Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1 | /**************************************************************** |
| 2 | * |
| 3 | * The author of this software is David M. Gay. |
| 4 | * |
| 5 | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
| 6 | * |
| 7 | * Permission to use, copy, modify, and distribute this software for any |
| 8 | * purpose without fee is hereby granted, provided that this entire notice |
| 9 | * is included in all copies of any software which is or includes a copy |
| 10 | * or modification of this software and in all copies of the supporting |
| 11 | * documentation for such software. |
| 12 | * |
| 13 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
| 14 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
| 15 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
| 16 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
| 17 | * |
| 18 | ***************************************************************/ |
| 19 | |
| 20 | /**************************************************************** |
| 21 | * This is dtoa.c by David M. Gay, downloaded from |
| 22 | * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for |
| 23 | * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. |
Mark Dickinson | 7f0ea32 | 2009-04-17 16:06:28 +0000 | [diff] [blame] | 24 | * |
| 25 | * Please remember to check http://www.netlib.org/fp regularly (and especially |
| 26 | * before any Python release) for bugfixes and updates. |
| 27 | * |
| 28 | * The major modifications from Gay's original code are as follows: |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 29 | * |
| 30 | * 0. The original code has been specialized to Python's needs by removing |
| 31 | * many of the #ifdef'd sections. In particular, code to support VAX and |
| 32 | * IBM floating-point formats, hex NaNs, hex floats, locale-aware |
| 33 | * treatment of the decimal point, and setting of the inexact flag have |
| 34 | * been removed. |
| 35 | * |
| 36 | * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. |
| 37 | * |
| 38 | * 2. The public functions strtod, dtoa and freedtoa all now have |
| 39 | * a _Py_dg_ prefix. |
| 40 | * |
| 41 | * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread |
| 42 | * PyMem_Malloc failures through the code. The functions |
| 43 | * |
| 44 | * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b |
| 45 | * |
| 46 | * of return type *Bigint all return NULL to indicate a malloc failure. |
| 47 | * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on |
| 48 | * failure. bigcomp now has return type int (it used to be void) and |
| 49 | * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL |
| 50 | * on failure. _Py_dg_strtod indicates failure due to malloc failure |
| 51 | * by returning -1.0, setting errno=ENOMEM and *se to s00. |
| 52 | * |
| 53 | * 4. The static variable dtoa_result has been removed. Callers of |
| 54 | * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free |
| 55 | * the memory allocated by _Py_dg_dtoa. |
| 56 | * |
| 57 | * 5. The code has been reformatted to better fit with Python's |
| 58 | * C style guide (PEP 7). |
| 59 | * |
Mark Dickinson | 7f0ea32 | 2009-04-17 16:06:28 +0000 | [diff] [blame] | 60 | * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory |
| 61 | * that hasn't been MALLOC'ed, private_mem should only be used when k <= |
| 62 | * Kmax. |
| 63 | * |
Mark Dickinson | 725bfd8 | 2009-05-03 20:33:40 +0000 | [diff] [blame] | 64 | * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with |
| 65 | * leading whitespace. |
| 66 | * |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 67 | ***************************************************************/ |
| 68 | |
| 69 | /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg |
| 70 | * at acm dot org, with " at " changed at "@" and " dot " changed to "."). |
| 71 | * Please report bugs for this modified version using the Python issue tracker |
| 72 | * (http://bugs.python.org). */ |
| 73 | |
| 74 | /* On a machine with IEEE extended-precision registers, it is |
| 75 | * necessary to specify double-precision (53-bit) rounding precision |
| 76 | * before invoking strtod or dtoa. If the machine uses (the equivalent |
| 77 | * of) Intel 80x87 arithmetic, the call |
| 78 | * _control87(PC_53, MCW_PC); |
| 79 | * does this with many compilers. Whether this or another call is |
| 80 | * appropriate depends on the compiler; for this to work, it may be |
| 81 | * necessary to #include "float.h" or another system-dependent header |
| 82 | * file. |
| 83 | */ |
| 84 | |
| 85 | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
| 86 | * |
| 87 | * This strtod returns a nearest machine number to the input decimal |
| 88 | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
| 89 | * broken by the IEEE round-even rule. Otherwise ties are broken by |
| 90 | * biased rounding (add half and chop). |
| 91 | * |
| 92 | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
| 93 | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
| 94 | * |
| 95 | * Modifications: |
| 96 | * |
| 97 | * 1. We only require IEEE, IBM, or VAX double-precision |
| 98 | * arithmetic (not IEEE double-extended). |
| 99 | * 2. We get by with floating-point arithmetic in a case that |
| 100 | * Clinger missed -- when we're computing d * 10^n |
| 101 | * for a small integer d and the integer n is not too |
| 102 | * much larger than 22 (the maximum integer k for which |
| 103 | * we can represent 10^k exactly), we may be able to |
| 104 | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
| 105 | * 3. Rather than a bit-at-a-time adjustment of the binary |
| 106 | * result in the hard case, we use floating-point |
| 107 | * arithmetic to determine the adjustment to within |
| 108 | * one bit; only in really hard cases do we need to |
| 109 | * compute a second residual. |
| 110 | * 4. Because of 3., we don't need a large table of powers of 10 |
| 111 | * for ten-to-e (just some small tables, e.g. of 10^k |
| 112 | * for 0 <= k <= 22). |
| 113 | */ |
| 114 | |
| 115 | /* Linking of Python's #defines to Gay's #defines starts here. */ |
| 116 | |
| 117 | #include "Python.h" |
| 118 | |
| 119 | /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile |
| 120 | the following code */ |
| 121 | #ifndef PY_NO_SHORT_FLOAT_REPR |
| 122 | |
| 123 | #include "float.h" |
| 124 | |
| 125 | #define MALLOC PyMem_Malloc |
| 126 | #define FREE PyMem_Free |
| 127 | |
| 128 | /* This code should also work for ARM mixed-endian format on little-endian |
| 129 | machines, where doubles have byte order 45670123 (in increasing address |
| 130 | order, 0 being the least significant byte). */ |
| 131 | #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 |
| 132 | # define IEEE_8087 |
| 133 | #endif |
| 134 | #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \ |
| 135 | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) |
| 136 | # define IEEE_MC68k |
| 137 | #endif |
| 138 | #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 |
| 139 | #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." |
| 140 | #endif |
| 141 | |
| 142 | /* The code below assumes that the endianness of integers matches the |
| 143 | endianness of the two 32-bit words of a double. Check this. */ |
| 144 | #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ |
| 145 | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) |
| 146 | #error "doubles and ints have incompatible endianness" |
| 147 | #endif |
| 148 | |
| 149 | #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) |
| 150 | #error "doubles and ints have incompatible endianness" |
| 151 | #endif |
| 152 | |
| 153 | |
| 154 | #if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T) |
| 155 | typedef PY_UINT32_T ULong; |
| 156 | typedef PY_INT32_T Long; |
| 157 | #else |
| 158 | #error "Failed to find an exact-width 32-bit integer type" |
| 159 | #endif |
| 160 | |
| 161 | #if defined(HAVE_UINT64_T) |
| 162 | #define ULLong PY_UINT64_T |
| 163 | #else |
| 164 | #undef ULLong |
| 165 | #endif |
| 166 | |
| 167 | #undef DEBUG |
| 168 | #ifdef Py_DEBUG |
| 169 | #define DEBUG |
| 170 | #endif |
| 171 | |
| 172 | /* End Python #define linking */ |
| 173 | |
| 174 | #ifdef DEBUG |
| 175 | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} |
| 176 | #endif |
| 177 | |
| 178 | #ifndef PRIVATE_MEM |
| 179 | #define PRIVATE_MEM 2304 |
| 180 | #endif |
| 181 | #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) |
| 182 | static double private_mem[PRIVATE_mem], *pmem_next = private_mem; |
| 183 | |
| 184 | #ifdef __cplusplus |
| 185 | extern "C" { |
| 186 | #endif |
| 187 | |
| 188 | typedef union { double d; ULong L[2]; } U; |
| 189 | |
| 190 | #ifdef IEEE_8087 |
| 191 | #define word0(x) (x)->L[1] |
| 192 | #define word1(x) (x)->L[0] |
| 193 | #else |
| 194 | #define word0(x) (x)->L[0] |
| 195 | #define word1(x) (x)->L[1] |
| 196 | #endif |
| 197 | #define dval(x) (x)->d |
| 198 | |
| 199 | #ifndef STRTOD_DIGLIM |
| 200 | #define STRTOD_DIGLIM 40 |
| 201 | #endif |
| 202 | |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 203 | /* maximum permitted exponent value for strtod; exponents larger than |
| 204 | MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP |
| 205 | should fit into an int. */ |
| 206 | #ifndef MAX_ABS_EXP |
Mark Dickinson | f45bbb6 | 2013-11-26 16:19:13 +0000 | [diff] [blame] | 207 | #define MAX_ABS_EXP 1100000000U |
| 208 | #endif |
| 209 | /* Bound on length of pieces of input strings in _Py_dg_strtod; specifically, |
| 210 | this is used to bound the total number of digits ignoring leading zeros and |
| 211 | the number of digits that follow the decimal point. Ideally, MAX_DIGITS |
| 212 | should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the |
| 213 | exponent clipping in _Py_dg_strtod can't affect the value of the output. */ |
| 214 | #ifndef MAX_DIGITS |
| 215 | #define MAX_DIGITS 1000000000U |
| 216 | #endif |
| 217 | |
| 218 | /* Guard against trying to use the above values on unusual platforms with ints |
| 219 | * of width less than 32 bits. */ |
| 220 | #if MAX_ABS_EXP > INT_MAX |
| 221 | #error "MAX_ABS_EXP should fit in an int" |
| 222 | #endif |
| 223 | #if MAX_DIGITS > INT_MAX |
| 224 | #error "MAX_DIGITS should fit in an int" |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 225 | #endif |
| 226 | |
| 227 | /* The following definition of Storeinc is appropriate for MIPS processors. |
| 228 | * An alternative that might be better on some machines is |
| 229 | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
| 230 | */ |
| 231 | #if defined(IEEE_8087) |
| 232 | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
| 233 | ((unsigned short *)a)[0] = (unsigned short)c, a++) |
| 234 | #else |
| 235 | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
| 236 | ((unsigned short *)a)[1] = (unsigned short)c, a++) |
| 237 | #endif |
| 238 | |
| 239 | /* #define P DBL_MANT_DIG */ |
| 240 | /* Ten_pmax = floor(P*log(2)/log(5)) */ |
| 241 | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
| 242 | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
| 243 | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
| 244 | |
| 245 | #define Exp_shift 20 |
| 246 | #define Exp_shift1 20 |
| 247 | #define Exp_msk1 0x100000 |
| 248 | #define Exp_msk11 0x100000 |
| 249 | #define Exp_mask 0x7ff00000 |
| 250 | #define P 53 |
| 251 | #define Nbits 53 |
| 252 | #define Bias 1023 |
| 253 | #define Emax 1023 |
| 254 | #define Emin (-1022) |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 255 | #define Etiny (-1074) /* smallest denormal is 2**Etiny */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 256 | #define Exp_1 0x3ff00000 |
| 257 | #define Exp_11 0x3ff00000 |
| 258 | #define Ebits 11 |
| 259 | #define Frac_mask 0xfffff |
| 260 | #define Frac_mask1 0xfffff |
| 261 | #define Ten_pmax 22 |
| 262 | #define Bletch 0x10 |
| 263 | #define Bndry_mask 0xfffff |
| 264 | #define Bndry_mask1 0xfffff |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 265 | #define Sign_bit 0x80000000 |
| 266 | #define Log2P 1 |
| 267 | #define Tiny0 0 |
| 268 | #define Tiny1 1 |
| 269 | #define Quick_max 14 |
| 270 | #define Int_max 14 |
| 271 | |
| 272 | #ifndef Flt_Rounds |
| 273 | #ifdef FLT_ROUNDS |
| 274 | #define Flt_Rounds FLT_ROUNDS |
| 275 | #else |
| 276 | #define Flt_Rounds 1 |
| 277 | #endif |
| 278 | #endif /*Flt_Rounds*/ |
| 279 | |
| 280 | #define Rounding Flt_Rounds |
| 281 | |
| 282 | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
| 283 | #define Big1 0xffffffff |
| 284 | |
Mark Dickinson | e383e82 | 2012-04-29 15:31:56 +0100 | [diff] [blame] | 285 | /* Standard NaN used by _Py_dg_stdnan. */ |
| 286 | |
| 287 | #define NAN_WORD0 0x7ff80000 |
| 288 | #define NAN_WORD1 0 |
| 289 | |
| 290 | /* Bits of the representation of positive infinity. */ |
| 291 | |
| 292 | #define POSINF_WORD0 0x7ff00000 |
| 293 | #define POSINF_WORD1 0 |
| 294 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 295 | /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ |
| 296 | |
| 297 | typedef struct BCinfo BCinfo; |
| 298 | struct |
| 299 | BCinfo { |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 300 | int e0, nd, nd0, scale; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 301 | }; |
