blob: bf89ade3d37f25078b9721de17ad5f222be96bb6 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`random` --- Generate pseudo-random numbers
2================================================
3
4.. module:: random
5 :synopsis: Generate pseudo-random numbers with various common distributions.
6
7
8This module implements pseudo-random number generators for various
9distributions.
10
11For integers, uniform selection from a range. For sequences, uniform selection
12of a random element, a function to generate a random permutation of a list
13in-place, and a function for random sampling without replacement.
14
15On the real line, there are functions to compute uniform, normal (Gaussian),
16lognormal, negative exponential, gamma, and beta distributions. For generating
17distributions of angles, the von Mises distribution is available.
18
19Almost all module functions depend on the basic function :func:`random`, which
20generates a random float uniformly in the semi-open range [0.0, 1.0). Python
21uses the Mersenne Twister as the core generator. It produces 53-bit precision
22floats and has a period of 2\*\*19937-1. The underlying implementation in C is
23both fast and threadsafe. The Mersenne Twister is one of the most extensively
24tested random number generators in existence. However, being completely
25deterministic, it is not suitable for all purposes, and is completely unsuitable
26for cryptographic purposes.
27
28The functions supplied by this module are actually bound methods of a hidden
29instance of the :class:`random.Random` class. You can instantiate your own
Raymond Hettinger28de64f2008-01-13 23:40:30 +000030instances of :class:`Random` to get generators that don't share state.
Georg Brandl116aa622007-08-15 14:28:22 +000031
32Class :class:`Random` can also be subclassed if you want to use a different
33basic generator of your own devising: in that case, override the :meth:`random`,
Raymond Hettingerafd30452009-02-24 10:57:02 +000034:meth:`seed`, :meth:`getstate`, and :meth:`setstate` methods.
Benjamin Petersond18de0e2008-07-31 20:21:46 +000035Optionally, a new generator can supply a :meth:`getrandbits` method --- this
Georg Brandl116aa622007-08-15 14:28:22 +000036allows :meth:`randrange` to produce selections over an arbitrarily large range.
37
Benjamin Peterson21896a32010-03-21 22:03:03 +000038As an example of subclassing, the :mod:`random` module provides the
39:class:`WichmannHill` class that implements an alternative generator in pure
40Python. The class provides a backward compatible way to reproduce results from
41earlier versions of Python, which used the Wichmann-Hill algorithm as the core
42generator. Note that this Wichmann-Hill generator can no longer be recommended:
43its period is too short by contemporary standards, and the sequence generated is
44known to fail some stringent randomness tests. See the references below for a
45recent variant that repairs these flaws.
46
47The :mod:`random` module also provides the :class:`SystemRandom` class which
48uses the system function :func:`os.urandom` to generate random numbers
49from sources provided by the operating system.
Georg Brandl116aa622007-08-15 14:28:22 +000050
Georg Brandl116aa622007-08-15 14:28:22 +000051Bookkeeping functions:
52
53
54.. function:: seed([x])
55
56 Initialize the basic random number generator. Optional argument *x* can be any
Guido van Rossum2cc30da2007-11-02 23:46:40 +000057 :term:`hashable` object. If *x* is omitted or ``None``, current system time is used;
Georg Brandl116aa622007-08-15 14:28:22 +000058 current system time is also used to initialize the generator when the module is
59 first imported. If randomness sources are provided by the operating system,
60 they are used instead of the system time (see the :func:`os.urandom` function
61 for details on availability).
62
Georg Brandl5c106642007-11-29 17:41:05 +000063 If *x* is not ``None`` or an int, ``hash(x)`` is used instead. If *x* is an
64 int, *x* is used directly.
Georg Brandl116aa622007-08-15 14:28:22 +000065
66
67.. function:: getstate()
68
69 Return an object capturing the current internal state of the generator. This
70 object can be passed to :func:`setstate` to restore the state.
71
Georg Brandl116aa622007-08-15 14:28:22 +000072
73.. function:: setstate(state)
74
75 *state* should have been obtained from a previous call to :func:`getstate`, and
76 :func:`setstate` restores the internal state of the generator to what it was at
77 the time :func:`setstate` was called.
