blob: 3d782a21cf3a9e520de863c007e8ecc3f9086d3c [file] [log] [blame]
Tim Peters1221c0a2002-03-23 00:20:15 +00001#include "Python.h"
2
3#ifdef WITH_PYMALLOC
4
Antoine Pitrouf0effe62011-11-26 01:11:02 +01005#ifdef HAVE_MMAP
6 #include <sys/mman.h>
7 #ifdef MAP_ANONYMOUS
8 #define ARENAS_USE_MMAP
9 #endif
Antoine Pitrou6f26be02011-05-03 18:18:59 +020010#endif
11
Benjamin Peterson05159c42009-12-03 03:01:27 +000012#ifdef WITH_VALGRIND
13#include <valgrind/valgrind.h>
14
15/* If we're using GCC, use __builtin_expect() to reduce overhead of
16 the valgrind checks */
17#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
18# define UNLIKELY(value) __builtin_expect((value), 0)
19#else
20# define UNLIKELY(value) (value)
21#endif
22
23/* -1 indicates that we haven't checked that we're running on valgrind yet. */
24static int running_on_valgrind = -1;
25#endif
26
Neil Schemenauera35c6882001-02-27 04:45:05 +000027/* An object allocator for Python.
28
29 Here is an introduction to the layers of the Python memory architecture,
30 showing where the object allocator is actually used (layer +2), It is
31 called for every object allocation and deallocation (PyObject_New/Del),
32 unless the object-specific allocators implement a proprietary allocation
33 scheme (ex.: ints use a simple free list). This is also the place where
34 the cyclic garbage collector operates selectively on container objects.
35
36
Antoine Pitrouf95a1b32010-05-09 15:52:27 +000037 Object-specific allocators
Neil Schemenauera35c6882001-02-27 04:45:05 +000038 _____ ______ ______ ________
39 [ int ] [ dict ] [ list ] ... [ string ] Python core |
40+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
41 _______________________________ | |
42 [ Python's object allocator ] | |
43+2 | ####### Object memory ####### | <------ Internal buffers ------> |
44 ______________________________________________________________ |
45 [ Python's raw memory allocator (PyMem_ API) ] |
46+1 | <----- Python memory (under PyMem manager's control) ------> | |
47 __________________________________________________________________
48 [ Underlying general-purpose allocator (ex: C library malloc) ]
49 0 | <------ Virtual memory allocated for the python process -------> |
50
51 =========================================================================
52 _______________________________________________________________________
53 [ OS-specific Virtual Memory Manager (VMM) ]
54-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
55 __________________________________ __________________________________
56 [ ] [ ]
57-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
58
59*/
60/*==========================================================================*/
61
62/* A fast, special-purpose memory allocator for small blocks, to be used
63 on top of a general-purpose malloc -- heavily based on previous art. */
64
65/* Vladimir Marangozov -- August 2000 */
66
67/*
68 * "Memory management is where the rubber meets the road -- if we do the wrong
69 * thing at any level, the results will not be good. And if we don't make the
70 * levels work well together, we are in serious trouble." (1)
71 *
72 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
73 * "Dynamic Storage Allocation: A Survey and Critical Review",
74 * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
75 */
76
Antoine Pitrouf95a1b32010-05-09 15:52:27 +000077/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
Neil Schemenauera35c6882001-02-27 04:45:05 +000078
79/*==========================================================================*/
80
81/*
Neil Schemenauera35c6882001-02-27 04:45:05 +000082 * Allocation strategy abstract:
83 *
84 * For small requests, the allocator sub-allocates <Big> blocks of memory.
Antoine Pitrou6f26be02011-05-03 18:18:59 +020085 * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
86 * system's allocator.
Tim Petersce7fb9b2002-03-23 00:28:57 +000087 *
Neil Schemenauera35c6882001-02-27 04:45:05 +000088 * Small requests are grouped in size classes spaced 8 bytes apart, due
89 * to the required valid alignment of the returned address. Requests of
90 * a particular size are serviced from memory pools of 4K (one VMM page).
91 * Pools are fragmented on demand and contain free lists of blocks of one
92 * particular size class. In other words, there is a fixed-size allocator
93 * for each size class. Free pools are shared by the different allocators
94 * thus minimizing the space reserved for a particular size class.
95 *
96 * This allocation strategy is a variant of what is known as "simple
97 * segregated storage based on array of free lists". The main drawback of
98 * simple segregated storage is that we might end up with lot of reserved
99 * memory for the different free lists, which degenerate in time. To avoid
100 * this, we partition each free list in pools and we share dynamically the
101 * reserved space between all free lists. This technique is quite efficient
102 * for memory intensive programs which allocate mainly small-sized blocks.
103 *
104 * For small requests we have the following table:
105 *
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000106 * Request in bytes Size of allocated block Size class idx
Neil Schemenauera35c6882001-02-27 04:45:05 +0000107 * ----------------------------------------------------------------
108 * 1-8 8 0
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000109 * 9-16 16 1
110 * 17-24 24 2
111 * 25-32 32 3
112 * 33-40 40 4
113 * 41-48 48 5
114 * 49-56 56 6
115 * 57-64 64 7
116 * 65-72 72 8
117 * ... ... ...
Antoine Pitrou6f26be02011-05-03 18:18:59 +0200118 * 497-504 504 62
119 * 505-512 512 63
Tim Petersce7fb9b2002-03-23 00:28:57 +0000120 *
Antoine Pitrou6f26be02011-05-03 18:18:59 +0200121 * 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
122 * allocator.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000123 */
124
125/*==========================================================================*/
126
127/*
128 * -- Main tunable settings section --
129 */
130
131/*
132 * Alignment of addresses returned to the user. 8-bytes alignment works
133 * on most current architectures (with 32-bit or 64-bit address busses).
134 * The alignment value is also used for grouping small requests in size
135 * classes spaced ALIGNMENT bytes apart.
136 *
137 * You shouldn't change this unless you know what you are doing.
138 */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000139#define ALIGNMENT 8 /* must be 2^N */
140#define ALIGNMENT_SHIFT 3
141#define ALIGNMENT_MASK (ALIGNMENT - 1)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000142
Tim Peterse70ddf32002-04-05 04:32:29 +0000143/* Return the number of bytes in size class I, as a uint. */
144#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
145
Neil Schemenauera35c6882001-02-27 04:45:05 +0000146/*
147 * Max size threshold below which malloc requests are considered to be
148 * small enough in order to use preallocated memory pools. You can tune
149 * this value according to your application behaviour and memory needs.
150 *
Antoine Pitrou6f26be02011-05-03 18:18:59 +0200151 * Note: a size threshold of 512 guarantees that newly created dictionaries
152 * will be allocated from preallocated memory pools on 64-bit.
153 *
Neil Schemenauera35c6882001-02-27 04:45:05 +0000154 * The following invariants must hold:
Antoine Pitrou6f26be02011-05-03 18:18:59 +0200155 * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000156 * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
Neil Schemenauera35c6882001-02-27 04:45:05 +0000157 *
158 * Although not required, for better performance and space efficiency,
159 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
160 */
Antoine Pitrou6f26be02011-05-03 18:18:59 +0200161#define SMALL_REQUEST_THRESHOLD 512
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000162#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000163
164/*
165 * The system's VMM page size can be obtained on most unices with a
166 * getpagesize() call or deduced from various header files. To make
167 * things simpler, we assume that it is 4K, which is OK for most systems.
168 * It is probably better if this is the native page size, but it doesn't
Tim Petersecc6e6a2005-07-10 22:30:55 +0000169 * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
170 * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
171 * violation fault. 4K is apparently OK for all the platforms that python
Martin v. Löwis8c140282002-10-26 15:01:53 +0000172 * currently targets.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000173 */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000174#define SYSTEM_PAGE_SIZE (4 * 1024)
175#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000176
177/*
178 * Maximum amount of memory managed by the allocator for small requests.
179 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000180#ifdef WITH_MEMORY_LIMITS
181#ifndef SMALL_MEMORY_LIMIT
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000182#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000183#endif
184#endif
185
186/*
187 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
188 * on a page boundary. This is a reserved virtual address space for the
Antoine Pitrouf0effe62011-11-26 01:11:02 +0100189 * current process (obtained through a malloc()/mmap() call). In no way this
190 * means that the memory arenas will be used entirely. A malloc(<Big>) is
191 * usually an address range reservation for <Big> bytes, unless all pages within
192 * this space are referenced subsequently. So malloc'ing big blocks and not
193 * using them does not mean "wasting memory". It's an addressable range
194 * wastage...