| 302 | |
| 303 | #define FFFFFFFF 0xffffffffUL |
| 304 | |
| 305 | #define Kmax 7 |
| 306 | |
| 307 | /* struct Bigint is used to represent arbitrary-precision integers. These |
| 308 | integers are stored in sign-magnitude format, with the magnitude stored as |
| 309 | an array of base 2**32 digits. Bigints are always normalized: if x is a |
| 310 | Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. |
| 311 | |
| 312 | The Bigint fields are as follows: |
| 313 | |
| 314 | - next is a header used by Balloc and Bfree to keep track of lists |
| 315 | of freed Bigints; it's also used for the linked list of |
| 316 | powers of 5 of the form 5**2**i used by pow5mult. |
| 317 | - k indicates which pool this Bigint was allocated from |
| 318 | - maxwds is the maximum number of words space was allocated for |
| 319 | (usually maxwds == 2**k) |
| 320 | - sign is 1 for negative Bigints, 0 for positive. The sign is unused |
| 321 | (ignored on inputs, set to 0 on outputs) in almost all operations |
| 322 | involving Bigints: a notable exception is the diff function, which |
| 323 | ignores signs on inputs but sets the sign of the output correctly. |
| 324 | - wds is the actual number of significant words |
| 325 | - x contains the vector of words (digits) for this Bigint, from least |
| 326 | significant (x[0]) to most significant (x[wds-1]). |
| 327 | */ |
| 328 | |
| 329 | struct |
| 330 | Bigint { |
| 331 | struct Bigint *next; |
| 332 | int k, maxwds, sign, wds; |
| 333 | ULong x[1]; |
| 334 | }; |
| 335 | |
| 336 | typedef struct Bigint Bigint; |
| 337 | |
Mark Dickinson | de50800 | 2010-01-17 21:02:55 +0000 | [diff] [blame] | 338 | #ifndef Py_USING_MEMORY_DEBUGGER |
| 339 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 340 | /* Memory management: memory is allocated from, and returned to, Kmax+1 pools |
| 341 | of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == |
| 342 | 1 << k. These pools are maintained as linked lists, with freelist[k] |
| 343 | pointing to the head of the list for pool k. |
| 344 | |
| 345 | On allocation, if there's no free slot in the appropriate pool, MALLOC is |
| 346 | called to get more memory. This memory is not returned to the system until |
| 347 | Python quits. There's also a private memory pool that's allocated from |
| 348 | in preference to using MALLOC. |
| 349 | |
| 350 | For Bigints with more than (1 << Kmax) digits (which implies at least 1233 |
| 351 | decimal digits), memory is directly allocated using MALLOC, and freed using |
| 352 | FREE. |
| 353 | |
| 354 | XXX: it would be easy to bypass this memory-management system and |
| 355 | translate each call to Balloc into a call to PyMem_Malloc, and each |
| 356 | Bfree to PyMem_Free. Investigate whether this has any significant |
| 357 | performance on impact. */ |
| 358 | |
| 359 | static Bigint *freelist[Kmax+1]; |
| 360 | |
| 361 | /* Allocate space for a Bigint with up to 1<<k digits */ |
| 362 | |
| 363 | static Bigint * |
| 364 | Balloc(int k) |
| 365 | { |
| 366 | int x; |
| 367 | Bigint *rv; |
| 368 | unsigned int len; |
| 369 | |
| 370 | if (k <= Kmax && (rv = freelist[k])) |
| 371 | freelist[k] = rv->next; |
| 372 | else { |
| 373 | x = 1 << k; |
| 374 | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
| 375 | /sizeof(double); |
Mark Dickinson | 7f0ea32 | 2009-04-17 16:06:28 +0000 | [diff] [blame] | 376 | if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) { |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 377 | rv = (Bigint*)pmem_next; |
| 378 | pmem_next += len; |
| 379 | } |
| 380 | else { |
| 381 | rv = (Bigint*)MALLOC(len*sizeof(double)); |
| 382 | if (rv == NULL) |
| 383 | return NULL; |
| 384 | } |
| 385 | rv->k = k; |
| 386 | rv->maxwds = x; |
| 387 | } |
| 388 | rv->sign = rv->wds = 0; |
| 389 | return rv; |
| 390 | } |
| 391 | |
| 392 | /* Free a Bigint allocated with Balloc */ |
| 393 | |
| 394 | static void |
| 395 | Bfree(Bigint *v) |
| 396 | { |
| 397 | if (v) { |
| 398 | if (v->k > Kmax) |
| 399 | FREE((void*)v); |
| 400 | else { |
| 401 | v->next = freelist[v->k]; |
| 402 | freelist[v->k] = v; |
| 403 | } |
| 404 | } |
| 405 | } |
| 406 | |
Mark Dickinson | de50800 | 2010-01-17 21:02:55 +0000 | [diff] [blame] | 407 | #else |
| 408 | |
| 409 | /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and |
| 410 | PyMem_Free directly in place of the custom memory allocation scheme above. |
| 411 | These are provided for the benefit of memory debugging tools like |
| 412 | Valgrind. */ |
| 413 | |
| 414 | /* Allocate space for a Bigint with up to 1<<k digits */ |
| 415 | |
| 416 | static Bigint * |
| 417 | Balloc(int k) |
| 418 | { |
| 419 | int x; |
| 420 | Bigint *rv; |
| 421 | unsigned int len; |
| 422 | |
| 423 | x = 1 << k; |
| 424 | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
| 425 | /sizeof(double); |
| 426 | |
| 427 | rv = (Bigint*)MALLOC(len*sizeof(double)); |
| 428 | if (rv == NULL) |
| 429 | return NULL; |
| 430 | |
| 431 | rv->k = k; |
| 432 | rv->maxwds = x; |
| 433 | rv->sign = rv->wds = 0; |
| 434 | return rv; |
| 435 | } |
| 436 | |
| 437 | /* Free a Bigint allocated with Balloc */ |
| 438 | |
| 439 | static void |
| 440 | Bfree(Bigint *v) |
| 441 | { |
| 442 | if (v) { |
| 443 | FREE((void*)v); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | #endif /* Py_USING_MEMORY_DEBUGGER */ |
| 448 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 449 | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
| 450 | y->wds*sizeof(Long) + 2*sizeof(int)) |
| 451 | |
| 452 | /* Multiply a Bigint b by m and add a. Either modifies b in place and returns |
| 453 | a pointer to the modified b, or Bfrees b and returns a pointer to a copy. |
| 454 | On failure, return NULL. In this case, b will have been already freed. */ |
| 455 | |
| 456 | static Bigint * |
| 457 | multadd(Bigint *b, int m, int a) /* multiply by m and add a */ |
| 458 | { |
| 459 | int i, wds; |
| 460 | #ifdef ULLong |
| 461 | ULong *x; |
| 462 | ULLong carry, y; |
| 463 | #else |
| 464 | ULong carry, *x, y; |
| 465 | ULong xi, z; |
| 466 | #endif |
| 467 | Bigint *b1; |
| 468 | |
| 469 | wds = b->wds; |
| 470 | x = b->x; |
| 471 | i = 0; |
| 472 | carry = a; |
| 473 | do { |
| 474 | #ifdef ULLong |
| 475 | y = *x * (ULLong)m + carry; |
| 476 | carry = y >> 32; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 477 | *x++ = (ULong)(y & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 478 | #else |
| 479 | xi = *x; |
| 480 | y = (xi & 0xffff) * m + carry; |
| 481 | z = (xi >> 16) * m + (y >> 16); |
| 482 | carry = z >> 16; |
| 483 | *x++ = (z << 16) + (y & 0xffff); |
| 484 | #endif |
| 485 | } |
| 486 | while(++i < wds); |
| 487 | if (carry) { |
| 488 | if (wds >= b->maxwds) { |
| 489 | b1 = Balloc(b->k+1); |
| 490 | if (b1 == NULL){ |
| 491 | Bfree(b); |
| 492 | return NULL; |
| 493 | } |
| 494 | Bcopy(b1, b); |
| 495 | Bfree(b); |
| 496 | b = b1; |
| 497 | } |
| 498 | b->x[wds++] = (ULong)carry; |
| 499 | b->wds = wds; |
| 500 | } |
| 501 | return b; |
| 502 | } |
| 503 | |
| 504 | /* convert a string s containing nd decimal digits (possibly containing a |
| 505 | decimal separator at position nd0, which is ignored) to a Bigint. This |
| 506 | function carries on where the parsing code in _Py_dg_strtod leaves off: on |
| 507 | entry, y9 contains the result of converting the first 9 digits. Returns |
| 508 | NULL on failure. */ |
| 509 | |
| 510 | static Bigint * |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 511 | s2b(const char *s, int nd0, int nd, ULong y9) |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 512 | { |
| 513 | Bigint *b; |
| 514 | int i, k; |
| 515 | Long x, y; |
| 516 | |
| 517 | x = (nd + 8) / 9; |
| 518 | for(k = 0, y = 1; x > y; y <<= 1, k++) ; |
| 519 | b = Balloc(k); |
| 520 | if (b == NULL) |
| 521 | return NULL; |
| 522 | b->x[0] = y9; |
| 523 | b->wds = 1; |
| 524 | |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 525 | if (nd <= 9) |
| 526 | return b; |
| 527 | |
| 528 | s += 9; |
| 529 | for (i = 9; i < nd0; i++) { |
| 530 | b = multadd(b, 10, *s++ - '0'); |
| 531 | if (b == NULL) |
| 532 | return NULL; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 533 | } |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 534 | s++; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 535 | for(; i < nd; i++) { |
| 536 | b = multadd(b, 10, *s++ - '0'); |
| 537 | if (b == NULL) |
| 538 | return NULL; |
| 539 | } |
| 540 | return b; |
| 541 | } |
| 542 | |
| 543 | /* count leading 0 bits in the 32-bit integer x. */ |
| 544 | |
| 545 | static int |
| 546 | hi0bits(ULong x) |
| 547 | { |
| 548 | int k = 0; |
| 549 | |
| 550 | if (!(x & 0xffff0000)) { |
| 551 | k = 16; |
| 552 | x <<= 16; |
| 553 | } |
| 554 | if (!(x & 0xff000000)) { |
| 555 | k += 8; |
| 556 | x <<= 8; |
| 557 | } |
| 558 | if (!(x & 0xf0000000)) { |
| 559 | k += 4; |
| 560 | x <<= 4; |
| 561 | } |
| 562 | if (!(x & 0xc0000000)) { |
| 563 | k += 2; |
| 564 | x <<= 2; |
| 565 | } |
| 566 | if (!(x & 0x80000000)) { |
| 567 | k++; |
| 568 | if (!(x & 0x40000000)) |
| 569 | return 32; |
| 570 | } |
| 571 | return k; |
| 572 | } |
| 573 | |
| 574 | /* count trailing 0 bits in the 32-bit integer y, and shift y right by that |
| 575 | number of bits. */ |
| 576 | |
| 577 | static int |
| 578 | lo0bits(ULong *y) |
| 579 | { |
| 580 | int k; |
| 581 | ULong x = *y; |
| 582 | |
| 583 | if (x & 7) { |
| 584 | if (x & 1) |
| 585 | return 0; |
| 586 | if (x & 2) { |
| 587 | *y = x >> 1; |
| 588 | return 1; |
| 589 | } |
| 590 | *y = x >> 2; |
| 591 | return 2; |
| 592 | } |
| 593 | k = 0; |
| 594 | if (!(x & 0xffff)) { |
| 595 | k = 16; |
| 596 | x >>= 16; |
| 597 | } |
| 598 | if (!(x & 0xff)) { |
| 599 | k += 8; |
| 600 | x >>= 8; |
| 601 | } |
| 602 | if (!(x & 0xf)) { |
| 603 | k += 4; |
| 604 | x >>= 4; |
| 605 | } |
| 606 | if (!(x & 0x3)) { |
| 607 | k += 2; |
| 608 | x >>= 2; |
| 609 | } |
| 610 | if (!(x & 1)) { |
| 611 | k++; |
| 612 | x >>= 1; |
| 613 | if (!x) |
| 614 | return 32; |
| 615 | } |
| 616 | *y = x; |
| 617 | return k; |
| 618 | } |
| 619 | |
| 620 | /* convert a small nonnegative integer to a Bigint */ |
| 621 | |
| 622 | static Bigint * |
| 623 | i2b(int i) |
| 624 | { |
| 625 | Bigint *b; |
| 626 | |
| 627 | b = Balloc(1); |
| 628 | if (b == NULL) |
| 629 | return NULL; |
| 630 | b->x[0] = i; |
| 631 | b->wds = 1; |
| 632 | return b; |
| 633 | } |
| 634 | |
| 635 | /* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores |
| 636 | the signs of a and b. */ |
| 637 | |
| 638 | static Bigint * |
| 639 | mult(Bigint *a, Bigint *b) |
| 640 | { |
| 641 | Bigint *c; |
| 642 | int k, wa, wb, wc; |
| 643 | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
| 644 | ULong y; |
| 645 | #ifdef ULLong |
| 646 | ULLong carry, z; |
| 647 | #else |
| 648 | ULong carry, z; |
| 649 | ULong z2; |
| 650 | #endif |
| 651 | |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 652 | if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) { |
| 653 | c = Balloc(0); |
| 654 | if (c == NULL) |
| 655 | return NULL; |
| 656 | c->wds = 1; |
| 657 | c->x[0] = 0; |
| 658 | return c; |
| 659 | } |
| 660 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 661 | if (a->wds < b->wds) { |
| 662 | c = a; |
| 663 | a = b; |
| 664 | b = c; |
| 665 | } |
| 666 | k = a->k; |
| 667 | wa = a->wds; |
| 668 | wb = b->wds; |
| 669 | wc = wa + wb; |
| 670 | if (wc > a->maxwds) |
| 671 | k++; |
| 672 | c = Balloc(k); |
| 673 | if (c == NULL) |
| 674 | return NULL; |
| 675 | for(x = c->x, xa = x + wc; x < xa; x++) |
| 676 | *x = 0; |
| 677 | xa = a->x; |
| 678 | xae = xa + wa; |
| 679 | xb = b->x; |
| 680 | xbe = xb + wb; |
| 681 | xc0 = c->x; |
| 682 | #ifdef ULLong |
| 683 | for(; xb < xbe; xc0++) { |
| 684 | if ((y = *xb++)) { |
| 685 | x = xa; |
| 686 | xc = xc0; |
| 687 | carry = 0; |
| 688 | do { |
| 689 | z = *x++ * (ULLong)y + *xc + carry; |
| 690 | carry = z >> 32; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 691 | *xc++ = (ULong)(z & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 692 | } |
| 693 | while(x < xae); |
| 694 | *xc = (ULong)carry; |
| 695 | } |
| 696 | } |
| 697 | #else |
| 698 | for(; xb < xbe; xb++, xc0++) { |
| 699 | if (y = *xb & 0xffff) { |
| 700 | x = xa; |
| 701 | xc = xc0; |
| 702 | carry = 0; |
| 703 | do { |
| 704 | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
| 705 | carry = z >> 16; |
| 706 | z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
| 707 | carry = z2 >> 16; |
| 708 | Storeinc(xc, z2, z); |
| 709 | } |
| 710 | while(x < xae); |
| 711 | *xc = carry; |
| 712 | } |
| 713 | if (y = *xb >> 16) { |
| 714 | x = xa; |
| 715 | xc = xc0; |
| 716 | carry = 0; |
| 717 | z2 = *xc; |
| 718 | do { |
| 719 | z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
| 720 | carry = z >> 16; |
| 721 | Storeinc(xc, z, z2); |
| 722 | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
| 723 | carry = z2 >> 16; |
| 724 | } |
| 725 | while(x < xae); |
| 726 | *xc = z2; |
| 727 | } |
| 728 | } |
| 729 | #endif |
| 730 | for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; |
| 731 | c->wds = wc; |
| 732 | return c; |
| 733 | } |
| 734 | |
Mark Dickinson | de50800 | 2010-01-17 21:02:55 +0000 | [diff] [blame] | 735 | #ifndef Py_USING_MEMORY_DEBUGGER |