78
Georg Brandl116aa622007-08-15 14:28:22 +000079
Georg Brandl116aa622007-08-15 14:28:22 +000080.. function:: getrandbits(k)
81
Ezio Melotti0639d5a2009-12-19 23:26:38 +000082 Returns a Python integer with *k* random bits. This method is supplied with
Georg Brandl5c106642007-11-29 17:41:05 +000083 the MersenneTwister generator and some other generators may also provide it
Georg Brandl116aa622007-08-15 14:28:22 +000084 as an optional part of the API. When available, :meth:`getrandbits` enables
85 :meth:`randrange` to handle arbitrarily large ranges.
86
Georg Brandl116aa622007-08-15 14:28:22 +000087
88Functions for integers:
89
Georg Brandl116aa622007-08-15 14:28:22 +000090.. function:: randrange([start,] stop[, step])
91
92 Return a randomly selected element from ``range(start, stop, step)``. This is
93 equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
94 range object.
95
Georg Brandl116aa622007-08-15 14:28:22 +000096
97.. function:: randint(a, b)
98
Raymond Hettingerafd30452009-02-24 10:57:02 +000099 Return a random integer *N* such that ``a <= N <= b``. Alias for
100 ``randrange(a, b+1)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000101
Georg Brandl116aa622007-08-15 14:28:22 +0000102
Georg Brandl55ac8f02007-09-01 13:51:09 +0000103Functions for sequences:
Georg Brandl116aa622007-08-15 14:28:22 +0000104
105.. function:: choice(seq)
106
107 Return a random element from the non-empty sequence *seq*. If *seq* is empty,
108 raises :exc:`IndexError`.
109
110
111.. function:: shuffle(x[, random])
112
113 Shuffle the sequence *x* in place. The optional argument *random* is a
114 0-argument function returning a random float in [0.0, 1.0); by default, this is
115 the function :func:`random`.
116
117 Note that for even rather small ``len(x)``, the total number of permutations of
118 *x* is larger than the period of most random number generators; this implies
119 that most permutations of a long sequence can never be generated.
120
121
122.. function:: sample(population, k)
123
Raymond Hettinger1acde192008-01-14 01:00:53 +0000124 Return a *k* length list of unique elements chosen from the population sequence
125 or set. Used for random sampling without replacement.
Georg Brandl116aa622007-08-15 14:28:22 +0000126
Georg Brandl116aa622007-08-15 14:28:22 +0000127 Returns a new list containing elements from the population while leaving the
128 original population unchanged. The resulting list is in selection order so that
129 all sub-slices will also be valid random samples. This allows raffle winners
130 (the sample) to be partitioned into grand prize and second place winners (the
131 subslices).
132
Guido van Rossum2cc30da2007-11-02 23:46:40 +0000133 Members of the population need not be :term:`hashable` or unique. If the population
Georg Brandl116aa622007-08-15 14:28:22 +0000134 contains repeats, then each occurrence is a possible selection in the sample.
135
136 To choose a sample from a range of integers, use an :func:`range` object as an
137 argument. This is especially fast and space efficient for sampling from a large
138 population: ``sample(range(10000000), 60)``.
139
140The following functions generate specific real-valued distributions. Function
141parameters are named after the corresponding variables in the distribution's
142equation, as used in common mathematical practice; most of these equations can
143be found in any statistics text.
144
145
146.. function:: random()
147
148 Return the next random floating point number in the range [0.0, 1.0).
149
150
151.. function:: uniform(a, b)
152
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000153 Return a random floating point number *N* such that ``a <= N <= b`` for
154 ``a <= b`` and ``b <= N <= a`` for ``b < a``.
Georg Brandl116aa622007-08-15 14:28:22 +0000155
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000156 The end-point value ``b`` may or may not be included in the range
157 depending on floating-point rounding in the equation ``a + (b-a) * random()``.
Benjamin Peterson35e8c462008-04-24 02:34:53 +0000158
Christian Heimesfe337bf2008-03-23 21:54:12 +0000159.. function:: triangular(low, high, mode)
160
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000161 Return a random floating point number *N* such that ``low <= N <= high`` and
Christian Heimescc47b052008-03-25 14:56:36 +0000162 with the specified *mode* between those bounds. The *low* and *high* bounds
163 default to zero and one. The *mode* argument defaults to the midpoint
164 between the bounds, giving a symmetric distribution.