Neil Schemenauera35c6882001-02-27 04:45:05 +0000195 *
Antoine Pitrouf0effe62011-11-26 01:11:02 +0100196 * Arenas are allocated with mmap() on systems supporting anonymous memory
197 * mappings to reduce heap fragmentation.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000198 */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000199#define ARENA_SIZE (256 << 10) /* 256KB */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000200
201#ifdef WITH_MEMORY_LIMITS
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000202#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000203#endif
204
205/*
206 * Size of the pools used for small blocks. Should be a power of 2,
Tim Petersc2ce91a2002-03-30 21:36:04 +0000207 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000208 */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000209#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
210#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
Neil Schemenauera35c6882001-02-27 04:45:05 +0000211
212/*
213 * -- End of tunable settings section --
214 */
215
216/*==========================================================================*/
217
218/*
219 * Locking
220 *
221 * To reduce lock contention, it would probably be better to refine the
222 * crude function locking with per size class locking. I'm not positive
223 * however, whether it's worth switching to such locking policy because
224 * of the performance penalty it might introduce.
225 *
226 * The following macros describe the simplest (should also be the fastest)
227 * lock object on a particular platform and the init/fini/lock/unlock
228 * operations on it. The locks defined here are not expected to be recursive
229 * because it is assumed that they will always be called in the order:
230 * INIT, [LOCK, UNLOCK]*, FINI.
231 */
232
233/*
234 * Python's threads are serialized, so object malloc locking is disabled.
235 */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000236#define SIMPLELOCK_DECL(lock) /* simple lock declaration */
237#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
238#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
239#define SIMPLELOCK_LOCK(lock) /* acquire released lock */
240#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000241
242/*
243 * Basic types
244 * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
245 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000246#undef uchar
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000247#define uchar unsigned char /* assuming == 8 bits */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000248
Neil Schemenauera35c6882001-02-27 04:45:05 +0000249#undef uint
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000250#define uint unsigned int /* assuming >= 16 bits */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000251
252#undef ulong
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000253#define ulong unsigned long /* assuming >= 32 bits */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000254
Tim Petersd97a1c02002-03-30 06:09:22 +0000255#undef uptr
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000256#define uptr Py_uintptr_t
Tim Petersd97a1c02002-03-30 06:09:22 +0000257
Neil Schemenauera35c6882001-02-27 04:45:05 +0000258/* When you say memory, my mind reasons in terms of (pointers to) blocks */
259typedef uchar block;
260
Tim Peterse70ddf32002-04-05 04:32:29 +0000261/* Pool for small blocks. */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000262struct pool_header {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000263 union { block *_padding;
Stefan Krah735bb122010-11-26 10:54:09 +0000264 uint count; } ref; /* number of allocated blocks */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000265 block *freeblock; /* pool's free list head */
266 struct pool_header *nextpool; /* next pool of this size class */
267 struct pool_header *prevpool; /* previous pool "" */
268 uint arenaindex; /* index into arenas of base adr */
269 uint szidx; /* block size class index */
270 uint nextoffset; /* bytes to virgin block */
271 uint maxnextoffset; /* largest valid nextoffset */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000272};
273
274typedef struct pool_header *poolp;
275
Thomas Woutersa9773292006-04-21 09:43:23 +0000276/* Record keeping for arenas. */
277struct arena_object {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000278 /* The address of the arena, as returned by malloc. Note that 0
279 * will never be returned by a successful malloc, and is used
280 * here to mark an arena_object that doesn't correspond to an
281 * allocated arena.
282 */
283 uptr address;
Thomas Woutersa9773292006-04-21 09:43:23 +0000284
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000285 /* Pool-aligned pointer to the next pool to be carved off. */
286 block* pool_address;
Thomas Woutersa9773292006-04-21 09:43:23 +0000287
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000288 /* The number of available pools in the arena: free pools + never-
289 * allocated pools.
290 */
291 uint nfreepools;
Thomas Woutersa9773292006-04-21 09:43:23 +0000292
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000293 /* The total number of pools in the arena, whether or not available. */
294 uint ntotalpools;
Thomas Woutersa9773292006-04-21 09:43:23 +0000295
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000296 /* Singly-linked list of available pools. */
297 struct pool_header* freepools;
Thomas Woutersa9773292006-04-21 09:43:23 +0000298
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000299 /* Whenever this arena_object is not associated with an allocated
300 * arena, the nextarena member is used to link all unassociated
301 * arena_objects in the singly-linked `unused_arena_objects` list.
302 * The prevarena member is unused in this case.
303 *
304 * When this arena_object is associated with an allocated arena
305 * with at least one available pool, both members are used in the
306 * doubly-linked `usable_arenas` list, which is maintained in
307 * increasing order of `nfreepools` values.
308 *
309 * Else this arena_object is associated with an allocated arena
310 * all of whose pools are in use. `nextarena` and `prevarena`
311 * are both meaningless in this case.
312 */
313 struct arena_object* nextarena;
314 struct arena_object* prevarena;
Thomas Woutersa9773292006-04-21 09:43:23 +0000315};
316
Neil Schemenauera35c6882001-02-27 04:45:05 +0000317#undef ROUNDUP
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000318#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
319#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
Neil Schemenauera35c6882001-02-27 04:45:05 +0000320
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000321#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000322
Tim Petersd97a1c02002-03-30 06:09:22 +0000323/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
Tim Peterse70ddf32002-04-05 04:32:29 +0000324#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
325
Tim Peters16bcb6b2002-04-05 05:45:31 +0000326/* Return total number of blocks in pool of size index I, as a uint. */
327#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
Tim Petersd97a1c02002-03-30 06:09:22 +0000328
Neil Schemenauera35c6882001-02-27 04:45:05 +0000329/*==========================================================================*/
330
331/*
332 * This malloc lock
333 */
Jeremy Hyltond1fedb62002-07-18 18:49:52 +0000334SIMPLELOCK_DECL(_malloc_lock)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000335#define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
336#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
337#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
338#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000339
340/*
Tim Peters1e16db62002-03-31 01:05:22 +0000341 * Pool table -- headed, circular, doubly-linked lists of partially used pools.
342
343This is involved. For an index i, usedpools[i+i] is the header for a list of
344all partially used pools holding small blocks with "size class idx" i. So
345usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
34616, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
347
Thomas Woutersa9773292006-04-21 09:43:23 +0000348Pools are carved off an arena's highwater mark (an arena_object's pool_address
349member) as needed. Once carved off, a pool is in one of three states forever
350after:
Tim Peters1e16db62002-03-31 01:05:22 +0000351
Tim Peters338e0102002-04-01 19:23:44 +0000352used == partially used, neither empty nor full
353 At least one block in the pool is currently allocated, and at least one
354 block in the pool is not currently allocated (note this implies a pool
355 has room for at least two blocks).
356 This is a pool's initial state, as a pool is created only when malloc
357 needs space.
358 The pool holds blocks of a fixed size, and is in the circular list headed
359 at usedpools[i] (see above). It's linked to the other used pools of the
360 same size class via the pool_header's nextpool and prevpool members.
361 If all but one block is currently allocated, a malloc can cause a
362 transition to the full state. If all but one block is not currently
363 allocated, a free can cause a transition to the empty state.
Tim Peters1e16db62002-03-31 01:05:22 +0000364
Tim Peters338e0102002-04-01 19:23:44 +0000365full == all the pool's blocks are currently allocated
366 On transition to full, a pool is unlinked from its usedpools[] list.
367 It's not linked to from anything then anymore, and its nextpool and
368 prevpool members are meaningless until it transitions back to used.
369 A free of a block in a full pool puts the pool back in the used state.
370 Then it's linked in at the front of the appropriate usedpools[] list, so
371 that the next allocation for its size class will reuse the freed block.
372
373empty == all the pool's blocks are currently available for allocation
374 On transition to empty, a pool is unlinked from its usedpools[] list,
Thomas Woutersa9773292006-04-21 09:43:23 +0000375 and linked to the front of its arena_object's singly-linked freepools list,
Tim Peters338e0102002-04-01 19:23:44 +0000376 via its nextpool member. The prevpool member has no meaning in this case.
