SG_MAGICCONST =', SG_MAGICCONST
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000302 test_generator(N, 'random()')
303 test_generator(N, 'normalvariate(0.0, 1.0)')
304 test_generator(N, 'lognormvariate(0.0, 1.0)')
305 test_generator(N, 'cunifvariate(0.0, 1.0)')
306 test_generator(N, 'expovariate(1.0)')
307 test_generator(N, 'vonmisesvariate(0.0, 1.0)')
308 test_generator(N, 'gammavariate(0.5, 1.0)')
309 test_generator(N, 'gammavariate(0.9, 1.0)')
310 test_generator(N, 'gammavariate(1.0, 1.0)')
311 test_generator(N, 'gammavariate(2.0, 1.0)')
312 test_generator(N, 'gammavariate(20.0, 1.0)')
313 test_generator(N, 'gammavariate(200.0, 1.0)')
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000314 test_generator(N, 'gauss(0.0, 1.0)')
315 test_generator(N, 'betavariate(3.0, 3.0)')
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000316 test_generator(N, 'paretovariate(1.0)')
317 test_generator(N, 'weibullvariate(1.0, 1.0)')
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000318
319def test_generator(n, funccall):
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000320 import time
321 print n, 'times', funccall
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000322 code = compile(funccall, funccall, 'eval')
323 sum = 0.0
324 sqsum = 0.0
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000325 smallest = 1e10
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000326 largest = -1e10
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000327 t0 = time.time()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000328 for i in range(n):
329 x = eval(code)
330 sum = sum + x
331 sqsum = sqsum + x*x
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000332 smallest = min(x, smallest)
333 largest = max(x, largest)
334 t1 = time.time()
335 print round(t1-t0, 3), 'sec,',
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000336 avg = sum/n
337 stddev = sqrt(sqsum/n - avg*avg)
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000338 print 'avg %g, stddev %g, min %g, max %g' % \
339 (avg, stddev, smallest, largest)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000340
341if __name__ == '__main__':
342 test()