| 736 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 737 | /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */ |
| 738 | |
| 739 | static Bigint *p5s; |
| 740 | |
| 741 | /* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on |
| 742 | failure; if the returned pointer is distinct from b then the original |
| 743 | Bigint b will have been Bfree'd. Ignores the sign of b. */ |
| 744 | |
| 745 | static Bigint * |
| 746 | pow5mult(Bigint *b, int k) |
| 747 | { |
| 748 | Bigint *b1, *p5, *p51; |
| 749 | int i; |
| 750 | static int p05[3] = { 5, 25, 125 }; |
| 751 | |
| 752 | if ((i = k & 3)) { |
| 753 | b = multadd(b, p05[i-1], 0); |
| 754 | if (b == NULL) |
| 755 | return NULL; |
| 756 | } |
| 757 | |
| 758 | if (!(k >>= 2)) |
| 759 | return b; |
| 760 | p5 = p5s; |
| 761 | if (!p5) { |
| 762 | /* first time */ |
| 763 | p5 = i2b(625); |
| 764 | if (p5 == NULL) { |
| 765 | Bfree(b); |
| 766 | return NULL; |
| 767 | } |
| 768 | p5s = p5; |
| 769 | p5->next = 0; |
| 770 | } |
| 771 | for(;;) { |
| 772 | if (k & 1) { |
| 773 | b1 = mult(b, p5); |
| 774 | Bfree(b); |
| 775 | b = b1; |
| 776 | if (b == NULL) |
| 777 | return NULL; |
| 778 | } |
| 779 | if (!(k >>= 1)) |
| 780 | break; |
| 781 | p51 = p5->next; |
| 782 | if (!p51) { |
| 783 | p51 = mult(p5,p5); |
| 784 | if (p51 == NULL) { |
| 785 | Bfree(b); |
| 786 | return NULL; |
| 787 | } |
| 788 | p51->next = 0; |
| 789 | p5->next = p51; |
| 790 | } |
| 791 | p5 = p51; |
| 792 | } |
| 793 | return b; |
| 794 | } |
| 795 | |
Mark Dickinson | de50800 | 2010-01-17 21:02:55 +0000 | [diff] [blame] | 796 | #else |
| 797 | |
| 798 | /* Version of pow5mult that doesn't cache powers of 5. Provided for |
| 799 | the benefit of memory debugging tools like Valgrind. */ |
| 800 | |
| 801 | static Bigint * |
| 802 | pow5mult(Bigint *b, int k) |
| 803 | { |
| 804 | Bigint *b1, *p5, *p51; |
| 805 | int i; |
| 806 | static int p05[3] = { 5, 25, 125 }; |
| 807 | |
| 808 | if ((i = k & 3)) { |
| 809 | b = multadd(b, p05[i-1], 0); |
| 810 | if (b == NULL) |
| 811 | return NULL; |
| 812 | } |
| 813 | |
| 814 | if (!(k >>= 2)) |
| 815 | return b; |
| 816 | p5 = i2b(625); |
| 817 | if (p5 == NULL) { |
| 818 | Bfree(b); |
| 819 | return NULL; |
| 820 | } |
| 821 | |
| 822 | for(;;) { |
| 823 | if (k & 1) { |
| 824 | b1 = mult(b, p5); |
| 825 | Bfree(b); |
| 826 | b = b1; |
| 827 | if (b == NULL) { |
| 828 | Bfree(p5); |
| 829 | return NULL; |
| 830 | } |
| 831 | } |
| 832 | if (!(k >>= 1)) |
| 833 | break; |
| 834 | p51 = mult(p5, p5); |
| 835 | Bfree(p5); |
| 836 | p5 = p51; |
| 837 | if (p5 == NULL) { |
| 838 | Bfree(b); |
| 839 | return NULL; |
| 840 | } |
| 841 | } |
| 842 | Bfree(p5); |
| 843 | return b; |
| 844 | } |
| 845 | |
| 846 | #endif /* Py_USING_MEMORY_DEBUGGER */ |
| 847 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 848 | /* shift a Bigint b left by k bits. Return a pointer to the shifted result, |
| 849 | or NULL on failure. If the returned pointer is distinct from b then the |
| 850 | original b will have been Bfree'd. Ignores the sign of b. */ |
| 851 | |
| 852 | static Bigint * |
| 853 | lshift(Bigint *b, int k) |
| 854 | { |
| 855 | int i, k1, n, n1; |
| 856 | Bigint *b1; |
| 857 | ULong *x, *x1, *xe, z; |
| 858 | |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 859 | if (!k || (!b->x[0] && b->wds == 1)) |
| 860 | return b; |
| 861 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 862 | n = k >> 5; |
| 863 | k1 = b->k; |
| 864 | n1 = n + b->wds + 1; |
| 865 | for(i = b->maxwds; n1 > i; i <<= 1) |
| 866 | k1++; |
| 867 | b1 = Balloc(k1); |
| 868 | if (b1 == NULL) { |
| 869 | Bfree(b); |
| 870 | return NULL; |
| 871 | } |
| 872 | x1 = b1->x; |
| 873 | for(i = 0; i < n; i++) |
| 874 | *x1++ = 0; |
| 875 | x = b->x; |
| 876 | xe = x + b->wds; |
| 877 | if (k &= 0x1f) { |
| 878 | k1 = 32 - k; |
| 879 | z = 0; |
| 880 | do { |
| 881 | *x1++ = *x << k | z; |
| 882 | z = *x++ >> k1; |
| 883 | } |
| 884 | while(x < xe); |
| 885 | if ((*x1 = z)) |
| 886 | ++n1; |
| 887 | } |
| 888 | else do |
| 889 | *x1++ = *x++; |
| 890 | while(x < xe); |
| 891 | b1->wds = n1 - 1; |
| 892 | Bfree(b); |
| 893 | return b1; |
| 894 | } |
| 895 | |
| 896 | /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and |
| 897 | 1 if a > b. Ignores signs of a and b. */ |
| 898 | |
| 899 | static int |
| 900 | cmp(Bigint *a, Bigint *b) |
| 901 | { |
| 902 | ULong *xa, *xa0, *xb, *xb0; |
| 903 | int i, j; |
| 904 | |
| 905 | i = a->wds; |
| 906 | j = b->wds; |
| 907 | #ifdef DEBUG |
| 908 | if (i > 1 && !a->x[i-1]) |
| 909 | Bug("cmp called with a->x[a->wds-1] == 0"); |
| 910 | if (j > 1 && !b->x[j-1]) |
| 911 | Bug("cmp called with b->x[b->wds-1] == 0"); |
| 912 | #endif |
| 913 | if (i -= j) |
| 914 | return i; |
| 915 | xa0 = a->x; |
| 916 | xa = xa0 + j; |
| 917 | xb0 = b->x; |
| 918 | xb = xb0 + j; |
| 919 | for(;;) { |
| 920 | if (*--xa != *--xb) |
| 921 | return *xa < *xb ? -1 : 1; |
| 922 | if (xa <= xa0) |
| 923 | break; |
| 924 | } |
| 925 | return 0; |
| 926 | } |
| 927 | |
| 928 | /* Take the difference of Bigints a and b, returning a new Bigint. Returns |
| 929 | NULL on failure. The signs of a and b are ignored, but the sign of the |
| 930 | result is set appropriately. */ |
| 931 | |
| 932 | static Bigint * |
| 933 | diff(Bigint *a, Bigint *b) |
| 934 | { |
| 935 | Bigint *c; |
| 936 | int i, wa, wb; |
| 937 | ULong *xa, *xae, *xb, *xbe, *xc; |
| 938 | #ifdef ULLong |
| 939 | ULLong borrow, y; |
| 940 | #else |
| 941 | ULong borrow, y; |
| 942 | ULong z; |
| 943 | #endif |
| 944 | |
| 945 | i = cmp(a,b); |
| 946 | if (!i) { |
| 947 | c = Balloc(0); |
| 948 | if (c == NULL) |
| 949 | return NULL; |
| 950 | c->wds = 1; |
| 951 | c->x[0] = 0; |
| 952 | return c; |
| 953 | } |
| 954 | if (i < 0) { |
| 955 | c = a; |
| 956 | a = b; |
| 957 | b = c; |
| 958 | i = 1; |
| 959 | } |
| 960 | else |
| 961 | i = 0; |
| 962 | c = Balloc(a->k); |
| 963 | if (c == NULL) |
| 964 | return NULL; |
| 965 | c->sign = i; |
| 966 | wa = a->wds; |
| 967 | xa = a->x; |
| 968 | xae = xa + wa; |
| 969 | wb = b->wds; |
| 970 | xb = b->x; |
| 971 | xbe = xb + wb; |
| 972 | xc = c->x; |
| 973 | borrow = 0; |
| 974 | #ifdef ULLong |
| 975 | do { |
| 976 | y = (ULLong)*xa++ - *xb++ - borrow; |
| 977 | borrow = y >> 32 & (ULong)1; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 978 | *xc++ = (ULong)(y & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 979 | } |
| 980 | while(xb < xbe); |
| 981 | while(xa < xae) { |
| 982 | y = *xa++ - borrow; |
| 983 | borrow = y >> 32 & (ULong)1; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 984 | *xc++ = (ULong)(y & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 985 | } |
| 986 | #else |
| 987 | do { |
| 988 | y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
| 989 | borrow = (y & 0x10000) >> 16; |
| 990 | z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
| 991 | borrow = (z & 0x10000) >> 16; |
| 992 | Storeinc(xc, z, y); |
| 993 | } |
| 994 | while(xb < xbe); |
| 995 | while(xa < xae) { |
| 996 | y = (*xa & 0xffff) - borrow; |
| 997 | borrow = (y & 0x10000) >> 16; |
| 998 | z = (*xa++ >> 16) - borrow; |
| 999 | borrow = (z & 0x10000) >> 16; |
| 1000 | Storeinc(xc, z, y); |
| 1001 | } |
| 1002 | #endif |
| 1003 | while(!*--xc) |
| 1004 | wa--; |
| 1005 | c->wds = wa; |
| 1006 | return c; |
| 1007 | } |
| 1008 | |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1009 | /* Given a positive normal double x, return the difference between x and the |
| 1010 | next double up. Doesn't give correct results for subnormals. */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1011 | |
| 1012 | static double |
| 1013 | ulp(U *x) |
| 1014 | { |
| 1015 | Long L; |
| 1016 | U u; |
| 1017 | |
| 1018 | L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; |
| 1019 | word0(&u) = L; |
| 1020 | word1(&u) = 0; |
| 1021 | return dval(&u); |
| 1022 | } |
| 1023 | |
| 1024 | /* Convert a Bigint to a double plus an exponent */ |
| 1025 | |
| 1026 | static double |
| 1027 | b2d(Bigint *a, int *e) |
| 1028 | { |
| 1029 | ULong *xa, *xa0, w, y, z; |
| 1030 | int k; |
| 1031 | U d; |
| 1032 | |
| 1033 | xa0 = a->x; |
| 1034 | xa = xa0 + a->wds; |
| 1035 | y = *--xa; |
| 1036 | #ifdef DEBUG |
| 1037 | if (!y) Bug("zero y in b2d"); |
| 1038 | #endif |
| 1039 | k = hi0bits(y); |
| 1040 | *e = 32 - k; |
| 1041 | if (k < Ebits) { |
| 1042 | word0(&d) = Exp_1 | y >> (Ebits - k); |
| 1043 | w = xa > xa0 ? *--xa : 0; |
| 1044 | word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); |
| 1045 | goto ret_d; |
| 1046 | } |
| 1047 | z = xa > xa0 ? *--xa : 0; |
| 1048 | if (k -= Ebits) { |
| 1049 | word0(&d) = Exp_1 | y << k | z >> (32 - k); |
| 1050 | y = xa > xa0 ? *--xa : 0; |
| 1051 | word1(&d) = z << k | y >> (32 - k); |
| 1052 | } |
| 1053 | else { |
| 1054 | word0(&d) = Exp_1 | y; |
| 1055 | word1(&d) = z; |
| 1056 | } |
| 1057 | ret_d: |
| 1058 | return dval(&d); |
| 1059 | } |
| 1060 | |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1061 | /* Convert a scaled double to a Bigint plus an exponent. Similar to d2b, |
| 1062 | except that it accepts the scale parameter used in _Py_dg_strtod (which |
| 1063 | should be either 0 or 2*P), and the normalization for the return value is |
| 1064 | different (see below). On input, d should be finite and nonnegative, and d |
| 1065 | / 2**scale should be exactly representable as an IEEE 754 double. |
| 1066 | |
| 1067 | Returns a Bigint b and an integer e such that |
| 1068 | |
| 1069 | dval(d) / 2**scale = b * 2**e. |
| 1070 | |
| 1071 | Unlike d2b, b is not necessarily odd: b and e are normalized so |
| 1072 | that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P |
| 1073 | and e == Etiny. This applies equally to an input of 0.0: in that |
| 1074 | case the return values are b = 0 and e = Etiny. |
| 1075 | |
| 1076 | The above normalization ensures that for all possible inputs d, |
| 1077 | 2**e gives ulp(d/2**scale). |
| 1078 | |
| 1079 | Returns NULL on failure. |
| 1080 | */ |
| 1081 | |
| 1082 | static Bigint * |
| 1083 | sd2b(U *d, int scale, int *e) |
| 1084 | { |
| 1085 | Bigint *b; |
| 1086 | |
| 1087 | b = Balloc(1); |
| 1088 | if (b == NULL) |
| 1089 | return NULL; |
| 1090 | |
| 1091 | /* First construct b and e assuming that scale == 0. */ |
| 1092 | b->wds = 2; |
| 1093 | b->x[0] = word1(d); |
| 1094 | b->x[1] = word0(d) & Frac_mask; |
| 1095 | *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift); |
| 1096 | if (*e < Etiny) |
| 1097 | *e = Etiny; |
| 1098 | else |
| 1099 | b->x[1] |= Exp_msk1; |
| 1100 | |
| 1101 | /* Now adjust for scale, provided that b != 0. */ |
| 1102 | if (scale && (b->x[0] || b->x[1])) { |
| 1103 | *e -= scale; |
| 1104 | if (*e < Etiny) { |
| 1105 | scale = Etiny - *e; |
| 1106 | *e = Etiny; |
| 1107 | /* We can't shift more than P-1 bits without shifting out a 1. */ |
| 1108 | assert(0 < scale && scale <= P - 1); |
| 1109 | if (scale >= 32) { |
| 1110 | /* The bits shifted out should all be zero. */ |
| 1111 | assert(b->x[0] == 0); |
| 1112 | b->x[0] = b->x[1]; |
| 1113 | b->x[1] = 0; |
| 1114 | scale -= 32; |
| 1115 | } |
| 1116 | if (scale) { |
| 1117 | /* The bits shifted out should all be zero. */ |
| 1118 | assert(b->x[0] << (32 - scale) == 0); |
| 1119 | b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale)); |
| 1120 | b->x[1] >>= scale; |
| 1121 | } |
| 1122 | } |
| 1123 | } |
| 1124 | /* Ensure b is normalized. */ |
| 1125 | if (!b->x[1]) |
| 1126 | b->wds = 1; |
| 1127 | |
| 1128 | return b; |
| 1129 | } |
| 1130 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1131 | /* Convert a double to a Bigint plus an exponent. Return NULL on failure. |
| 1132 | |
| 1133 | Given a finite nonzero double d, return an odd Bigint b and exponent *e |
| 1134 | such that fabs(d) = b * 2**e. On return, *bbits gives the number of |
Mark Dickinson | 180e4cd | 2010-01-04 21:33:31 +0000 | [diff] [blame] | 1135 | significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits). |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1136 | |
| 1137 | If d is zero, then b == 0, *e == -1010, *bbits = 0. |
| 1138 | */ |
| 1139 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1140 | static Bigint * |
| 1141 | d2b(U *d, int *e, int *bits) |
| 1142 | { |
| 1143 | Bigint *b; |
| 1144 | int de, k; |
| 1145 | ULong *x, y, z; |
| 1146 | int i; |
| 1147 | |
| 1148 | b = Balloc(1); |
| 1149 | if (b == NULL) |
| 1150 | return NULL; |
| 1151 | x = b->x; |
| 1152 | |
| 1153 | z = word0(d) & Frac_mask; |
| 1154 | word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */ |
| 1155 | if ((de = (int)(word0(d) >> Exp_shift))) |
| 1156 | z |= Exp_msk1; |
| 1157 | if ((y = word1(d))) { |
| 1158 | if ((k = lo0bits(&y))) { |
| 1159 | x[0] = y | z << (32 - k); |
| 1160 | z >>= k; |
| 1161 | } |
| 1162 | else |
| 1163 | x[0] = y; |
| 1164 | i = |
| 1165 | b->wds = (x[1] = z) ? 2 : 1; |
| 1166 | } |
| 1167 | else { |
| 1168 | k = lo0bits(&z); |
| 1169 | x[0] = z; |
| 1170 | i = |
| 1171 | b->wds = 1; |
| 1172 | k += 32; |
| 1173 | } |
| 1174 | if (de) { |
| 1175 | *e = de - Bias - (P-1) + k; |
| 1176 | *bits = P - k; |
| 1177 | } |
| 1178 | else { |
| 1179 | *e = de - Bias - (P-1) + 1 + k; |
| 1180 | *bits = 32*i - hi0bits(x[i-1]); |
| 1181 | } |
| 1182 | return b; |