377 Empty pools have no inherent size class: the next time a malloc finds
378 an empty list in usedpools[], it takes the first pool off of freepools.
379 If the size class needed happens to be the same as the size class the pool
Tim Peterse70ddf32002-04-05 04:32:29 +0000380 last had, some pool initialization can be skipped.
Tim Peters338e0102002-04-01 19:23:44 +0000381
382
383Block Management
384
385Blocks within pools are again carved out as needed. pool->freeblock points to
386the start of a singly-linked list of free blocks within the pool. When a
387block is freed, it's inserted at the front of its pool's freeblock list. Note
388that the available blocks in a pool are *not* linked all together when a pool
Tim Peterse70ddf32002-04-05 04:32:29 +0000389is initialized. Instead only "the first two" (lowest addresses) blocks are
390set up, returning the first such block, and setting pool->freeblock to a
391one-block list holding the second such block. This is consistent with that
392pymalloc strives at all levels (arena, pool, and block) never to touch a piece
393of memory until it's actually needed.
394
395So long as a pool is in the used state, we're certain there *is* a block
Tim Peters52aefc82002-04-11 06:36:45 +0000396available for allocating, and pool->freeblock is not NULL. If pool->freeblock
397points to the end of the free list before we've carved the entire pool into
398blocks, that means we simply haven't yet gotten to one of the higher-address
399blocks. The offset from the pool_header to the start of "the next" virgin
400block is stored in the pool_header nextoffset member, and the largest value
401of nextoffset that makes sense is stored in the maxnextoffset member when a
402pool is initialized. All the blocks in a pool have been passed out at least
403once when and only when nextoffset > maxnextoffset.
Tim Peters338e0102002-04-01 19:23:44 +0000404
Tim Peters1e16db62002-03-31 01:05:22 +0000405
406Major obscurity: While the usedpools vector is declared to have poolp
407entries, it doesn't really. It really contains two pointers per (conceptual)
408poolp entry, the nextpool and prevpool members of a pool_header. The
409excruciating initialization code below fools C so that
410
411 usedpool[i+i]
412
413"acts like" a genuine poolp, but only so long as you only reference its
414nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
415compensating for that a pool_header's nextpool and prevpool members
416immediately follow a pool_header's first two members:
417
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000418 union { block *_padding;
Stefan Krah735bb122010-11-26 10:54:09 +0000419 uint count; } ref;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000420 block *freeblock;
Tim Peters1e16db62002-03-31 01:05:22 +0000421
422each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
423contains is a fudged-up pointer p such that *if* C believes it's a poolp
424pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
425circular list is empty).
426
427It's unclear why the usedpools setup is so convoluted. It could be to
428minimize the amount of cache required to hold this heavily-referenced table
429(which only *needs* the two interpool pointer members of a pool_header). OTOH,
430referencing code has to remember to "double the index" and doing so isn't
431free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
432on that C doesn't insert any padding anywhere in a pool_header at or before
433the prevpool member.
434**************************************************************************** */
435
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000436#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
437#define PT(x) PTA(x), PTA(x)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000438
439static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000440 PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000441#if NB_SMALL_SIZE_CLASSES > 8
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000442 , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000443#if NB_SMALL_SIZE_CLASSES > 16
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000444 , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000445#if NB_SMALL_SIZE_CLASSES > 24
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000446 , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000447#if NB_SMALL_SIZE_CLASSES > 32
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000448 , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000449#if NB_SMALL_SIZE_CLASSES > 40
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000450 , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000451#if NB_SMALL_SIZE_CLASSES > 48
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000452 , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000453#if NB_SMALL_SIZE_CLASSES > 56
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000454 , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
Antoine Pitrou6f26be02011-05-03 18:18:59 +0200455#if NB_SMALL_SIZE_CLASSES > 64
456#error "NB_SMALL_SIZE_CLASSES should be less than 64"
457#endif /* NB_SMALL_SIZE_CLASSES > 64 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000458#endif /* NB_SMALL_SIZE_CLASSES > 56 */
459#endif /* NB_SMALL_SIZE_CLASSES > 48 */
460#endif /* NB_SMALL_SIZE_CLASSES > 40 */
461#endif /* NB_SMALL_SIZE_CLASSES > 32 */
462#endif /* NB_SMALL_SIZE_CLASSES > 24 */
463#endif /* NB_SMALL_SIZE_CLASSES > 16 */
464#endif /* NB_SMALL_SIZE_CLASSES > 8 */
465};
466
Thomas Woutersa9773292006-04-21 09:43:23 +0000467/*==========================================================================
468Arena management.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000469
Thomas Woutersa9773292006-04-21 09:43:23 +0000470`arenas` is a vector of arena_objects. It contains maxarenas entries, some of
471which may not be currently used (== they're arena_objects that aren't
472currently associated with an allocated arena). Note that arenas proper are
473separately malloc'ed.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000474
Thomas Woutersa9773292006-04-21 09:43:23 +0000475Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
476we do try to free() arenas, and use some mild heuristic strategies to increase
477the likelihood that arenas eventually can be freed.
478
479unused_arena_objects
480
481 This is a singly-linked list of the arena_objects that are currently not
482 being used (no arena is associated with them). Objects are taken off the
483 head of the list in new_arena(), and are pushed on the head of the list in
484 PyObject_Free() when the arena is empty. Key invariant: an arena_object
485 is on this list if and only if its .address member is 0.
486
487usable_arenas
488
489 This is a doubly-linked list of the arena_objects associated with arenas
490 that have pools available. These pools are either waiting to be reused,
491 or have not been used before. The list is sorted to have the most-
492 allocated arenas first (ascending order based on the nfreepools member).
493 This means that the next allocation will come from a heavily used arena,
494 which gives the nearly empty arenas a chance to be returned to the system.
495 In my unscientific tests this dramatically improved the number of arenas
496 that could be freed.
497
498Note that an arena_object associated with an arena all of whose pools are
499currently in use isn't on either list.
500*/
501
502/* Array of objects used to track chunks of memory (arenas). */
503static struct arena_object* arenas = NULL;
504/* Number of slots currently allocated in the `arenas` vector. */
Tim Peters1d99af82002-03-30 10:35:09 +0000505static uint maxarenas = 0;
Tim Petersd97a1c02002-03-30 06:09:22 +0000506
Thomas Woutersa9773292006-04-21 09:43:23 +0000507/* The head of the singly-linked, NULL-terminated list of available
508 * arena_objects.
Tim Petersd97a1c02002-03-30 06:09:22 +0000509 */
Thomas Woutersa9773292006-04-21 09:43:23 +0000510static struct arena_object* unused_arena_objects = NULL;
511
512/* The head of the doubly-linked, NULL-terminated at each end, list of
513 * arena_objects associated with arenas that have pools available.
514 */
515static struct arena_object* usable_arenas = NULL;
516
517/* How many arena_objects do we initially allocate?
518 * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
519 * `arenas` vector.
520 */
521#define INITIAL_ARENA_OBJECTS 16
522
523/* Number of arenas allocated that haven't been free()'d. */
Thomas Wouters73e5a5b2006-06-08 15:35:45 +0000524static size_t narenas_currently_allocated = 0;
Thomas Woutersa9773292006-04-21 09:43:23 +0000525
526#ifdef PYMALLOC_DEBUG
527/* Total number of times malloc() called to allocate an arena. */
Thomas Wouters73e5a5b2006-06-08 15:35:45 +0000528static size_t ntimes_arena_allocated = 0;
Thomas Woutersa9773292006-04-21 09:43:23 +0000529/* High water mark (max value ever seen) for narenas_currently_allocated. */
Thomas Wouters73e5a5b2006-06-08 15:35:45 +0000530static size_t narenas_highwater = 0;
Thomas Woutersa9773292006-04-21 09:43:23 +0000531#endif
532
533/* Allocate a new arena. If we run out of memory, return NULL. Else
534 * allocate a new arena, and return the address of an arena_object
535 * describing the new arena. It's expected that the caller will set
536 * `usable_arenas` to the return value.
