blob: 8254d3feb3b8a278360f917346a6e8ee77c7f863 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
Mark Dickinson603b7532010-04-06 19:55:03 +000036 Return *x* with the sign of *y*. On a platform that supports
37 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000038
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000082 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000083
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000085 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
87 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000088
Raymond Hettingerf3936f82009-02-19 05:48:05 +000089 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
90 typical case where the rounding mode is half-even. On some non-Windows
91 builds, the underlying C library uses extended precision addition and may
92 occasionally double-round an intermediate sum causing it to be off in its
93 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000094
Raymond Hettinger477be822009-02-19 06:44:30 +000095 For further discussion and two alternative approaches, see the `ASPN cookbook
96 recipes for accurate floating point summation
97 <http://code.activestate.com/recipes/393090/>`_\.
98
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000099
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000100.. function:: isfinite(x)
101
102 Return ``True`` if *x* is neither an infinity nor a NaN, and
103 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
104
Mark Dickinsonc7622422010-07-11 19:47:37 +0000105 .. versionadded:: 3.2
106
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000107
Christian Heimes072c0f12008-01-03 23:01:04 +0000108.. function:: isinf(x)
109
Mark Dickinsonc7622422010-07-11 19:47:37 +0000110 Return ``True`` if *x* is a positive or negative infinity, and
111 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000112
Christian Heimes072c0f12008-01-03 23:01:04 +0000113
114.. function:: isnan(x)
115
Mark Dickinsonc7622422010-07-11 19:47:37 +0000116 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000117
Christian Heimes072c0f12008-01-03 23:01:04 +0000118
Georg Brandl116aa622007-08-15 14:28:22 +0000119.. function:: ldexp(x, i)
120
121 Return ``x * (2**i)``. This is essentially the inverse of function
122 :func:`frexp`.
123
124
125.. function:: modf(x)
126
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000127 Return the fractional and integer parts of *x*. Both results carry the sign
128 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000129
Christian Heimes400adb02008-02-01 08:12:03 +0000130
131.. function:: trunc(x)
132
133 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000134 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000135
Christian Heimes400adb02008-02-01 08:12:03 +0000136
Georg Brandl116aa622007-08-15 14:28:22 +0000137Note that :func:`frexp` and :func:`modf` have a different call/return pattern
138than their C equivalents: they take a single argument and return a pair of
139values, rather than returning their second return value through an 'output
140parameter' (there is no such thing in Python).
141
142For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
143floating-point numbers of sufficiently large magnitude are exact integers.
144Python floats typically carry no more than 53 bits of precision (the same as the
145platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
146necessarily has no fractional bits.
147
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000148
149Power and logarithmic functions
150-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000151
Georg Brandl116aa622007-08-15 14:28:22 +0000152.. function:: exp(x)
153
154 Return ``e**x``.
155
156
Mark Dickinson664b5112009-12-16 20:23:42 +0000157.. function:: expm1(x)
158
Raymond Hettinger1081d482011-03-31 12:04:53 -0700159 Return ``e**x - 1``. For small floats *x*, the subtraction in ``exp(x) - 1``
160 can result in a `significant loss of precision
161 <http://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
162 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000163
164 >>> from math import exp, expm1
165 >>> exp(1e-5) - 1 # gives result accurate to 11 places
166 1.0000050000069649e-05
167 >>> expm1(1e-5) # result accurate to full precision
168 1.0000050000166668e-05
169
Mark Dickinson45f992a2009-12-19 11:20:49 +0000170 .. versionadded:: 3.2
171
Mark Dickinson664b5112009-12-16 20:23:42 +0000172
Georg Brandl116aa622007-08-15 14:28:22 +0000173.. function:: log(x[, base])
174
Georg Brandla6053b42009-09-01 08:11:14 +0000175 With one argument, return the natural logarithm of *x* (to base *e*).
176
177 With two arguments, return the logarithm of *x* to the given *base*,
178 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000179
Georg Brandl116aa622007-08-15 14:28:22 +0000180
Christian Heimes53876d92008-04-19 00:31:39 +0000181.. function:: log1p(x)
182
183 Return the natural logarithm of *1+x* (base *e*). The
184 result is calculated in a way which is accurate for *x* near zero.
185
Christian Heimes53876d92008-04-19 00:31:39 +0000186
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200187.. function:: log2(x)
188
189 Return the base-2 logarithm of *x*.
190
191 .. versionadded:: 3.3
192
193
Georg Brandl116aa622007-08-15 14:28:22 +0000194.. function:: log10(x)
195
Georg Brandla6053b42009-09-01 08:11:14 +0000196 Return the base-10 logarithm of *x*. This is usually more accurate
197 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000198
199
200.. function:: pow(x, y)
201
Christian Heimesa342c012008-04-20 21:01:16 +0000202 Return ``x`` raised to the power ``y``. Exceptional cases follow
203 Annex 'F' of the C99 standard as far as possible. In particular,
204 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
205 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
206 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
207 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000208
Georg Brandl116aa622007-08-15 14:28:22 +0000209
210.. function:: sqrt(x)
211
212 Return the square root of *x*.
213
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000214Trigonometric functions
215-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000216
217
218.. function:: acos(x)
219
220 Return the arc cosine of *x*, in radians.
221
222
223.. function:: asin(x)
224
225 Return the arc sine of *x*, in radians.
226
227
228.. function:: atan(x)
229
230 Return the arc tangent of *x*, in radians.
231
232
233.. function:: atan2(y, x)
234
235 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
236 The vector in the plane from the origin to point ``(x, y)`` makes this angle
237 with the positive X axis. The point of :func:`atan2` is that the signs of both
238 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000239 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000240 -1)`` is ``-3*pi/4``.