| 1183 | } |
| 1184 | |
| 1185 | /* Compute the ratio of two Bigints, as a double. The result may have an |
| 1186 | error of up to 2.5 ulps. */ |
| 1187 | |
| 1188 | static double |
| 1189 | ratio(Bigint *a, Bigint *b) |
| 1190 | { |
| 1191 | U da, db; |
| 1192 | int k, ka, kb; |
| 1193 | |
| 1194 | dval(&da) = b2d(a, &ka); |
| 1195 | dval(&db) = b2d(b, &kb); |
| 1196 | k = ka - kb + 32*(a->wds - b->wds); |
| 1197 | if (k > 0) |
| 1198 | word0(&da) += k*Exp_msk1; |
| 1199 | else { |
| 1200 | k = -k; |
| 1201 | word0(&db) += k*Exp_msk1; |
| 1202 | } |
| 1203 | return dval(&da) / dval(&db); |
| 1204 | } |
| 1205 | |
| 1206 | static const double |
| 1207 | tens[] = { |
| 1208 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
| 1209 | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
| 1210 | 1e20, 1e21, 1e22 |
| 1211 | }; |
| 1212 | |
| 1213 | static const double |
| 1214 | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
| 1215 | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
| 1216 | 9007199254740992.*9007199254740992.e-256 |
| 1217 | /* = 2^106 * 1e-256 */ |
| 1218 | }; |
| 1219 | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
| 1220 | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
| 1221 | #define Scale_Bit 0x10 |
| 1222 | #define n_bigtens 5 |
| 1223 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1224 | #define ULbits 32 |
| 1225 | #define kshift 5 |
| 1226 | #define kmask 31 |
| 1227 | |
| 1228 | |
| 1229 | static int |
| 1230 | dshift(Bigint *b, int p2) |
| 1231 | { |
| 1232 | int rv = hi0bits(b->x[b->wds-1]) - 4; |
| 1233 | if (p2 > 0) |
| 1234 | rv -= p2; |
| 1235 | return rv & kmask; |
| 1236 | } |
| 1237 | |
| 1238 | /* special case of Bigint division. The quotient is always in the range 0 <= |
| 1239 | quotient < 10, and on entry the divisor S is normalized so that its top 4 |
| 1240 | bits (28--31) are zero and bit 27 is set. */ |
| 1241 | |
| 1242 | static int |
| 1243 | quorem(Bigint *b, Bigint *S) |
| 1244 | { |
| 1245 | int n; |
| 1246 | ULong *bx, *bxe, q, *sx, *sxe; |
| 1247 | #ifdef ULLong |
| 1248 | ULLong borrow, carry, y, ys; |
| 1249 | #else |
| 1250 | ULong borrow, carry, y, ys; |
| 1251 | ULong si, z, zs; |
| 1252 | #endif |
| 1253 | |
| 1254 | n = S->wds; |
| 1255 | #ifdef DEBUG |
| 1256 | /*debug*/ if (b->wds > n) |
| 1257 | /*debug*/ Bug("oversize b in quorem"); |
| 1258 | #endif |
| 1259 | if (b->wds < n) |
| 1260 | return 0; |
| 1261 | sx = S->x; |
| 1262 | sxe = sx + --n; |
| 1263 | bx = b->x; |
| 1264 | bxe = bx + n; |
| 1265 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
| 1266 | #ifdef DEBUG |
| 1267 | /*debug*/ if (q > 9) |
| 1268 | /*debug*/ Bug("oversized quotient in quorem"); |
| 1269 | #endif |
| 1270 | if (q) { |
| 1271 | borrow = 0; |
| 1272 | carry = 0; |
| 1273 | do { |
| 1274 | #ifdef ULLong |
| 1275 | ys = *sx++ * (ULLong)q + carry; |
| 1276 | carry = ys >> 32; |
| 1277 | y = *bx - (ys & FFFFFFFF) - borrow; |
| 1278 | borrow = y >> 32 & (ULong)1; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 1279 | *bx++ = (ULong)(y & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1280 | #else |
| 1281 | si = *sx++; |
| 1282 | ys = (si & 0xffff) * q + carry; |
| 1283 | zs = (si >> 16) * q + (ys >> 16); |
| 1284 | carry = zs >> 16; |
| 1285 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
| 1286 | borrow = (y & 0x10000) >> 16; |
| 1287 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
| 1288 | borrow = (z & 0x10000) >> 16; |
| 1289 | Storeinc(bx, z, y); |
| 1290 | #endif |
| 1291 | } |
| 1292 | while(sx <= sxe); |
| 1293 | if (!*bxe) { |
| 1294 | bx = b->x; |
| 1295 | while(--bxe > bx && !*bxe) |
| 1296 | --n; |
| 1297 | b->wds = n; |
| 1298 | } |
| 1299 | } |
| 1300 | if (cmp(b, S) >= 0) { |
| 1301 | q++; |
| 1302 | borrow = 0; |
| 1303 | carry = 0; |
| 1304 | bx = b->x; |
| 1305 | sx = S->x; |
| 1306 | do { |
| 1307 | #ifdef ULLong |
| 1308 | ys = *sx++ + carry; |
| 1309 | carry = ys >> 32; |
| 1310 | y = *bx - (ys & FFFFFFFF) - borrow; |
| 1311 | borrow = y >> 32 & (ULong)1; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 1312 | *bx++ = (ULong)(y & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1313 | #else |
| 1314 | si = *sx++; |
| 1315 | ys = (si & 0xffff) + carry; |
| 1316 | zs = (si >> 16) + (ys >> 16); |
| 1317 | carry = zs >> 16; |
| 1318 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
| 1319 | borrow = (y & 0x10000) >> 16; |
| 1320 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
| 1321 | borrow = (z & 0x10000) >> 16; |
| 1322 | Storeinc(bx, z, y); |
| 1323 | #endif |
| 1324 | } |
| 1325 | while(sx <= sxe); |
| 1326 | bx = b->x; |
| 1327 | bxe = bx + n; |
| 1328 | if (!*bxe) { |
| 1329 | while(--bxe > bx && !*bxe) |
| 1330 | --n; |
| 1331 | b->wds = n; |
| 1332 | } |
| 1333 | } |
| 1334 | return q; |
| 1335 | } |
| 1336 | |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1337 | /* sulp(x) is a version of ulp(x) that takes bc.scale into account. |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 1338 | |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1339 | Assuming that x is finite and nonnegative (positive zero is fine |
| 1340 | here) and x / 2^bc.scale is exactly representable as a double, |
| 1341 | sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */ |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 1342 | |
| 1343 | static double |
| 1344 | sulp(U *x, BCinfo *bc) |
| 1345 | { |
| 1346 | U u; |
| 1347 | |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1348 | if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 1349 | /* rv/2^bc->scale is subnormal */ |
| 1350 | word0(&u) = (P+2)*Exp_msk1; |
| 1351 | word1(&u) = 0; |
| 1352 | return u.d; |
| 1353 | } |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1354 | else { |
| 1355 | assert(word0(x) || word1(x)); /* x != 0.0 */ |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 1356 | return ulp(x); |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1357 | } |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 1358 | } |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1359 | |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1360 | /* The bigcomp function handles some hard cases for strtod, for inputs |
| 1361 | with more than STRTOD_DIGLIM digits. It's called once an initial |
| 1362 | estimate for the double corresponding to the input string has |
| 1363 | already been obtained by the code in _Py_dg_strtod. |
| 1364 | |
| 1365 | The bigcomp function is only called after _Py_dg_strtod has found a |
| 1366 | double value rv such that either rv or rv + 1ulp represents the |
| 1367 | correctly rounded value corresponding to the original string. It |
| 1368 | determines which of these two values is the correct one by |
| 1369 | computing the decimal digits of rv + 0.5ulp and comparing them with |
| 1370 | the corresponding digits of s0. |
| 1371 | |
| 1372 | In the following, write dv for the absolute value of the number represented |
| 1373 | by the input string. |
| 1374 | |
| 1375 | Inputs: |
| 1376 | |
| 1377 | s0 points to the first significant digit of the input string. |
| 1378 | |
| 1379 | rv is a (possibly scaled) estimate for the closest double value to the |
| 1380 | value represented by the original input to _Py_dg_strtod. If |
| 1381 | bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to |
| 1382 | the input value. |
| 1383 | |
| 1384 | bc is a struct containing information gathered during the parsing and |
| 1385 | estimation steps of _Py_dg_strtod. Description of fields follows: |
| 1386 | |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1387 | bc->e0 gives the exponent of the input value, such that dv = (integer |
| 1388 | given by the bd->nd digits of s0) * 10**e0 |
| 1389 | |
| 1390 | bc->nd gives the total number of significant digits of s0. It will |
| 1391 | be at least 1. |
| 1392 | |
| 1393 | bc->nd0 gives the number of significant digits of s0 before the |
| 1394 | decimal separator. If there's no decimal separator, bc->nd0 == |
| 1395 | bc->nd. |
| 1396 | |
| 1397 | bc->scale is the value used to scale rv to avoid doing arithmetic with |
| 1398 | subnormal values. It's either 0 or 2*P (=106). |
| 1399 | |
| 1400 | Outputs: |
| 1401 | |
| 1402 | On successful exit, rv/2^(bc->scale) is the closest double to dv. |
| 1403 | |
| 1404 | Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1405 | |
| 1406 | static int |
| 1407 | bigcomp(U *rv, const char *s0, BCinfo *bc) |
| 1408 | { |
| 1409 | Bigint *b, *d; |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1410 | int b2, d2, dd, i, nd, nd0, odd, p2, p5; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1411 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1412 | nd = bc->nd; |
| 1413 | nd0 = bc->nd0; |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 1414 | p5 = nd + bc->e0; |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1415 | b = sd2b(rv, bc->scale, &p2); |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1416 | if (b == NULL) |
| 1417 | return -1; |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1418 | |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1419 | /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway |
| 1420 | case, this is used for round to even. */ |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1421 | odd = b->x[0] & 1; |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1422 | |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1423 | /* left shift b by 1 bit and or a 1 into the least significant bit; |
| 1424 | this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */ |
| 1425 | b = lshift(b, 1); |
| 1426 | if (b == NULL) |
| 1427 | return -1; |
| 1428 | b->x[0] |= 1; |
| 1429 | p2--; |
| 1430 | |
| 1431 | p2 -= p5; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1432 | d = i2b(1); |
| 1433 | if (d == NULL) { |
| 1434 | Bfree(b); |
| 1435 | return -1; |
| 1436 | } |
| 1437 | /* Arrange for convenient computation of quotients: |
| 1438 | * shift left if necessary so divisor has 4 leading 0 bits. |
| 1439 | */ |
| 1440 | if (p5 > 0) { |
| 1441 | d = pow5mult(d, p5); |
| 1442 | if (d == NULL) { |
| 1443 | Bfree(b); |
| 1444 | return -1; |
| 1445 | } |
| 1446 | } |
| 1447 | else if (p5 < 0) { |
| 1448 | b = pow5mult(b, -p5); |
| 1449 | if (b == NULL) { |
| 1450 | Bfree(d); |
| 1451 | return -1; |
| 1452 | } |
| 1453 | } |
| 1454 | if (p2 > 0) { |
| 1455 | b2 = p2; |
| 1456 | d2 = 0; |
| 1457 | } |
| 1458 | else { |
| 1459 | b2 = 0; |
| 1460 | d2 = -p2; |
| 1461 | } |
| 1462 | i = dshift(d, d2); |
| 1463 | if ((b2 += i) > 0) { |
| 1464 | b = lshift(b, b2); |
| 1465 | if (b == NULL) { |
| 1466 | Bfree(d); |
| 1467 | return -1; |
| 1468 | } |
| 1469 | } |
| 1470 | if ((d2 += i) > 0) { |
| 1471 | d = lshift(d, d2); |
| 1472 | if (d == NULL) { |
| 1473 | Bfree(b); |
| 1474 | return -1; |
| 1475 | } |
| 1476 | } |
| 1477 | |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1478 | /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 == |
| 1479 | * b/d, or s0 > b/d. Here the digits of s0 are thought of as representing |
| 1480 | * a number in the range [0.1, 1). */ |
| 1481 | if (cmp(b, d) >= 0) |
| 1482 | /* b/d >= 1 */ |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 1483 | dd = -1; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1484 | else { |
| 1485 | i = 0; |
| 1486 | for(;;) { |
| 1487 | b = multadd(b, 10, 0); |
| 1488 | if (b == NULL) { |
| 1489 | Bfree(d); |
| 1490 | return -1; |
| 1491 | } |
| 1492 | dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d); |
| 1493 | i++; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1494 | |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1495 | if (dd) |
| 1496 | break; |
| 1497 | if (!b->x[0] && b->wds == 1) { |
| 1498 | /* b/d == 0 */ |
| 1499 | dd = i < nd; |
| 1500 | break; |
| 1501 | } |
| 1502 | if (!(i < nd)) { |
| 1503 | /* b/d != 0, but digits of s0 exhausted */ |
| 1504 | dd = -1; |
| 1505 | break; |
| 1506 | } |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1507 | } |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1508 | } |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1509 | Bfree(b); |
| 1510 | Bfree(d); |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1511 | if (dd > 0 || (dd == 0 && odd)) |
| 1512 | dval(rv) += sulp(rv, bc); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1513 | return 0; |
| 1514 | } |
| 1515 | |
Mark Dickinson | e383e82 | 2012-04-29 15:31:56 +0100 | [diff] [blame] | 1516 | /* Return a 'standard' NaN value. |
| 1517 | |
| 1518 | There are exactly two quiet NaNs that don't arise by 'quieting' signaling |
| 1519 | NaNs (see IEEE 754-2008, section 6.2.1). If sign == 0, return the one whose |
| 1520 | sign bit is cleared. Otherwise, return the one whose sign bit is set. |
| 1521 | */ |
| 1522 | |
| 1523 | double |
| 1524 | _Py_dg_stdnan(int sign) |
| 1525 | { |
| 1526 | U rv; |
| 1527 | word0(&rv) = NAN_WORD0; |
| 1528 | word1(&rv) = NAN_WORD1; |
| 1529 | if (sign) |
| 1530 | word0(&rv) |= Sign_bit; |
| 1531 | return dval(&rv); |
| 1532 | } |
| 1533 | |
| 1534 | /* Return positive or negative infinity, according to the given sign (0 for |
| 1535 | * positive infinity, 1 for negative infinity). */ |
| 1536 | |
| 1537 | double |