537 */
538static struct arena_object*
Tim Petersd97a1c02002-03-30 06:09:22 +0000539new_arena(void)
540{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000541 struct arena_object* arenaobj;
542 uint excess; /* number of bytes above pool alignment */
Tim Petersd97a1c02002-03-30 06:09:22 +0000543
Tim Peters0e871182002-04-13 08:29:14 +0000544#ifdef PYMALLOC_DEBUG
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000545 if (Py_GETENV("PYTHONMALLOCSTATS"))
546 _PyObject_DebugMallocStats();
Tim Peters0e871182002-04-13 08:29:14 +0000547#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000548 if (unused_arena_objects == NULL) {
549 uint i;
550 uint numarenas;
551 size_t nbytes;
Tim Peters0e871182002-04-13 08:29:14 +0000552
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000553 /* Double the number of arena objects on each allocation.
554 * Note that it's possible for `numarenas` to overflow.
555 */
556 numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
557 if (numarenas <= maxarenas)
558 return NULL; /* overflow */
Martin v. Löwis5aca8822008-09-11 06:55:48 +0000559#if SIZEOF_SIZE_T <= SIZEOF_INT
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000560 if (numarenas > PY_SIZE_MAX / sizeof(*arenas))
561 return NULL; /* overflow */
Martin v. Löwis5aca8822008-09-11 06:55:48 +0000562#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000563 nbytes = numarenas * sizeof(*arenas);
564 arenaobj = (struct arena_object *)realloc(arenas, nbytes);
565 if (arenaobj == NULL)
566 return NULL;
567 arenas = arenaobj;
Thomas Woutersa9773292006-04-21 09:43:23 +0000568
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000569 /* We might need to fix pointers that were copied. However,
570 * new_arena only gets called when all the pages in the
571 * previous arenas are full. Thus, there are *no* pointers
572 * into the old array. Thus, we don't have to worry about
573 * invalid pointers. Just to be sure, some asserts:
574 */
575 assert(usable_arenas == NULL);
576 assert(unused_arena_objects == NULL);
Thomas Woutersa9773292006-04-21 09:43:23 +0000577
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000578 /* Put the new arenas on the unused_arena_objects list. */
579 for (i = maxarenas; i < numarenas; ++i) {
580 arenas[i].address = 0; /* mark as unassociated */
581 arenas[i].nextarena = i < numarenas - 1 ?
582 &arenas[i+1] : NULL;
583 }
Thomas Woutersa9773292006-04-21 09:43:23 +0000584
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000585 /* Update globals. */
586 unused_arena_objects = &arenas[maxarenas];
587 maxarenas = numarenas;
588 }
Tim Petersd97a1c02002-03-30 06:09:22 +0000589
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000590 /* Take the next available arena object off the head of the list. */
591 assert(unused_arena_objects != NULL);
592 arenaobj = unused_arena_objects;
593 unused_arena_objects = arenaobj->nextarena;
594 assert(arenaobj->address == 0);
Antoine Pitrouf0effe62011-11-26 01:11:02 +0100595#ifdef ARENAS_USE_MMAP
596 arenaobj->address = (uptr)mmap(NULL, ARENA_SIZE, PROT_READ|PROT_WRITE,
597 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
598#else
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000599 arenaobj->address = (uptr)malloc(ARENA_SIZE);
Antoine Pitrouf0effe62011-11-26 01:11:02 +0100600#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000601 if (arenaobj->address == 0) {
602 /* The allocation failed: return NULL after putting the
603 * arenaobj back.
604 */
605 arenaobj->nextarena = unused_arena_objects;
606 unused_arena_objects = arenaobj;
607 return NULL;
608 }
Tim Petersd97a1c02002-03-30 06:09:22 +0000609
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000610 ++narenas_currently_allocated;
Thomas Woutersa9773292006-04-21 09:43:23 +0000611#ifdef PYMALLOC_DEBUG
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000612 ++ntimes_arena_allocated;
613 if (narenas_currently_allocated > narenas_highwater)
614 narenas_highwater = narenas_currently_allocated;
Thomas Woutersa9773292006-04-21 09:43:23 +0000615#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000616 arenaobj->freepools = NULL;
617 /* pool_address <- first pool-aligned address in the arena
618 nfreepools <- number of whole pools that fit after alignment */
619 arenaobj->pool_address = (block*)arenaobj->address;
620 arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
621 assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
622 excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
623 if (excess != 0) {
624 --arenaobj->nfreepools;
625 arenaobj->pool_address += POOL_SIZE - excess;
626 }
627 arenaobj->ntotalpools = arenaobj->nfreepools;
Thomas Woutersa9773292006-04-21 09:43:23 +0000628
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000629 return arenaobj;
Tim Petersd97a1c02002-03-30 06:09:22 +0000630}
631
Thomas Woutersa9773292006-04-21 09:43:23 +0000632/*
633Py_ADDRESS_IN_RANGE(P, POOL)
634
635Return true if and only if P is an address that was allocated by pymalloc.
636POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
637(the caller is asked to compute this because the macro expands POOL more than
638once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
639variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is
640called on every alloc/realloc/free, micro-efficiency is important here).
641
642Tricky: Let B be the arena base address associated with the pool, B =
643arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
644
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000645 B <= P < B + ARENA_SIZE
Thomas Woutersa9773292006-04-21 09:43:23 +0000646
647Subtracting B throughout, this is true iff
648
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000649 0 <= P-B < ARENA_SIZE
Thomas Woutersa9773292006-04-21 09:43:23 +0000650
651By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
652
653Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
654before the first arena has been allocated. `arenas` is still NULL in that
655case. We're relying on that maxarenas is also 0 in that case, so that
656(POOL)->arenaindex < maxarenas must be false, saving us from trying to index
657into a NULL arenas.
658
659Details: given P and POOL, the arena_object corresponding to P is AO =
660arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
661stores, etc), POOL is the correct address of P's pool, AO.address is the
662correct base address of the pool's arena, and P must be within ARENA_SIZE of
663AO.address. In addition, AO.address is not 0 (no arena can start at address 0
664(NULL)). Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc
665controls P.
666
667Now suppose obmalloc does not control P (e.g., P was obtained via a direct
668call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
669in this case -- it may even be uninitialized trash. If the trash arenaindex
670is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
671control P.
672
673Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
674allocated arena, obmalloc controls all the memory in slice AO.address :
675AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
676so P doesn't lie in that slice, so the macro correctly reports that P is not
677controlled by obmalloc.
678
679Finally, if P is not controlled by obmalloc and AO corresponds to an unused
680arena_object (one not currently associated with an allocated arena),
681AO.address is 0, and the second test in the macro reduces to:
682
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000683 P < ARENA_SIZE
Thomas Woutersa9773292006-04-21 09:43:23 +0000684
685If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
686that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
687of the test still passes, and the third clause (AO.address != 0) is necessary
688to get the correct result: AO.address is 0 in this case, so the macro
689correctly reports that P is not controlled by obmalloc (despite that P lies in
690slice AO.address : AO.address + ARENA_SIZE).
691
692Note: The third (AO.address != 0) clause was added in Python 2.5. Before
6932.5, arenas were never free()'ed, and an arenaindex < maxarena always
694corresponded to a currently-allocated arena, so the "P is not controlled by
695obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
696was impossible.
697
698Note that the logic is excruciating, and reading up possibly uninitialized
699memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
700creates problems for some memory debuggers. The overwhelming advantage is
701that this test determines whether an arbitrary address is controlled by
702obmalloc in a small constant time, independent of the number of arenas
703obmalloc controls. Since this test is needed at every entry point, it's
704extremely desirable that it be this fast.
Antoine Pitroub7fb2e22011-01-07 21:43:59 +0000705
706Since Py_ADDRESS_IN_RANGE may be reading from memory which was not allocated
707by Python, it is important that (POOL)->arenaindex is read only once, as
708another thread may be concurrently modifying the value without holding the
709GIL. To accomplish this, the arenaindex_temp variable is used to store
710(POOL)->arenaindex for the duration of the Py_ADDRESS_IN_RANGE macro's
711execution. The caller of the macro is responsible for declaring this
712variable.
Thomas Woutersa9773292006-04-21 09:43:23 +0000713*/
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000714#define Py_ADDRESS_IN_RANGE(P, POOL) \
Antoine Pitroub7fb2e22011-01-07 21:43:59 +0000715 ((arenaindex_temp = (POOL)->arenaindex) < maxarenas && \
716 (uptr)(P) - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE && \
717 arenas[arenaindex_temp].address != 0)
Thomas Woutersa9773292006-04-21 09:43:23 +0000718
Neal Norwitz7eb3c912004-06-06 19:20:22 +0000719
720/* This is only useful when running memory debuggers such as
721 * Purify or Valgrind. Uncomment to use.