Christian Heimesfe337bf2008-03-23 21:54:12 +0000165
Georg Brandl116aa622007-08-15 14:28:22 +0000166
167.. function:: betavariate(alpha, beta)
168
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000169 Beta distribution. Conditions on the parameters are ``alpha > 0`` and
170 ``beta > 0``. Returned values range between 0 and 1.
Georg Brandl116aa622007-08-15 14:28:22 +0000171
172
173.. function:: expovariate(lambd)
174
Mark Dickinson2f947362009-01-07 17:54:07 +0000175 Exponential distribution. *lambd* is 1.0 divided by the desired
176 mean. It should be nonzero. (The parameter would be called
177 "lambda", but that is a reserved word in Python.) Returned values
178 range from 0 to positive infinity if *lambd* is positive, and from
179 negative infinity to 0 if *lambd* is negative.
Georg Brandl116aa622007-08-15 14:28:22 +0000180
181
182.. function:: gammavariate(alpha, beta)
183
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000184 Gamma distribution. (*Not* the gamma function!) Conditions on the
185 parameters are ``alpha > 0`` and ``beta > 0``.
Georg Brandl116aa622007-08-15 14:28:22 +0000186
187
188.. function:: gauss(mu, sigma)
189
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000190 Gaussian distribution. *mu* is the mean, and *sigma* is the standard
191 deviation. This is slightly faster than the :func:`normalvariate` function
192 defined below.
Georg Brandl116aa622007-08-15 14:28:22 +0000193
194
195.. function:: lognormvariate(mu, sigma)
196
197 Log normal distribution. If you take the natural logarithm of this
198 distribution, you'll get a normal distribution with mean *mu* and standard
199 deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
200 zero.
201
202
203.. function:: normalvariate(mu, sigma)
204
205 Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
206
207
208.. function:: vonmisesvariate(mu, kappa)
209
210 *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
211 is the concentration parameter, which must be greater than or equal to zero. If
212 *kappa* is equal to zero, this distribution reduces to a uniform random angle
213 over the range 0 to 2\*\ *pi*.
214
215
216.. function:: paretovariate(alpha)
217
218 Pareto distribution. *alpha* is the shape parameter.
219
220
221.. function:: weibullvariate(alpha, beta)
222
223 Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
224 parameter.
225
226
227Alternative Generators:
228
Georg Brandl116aa622007-08-15 14:28:22 +0000229.. class:: SystemRandom([seed])
230
231 Class that uses the :func:`os.urandom` function for generating random numbers
232 from sources provided by the operating system. Not available on all systems.
233 Does not rely on software state and sequences are not reproducible. Accordingly,
Raymond Hettingerafd30452009-02-24 10:57:02 +0000234 the :meth:`seed` method has no effect and is ignored.
Georg Brandl116aa622007-08-15 14:28:22 +0000235 The :meth:`getstate` and :meth:`setstate` methods raise
236 :exc:`NotImplementedError` if called.
237
Georg Brandl116aa622007-08-15 14:28:22 +0000238
239Examples of basic usage::
240
241 >>> random.random() # Random float x, 0.0 <= x < 1.0
242 0.37444887175646646
243 >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
244 1.1800146073117523
245 >>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
246 7
247 >>> random.randrange(0, 101, 2) # Even integer from 0 to 100
248 26
249 >>> random.choice('abcdefghij') # Choose a random element
250 'c'
251
252 >>> items = [1, 2, 3, 4, 5, 6, 7]
253 >>> random.shuffle(items)
254 >>> items
255 [7, 3, 2, 5, 6, 4, 1]
256
257 >>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
258 [4, 1, 5]
259
260
261
262.. seealso::
263
264 M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
265 equidistributed uniform pseudorandom number generator", ACM Transactions on
266 Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
267
Georg Brandl116aa622007-08-15 14:28:22 +0000268
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000269 `Complementary-Multiply-with-Carry recipe
Raymond Hettinger9743fd02009-04-03 05:47:33 +0000270 <http://code.activestate.com/recipes/576707/>`_ for a compatible alternative
271 random number generator with a long period and comparatively simple update
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000272 operations.