| 1538 | _Py_dg_infinity(int sign) |
| 1539 | { |
| 1540 | U rv; |
| 1541 | word0(&rv) = POSINF_WORD0; |
| 1542 | word1(&rv) = POSINF_WORD1; |
| 1543 | return sign ? -dval(&rv) : dval(&rv); |
| 1544 | } |
| 1545 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1546 | double |
| 1547 | _Py_dg_strtod(const char *s00, char **se) |
| 1548 | { |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1549 | int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error; |
| 1550 | int esign, i, j, k, lz, nd, nd0, odd, sign; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1551 | const char *s, *s0, *s1; |
| 1552 | double aadj, aadj1; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1553 | U aadj2, adj, rv, rv0; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1554 | ULong y, z, abs_exp; |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1555 | Long L; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1556 | BCinfo bc; |
| 1557 | Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; |
Mark Dickinson | f45bbb6 | 2013-11-26 16:19:13 +0000 | [diff] [blame] | 1558 | size_t ndigits, fraclen; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1559 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1560 | dval(&rv) = 0.; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1561 | |
| 1562 | /* Start parsing. */ |
| 1563 | c = *(s = s00); |
| 1564 | |
| 1565 | /* Parse optional sign, if present. */ |
| 1566 | sign = 0; |
| 1567 | switch (c) { |
| 1568 | case '-': |
| 1569 | sign = 1; |
| 1570 | /* no break */ |
| 1571 | case '+': |
| 1572 | c = *++s; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1573 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1574 | |
| 1575 | /* Skip leading zeros: lz is true iff there were leading zeros. */ |
| 1576 | s1 = s; |
| 1577 | while (c == '0') |
| 1578 | c = *++s; |
| 1579 | lz = s != s1; |
| 1580 | |
Mark Dickinson | f45bbb6 | 2013-11-26 16:19:13 +0000 | [diff] [blame] | 1581 | /* Point s0 at the first nonzero digit (if any). fraclen will be the |
| 1582 | number of digits between the decimal point and the end of the |
| 1583 | digit string. ndigits will be the total number of digits ignoring |
| 1584 | leading zeros. */ |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1585 | s0 = s1 = s; |
| 1586 | while ('0' <= c && c <= '9') |
| 1587 | c = *++s; |
Mark Dickinson | f45bbb6 | 2013-11-26 16:19:13 +0000 | [diff] [blame] | 1588 | ndigits = s - s1; |
| 1589 | fraclen = 0; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1590 | |
| 1591 | /* Parse decimal point and following digits. */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1592 | if (c == '.') { |
| 1593 | c = *++s; |
Mark Dickinson | f45bbb6 | 2013-11-26 16:19:13 +0000 | [diff] [blame] | 1594 | if (!ndigits) { |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1595 | s1 = s; |
| 1596 | while (c == '0') |
| 1597 | c = *++s; |
| 1598 | lz = lz || s != s1; |
Mark Dickinson | f45bbb6 | 2013-11-26 16:19:13 +0000 | [diff] [blame] | 1599 | fraclen += (s - s1); |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1600 | s0 = s; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1601 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1602 | s1 = s; |
| 1603 | while ('0' <= c && c <= '9') |
| 1604 | c = *++s; |
Mark Dickinson | f45bbb6 | 2013-11-26 16:19:13 +0000 | [diff] [blame] | 1605 | ndigits += s - s1; |
| 1606 | fraclen += s - s1; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1607 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1608 | |
Mark Dickinson | f45bbb6 | 2013-11-26 16:19:13 +0000 | [diff] [blame] | 1609 | /* Now lz is true if and only if there were leading zero digits, and |
| 1610 | ndigits gives the total number of digits ignoring leading zeros. A |
| 1611 | valid input must have at least one digit. */ |
| 1612 | if (!ndigits && !lz) { |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1613 | if (se) |
| 1614 | *se = (char *)s00; |
| 1615 | goto parse_error; |
| 1616 | } |
| 1617 | |
Mark Dickinson | f45bbb6 | 2013-11-26 16:19:13 +0000 | [diff] [blame] | 1618 | /* Range check ndigits and fraclen to make sure that they, and values |
| 1619 | computed with them, can safely fit in an int. */ |
| 1620 | if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) { |
| 1621 | if (se) |
| 1622 | *se = (char *)s00; |
| 1623 | goto parse_error; |
| 1624 | } |
| 1625 | nd = (int)ndigits; |
| 1626 | nd0 = (int)ndigits - (int)fraclen; |
| 1627 | |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1628 | /* Parse exponent. */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1629 | e = 0; |
| 1630 | if (c == 'e' || c == 'E') { |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1631 | s00 = s; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1632 | c = *++s; |
| 1633 | |
| 1634 | /* Exponent sign. */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1635 | esign = 0; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1636 | switch (c) { |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1637 | case '-': |
| 1638 | esign = 1; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1639 | /* no break */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1640 | case '+': |
| 1641 | c = *++s; |
| 1642 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1643 | |
| 1644 | /* Skip zeros. lz is true iff there are leading zeros. */ |
| 1645 | s1 = s; |
| 1646 | while (c == '0') |
| 1647 | c = *++s; |
| 1648 | lz = s != s1; |
| 1649 | |
| 1650 | /* Get absolute value of the exponent. */ |
| 1651 | s1 = s; |
| 1652 | abs_exp = 0; |
| 1653 | while ('0' <= c && c <= '9') { |
| 1654 | abs_exp = 10*abs_exp + (c - '0'); |
| 1655 | c = *++s; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1656 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1657 | |
| 1658 | /* abs_exp will be correct modulo 2**32. But 10**9 < 2**32, so if |
| 1659 | there are at most 9 significant exponent digits then overflow is |
| 1660 | impossible. */ |
| 1661 | if (s - s1 > 9 || abs_exp > MAX_ABS_EXP) |
| 1662 | e = (int)MAX_ABS_EXP; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1663 | else |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1664 | e = (int)abs_exp; |
| 1665 | if (esign) |
| 1666 | e = -e; |
| 1667 | |
| 1668 | /* A valid exponent must have at least one digit. */ |
| 1669 | if (s == s1 && !lz) |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1670 | s = s00; |
| 1671 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1672 | |
| 1673 | /* Adjust exponent to take into account position of the point. */ |
| 1674 | e -= nd - nd0; |
| 1675 | if (nd0 <= 0) |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1676 | nd0 = nd; |
| 1677 | |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1678 | /* Finished parsing. Set se to indicate how far we parsed */ |
| 1679 | if (se) |
| 1680 | *se = (char *)s; |
| 1681 | |
| 1682 | /* If all digits were zero, exit with return value +-0.0. Otherwise, |
| 1683 | strip trailing zeros: scan back until we hit a nonzero digit. */ |
| 1684 | if (!nd) |
| 1685 | goto ret; |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1686 | for (i = nd; i > 0; ) { |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1687 | --i; |
| 1688 | if (s0[i < nd0 ? i : i+1] != '0') { |
| 1689 | ++i; |
| 1690 | break; |
| 1691 | } |
| 1692 | } |
| 1693 | e += nd - i; |
| 1694 | nd = i; |
| 1695 | if (nd0 > nd) |
| 1696 | nd0 = nd; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1697 | |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1698 | /* Summary of parsing results. After parsing, and dealing with zero |
| 1699 | * inputs, we have values s0, nd0, nd, e, sign, where: |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1700 | * |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1701 | * - s0 points to the first significant digit of the input string |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1702 | * |
| 1703 | * - nd is the total number of significant digits (here, and |
| 1704 | * below, 'significant digits' means the set of digits of the |
| 1705 | * significand of the input that remain after ignoring leading |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1706 | * and trailing zeros). |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1707 | * |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1708 | * - nd0 indicates the position of the decimal point, if present; it |
| 1709 | * satisfies 1 <= nd0 <= nd. The nd significant digits are in |
| 1710 | * s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice |
| 1711 | * notation. (If nd0 < nd, then s0[nd0] contains a '.' character; if |
| 1712 | * nd0 == nd, then s0[nd0] could be any non-digit character.) |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1713 | * |
| 1714 | * - e is the adjusted exponent: the absolute value of the number |
| 1715 | * represented by the original input string is n * 10**e, where |
| 1716 | * n is the integer represented by the concatenation of |
| 1717 | * s0[0:nd0] and s0[nd0+1:nd+1] |
| 1718 | * |
| 1719 | * - sign gives the sign of the input: 1 for negative, 0 for positive |
| 1720 | * |
| 1721 | * - the first and last significant digits are nonzero |
| 1722 | */ |
| 1723 | |
| 1724 | /* put first DBL_DIG+1 digits into integer y and z. |
| 1725 | * |
| 1726 | * - y contains the value represented by the first min(9, nd) |
| 1727 | * significant digits |
| 1728 | * |
| 1729 | * - if nd > 9, z contains the value represented by significant digits |
| 1730 | * with indices in [9, min(16, nd)). So y * 10**(min(16, nd) - 9) + z |
| 1731 | * gives the value represented by the first min(16, nd) sig. digits. |
| 1732 | */ |
| 1733 | |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1734 | bc.e0 = e1 = e; |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1735 | y = z = 0; |
| 1736 | for (i = 0; i < nd; i++) { |
| 1737 | if (i < 9) |
| 1738 | y = 10*y + s0[i < nd0 ? i : i+1] - '0'; |
| 1739 | else if (i < DBL_DIG+1) |
| 1740 | z = 10*z + s0[i < nd0 ? i : i+1] - '0'; |
| 1741 | else |
| 1742 | break; |
| 1743 | } |
| 1744 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1745 | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
| 1746 | dval(&rv) = y; |
| 1747 | if (k > 9) { |
| 1748 | dval(&rv) = tens[k - 9] * dval(&rv) + z; |
| 1749 | } |
| 1750 | bd0 = 0; |
| 1751 | if (nd <= DBL_DIG |
| 1752 | && Flt_Rounds == 1 |
| 1753 | ) { |
| 1754 | if (!e) |
| 1755 | goto ret; |
| 1756 | if (e > 0) { |
| 1757 | if (e <= Ten_pmax) { |
| 1758 | dval(&rv) *= tens[e]; |
| 1759 | goto ret; |
| 1760 | } |
| 1761 | i = DBL_DIG - nd; |
| 1762 | if (e <= Ten_pmax + i) { |
| 1763 | /* A fancier test would sometimes let us do |
| 1764 | * this for larger i values. |
| 1765 | */ |
| 1766 | e -= i; |
| 1767 | dval(&rv) *= tens[i]; |
| 1768 | dval(&rv) *= tens[e]; |
| 1769 | goto ret; |
| 1770 | } |
| 1771 | } |
| 1772 | else if (e >= -Ten_pmax) { |
| 1773 | dval(&rv) /= tens[-e]; |
| 1774 | goto ret; |
| 1775 | } |
| 1776 | } |
| 1777 | e1 += nd - k; |
| 1778 | |
| 1779 | bc.scale = 0; |
| 1780 | |
| 1781 | /* Get starting approximation = rv * 10**e1 */ |
| 1782 | |
| 1783 | if (e1 > 0) { |
| 1784 | if ((i = e1 & 15)) |
| 1785 | dval(&rv) *= tens[i]; |
| 1786 | if (e1 &= ~15) { |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1787 | if (e1 > DBL_MAX_10_EXP) |
| 1788 | goto ovfl; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1789 | e1 >>= 4; |
| 1790 | for(j = 0; e1 > 1; j++, e1 >>= 1) |
| 1791 | if (e1 & 1) |
| 1792 | dval(&rv) *= bigtens[j]; |
| 1793 | /* The last multiplication could overflow. */ |
| 1794 | word0(&rv) -= P*Exp_msk1; |
| 1795 | dval(&rv) *= bigtens[j]; |
| 1796 | if ((z = word0(&rv) & Exp_mask) |
| 1797 | > Exp_msk1*(DBL_MAX_EXP+Bias-P)) |
| 1798 | goto ovfl; |
| 1799 | if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { |
| 1800 | /* set to largest number */ |
| 1801 | /* (Can't trust DBL_MAX) */ |
| 1802 | word0(&rv) = Big0; |
| 1803 | word1(&rv) = Big1; |
| 1804 | } |
| 1805 | else |
| 1806 | word0(&rv) += P*Exp_msk1; |
| 1807 | } |
| 1808 | } |
| 1809 | else if (e1 < 0) { |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1810 | /* The input decimal value lies in [10**e1, 10**(e1+16)). |
| 1811 | |
| 1812 | If e1 <= -512, underflow immediately. |
| 1813 | If e1 <= -256, set bc.scale to 2*P. |
| 1814 | |
| 1815 | So for input value < 1e-256, bc.scale is always set; |
| 1816 | for input value >= 1e-240, bc.scale is never set. |
| 1817 | For input values in [1e-256, 1e-240), bc.scale may or may |
| 1818 | not be set. */ |
| 1819 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1820 | e1 = -e1; |
| 1821 | if ((i = e1 & 15)) |
| 1822 | dval(&rv) /= tens[i]; |
| 1823 | if (e1 >>= 4) { |
| 1824 | if (e1 >= 1 << n_bigtens) |
| 1825 | goto undfl; |
| 1826 | if (e1 & Scale_Bit) |
| 1827 | bc.scale = 2*P; |
| 1828 | for(j = 0; e1 > 0; j++, e1 >>= 1) |
| 1829 | if (e1 & 1) |
| 1830 | dval(&rv) *= tinytens[j]; |
| 1831 | if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) |
| 1832 | >> Exp_shift)) > 0) { |
| 1833 | /* scaled rv is denormal; clear j low bits */ |
| 1834 | if (j >= 32) { |
| 1835 | word1(&rv) = 0; |
| 1836 | if (j >= 53) |
| 1837 | word0(&rv) = (P+2)*Exp_msk1; |
| 1838 | else |
| 1839 | word0(&rv) &= 0xffffffff << (j-32); |