722 *
Martin v. Löwis9f2e3462007-07-21 17:22:18 +0000723#define Py_USING_MEMORY_DEBUGGER
Martin v. Löwis6fea2332008-09-25 04:15:27 +0000724 */
Neal Norwitz7eb3c912004-06-06 19:20:22 +0000725
726#ifdef Py_USING_MEMORY_DEBUGGER
727
728/* Py_ADDRESS_IN_RANGE may access uninitialized memory by design
729 * This leads to thousands of spurious warnings when using
730 * Purify or Valgrind. By making a function, we can easily
731 * suppress the uninitialized memory reads in this one function.
732 * So we won't ignore real errors elsewhere.
733 *
734 * Disable the macro and use a function.
735 */
736
737#undef Py_ADDRESS_IN_RANGE
738
Thomas Wouters89f507f2006-12-13 04:49:30 +0000739#if defined(__GNUC__) && ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) || \
Stefan Krah735bb122010-11-26 10:54:09 +0000740 (__GNUC__ >= 4))
Neal Norwitze5e5aa42005-11-13 18:55:39 +0000741#define Py_NO_INLINE __attribute__((__noinline__))
742#else
743#define Py_NO_INLINE
744#endif
745
746/* Don't make static, to try to ensure this isn't inlined. */
747int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE;
748#undef Py_NO_INLINE
Neal Norwitz7eb3c912004-06-06 19:20:22 +0000749#endif
Tim Peters338e0102002-04-01 19:23:44 +0000750
Neil Schemenauera35c6882001-02-27 04:45:05 +0000751/*==========================================================================*/
752
Tim Peters84c1b972002-04-04 04:44:32 +0000753/* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct
754 * from all other currently live pointers. This may not be possible.
755 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000756
757/*
758 * The basic blocks are ordered by decreasing execution frequency,
759 * which minimizes the number of jumps in the most common cases,
760 * improves branching prediction and instruction scheduling (small
761 * block allocations typically result in a couple of instructions).
762 * Unless the optimizer reorders everything, being too smart...
763 */
764
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000765#undef PyObject_Malloc
Neil Schemenauera35c6882001-02-27 04:45:05 +0000766void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000767PyObject_Malloc(size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000768{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000769 block *bp;
770 poolp pool;
771 poolp next;
772 uint size;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000773
Benjamin Peterson05159c42009-12-03 03:01:27 +0000774#ifdef WITH_VALGRIND
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000775 if (UNLIKELY(running_on_valgrind == -1))
776 running_on_valgrind = RUNNING_ON_VALGRIND;
777 if (UNLIKELY(running_on_valgrind))
778 goto redirect;
Benjamin Peterson05159c42009-12-03 03:01:27 +0000779#endif
780
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000781 /*
782 * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
783 * Most python internals blindly use a signed Py_ssize_t to track
784 * things without checking for overflows or negatives.
785 * As size_t is unsigned, checking for nbytes < 0 is not required.
786 */
787 if (nbytes > PY_SSIZE_T_MAX)
788 return NULL;
Georg Brandld492ad82008-07-23 16:13:07 +0000789
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000790 /*
791 * This implicitly redirects malloc(0).
792 */
793 if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
794 LOCK();
795 /*
796 * Most frequent paths first
797 */
798 size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
799 pool = usedpools[size + size];
800 if (pool != pool->nextpool) {
801 /*
802 * There is a used pool for this size class.
803 * Pick up the head block of its free list.
804 */
805 ++pool->ref.count;
806 bp = pool->freeblock;
807 assert(bp != NULL);
808 if ((pool->freeblock = *(block **)bp) != NULL) {
809 UNLOCK();
810 return (void *)bp;
811 }
812 /*
813 * Reached the end of the free list, try to extend it.
814 */
815 if (pool->nextoffset <= pool->maxnextoffset) {
816 /* There is room for another block. */
817 pool->freeblock = (block*)pool +
818 pool->nextoffset;
819 pool->nextoffset += INDEX2SIZE(size);
820 *(block **)(pool->freeblock) = NULL;
821 UNLOCK();
822 return (void *)bp;
823 }
824 /* Pool is full, unlink from used pools. */
825 next = pool->nextpool;
826 pool = pool->prevpool;
827 next->prevpool = pool;
828 pool->nextpool = next;
829 UNLOCK();
830 return (void *)bp;
831 }
Thomas Woutersa9773292006-04-21 09:43:23 +0000832
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000833 /* There isn't a pool of the right size class immediately
834 * available: use a free pool.
835 */
836 if (usable_arenas == NULL) {
837 /* No arena has a free pool: allocate a new arena. */
Thomas Woutersa9773292006-04-21 09:43:23 +0000838#ifdef WITH_MEMORY_LIMITS
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000839 if (narenas_currently_allocated >= MAX_ARENAS) {
840 UNLOCK();
841 goto redirect;
842 }
Thomas Woutersa9773292006-04-21 09:43:23 +0000843#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000844 usable_arenas = new_arena();
845 if (usable_arenas == NULL) {
846 UNLOCK();
847 goto redirect;
848 }
849 usable_arenas->nextarena =
850 usable_arenas->prevarena = NULL;
851 }
852 assert(usable_arenas->address != 0);
Thomas Woutersa9773292006-04-21 09:43:23 +0000853
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000854 /* Try to get a cached free pool. */
855 pool = usable_arenas->freepools;
856 if (pool != NULL) {
857 /* Unlink from cached pools. */
858 usable_arenas->freepools = pool->nextpool;
Thomas Woutersa9773292006-04-21 09:43:23 +0000859
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000860 /* This arena already had the smallest nfreepools
861 * value, so decreasing nfreepools doesn't change
862 * that, and we don't need to rearrange the
863 * usable_arenas list. However, if the arena has
864 * become wholly allocated, we need to remove its
865 * arena_object from usable_arenas.
866 */
867 --usable_arenas->nfreepools;
868 if (usable_arenas->nfreepools == 0) {
869 /* Wholly allocated: remove. */
870 assert(usable_arenas->freepools == NULL);
871 assert(usable_arenas->nextarena == NULL ||
872 usable_arenas->nextarena->prevarena ==
873 usable_arenas);
Thomas Woutersa9773292006-04-21 09:43:23 +0000874
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000875 usable_arenas = usable_arenas->nextarena;
876 if (usable_arenas != NULL) {
877 usable_arenas->prevarena = NULL;
878 assert(usable_arenas->address != 0);
879 }
880 }
881 else {
882 /* nfreepools > 0: it must be that freepools
883 * isn't NULL, or that we haven't yet carved
884 * off all the arena's pools for the first
885 * time.
886 */
887 assert(usable_arenas->freepools != NULL ||
888 usable_arenas->pool_address <=
889 (block*)usable_arenas->address +
890 ARENA_SIZE - POOL_SIZE);
891 }
892 init_pool:
893 /* Frontlink to used pools. */
894 next = usedpools[size + size]; /* == prev */
895 pool->nextpool = next;
896 pool->prevpool = next;
897 next->nextpool = pool;
898 next->prevpool = pool;
899 pool->ref.count = 1;
900 if (pool->szidx == size) {
901 /* Luckily, this pool last contained blocks
902 * of the same size class, so its header
903 * and free list are already initialized.
904 */
905 bp = pool->freeblock;
906 pool->freeblock = *(block **)bp;
907 UNLOCK();
908 return (void *)bp;
909 }
910 /*
911 * Initialize the pool header, set up the free list to
912 * contain just the second block, and return the first
913 * block.