241
242
243.. function:: cos(x)
244
245 Return the cosine of *x* radians.
246
247
248.. function:: hypot(x, y)
249
250 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
251 from the origin to point ``(x, y)``.
252
253
254.. function:: sin(x)
255
256 Return the sine of *x* radians.
257
258
259.. function:: tan(x)
260
261 Return the tangent of *x* radians.
262
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000263Angular conversion
264------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000265
266
267.. function:: degrees(x)
268
269 Converts angle *x* from radians to degrees.
270
271
272.. function:: radians(x)
273
274 Converts angle *x* from degrees to radians.
275
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000276Hyperbolic functions
277--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000278
Raymond Hettinger1081d482011-03-31 12:04:53 -0700279`Hyperbolic functions <http://en.wikipedia.org/wiki/Hyperbolic_function>`_
280are analogs of trigonometric functions that are based on hyperbolas
281instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000282
Christian Heimesa342c012008-04-20 21:01:16 +0000283.. function:: acosh(x)
284
285 Return the inverse hyperbolic cosine of *x*.
286
Christian Heimesa342c012008-04-20 21:01:16 +0000287
288.. function:: asinh(x)
289
290 Return the inverse hyperbolic sine of *x*.
291
Christian Heimesa342c012008-04-20 21:01:16 +0000292
293.. function:: atanh(x)
294
295 Return the inverse hyperbolic tangent of *x*.
296
Christian Heimesa342c012008-04-20 21:01:16 +0000297
Georg Brandl116aa622007-08-15 14:28:22 +0000298.. function:: cosh(x)
299
300 Return the hyperbolic cosine of *x*.
301
302
303.. function:: sinh(x)
304
305 Return the hyperbolic sine of *x*.
306
307
308.. function:: tanh(x)
309
310 Return the hyperbolic tangent of *x*.
311
Christian Heimes53876d92008-04-19 00:31:39 +0000312
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000313Special functions
314-----------------
315
Mark Dickinson45f992a2009-12-19 11:20:49 +0000316.. function:: erf(x)
317
Raymond Hettinger1081d482011-03-31 12:04:53 -0700318 Return the `error function <http://en.wikipedia.org/wiki/Error_function>`_ at
319 *x*.
320
321 The :func:`erf` function can be used to compute traditional statistical
322 functions such as the `cumulative standard normal distribution
323 <http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
324
325 def phi(x):
326 'Cumulative distribution function for the standard normal distribution'
327 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000328
329 .. versionadded:: 3.2
330
331
332.. function:: erfc(x)
333
Raymond Hettinger1081d482011-03-31 12:04:53 -0700334 Return the complementary error function at *x*. The `complementary error
335 function <http://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700336 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
337 from one would cause a `loss of significance
Raymond Hettinger1081d482011-03-31 12:04:53 -0700338 <http://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000339
340 .. versionadded:: 3.2
341
342
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000343.. function:: gamma(x)
344
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700345 Return the `Gamma function <http://en.wikipedia.org/wiki/Gamma_function>`_ at
346 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000347
Mark Dickinson56e09662009-10-01 16:13:29 +0000348 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000349
350
Mark Dickinson05d2e082009-12-11 20:17:17 +0000351.. function:: lgamma(x)
352
353 Return the natural logarithm of the absolute value of the Gamma
354 function at *x*.
355
Mark Dickinson45f992a2009-12-19 11:20:49 +0000356 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000357
358
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000359Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000360---------
Georg Brandl116aa622007-08-15 14:28:22 +0000361
362.. data:: pi
363
Mark Dickinson603b7532010-04-06 19:55:03 +0000364 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000365
366
367.. data:: e
368
Mark Dickinson603b7532010-04-06 19:55:03 +0000369 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000370
Christian Heimes53876d92008-04-19 00:31:39 +0000371
Georg Brandl495f7b52009-10-27 15:28:25 +0000372.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000373
374 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000375 math library functions. Behavior in exceptional cases follows Annex F of
376 the C99 standard where appropriate. The current implementation will raise
377 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
378 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
379 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000380 ``exp(1000.0)``). A NaN will not be returned from any of the functions
381 above unless one or more of the input arguments was a NaN; in that case,
382 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000383 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
384 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000385
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000386 Note that Python makes no effort to distinguish signaling NaNs from
387 quiet NaNs, and behavior for signaling NaNs remains unspecified.
388 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000389
Georg Brandl116aa622007-08-15 14:28:22 +0000390
391.. seealso::
392
393 Module :mod:`cmath`
394 Complex number versions of many of these functions.