| 1840 | } |
| 1841 | else |
| 1842 | word1(&rv) &= 0xffffffff << j; |
| 1843 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1844 | if (!dval(&rv)) |
| 1845 | goto undfl; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1846 | } |
| 1847 | } |
| 1848 | |
| 1849 | /* Now the hard part -- adjusting rv to the correct value.*/ |
| 1850 | |
| 1851 | /* Put digits into bd: true value = bd * 10^e */ |
| 1852 | |
| 1853 | bc.nd = nd; |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 1854 | bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1855 | /* to silence an erroneous warning about bc.nd0 */ |
| 1856 | /* possibly not being initialized. */ |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 1857 | if (nd > STRTOD_DIGLIM) { |
| 1858 | /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1859 | /* minimum number of decimal digits to distinguish double values */ |
| 1860 | /* in IEEE arithmetic. */ |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1861 | |
| 1862 | /* Truncate input to 18 significant digits, then discard any trailing |
| 1863 | zeros on the result by updating nd, nd0, e and y suitably. (There's |
| 1864 | no need to update z; it's not reused beyond this point.) */ |
| 1865 | for (i = 18; i > 0; ) { |
| 1866 | /* scan back until we hit a nonzero digit. significant digit 'i' |
| 1867 | is s0[i] if i < nd0, s0[i+1] if i >= nd0. */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1868 | --i; |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1869 | if (s0[i < nd0 ? i : i+1] != '0') { |
| 1870 | ++i; |
| 1871 | break; |
| 1872 | } |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1873 | } |
| 1874 | e += nd - i; |
| 1875 | nd = i; |
| 1876 | if (nd0 > nd) |
| 1877 | nd0 = nd; |
| 1878 | if (nd < 9) { /* must recompute y */ |
| 1879 | y = 0; |
| 1880 | for(i = 0; i < nd0; ++i) |
| 1881 | y = 10*y + s0[i] - '0'; |
Mark Dickinson | 45b6365 | 2010-01-16 18:10:25 +0000 | [diff] [blame] | 1882 | for(; i < nd; ++i) |
| 1883 | y = 10*y + s0[i+1] - '0'; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1884 | } |
| 1885 | } |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 1886 | bd0 = s2b(s0, nd0, nd, y); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1887 | if (bd0 == NULL) |
| 1888 | goto failed_malloc; |
| 1889 | |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1890 | /* Notation for the comments below. Write: |
| 1891 | |
| 1892 | - dv for the absolute value of the number represented by the original |
| 1893 | decimal input string. |
| 1894 | |
| 1895 | - if we've truncated dv, write tdv for the truncated value. |
| 1896 | Otherwise, set tdv == dv. |
| 1897 | |
| 1898 | - srv for the quantity rv/2^bc.scale; so srv is the current binary |
| 1899 | approximation to tdv (and dv). It should be exactly representable |
| 1900 | in an IEEE 754 double. |
| 1901 | */ |
| 1902 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1903 | for(;;) { |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1904 | |
| 1905 | /* This is the main correction loop for _Py_dg_strtod. |
| 1906 | |
| 1907 | We've got a decimal value tdv, and a floating-point approximation |
| 1908 | srv=rv/2^bc.scale to tdv. The aim is to determine whether srv is |
| 1909 | close enough (i.e., within 0.5 ulps) to tdv, and to compute a new |
| 1910 | approximation if not. |
| 1911 | |
| 1912 | To determine whether srv is close enough to tdv, compute integers |
| 1913 | bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv) |
| 1914 | respectively, and then use integer arithmetic to determine whether |
| 1915 | |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv). |
| 1916 | */ |
| 1917 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1918 | bd = Balloc(bd0->k); |
| 1919 | if (bd == NULL) { |
| 1920 | Bfree(bd0); |
| 1921 | goto failed_malloc; |
| 1922 | } |
| 1923 | Bcopy(bd, bd0); |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1924 | bb = sd2b(&rv, bc.scale, &bbe); /* srv = bb * 2^bbe */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1925 | if (bb == NULL) { |
| 1926 | Bfree(bd); |
| 1927 | Bfree(bd0); |
| 1928 | goto failed_malloc; |
| 1929 | } |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1930 | /* Record whether lsb of bb is odd, in case we need this |
| 1931 | for the round-to-even step later. */ |
| 1932 | odd = bb->x[0] & 1; |
| 1933 | |
| 1934 | /* tdv = bd * 10**e; srv = bb * 2**bbe */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1935 | bs = i2b(1); |
| 1936 | if (bs == NULL) { |
| 1937 | Bfree(bb); |
| 1938 | Bfree(bd); |
| 1939 | Bfree(bd0); |
| 1940 | goto failed_malloc; |
| 1941 | } |
| 1942 | |
| 1943 | if (e >= 0) { |
| 1944 | bb2 = bb5 = 0; |
| 1945 | bd2 = bd5 = e; |
| 1946 | } |
| 1947 | else { |
| 1948 | bb2 = bb5 = -e; |
| 1949 | bd2 = bd5 = 0; |
| 1950 | } |
| 1951 | if (bbe >= 0) |
| 1952 | bb2 += bbe; |
| 1953 | else |
| 1954 | bd2 -= bbe; |
| 1955 | bs2 = bb2; |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1956 | bb2++; |
| 1957 | bd2++; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1958 | |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1959 | /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1, |
Mark Dickinson | e383e82 | 2012-04-29 15:31:56 +0100 | [diff] [blame] | 1960 | and bs == 1, so: |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1961 | |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1962 | tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5) |
| 1963 | srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2) |
Mark Dickinson | e383e82 | 2012-04-29 15:31:56 +0100 | [diff] [blame] | 1964 | 0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2) |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1965 | |
Mark Dickinson | e383e82 | 2012-04-29 15:31:56 +0100 | [diff] [blame] | 1966 | It follows that: |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1967 | |
| 1968 | M * tdv = bd * 2**bd2 * 5**bd5 |
| 1969 | M * srv = bb * 2**bb2 * 5**bb5 |
| 1970 | M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5 |
| 1971 | |
Mark Dickinson | e383e82 | 2012-04-29 15:31:56 +0100 | [diff] [blame] | 1972 | for some constant M. (Actually, M == 2**(bb2 - bbe) * 5**bb5, but |
| 1973 | this fact is not needed below.) |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1974 | */ |
| 1975 | |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 1976 | /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1977 | i = bb2 < bd2 ? bb2 : bd2; |
| 1978 | if (i > bs2) |
| 1979 | i = bs2; |
| 1980 | if (i > 0) { |
| 1981 | bb2 -= i; |
| 1982 | bd2 -= i; |
| 1983 | bs2 -= i; |
| 1984 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 1985 | |
| 1986 | /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1987 | if (bb5 > 0) { |
| 1988 | bs = pow5mult(bs, bb5); |
| 1989 | if (bs == NULL) { |
| 1990 | Bfree(bb); |
| 1991 | Bfree(bd); |
| 1992 | Bfree(bd0); |
| 1993 | goto failed_malloc; |
| 1994 | } |
| 1995 | bb1 = mult(bs, bb); |
| 1996 | Bfree(bb); |
| 1997 | bb = bb1; |
| 1998 | if (bb == NULL) { |
| 1999 | Bfree(bs); |
| 2000 | Bfree(bd); |
| 2001 | Bfree(bd0); |
| 2002 | goto failed_malloc; |
| 2003 | } |
| 2004 | } |
| 2005 | if (bb2 > 0) { |
| 2006 | bb = lshift(bb, bb2); |
| 2007 | if (bb == NULL) { |
| 2008 | Bfree(bs); |
| 2009 | Bfree(bd); |
| 2010 | Bfree(bd0); |
| 2011 | goto failed_malloc; |
| 2012 | } |
| 2013 | } |
| 2014 | if (bd5 > 0) { |
| 2015 | bd = pow5mult(bd, bd5); |
| 2016 | if (bd == NULL) { |
| 2017 | Bfree(bb); |
| 2018 | Bfree(bs); |
| 2019 | Bfree(bd0); |
| 2020 | goto failed_malloc; |
| 2021 | } |
| 2022 | } |
| 2023 | if (bd2 > 0) { |
| 2024 | bd = lshift(bd, bd2); |
| 2025 | if (bd == NULL) { |
| 2026 | Bfree(bb); |
| 2027 | Bfree(bs); |
| 2028 | Bfree(bd0); |
| 2029 | goto failed_malloc; |
| 2030 | } |
| 2031 | } |
| 2032 | if (bs2 > 0) { |
| 2033 | bs = lshift(bs, bs2); |
| 2034 | if (bs == NULL) { |
| 2035 | Bfree(bb); |
| 2036 | Bfree(bd); |
| 2037 | Bfree(bd0); |
| 2038 | goto failed_malloc; |
| 2039 | } |
| 2040 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2041 | |
| 2042 | /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv), |
| 2043 | respectively. Compute the difference |tdv - srv|, and compare |
| 2044 | with 0.5 ulp(srv). */ |
| 2045 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2046 | delta = diff(bb, bd); |
| 2047 | if (delta == NULL) { |
| 2048 | Bfree(bb); |
| 2049 | Bfree(bs); |
| 2050 | Bfree(bd); |
| 2051 | Bfree(bd0); |
| 2052 | goto failed_malloc; |
| 2053 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2054 | dsign = delta->sign; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2055 | delta->sign = 0; |
| 2056 | i = cmp(delta, bs); |
| 2057 | if (bc.nd > nd && i <= 0) { |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2058 | if (dsign) |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2059 | break; /* Must use bigcomp(). */ |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 2060 | |
| 2061 | /* Here rv overestimates the truncated decimal value by at most |
| 2062 | 0.5 ulp(rv). Hence rv either overestimates the true decimal |
| 2063 | value by <= 0.5 ulp(rv), or underestimates it by some small |
| 2064 | amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of |
| 2065 | the true decimal value, so it's possible to exit. |
| 2066 | |
| 2067 | Exception: if scaled rv is a normal exact power of 2, but not |
| 2068 | DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the |
| 2069 | next double, so the correctly rounded result is either rv - 0.5 |
| 2070 | ulp(rv) or rv; in this case, use bigcomp to distinguish. */ |
| 2071 | |
| 2072 | if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { |
| 2073 | /* rv can't be 0, since it's an overestimate for some |
| 2074 | nonzero value. So rv is a normal power of 2. */ |
| 2075 | j = (int)(word0(&rv) & Exp_mask) >> Exp_shift; |
| 2076 | /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if |
| 2077 | rv / 2^bc.scale >= 2^-1021. */ |
| 2078 | if (j - bc.scale >= 2) { |
| 2079 | dval(&rv) -= 0.5 * sulp(&rv, &bc); |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2080 | break; /* Use bigcomp. */ |
Mark Dickinson | 853c3bb | 2010-01-14 15:37:49 +0000 | [diff] [blame] | 2081 | } |
| 2082 | } |
| 2083 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2084 | { |
| 2085 | bc.nd = nd; |
| 2086 | i = -1; /* Discarded digits make delta smaller. */ |
| 2087 | } |
| 2088 | } |
| 2089 | |
| 2090 | if (i < 0) { |
| 2091 | /* Error is less than half an ulp -- check for |
| 2092 | * special case of mantissa a power of two. |
| 2093 | */ |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2094 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2095 | || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 |
| 2096 | ) { |
| 2097 | break; |
| 2098 | } |
| 2099 | if (!delta->x[0] && delta->wds <= 1) { |
| 2100 | /* exact result */ |
| 2101 | break; |
| 2102 | } |
| 2103 | delta = lshift(delta,Log2P); |
| 2104 | if (delta == NULL) { |
| 2105 | Bfree(bb); |
| 2106 | Bfree(bs); |
| 2107 | Bfree(bd); |
| 2108 | Bfree(bd0); |
| 2109 | goto failed_malloc; |
| 2110 | } |
| 2111 | if (cmp(delta, bs) > 0) |
| 2112 | goto drop_down; |
| 2113 | break; |
| 2114 | } |
| 2115 | if (i == 0) { |
| 2116 | /* exactly half-way between */ |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2117 | if (dsign) { |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2118 | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 |
| 2119 | && word1(&rv) == ( |
| 2120 | (bc.scale && |
| 2121 | (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? |
| 2122 | (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : |
| 2123 | 0xffffffff)) { |
| 2124 | /*boundary case -- increment exponent*/ |
| 2125 | word0(&rv) = (word0(&rv) & Exp_mask) |
| 2126 | + Exp_msk1 |
| 2127 | ; |
| 2128 | word1(&rv) = 0; |
Brett Cannon | b94767f | 2011-02-22 20:15:44 +0000 | [diff] [blame] | 2129 | /* dsign = 0; */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2130 | break; |
| 2131 | } |
| 2132 | } |
| 2133 | else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { |
| 2134 | drop_down: |
| 2135 | /* boundary case -- decrement exponent */ |
| 2136 | if (bc.scale) { |
| 2137 | L = word0(&rv) & Exp_mask; |
| 2138 | if (L <= (2*P+1)*Exp_msk1) { |
| 2139 | if (L > (P+2)*Exp_msk1) |
| 2140 | /* round even ==> */ |
| 2141 | /* accept rv */ |
| 2142 | break; |
| 2143 | /* rv = smallest denormal */ |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2144 | if (bc.nd > nd) |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2145 | break; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2146 | goto undfl; |
| 2147 | } |
| 2148 | } |
| 2149 | L = (word0(&rv) & Exp_mask) - Exp_msk1; |
| 2150 | word0(&rv) = L | Bndry_mask1; |
| 2151 | word1(&rv) = 0xffffffff; |
| 2152 | break; |
| 2153 | } |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 2154 | if (!odd) |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2155 | break; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2156 | if (dsign) |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 2157 | dval(&rv) += sulp(&rv, &bc); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2158 | else { |