914 */
915 pool->szidx = size;
916 size = INDEX2SIZE(size);
917 bp = (block *)pool + POOL_OVERHEAD;
918 pool->nextoffset = POOL_OVERHEAD + (size << 1);
919 pool->maxnextoffset = POOL_SIZE - size;
920 pool->freeblock = bp + size;
921 *(block **)(pool->freeblock) = NULL;
922 UNLOCK();
923 return (void *)bp;
924 }
Thomas Woutersa9773292006-04-21 09:43:23 +0000925
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000926 /* Carve off a new pool. */
927 assert(usable_arenas->nfreepools > 0);
928 assert(usable_arenas->freepools == NULL);
929 pool = (poolp)usable_arenas->pool_address;
930 assert((block*)pool <= (block*)usable_arenas->address +
931 ARENA_SIZE - POOL_SIZE);
932 pool->arenaindex = usable_arenas - arenas;
933 assert(&arenas[pool->arenaindex] == usable_arenas);
934 pool->szidx = DUMMY_SIZE_IDX;
935 usable_arenas->pool_address += POOL_SIZE;
936 --usable_arenas->nfreepools;
Thomas Woutersa9773292006-04-21 09:43:23 +0000937
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000938 if (usable_arenas->nfreepools == 0) {
939 assert(usable_arenas->nextarena == NULL ||
940 usable_arenas->nextarena->prevarena ==
941 usable_arenas);
942 /* Unlink the arena: it is completely allocated. */
943 usable_arenas = usable_arenas->nextarena;
944 if (usable_arenas != NULL) {
945 usable_arenas->prevarena = NULL;
946 assert(usable_arenas->address != 0);
947 }
948 }
Thomas Woutersa9773292006-04-21 09:43:23 +0000949
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000950 goto init_pool;
951 }
Neil Schemenauera35c6882001-02-27 04:45:05 +0000952
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000953 /* The small block allocator ends here. */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000954
Tim Petersd97a1c02002-03-30 06:09:22 +0000955redirect:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000956 /* Redirect the original request to the underlying (libc) allocator.
957 * We jump here on bigger requests, on error in the code above (as a
958 * last chance to serve the request) or when the max memory limit
959 * has been reached.
960 */
961 if (nbytes == 0)
962 nbytes = 1;
963 return (void *)malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000964}
965
966/* free */
967
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000968#undef PyObject_Free
Neil Schemenauera35c6882001-02-27 04:45:05 +0000969void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000970PyObject_Free(void *p)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000971{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000972 poolp pool;
973 block *lastfree;
974 poolp next, prev;
975 uint size;
Antoine Pitroub7fb2e22011-01-07 21:43:59 +0000976#ifndef Py_USING_MEMORY_DEBUGGER
977 uint arenaindex_temp;
978#endif
Neil Schemenauera35c6882001-02-27 04:45:05 +0000979
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000980 if (p == NULL) /* free(NULL) has no effect */
981 return;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000982
Benjamin Peterson05159c42009-12-03 03:01:27 +0000983#ifdef WITH_VALGRIND
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000984 if (UNLIKELY(running_on_valgrind > 0))
985 goto redirect;
Benjamin Peterson05159c42009-12-03 03:01:27 +0000986#endif
987
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000988 pool = POOL_ADDR(p);
989 if (Py_ADDRESS_IN_RANGE(p, pool)) {
990 /* We allocated this address. */
991 LOCK();
992 /* Link p to the start of the pool's freeblock list. Since
993 * the pool had at least the p block outstanding, the pool
994 * wasn't empty (so it's already in a usedpools[] list, or
995 * was full and is in no list -- it's not in the freeblocks
996 * list in any case).
997 */
998 assert(pool->ref.count > 0); /* else it was empty */
999 *(block **)p = lastfree = pool->freeblock;
1000 pool->freeblock = (block *)p;
1001 if (lastfree) {
1002 struct arena_object* ao;
1003 uint nf; /* ao->nfreepools */
Thomas Woutersa9773292006-04-21 09:43:23 +00001004
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001005 /* freeblock wasn't NULL, so the pool wasn't full,
1006 * and the pool is in a usedpools[] list.
1007 */
1008 if (--pool->ref.count != 0) {
1009 /* pool isn't empty: leave it in usedpools */
1010 UNLOCK();
1011 return;
1012 }
1013 /* Pool is now empty: unlink from usedpools, and
1014 * link to the front of freepools. This ensures that
1015 * previously freed pools will be allocated later
1016 * (being not referenced, they are perhaps paged out).
1017 */
1018 next = pool->nextpool;
1019 prev = pool->prevpool;
1020 next->prevpool = prev;
1021 prev->nextpool = next;
Thomas Woutersa9773292006-04-21 09:43:23 +00001022
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001023 /* Link the pool to freepools. This is a singly-linked
1024 * list, and pool->prevpool isn't used there.
1025 */
1026 ao = &arenas[pool->arenaindex];
1027 pool->nextpool = ao->freepools;
1028 ao->freepools = pool;
1029 nf = ++ao->nfreepools;
Thomas Woutersa9773292006-04-21 09:43:23 +00001030
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001031 /* All the rest is arena management. We just freed
1032 * a pool, and there are 4 cases for arena mgmt:
1033 * 1. If all the pools are free, return the arena to
1034 * the system free().
1035 * 2. If this is the only free pool in the arena,
1036 * add the arena back to the `usable_arenas` list.
1037 * 3. If the "next" arena has a smaller count of free
1038 * pools, we have to "slide this arena right" to
1039 * restore that usable_arenas is sorted in order of
1040 * nfreepools.
1041 * 4. Else there's nothing more to do.
1042 */
1043 if (nf == ao->ntotalpools) {
1044 /* Case 1. First unlink ao from usable_arenas.
1045 */
1046 assert(ao->prevarena == NULL ||
1047 ao->prevarena->address != 0);
1048 assert(ao ->nextarena == NULL ||
1049 ao->nextarena->address != 0);
Thomas Woutersa9773292006-04-21 09:43:23 +00001050
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001051 /* Fix the pointer in the prevarena, or the
1052 * usable_arenas pointer.
1053 */
1054 if (ao->prevarena == NULL) {
1055 usable_arenas = ao->nextarena;
1056 assert(usable_arenas == NULL ||
1057 usable_arenas->address != 0);
1058 }
1059 else {
1060 assert(ao->prevarena->nextarena == ao);
1061 ao->prevarena->nextarena =
1062 ao->nextarena;
1063 }
1064 /* Fix the pointer in the nextarena. */
1065 if (ao->nextarena != NULL) {
1066 assert(ao->nextarena->prevarena == ao);
1067 ao->nextarena->prevarena =
1068 ao->prevarena;
1069 }
1070 /* Record that this arena_object slot is
1071 * available to be reused.
1072 */
1073 ao->nextarena = unused_arena_objects;
1074 unused_arena_objects = ao;
Thomas Woutersa9773292006-04-21 09:43:23 +00001075
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001076 /* Free the entire arena. */
Antoine Pitrouf0effe62011-11-26 01:11:02 +01001077#ifdef ARENAS_USE_MMAP
1078 munmap((void *)ao->address, ARENA_SIZE);
1079#else
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001080 free((void *)ao->address);
Antoine Pitrouf0effe62011-11-26 01:11:02 +01001081#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001082 ao->address = 0; /* mark unassociated */
1083 --narenas_currently_allocated;
Thomas Woutersa9773292006-04-21 09:43:23 +00001084
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001085 UNLOCK();
1086 return;
1087 }
1088 if (nf == 1) {
1089 /* Case 2. Put ao at the head of
1090 * usable_arenas. Note that because
1091 * ao->nfreepools was 0 before, ao isn't
1092 * currently on the usable_arenas list.
1093 */
1094 ao->nextarena = usable_arenas;
1095 ao->prevarena = NULL;
1096 if (usable_arenas)
1097 usable_arenas->prevarena = ao;
1098 usable_arenas = ao;
1099 assert(usable_arenas->address != 0);
Thomas Woutersa9773292006-04-21 09:43:23 +00001100
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001101 UNLOCK();
1102 return;
1103 }
1104 /* If this arena is now out of order, we need to keep
1105 * the list sorted. The list is kept sorted so that
1106 * the "most full" arenas are used first, which allows
1107 * the nearly empty arenas to be completely freed. In
1108 * a few un-scientific tests, it seems like this
1109 * approach allowed a lot more memory to be freed.
1110 */
1111 if (ao->nextarena == NULL ||
1112 nf <= ao->nextarena->nfreepools) {
1113 /* Case 4. Nothing to do. */
1114 UNLOCK();
1115 return;
1116 }
1117 /* Case 3: We have to move the arena towards the end
1118 * of the list, because it has more free pools than
1119 * the arena to its right.
1120 * First unlink ao from usable_arenas.
1121 */
1122 if (ao->prevarena != NULL) {
1123 /* ao isn't at the head of the list */
1124 assert(ao->prevarena->nextarena == ao);
1125 ao->prevarena->nextarena = ao->nextarena;
1126 }
1127 else {
1128 /* ao is at the head of the list */
1129 assert(usable_arenas == ao);
1130 usable_arenas = ao->nextarena;
1131 }
1132 ao->nextarena->prevarena = ao->prevarena;
Thomas Woutersa9773292006-04-21 09:43:23 +00001133
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001134 /* Locate the new insertion point by iterating over
1135 * the list, using our nextarena pointer.