Mark Dickinson | f41d29a | 2010-01-24 10:16:29 +0000 | [diff] [blame] | 2159 | dval(&rv) -= sulp(&rv, &bc); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2160 | if (!dval(&rv)) { |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 2161 | if (bc.nd >nd) |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2162 | break; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2163 | goto undfl; |
| 2164 | } |
| 2165 | } |
Brett Cannon | b94767f | 2011-02-22 20:15:44 +0000 | [diff] [blame] | 2166 | /* dsign = 1 - dsign; */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2167 | break; |
| 2168 | } |
| 2169 | if ((aadj = ratio(delta, bs)) <= 2.) { |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2170 | if (dsign) |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2171 | aadj = aadj1 = 1.; |
| 2172 | else if (word1(&rv) || word0(&rv) & Bndry_mask) { |
| 2173 | if (word1(&rv) == Tiny1 && !word0(&rv)) { |
Mark Dickinson | 81612e8 | 2010-01-12 23:04:19 +0000 | [diff] [blame] | 2174 | if (bc.nd >nd) |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2175 | break; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2176 | goto undfl; |
| 2177 | } |
| 2178 | aadj = 1.; |
| 2179 | aadj1 = -1.; |
| 2180 | } |
| 2181 | else { |
| 2182 | /* special case -- power of FLT_RADIX to be */ |
| 2183 | /* rounded down... */ |
| 2184 | |
| 2185 | if (aadj < 2./FLT_RADIX) |
| 2186 | aadj = 1./FLT_RADIX; |
| 2187 | else |
| 2188 | aadj *= 0.5; |
| 2189 | aadj1 = -aadj; |
| 2190 | } |
| 2191 | } |
| 2192 | else { |
| 2193 | aadj *= 0.5; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2194 | aadj1 = dsign ? aadj : -aadj; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2195 | if (Flt_Rounds == 0) |
| 2196 | aadj1 += 0.5; |
| 2197 | } |
| 2198 | y = word0(&rv) & Exp_mask; |
| 2199 | |
| 2200 | /* Check for overflow */ |
| 2201 | |
| 2202 | if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { |
| 2203 | dval(&rv0) = dval(&rv); |
| 2204 | word0(&rv) -= P*Exp_msk1; |
| 2205 | adj.d = aadj1 * ulp(&rv); |
| 2206 | dval(&rv) += adj.d; |
| 2207 | if ((word0(&rv) & Exp_mask) >= |
| 2208 | Exp_msk1*(DBL_MAX_EXP+Bias-P)) { |
Mark Dickinson | c4f1868 | 2010-01-17 14:39:12 +0000 | [diff] [blame] | 2209 | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { |
| 2210 | Bfree(bb); |
| 2211 | Bfree(bd); |
| 2212 | Bfree(bs); |
| 2213 | Bfree(bd0); |
| 2214 | Bfree(delta); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2215 | goto ovfl; |
Mark Dickinson | c4f1868 | 2010-01-17 14:39:12 +0000 | [diff] [blame] | 2216 | } |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2217 | word0(&rv) = Big0; |
| 2218 | word1(&rv) = Big1; |
| 2219 | goto cont; |
| 2220 | } |
| 2221 | else |
| 2222 | word0(&rv) += P*Exp_msk1; |
| 2223 | } |
| 2224 | else { |
| 2225 | if (bc.scale && y <= 2*P*Exp_msk1) { |
| 2226 | if (aadj <= 0x7fffffff) { |
| 2227 | if ((z = (ULong)aadj) <= 0) |
| 2228 | z = 1; |
| 2229 | aadj = z; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2230 | aadj1 = dsign ? aadj : -aadj; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2231 | } |
| 2232 | dval(&aadj2) = aadj1; |
| 2233 | word0(&aadj2) += (2*P+1)*Exp_msk1 - y; |
| 2234 | aadj1 = dval(&aadj2); |
| 2235 | } |
| 2236 | adj.d = aadj1 * ulp(&rv); |
| 2237 | dval(&rv) += adj.d; |
| 2238 | } |
| 2239 | z = word0(&rv) & Exp_mask; |
| 2240 | if (bc.nd == nd) { |
| 2241 | if (!bc.scale) |
| 2242 | if (y == z) { |
| 2243 | /* Can we stop now? */ |
| 2244 | L = (Long)aadj; |
| 2245 | aadj -= L; |
| 2246 | /* The tolerances below are conservative. */ |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2247 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2248 | if (aadj < .4999999 || aadj > .5000001) |
| 2249 | break; |
| 2250 | } |
| 2251 | else if (aadj < .4999999/FLT_RADIX) |
| 2252 | break; |
| 2253 | } |
| 2254 | } |
| 2255 | cont: |
| 2256 | Bfree(bb); |
| 2257 | Bfree(bd); |
| 2258 | Bfree(bs); |
| 2259 | Bfree(delta); |
| 2260 | } |
| 2261 | Bfree(bb); |
| 2262 | Bfree(bd); |
| 2263 | Bfree(bs); |
| 2264 | Bfree(bd0); |
| 2265 | Bfree(delta); |
| 2266 | if (bc.nd > nd) { |
| 2267 | error = bigcomp(&rv, s0, &bc); |
| 2268 | if (error) |
| 2269 | goto failed_malloc; |
| 2270 | } |
| 2271 | |
| 2272 | if (bc.scale) { |
| 2273 | word0(&rv0) = Exp_1 - 2*P*Exp_msk1; |
| 2274 | word1(&rv0) = 0; |
| 2275 | dval(&rv) *= dval(&rv0); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2276 | } |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2277 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2278 | ret: |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2279 | return sign ? -dval(&rv) : dval(&rv); |
| 2280 | |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2281 | parse_error: |
| 2282 | return 0.0; |
| 2283 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2284 | failed_malloc: |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2285 | errno = ENOMEM; |
| 2286 | return -1.0; |
Mark Dickinson | add2823 | 2010-01-21 19:51:08 +0000 | [diff] [blame] | 2287 | |
| 2288 | undfl: |
| 2289 | return sign ? -0.0 : 0.0; |
| 2290 | |
| 2291 | ovfl: |
| 2292 | errno = ERANGE; |
| 2293 | /* Can't trust HUGE_VAL */ |
| 2294 | word0(&rv) = Exp_mask; |
| 2295 | word1(&rv) = 0; |
| 2296 | return sign ? -dval(&rv) : dval(&rv); |
| 2297 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2298 | } |
| 2299 | |
| 2300 | static char * |
| 2301 | rv_alloc(int i) |
| 2302 | { |
| 2303 | int j, k, *r; |
| 2304 | |
| 2305 | j = sizeof(ULong); |
| 2306 | for(k = 0; |
| 2307 | sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; |
| 2308 | j <<= 1) |
| 2309 | k++; |
| 2310 | r = (int*)Balloc(k); |
| 2311 | if (r == NULL) |
| 2312 | return NULL; |
| 2313 | *r = k; |
| 2314 | return (char *)(r+1); |
| 2315 | } |
| 2316 | |
| 2317 | static char * |
| 2318 | nrv_alloc(char *s, char **rve, int n) |
| 2319 | { |
| 2320 | char *rv, *t; |
| 2321 | |
| 2322 | rv = rv_alloc(n); |
| 2323 | if (rv == NULL) |
| 2324 | return NULL; |
| 2325 | t = rv; |
| 2326 | while((*t = *s++)) t++; |
| 2327 | if (rve) |
| 2328 | *rve = t; |
| 2329 | return rv; |
| 2330 | } |
| 2331 | |
| 2332 | /* freedtoa(s) must be used to free values s returned by dtoa |
| 2333 | * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
| 2334 | * but for consistency with earlier versions of dtoa, it is optional |
| 2335 | * when MULTIPLE_THREADS is not defined. |
| 2336 | */ |
| 2337 | |
| 2338 | void |
| 2339 | _Py_dg_freedtoa(char *s) |
| 2340 | { |
| 2341 | Bigint *b = (Bigint *)((int *)s - 1); |
| 2342 | b->maxwds = 1 << (b->k = *(int*)b); |
| 2343 | Bfree(b); |
| 2344 | } |
| 2345 | |
| 2346 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
| 2347 | * |
| 2348 | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
| 2349 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
| 2350 | * |
| 2351 | * Modifications: |
| 2352 | * 1. Rather than iterating, we use a simple numeric overestimate |
| 2353 | * to determine k = floor(log10(d)). We scale relevant |
| 2354 | * quantities using O(log2(k)) rather than O(k) multiplications. |
| 2355 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
| 2356 | * try to generate digits strictly left to right. Instead, we |
| 2357 | * compute with fewer bits and propagate the carry if necessary |
| 2358 | * when rounding the final digit up. This is often faster. |
| 2359 | * 3. Under the assumption that input will be rounded nearest, |
| 2360 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
| 2361 | * That is, we allow equality in stopping tests when the |
| 2362 | * round-nearest rule will give the same floating-point value |
| 2363 | * as would satisfaction of the stopping test with strict |
| 2364 | * inequality. |
| 2365 | * 4. We remove common factors of powers of 2 from relevant |
| 2366 | * quantities. |
| 2367 | * 5. When converting floating-point integers less than 1e16, |
| 2368 | * we use floating-point arithmetic rather than resorting |
| 2369 | * to multiple-precision integers. |
| 2370 | * 6. When asked to produce fewer than 15 digits, we first try |
| 2371 | * to get by with floating-point arithmetic; we resort to |
| 2372 | * multiple-precision integer arithmetic only if we cannot |
| 2373 | * guarantee that the floating-point calculation has given |
| 2374 | * the correctly rounded result. For k requested digits and |
| 2375 | * "uniformly" distributed input, the probability is |
| 2376 | * something like 10^(k-15) that we must resort to the Long |
| 2377 | * calculation. |
| 2378 | */ |
| 2379 | |
| 2380 | /* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory |
| 2381 | leakage, a successful call to _Py_dg_dtoa should always be matched by a |
| 2382 | call to _Py_dg_freedtoa. */ |
| 2383 | |
| 2384 | char * |
| 2385 | _Py_dg_dtoa(double dd, int mode, int ndigits, |
| 2386 | int *decpt, int *sign, char **rve) |
| 2387 | { |
| 2388 | /* Arguments ndigits, decpt, sign are similar to those |
| 2389 | of ecvt and fcvt; trailing zeros are suppressed from |
| 2390 | the returned string. If not null, *rve is set to point |
| 2391 | to the end of the return value. If d is +-Infinity or NaN, |
| 2392 | then *decpt is set to 9999. |
| 2393 | |
| 2394 | mode: |
| 2395 | 0 ==> shortest string that yields d when read in |
| 2396 | and rounded to nearest. |
| 2397 | 1 ==> like 0, but with Steele & White stopping rule; |
| 2398 | e.g. with IEEE P754 arithmetic , mode 0 gives |
| 2399 | 1e23 whereas mode 1 gives 9.999999999999999e22. |
| 2400 | 2 ==> max(1,ndigits) significant digits. This gives a |
| 2401 | return value similar to that of ecvt, except |
| 2402 | that trailing zeros are suppressed. |
| 2403 | 3 ==> through ndigits past the decimal point. This |
| 2404 | gives a return value similar to that from fcvt, |
| 2405 | except that trailing zeros are suppressed, and |
| 2406 | ndigits can be negative. |
| 2407 | 4,5 ==> similar to 2 and 3, respectively, but (in |
| 2408 | round-nearest mode) with the tests of mode 0 to |
| 2409 | possibly return a shorter string that rounds to d. |
| 2410 | With IEEE arithmetic and compilation with |
| 2411 | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
| 2412 | as modes 2 and 3 when FLT_ROUNDS != 1. |
| 2413 | 6-9 ==> Debugging modes similar to mode - 4: don't try |
| 2414 | fast floating-point estimate (if applicable). |
| 2415 | |
| 2416 | Values of mode other than 0-9 are treated as mode 0. |
| 2417 | |
| 2418 | Sufficient space is allocated to the return value |
| 2419 | to hold the suppressed trailing zeros. |
| 2420 | */ |
| 2421 | |
| 2422 | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, |
| 2423 | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
| 2424 | spec_case, try_quick; |
| 2425 | Long L; |
| 2426 | int denorm; |
| 2427 | ULong x; |
| 2428 | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
| 2429 | U d2, eps, u; |
| 2430 | double ds; |
| 2431 | char *s, *s0; |
| 2432 | |
| 2433 | /* set pointers to NULL, to silence gcc compiler warnings and make |
| 2434 | cleanup easier on error */ |
Mark Dickinson | d369726 | 2010-05-13 11:52:22 +0000 | [diff] [blame] | 2435 | mlo = mhi = S = 0; |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2436 | s0 = 0; |
| 2437 | |
| 2438 | u.d = dd; |
| 2439 | if (word0(&u) & Sign_bit) { |
| 2440 | /* set sign for everything, including 0's and NaNs */ |
| 2441 | *sign = 1; |
| 2442 | word0(&u) &= ~Sign_bit; /* clear sign bit */ |
| 2443 | } |
| 2444 | else |
| 2445 | *sign = 0; |
| 2446 | |
| 2447 | /* quick return for Infinities, NaNs and zeros */ |
| 2448 | if ((word0(&u) & Exp_mask) == Exp_mask) |
| 2449 | { |
| 2450 | /* Infinity or NaN */ |
| 2451 | *decpt = 9999; |
| 2452 | if (!word1(&u) && !(word0(&u) & 0xfffff)) |
| 2453 | return nrv_alloc("Infinity", rve, 8); |
| 2454 | return nrv_alloc("NaN", rve, 3); |
| 2455 | } |
| 2456 | if (!dval(&u)) { |
| 2457 | *decpt = 1; |
| 2458 | return nrv_alloc("0", rve, 1); |
| 2459 | } |
| 2460 | |
| 2461 | /* compute k = floor(log10(d)). The computation may leave k |
| 2462 | one too large, but should never leave k too small. */ |
| 2463 | b = d2b(&u, &be, &bbits); |
| 2464 | if (b == NULL) |
| 2465 | goto failed_malloc; |
| 2466 | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { |
| 2467 | dval(&d2) = dval(&u); |
| 2468 | word0(&d2) &= Frac_mask1; |
| 2469 | word0(&d2) |= Exp_11; |
| 2470 | |
| 2471 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
| 2472 | * log10(x) = log(x) / log(10) |
| 2473 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
| 2474 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
| 2475 | * |
| 2476 | * This suggests computing an approximation k to log10(d) by |
| 2477 | * |
| 2478 | * k = (i - Bias)*0.301029995663981 |
| 2479 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
| 2480 | * |
| 2481 | * We want k to be too large rather than too small. |
| 2482 | * The error in the first-order Taylor series approximation |
| 2483 | * is in our favor, so we just round up the constant enough |
| 2484 | * to compensate for any error in the multiplication of |
| 2485 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
| 2486 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
| 2487 | * adding 1e-13 to the constant term more than suffices. |
| 2488 | * Hence we adjust the constant term to 0.1760912590558. |