1136 */
1137 while (ao->nextarena != NULL &&
1138 nf > ao->nextarena->nfreepools) {
1139 ao->prevarena = ao->nextarena;
1140 ao->nextarena = ao->nextarena->nextarena;
1141 }
Thomas Woutersa9773292006-04-21 09:43:23 +00001142
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001143 /* Insert ao at this point. */
1144 assert(ao->nextarena == NULL ||
1145 ao->prevarena == ao->nextarena->prevarena);
1146 assert(ao->prevarena->nextarena == ao->nextarena);
Thomas Woutersa9773292006-04-21 09:43:23 +00001147
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001148 ao->prevarena->nextarena = ao;
1149 if (ao->nextarena != NULL)
1150 ao->nextarena->prevarena = ao;
Thomas Woutersa9773292006-04-21 09:43:23 +00001151
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001152 /* Verify that the swaps worked. */
1153 assert(ao->nextarena == NULL ||
1154 nf <= ao->nextarena->nfreepools);
1155 assert(ao->prevarena == NULL ||
1156 nf > ao->prevarena->nfreepools);
1157 assert(ao->nextarena == NULL ||
1158 ao->nextarena->prevarena == ao);
1159 assert((usable_arenas == ao &&
1160 ao->prevarena == NULL) ||
1161 ao->prevarena->nextarena == ao);
Thomas Woutersa9773292006-04-21 09:43:23 +00001162
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001163 UNLOCK();
1164 return;
1165 }
1166 /* Pool was full, so doesn't currently live in any list:
1167 * link it to the front of the appropriate usedpools[] list.
1168 * This mimics LRU pool usage for new allocations and
1169 * targets optimal filling when several pools contain
1170 * blocks of the same size class.
1171 */
1172 --pool->ref.count;
1173 assert(pool->ref.count > 0); /* else the pool is empty */
1174 size = pool->szidx;
1175 next = usedpools[size + size];
1176 prev = next->prevpool;
1177 /* insert pool before next: prev <-> pool <-> next */
1178 pool->nextpool = next;
1179 pool->prevpool = prev;
1180 next->prevpool = pool;
1181 prev->nextpool = pool;
1182 UNLOCK();
1183 return;
1184 }
Neil Schemenauera35c6882001-02-27 04:45:05 +00001185
Benjamin Peterson05159c42009-12-03 03:01:27 +00001186#ifdef WITH_VALGRIND
1187redirect:
1188#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001189 /* We didn't allocate this address. */
1190 free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +00001191}
1192
Tim Peters84c1b972002-04-04 04:44:32 +00001193/* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0,
1194 * then as the Python docs promise, we do not treat this like free(p), and
1195 * return a non-NULL result.
1196 */
Neil Schemenauera35c6882001-02-27 04:45:05 +00001197
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001198#undef PyObject_Realloc
Neil Schemenauera35c6882001-02-27 04:45:05 +00001199void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001200PyObject_Realloc(void *p, size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +00001201{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001202 void *bp;
1203 poolp pool;
1204 size_t size;
Antoine Pitroub7fb2e22011-01-07 21:43:59 +00001205#ifndef Py_USING_MEMORY_DEBUGGER
1206 uint arenaindex_temp;
1207#endif
Neil Schemenauera35c6882001-02-27 04:45:05 +00001208
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001209 if (p == NULL)
1210 return PyObject_Malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +00001211
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001212 /*
1213 * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
1214 * Most python internals blindly use a signed Py_ssize_t to track
1215 * things without checking for overflows or negatives.
1216 * As size_t is unsigned, checking for nbytes < 0 is not required.
1217 */
1218 if (nbytes > PY_SSIZE_T_MAX)
1219 return NULL;
Georg Brandld492ad82008-07-23 16:13:07 +00001220
Benjamin Peterson05159c42009-12-03 03:01:27 +00001221#ifdef WITH_VALGRIND
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001222 /* Treat running_on_valgrind == -1 the same as 0 */
1223 if (UNLIKELY(running_on_valgrind > 0))
1224 goto redirect;
Benjamin Peterson05159c42009-12-03 03:01:27 +00001225#endif
1226
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001227 pool = POOL_ADDR(p);
1228 if (Py_ADDRESS_IN_RANGE(p, pool)) {
1229 /* We're in charge of this block */
1230 size = INDEX2SIZE(pool->szidx);
1231 if (nbytes <= size) {
1232 /* The block is staying the same or shrinking. If
1233 * it's shrinking, there's a tradeoff: it costs
1234 * cycles to copy the block to a smaller size class,
1235 * but it wastes memory not to copy it. The
1236 * compromise here is to copy on shrink only if at
1237 * least 25% of size can be shaved off.
1238 */
1239 if (4 * nbytes > 3 * size) {
1240 /* It's the same,
1241 * or shrinking and new/old > 3/4.
1242 */
1243 return p;
1244 }
1245 size = nbytes;
1246 }
1247 bp = PyObject_Malloc(nbytes);
1248 if (bp != NULL) {
1249 memcpy(bp, p, size);
1250 PyObject_Free(p);
1251 }
1252 return bp;
1253 }
Benjamin Peterson05159c42009-12-03 03:01:27 +00001254#ifdef WITH_VALGRIND
1255 redirect:
1256#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001257 /* We're not managing this block. If nbytes <=
1258 * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
1259 * block. However, if we do, we need to copy the valid data from
1260 * the C-managed block to one of our blocks, and there's no portable
1261 * way to know how much of the memory space starting at p is valid.
1262 * As bug 1185883 pointed out the hard way, it's possible that the
1263 * C-managed block is "at the end" of allocated VM space, so that
1264 * a memory fault can occur if we try to copy nbytes bytes starting
1265 * at p. Instead we punt: let C continue to manage this block.
1266 */
1267 if (nbytes)
1268 return realloc(p, nbytes);
1269 /* C doesn't define the result of realloc(p, 0) (it may or may not
1270 * return NULL then), but Python's docs promise that nbytes==0 never
1271 * returns NULL. We don't pass 0 to realloc(), to avoid that endcase
1272 * to begin with. Even then, we can't be sure that realloc() won't
1273 * return NULL.
1274 */
1275 bp = realloc(p, 1);
1276 return bp ? bp : p;
Neil Schemenauera35c6882001-02-27 04:45:05 +00001277}
1278
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001279#else /* ! WITH_PYMALLOC */
Tim Petersddea2082002-03-23 10:03:50 +00001280
1281/*==========================================================================*/
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001282/* pymalloc not enabled: Redirect the entry points to malloc. These will
1283 * only be used by extensions that are compiled with pymalloc enabled. */
Tim Peters62c06ba2002-03-23 22:28:18 +00001284
Tim Petersce7fb9b2002-03-23 00:28:57 +00001285void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001286PyObject_Malloc(size_t n)
Tim Peters1221c0a2002-03-23 00:20:15 +00001287{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001288 return PyMem_MALLOC(n);
Tim Peters1221c0a2002-03-23 00:20:15 +00001289}
1290
Tim Petersce7fb9b2002-03-23 00:28:57 +00001291void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001292PyObject_Realloc(void *p, size_t n)
Tim Peters1221c0a2002-03-23 00:20:15 +00001293{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001294 return PyMem_REALLOC(p, n);
Tim Peters1221c0a2002-03-23 00:20:15 +00001295}
1296
1297void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001298PyObject_Free(void *p)
Tim Peters1221c0a2002-03-23 00:20:15 +00001299{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001300 PyMem_FREE(p);
Tim Peters1221c0a2002-03-23 00:20:15 +00001301}
1302#endif /* WITH_PYMALLOC */
1303
Tim Petersddea2082002-03-23 10:03:50 +00001304#ifdef PYMALLOC_DEBUG
1305/*==========================================================================*/
Tim Peters62c06ba2002-03-23 22:28:18 +00001306/* A x-platform debugging allocator. This doesn't manage memory directly,
1307 * it wraps a real allocator, adding extra debugging info to the memory blocks.
1308 */
Tim Petersddea2082002-03-23 10:03:50 +00001309
Tim Petersf6fb5012002-04-12 07:38:53 +00001310/* Special bytes broadcast into debug memory blocks at appropriate times.