| 2489 | * (We could get a more accurate k by invoking log10, |
| 2490 | * but this is probably not worthwhile.) |
| 2491 | */ |
| 2492 | |
| 2493 | i -= Bias; |
| 2494 | denorm = 0; |
| 2495 | } |
| 2496 | else { |
| 2497 | /* d is denormalized */ |
| 2498 | |
| 2499 | i = bbits + be + (Bias + (P-1) - 1); |
| 2500 | x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) |
| 2501 | : word1(&u) << (32 - i); |
| 2502 | dval(&d2) = x; |
| 2503 | word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ |
| 2504 | i -= (Bias + (P-1) - 1) + 1; |
| 2505 | denorm = 1; |
| 2506 | } |
| 2507 | ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + |
| 2508 | i*0.301029995663981; |
| 2509 | k = (int)ds; |
| 2510 | if (ds < 0. && ds != k) |
| 2511 | k--; /* want k = floor(ds) */ |
| 2512 | k_check = 1; |
| 2513 | if (k >= 0 && k <= Ten_pmax) { |
| 2514 | if (dval(&u) < tens[k]) |
| 2515 | k--; |
| 2516 | k_check = 0; |
| 2517 | } |
| 2518 | j = bbits - i - 1; |
| 2519 | if (j >= 0) { |
| 2520 | b2 = 0; |
| 2521 | s2 = j; |
| 2522 | } |
| 2523 | else { |
| 2524 | b2 = -j; |
| 2525 | s2 = 0; |
| 2526 | } |
| 2527 | if (k >= 0) { |
| 2528 | b5 = 0; |
| 2529 | s5 = k; |
| 2530 | s2 += k; |
| 2531 | } |
| 2532 | else { |
| 2533 | b2 -= k; |
| 2534 | b5 = -k; |
| 2535 | s5 = 0; |
| 2536 | } |
| 2537 | if (mode < 0 || mode > 9) |
| 2538 | mode = 0; |
| 2539 | |
| 2540 | try_quick = 1; |
| 2541 | |
| 2542 | if (mode > 5) { |
| 2543 | mode -= 4; |
| 2544 | try_quick = 0; |
| 2545 | } |
| 2546 | leftright = 1; |
| 2547 | ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ |
| 2548 | /* silence erroneous "gcc -Wall" warning. */ |
| 2549 | switch(mode) { |
| 2550 | case 0: |
| 2551 | case 1: |
| 2552 | i = 18; |
| 2553 | ndigits = 0; |
| 2554 | break; |
| 2555 | case 2: |
| 2556 | leftright = 0; |
| 2557 | /* no break */ |
| 2558 | case 4: |
| 2559 | if (ndigits <= 0) |
| 2560 | ndigits = 1; |
| 2561 | ilim = ilim1 = i = ndigits; |
| 2562 | break; |
| 2563 | case 3: |
| 2564 | leftright = 0; |
| 2565 | /* no break */ |
| 2566 | case 5: |
| 2567 | i = ndigits + k + 1; |
| 2568 | ilim = i; |
| 2569 | ilim1 = i - 1; |
| 2570 | if (i <= 0) |
| 2571 | i = 1; |
| 2572 | } |
| 2573 | s0 = rv_alloc(i); |
| 2574 | if (s0 == NULL) |
| 2575 | goto failed_malloc; |
| 2576 | s = s0; |
| 2577 | |
| 2578 | |
| 2579 | if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
| 2580 | |
| 2581 | /* Try to get by with floating-point arithmetic. */ |
| 2582 | |
| 2583 | i = 0; |
| 2584 | dval(&d2) = dval(&u); |
| 2585 | k0 = k; |
| 2586 | ilim0 = ilim; |
| 2587 | ieps = 2; /* conservative */ |
| 2588 | if (k > 0) { |
| 2589 | ds = tens[k&0xf]; |
| 2590 | j = k >> 4; |
| 2591 | if (j & Bletch) { |
| 2592 | /* prevent overflows */ |
| 2593 | j &= Bletch - 1; |
| 2594 | dval(&u) /= bigtens[n_bigtens-1]; |
| 2595 | ieps++; |
| 2596 | } |
| 2597 | for(; j; j >>= 1, i++) |
| 2598 | if (j & 1) { |
| 2599 | ieps++; |
| 2600 | ds *= bigtens[i]; |
| 2601 | } |
| 2602 | dval(&u) /= ds; |
| 2603 | } |
| 2604 | else if ((j1 = -k)) { |
| 2605 | dval(&u) *= tens[j1 & 0xf]; |
| 2606 | for(j = j1 >> 4; j; j >>= 1, i++) |
| 2607 | if (j & 1) { |
| 2608 | ieps++; |
| 2609 | dval(&u) *= bigtens[i]; |
| 2610 | } |
| 2611 | } |
| 2612 | if (k_check && dval(&u) < 1. && ilim > 0) { |
| 2613 | if (ilim1 <= 0) |
| 2614 | goto fast_failed; |
| 2615 | ilim = ilim1; |
| 2616 | k--; |
| 2617 | dval(&u) *= 10.; |
| 2618 | ieps++; |
| 2619 | } |
| 2620 | dval(&eps) = ieps*dval(&u) + 7.; |
| 2621 | word0(&eps) -= (P-1)*Exp_msk1; |
| 2622 | if (ilim == 0) { |
| 2623 | S = mhi = 0; |
| 2624 | dval(&u) -= 5.; |
| 2625 | if (dval(&u) > dval(&eps)) |
| 2626 | goto one_digit; |
| 2627 | if (dval(&u) < -dval(&eps)) |
| 2628 | goto no_digits; |
| 2629 | goto fast_failed; |
| 2630 | } |
| 2631 | if (leftright) { |
| 2632 | /* Use Steele & White method of only |
| 2633 | * generating digits needed. |
| 2634 | */ |
| 2635 | dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); |
| 2636 | for(i = 0;;) { |
| 2637 | L = (Long)dval(&u); |
| 2638 | dval(&u) -= L; |
| 2639 | *s++ = '0' + (int)L; |
| 2640 | if (dval(&u) < dval(&eps)) |
| 2641 | goto ret1; |
| 2642 | if (1. - dval(&u) < dval(&eps)) |
| 2643 | goto bump_up; |
| 2644 | if (++i >= ilim) |
| 2645 | break; |
| 2646 | dval(&eps) *= 10.; |
| 2647 | dval(&u) *= 10.; |
| 2648 | } |
| 2649 | } |
| 2650 | else { |
| 2651 | /* Generate ilim digits, then fix them up. */ |
| 2652 | dval(&eps) *= tens[ilim-1]; |
| 2653 | for(i = 1;; i++, dval(&u) *= 10.) { |
| 2654 | L = (Long)(dval(&u)); |
| 2655 | if (!(dval(&u) -= L)) |
| 2656 | ilim = i; |
| 2657 | *s++ = '0' + (int)L; |
| 2658 | if (i == ilim) { |
| 2659 | if (dval(&u) > 0.5 + dval(&eps)) |
| 2660 | goto bump_up; |
| 2661 | else if (dval(&u) < 0.5 - dval(&eps)) { |
| 2662 | while(*--s == '0'); |
| 2663 | s++; |
| 2664 | goto ret1; |
| 2665 | } |
| 2666 | break; |
| 2667 | } |
| 2668 | } |
| 2669 | } |
| 2670 | fast_failed: |
| 2671 | s = s0; |
| 2672 | dval(&u) = dval(&d2); |
| 2673 | k = k0; |
| 2674 | ilim = ilim0; |
| 2675 | } |
| 2676 | |
| 2677 | /* Do we have a "small" integer? */ |
| 2678 | |
| 2679 | if (be >= 0 && k <= Int_max) { |
| 2680 | /* Yes. */ |
| 2681 | ds = tens[k]; |
| 2682 | if (ndigits < 0 && ilim <= 0) { |
| 2683 | S = mhi = 0; |
| 2684 | if (ilim < 0 || dval(&u) <= 5*ds) |
| 2685 | goto no_digits; |
| 2686 | goto one_digit; |
| 2687 | } |
| 2688 | for(i = 1;; i++, dval(&u) *= 10.) { |
| 2689 | L = (Long)(dval(&u) / ds); |
| 2690 | dval(&u) -= L*ds; |
| 2691 | *s++ = '0' + (int)L; |
| 2692 | if (!dval(&u)) { |
| 2693 | break; |
| 2694 | } |
| 2695 | if (i == ilim) { |
| 2696 | dval(&u) += dval(&u); |
| 2697 | if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { |
| 2698 | bump_up: |
| 2699 | while(*--s == '9') |
| 2700 | if (s == s0) { |
| 2701 | k++; |
| 2702 | *s = '0'; |
| 2703 | break; |
| 2704 | } |
| 2705 | ++*s++; |
| 2706 | } |
| 2707 | break; |
| 2708 | } |
| 2709 | } |
| 2710 | goto ret1; |
| 2711 | } |
| 2712 | |
| 2713 | m2 = b2; |
| 2714 | m5 = b5; |
| 2715 | if (leftright) { |
| 2716 | i = |
| 2717 | denorm ? be + (Bias + (P-1) - 1 + 1) : |
| 2718 | 1 + P - bbits; |
| 2719 | b2 += i; |
| 2720 | s2 += i; |
| 2721 | mhi = i2b(1); |
| 2722 | if (mhi == NULL) |
| 2723 | goto failed_malloc; |
| 2724 | } |
| 2725 | if (m2 > 0 && s2 > 0) { |
| 2726 | i = m2 < s2 ? m2 : s2; |
| 2727 | b2 -= i; |
| 2728 | m2 -= i; |
| 2729 | s2 -= i; |
| 2730 | } |
| 2731 | if (b5 > 0) { |
| 2732 | if (leftright) { |
| 2733 | if (m5 > 0) { |
| 2734 | mhi = pow5mult(mhi, m5); |
| 2735 | if (mhi == NULL) |
| 2736 | goto failed_malloc; |
| 2737 | b1 = mult(mhi, b); |
| 2738 | Bfree(b); |
| 2739 | b = b1; |
| 2740 | if (b == NULL) |
| 2741 | goto failed_malloc; |
| 2742 | } |
| 2743 | if ((j = b5 - m5)) { |
| 2744 | b = pow5mult(b, j); |
| 2745 | if (b == NULL) |
| 2746 | goto failed_malloc; |
| 2747 | } |
| 2748 | } |
| 2749 | else { |
| 2750 | b = pow5mult(b, b5); |
| 2751 | if (b == NULL) |
| 2752 | goto failed_malloc; |
| 2753 | } |
| 2754 | } |
| 2755 | S = i2b(1); |
| 2756 | if (S == NULL) |
| 2757 | goto failed_malloc; |
| 2758 | if (s5 > 0) { |
| 2759 | S = pow5mult(S, s5); |
| 2760 | if (S == NULL) |
| 2761 | goto failed_malloc; |
| 2762 | } |
| 2763 | |
| 2764 | /* Check for special case that d is a normalized power of 2. */ |
| 2765 | |
| 2766 | spec_case = 0; |
| 2767 | if ((mode < 2 || leftright) |
| 2768 | ) { |
| 2769 | if (!word1(&u) && !(word0(&u) & Bndry_mask) |
| 2770 | && word0(&u) & (Exp_mask & ~Exp_msk1) |
| 2771 | ) { |
| 2772 | /* The special case */ |
| 2773 | b2 += Log2P; |
| 2774 | s2 += Log2P; |
| 2775 | spec_case = 1; |
| 2776 | } |
| 2777 | } |
| 2778 | |
| 2779 | /* Arrange for convenient computation of quotients: |
| 2780 | * shift left if necessary so divisor has 4 leading 0 bits. |
| 2781 | * |
| 2782 | * Perhaps we should just compute leading 28 bits of S once |
| 2783 | * and for all and pass them and a shift to quorem, so it |
| 2784 | * can do shifts and ors to compute the numerator for q. |
| 2785 | */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 2786 | #define iInc 28 |
| 2787 | i = dshift(S, s2); |
| 2788 | b2 += i; |
| 2789 | m2 += i; |
| 2790 | s2 += i; |
| 2791 | if (b2 > 0) { |
| 2792 | b = lshift(b, b2); |
| 2793 | if (b == NULL) |
| 2794 | goto failed_malloc; |
| 2795 | } |
| 2796 | if (s2 > 0) { |
| 2797 | S = lshift(S, s2); |
| 2798 | if (S == NULL) |
| 2799 | goto failed_malloc; |
| 2800 | } |
| 2801 | if (k_check) { |
| 2802 | if (cmp(b,S) < 0) { |
| 2803 | k--; |
| 2804 | b = multadd(b, 10, 0); /* we botched the k estimate */ |
| 2805 | if (b == NULL) |
| 2806 | goto failed_malloc; |
| 2807 | if (leftright) { |
| 2808 | mhi = multadd(mhi, 10, 0); |
| 2809 | if (mhi == NULL) |
| 2810 | goto failed_malloc; |
| 2811 | } |
| 2812 | ilim = ilim1; |
| 2813 | } |
| 2814 | } |
| 2815 | if (ilim <= 0 && (mode == 3 || mode == 5)) { |
| 2816 | if (ilim < 0) { |
| 2817 | /* no digits, fcvt style */ |
| 2818 | no_digits: |
| 2819 | k = -1 - ndigits; |
| 2820 | goto ret; |
| 2821 | } |
| 2822 | else { |
| 2823 | S = multadd(S, 5, 0); |
| 2824 | if (S == NULL) |
| 2825 | goto failed_malloc; |
| 2826 | if (cmp(b, S) <= 0) |
| 2827 | goto no_digits; |
| 2828 | } |
| 2829 | one_digit: |
| 2830 | *s++ = '1'; |
| 2831 | k++; |
| 2832 | goto ret; |
| 2833 | } |
| 2834 | if (leftright) { |
| 2835 | if (m2 > 0) { |
| 2836 | mhi = lshift(mhi, m2); |
| 2837 | if (mhi == NULL) |
| 2838 | goto failed_malloc; |
| 2839 | } |
| 2840 | |
| 2841 | /* Compute mlo -- check for special case |
| 2842 | * that d is a normalized power of 2. |
| 2843 | */ |
| 2844 | |
| 2845 | mlo = mhi; |
| 2846 | if (spec_case) { |
| 2847 | mhi = Balloc(mhi->k); |
| 2848 | if (mhi == NULL) |
| 2849 | goto failed_malloc; |
| 2850 | Bcopy(mhi, mlo); |
| 2851 | mhi = lshift(mhi, Log2P); |
| 2852 | if (mhi == NULL) |
| 2853 | goto failed_malloc; |
| 2854 | } |
| 2855 | |
| 2856 | for(i = 1;;i++) { |
| 2857 | dig = quorem(b,S) + '0'; |
| 2858 | /* Do we yet have the shortest decimal string |
| 2859 | * that will round to d? |
| 2860 | */ |
| 2861 | j = cmp(b, mlo); |
| 2862 | delta = diff(S, mhi); |
| 2863 | if (delta == NULL) |
| 2864 | goto failed_malloc; |
| 2865 | j1 = delta->sign ? 1 : cmp(b, delta); |
| 2866 | Bfree(delta); |
| 2867 | if (j1 == 0 && mode != 1 && !(word1(&u) & 1) |
| 2868 | ) { |
| 2869 | if (dig == '9') |
| 2870 | goto round_9_up; |
| 2871 | if (j > 0) |
| 2872 | dig++; |
| 2873 | *s++ = dig; |
| 2874 | goto ret; |
| 2875 | } |
| 2876 | if (j < 0 || (j == 0 && mode != 1 |
| 2877 | && !(word1(&u) & 1) |
| 2878 | )) { |
| 2879 | if (!b->x[0] && b->wds <= 1) { |
| 2880 | goto accept_dig; |
| 2881 | } |
| 2882 | if (j1 > 0) { |
| 2883 | b = lshift(b, 1); |
| 2884 | if (b == NULL) |
| 2885 | goto failed_malloc; |
| 2886 | j1 = cmp(b, S); |
| 2887 | if ((j1 > 0 || (j1 == 0 && dig & 1)) |
| 2888 | && dig++ == '9') |
| 2889 | goto round_9_up; |
| 2890 | } |
| 2891 | accept_dig: |
| 2892 | *s++ = dig; |
| 2893 | goto ret; |
| 2894 | } |
| 2895 | if (j1 > 0) { |
| 2896 | if (dig == '9') { /* possible if i == 1 */ |
| 2897 | round_9_up: |
| 2898 | *s++ = '9'; |
| 2899 | goto roundoff; |
| 2900 | } |
| 2901 | *s++ = dig + 1; |
| 2902 | goto ret; |
| 2903 | } |
| 2904 | *s++ = dig; |
| 2905 | if (i == ilim) |
| 2906 | break; |
| 2907 | b = multadd(b, 10, 0); |
| 2908 | if (b == NULL) |
| 2909 | goto failed_malloc; |
| 2910 | if (mlo == mhi) { |
| 2911 | mlo = mhi = multadd(mhi, 10, 0); |
| 2912 | if (mlo == NULL) |
| 2913 | goto failed_malloc; |
| 2914 | } |
| 2915 | else { |
| 2916 | mlo = multadd(mlo, 10, 0); |
| 2917 | if (mlo == NULL) |
| 2918 | goto failed_malloc; |
| 2919 | mhi = multadd(mhi, 10, 0); |
| 2920 | if (mhi == NULL) |
| 2921 | goto failed_malloc; |
| 2922 | } |
| 2923 | } |
| 2924 | } |
| 2925 | else |
| 2926 | for(i = 1;; i++) { |
| 2927 | *s++ = dig = quorem(b,S) + '0'; |
| 2928 | if (!b->x[0] && b->wds <= 1) { |
| 2929 | goto ret; |
| 2930 | } |
| 2931 | if (i >= ilim) |
| 2932 | break; |
| 2933 | b = multadd(b, 10, 0); |
| 2934 | if (b == NULL) |
| 2935 | goto failed_malloc; |
| 2936 | } |
| 2937 | |
| 2938 | /* Round off last digit */ |
| 2939 | |
| 2940 | b = lshift(b, 1); |
| 2941 | if (b == NULL) |
| 2942 | goto failed_malloc; |
| 2943 | j = cmp(b, S); |
| 2944 | if (j > 0 || (j == 0 && dig & 1)) { |
| 2945 | roundoff: |
| 2946 | while(*--s == '9') |
| 2947 | if (s == s0) { |
| 2948 | k++; |
| 2949 | *s++ = '1'; |
| 2950 | goto ret; |
| 2951 | } |
| 2952 | ++*s++; |
| 2953 | } |
| 2954 | else { |
| 2955 | while(*--s == '0'); |
| 2956 | s++; |
| 2957 | } |
| 2958 | ret: |
| 2959 | Bfree(S); |
| 2960 | if (mhi) { |
| 2961 | if (mlo && mlo != mhi) |
| 2962 | Bfree(mlo); |
| 2963 | Bfree(mhi); |
| 2964 | } |
| 2965 | ret1: |
| 2966 | Bfree(b); |
| 2967 | *s = 0; |
| 2968 | *decpt = k + 1; |
| 2969 | if (rve) |
| 2970 | *rve = s; |
| 2971 | return s0; |
| 2972 | failed_malloc: |
| 2973 | if (S) |
| 2974 | Bfree(S); |
| 2975 | if (mlo && mlo != mhi) |
| 2976 | Bfree(mlo); |
| 2977 | if (mhi) |
| 2978 | Bfree(mhi); |
| 2979 | if (b) |
| 2980 | Bfree(b); |
| 2981 | if (s0) |
| 2982 | _Py_dg_freedtoa(s0); |
| 2983 | return NULL; |
| 2984 | } |
| 2985 | #ifdef __cplusplus |
| 2986 | } |
| 2987 | #endif |
| 2988 | |
| 2989 | #endif /* PY_NO_SHORT_FLOAT_REPR */ |