1311 * Strings of these are unlikely to be valid addresses, floats, ints or
1312 * 7-bit ASCII.
1313 */
1314#undef CLEANBYTE
1315#undef DEADBYTE
1316#undef FORBIDDENBYTE
1317#define CLEANBYTE 0xCB /* clean (newly allocated) memory */
Tim Peters889f61d2002-07-10 19:29:49 +00001318#define DEADBYTE 0xDB /* dead (newly freed) memory */
Tim Petersf6fb5012002-04-12 07:38:53 +00001319#define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */
Tim Petersddea2082002-03-23 10:03:50 +00001320
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001321/* We tag each block with an API ID in order to tag API violations */
1322#define _PYMALLOC_MEM_ID 'm' /* the PyMem_Malloc() API */
1323#define _PYMALLOC_OBJ_ID 'o' /* The PyObject_Malloc() API */
1324
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001325static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
Tim Petersddea2082002-03-23 10:03:50 +00001326
Tim Peterse0850172002-03-24 00:34:21 +00001327/* serialno is always incremented via calling this routine. The point is
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001328 * to supply a single place to set a breakpoint.
1329 */
Tim Peterse0850172002-03-24 00:34:21 +00001330static void
Neil Schemenauerbd02b142002-03-28 21:05:38 +00001331bumpserialno(void)
Tim Peterse0850172002-03-24 00:34:21 +00001332{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001333 ++serialno;
Tim Peterse0850172002-03-24 00:34:21 +00001334}
1335
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001336#define SST SIZEOF_SIZE_T
Tim Peterse0850172002-03-24 00:34:21 +00001337
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001338/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
1339static size_t
1340read_size_t(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001341{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001342 const uchar *q = (const uchar *)p;
1343 size_t result = *q++;
1344 int i;
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001345
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001346 for (i = SST; --i > 0; ++q)
1347 result = (result << 8) | *q;
1348 return result;
Tim Petersddea2082002-03-23 10:03:50 +00001349}
1350
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001351/* Write n as a big-endian size_t, MSB at address p, LSB at
1352 * p + sizeof(size_t) - 1.
1353 */
Tim Petersddea2082002-03-23 10:03:50 +00001354static void
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001355write_size_t(void *p, size_t n)
Tim Petersddea2082002-03-23 10:03:50 +00001356{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001357 uchar *q = (uchar *)p + SST - 1;
1358 int i;
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001359
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001360 for (i = SST; --i >= 0; --q) {
1361 *q = (uchar)(n & 0xff);
1362 n >>= 8;
1363 }
Tim Petersddea2082002-03-23 10:03:50 +00001364}
1365
Tim Peters08d82152002-04-18 22:25:03 +00001366#ifdef Py_DEBUG
1367/* Is target in the list? The list is traversed via the nextpool pointers.
1368 * The list may be NULL-terminated, or circular. Return 1 if target is in
1369 * list, else 0.
1370 */
1371static int
1372pool_is_in_list(const poolp target, poolp list)
1373{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001374 poolp origlist = list;
1375 assert(target != NULL);
1376 if (list == NULL)
1377 return 0;
1378 do {
1379 if (target == list)
1380 return 1;
1381 list = list->nextpool;
1382 } while (list != NULL && list != origlist);
1383 return 0;
Tim Peters08d82152002-04-18 22:25:03 +00001384}
1385
1386#else
1387#define pool_is_in_list(X, Y) 1
1388
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001389#endif /* Py_DEBUG */
Tim Peters08d82152002-04-18 22:25:03 +00001390
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001391/* Let S = sizeof(size_t). The debug malloc asks for 4*S extra bytes and
1392 fills them with useful stuff, here calling the underlying malloc's result p:
Tim Petersddea2082002-03-23 10:03:50 +00001393
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001394p[0: S]
1395 Number of bytes originally asked for. This is a size_t, big-endian (easier
1396 to read in a memory dump).
1397p[S: 2*S]
Tim Petersf6fb5012002-04-12 07:38:53 +00001398 Copies of FORBIDDENBYTE. Used to catch under- writes and reads.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001399p[2*S: 2*S+n]
Tim Petersf6fb5012002-04-12 07:38:53 +00001400 The requested memory, filled with copies of CLEANBYTE.
Tim Petersddea2082002-03-23 10:03:50 +00001401 Used to catch reference to uninitialized memory.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001402 &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
Tim Petersddea2082002-03-23 10:03:50 +00001403 handled the request itself.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001404p[2*S+n: 2*S+n+S]
Tim Petersf6fb5012002-04-12 07:38:53 +00001405 Copies of FORBIDDENBYTE. Used to catch over- writes and reads.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001406p[2*S+n+S: 2*S+n+2*S]
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001407 A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
1408 and _PyObject_DebugRealloc.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001409 This is a big-endian size_t.
Tim Petersddea2082002-03-23 10:03:50 +00001410 If "bad memory" is detected later, the serial number gives an
1411 excellent way to set a breakpoint on the next run, to capture the
1412 instant at which this block was passed out.
1413*/
1414
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001415/* debug replacements for the PyMem_* memory API */
1416void *
1417_PyMem_DebugMalloc(size_t nbytes)
1418{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001419 return _PyObject_DebugMallocApi(_PYMALLOC_MEM_ID, nbytes);
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001420}
1421void *
1422_PyMem_DebugRealloc(void *p, size_t nbytes)
1423{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001424 return _PyObject_DebugReallocApi(_PYMALLOC_MEM_ID, p, nbytes);
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001425}
1426void
1427_PyMem_DebugFree(void *p)
1428{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001429 _PyObject_DebugFreeApi(_PYMALLOC_MEM_ID, p);
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001430}
1431
1432/* debug replacements for the PyObject_* memory API */
Tim Petersddea2082002-03-23 10:03:50 +00001433void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001434_PyObject_DebugMalloc(size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +00001435{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001436 return _PyObject_DebugMallocApi(_PYMALLOC_OBJ_ID, nbytes);
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001437}
1438void *
1439_PyObject_DebugRealloc(void *p, size_t nbytes)
1440{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001441 return _PyObject_DebugReallocApi(_PYMALLOC_OBJ_ID, p, nbytes);
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001442}
1443void
1444_PyObject_DebugFree(void *p)
1445{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001446 _PyObject_DebugFreeApi(_PYMALLOC_OBJ_ID, p);
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001447}
1448void
Kristján Valur Jónsson34369002009-09-28 15:57:53 +00001449_PyObject_DebugCheckAddress(const void *p)
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001450{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001451 _PyObject_DebugCheckAddressApi(_PYMALLOC_OBJ_ID, p);
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001452}
1453
1454
1455/* generic debug memory api, with an "id" to identify the API in use */
1456void *
1457_PyObject_DebugMallocApi(char id, size_t nbytes)
1458{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001459 uchar *p; /* base address of malloc'ed block */
1460 uchar *tail; /* p + 2*SST + nbytes == pointer to tail pad bytes */
1461 size_t total; /* nbytes + 4*SST */
Tim Petersddea2082002-03-23 10:03:50 +00001462
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001463 bumpserialno();
1464 total = nbytes + 4*SST;
1465 if (total < nbytes)
1466 /* overflow: can't represent total as a size_t */
1467 return NULL;
Tim Petersddea2082002-03-23 10:03:50 +00001468
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001469 p = (uchar *)PyObject_Malloc(total);
1470 if (p == NULL)
1471 return NULL;
Tim Petersddea2082002-03-23 10:03:50 +00001472
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001473 /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
1474 write_size_t(p, nbytes);
1475 p[SST] = (uchar)id;
1476 memset(p + SST + 1 , FORBIDDENBYTE, SST-1);
Tim Petersddea2082002-03-23 10:03:50 +00001477
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001478 if (nbytes > 0)
1479 memset(p + 2*SST, CLEANBYTE, nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001480
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001481 /* at tail, write pad (SST bytes) and serialno (SST bytes) */
1482 tail = p + 2*SST + nbytes;
1483 memset(tail, FORBIDDENBYTE, SST);
1484 write_size_t(tail + SST, serialno);
Tim Petersddea2082002-03-23 10:03:50 +00001485
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001486 return p + 2*SST;
Tim Petersddea2082002-03-23 10:03:50 +00001487}
1488
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001489/* The debug free first checks the 2*SST bytes on each end for sanity (in
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001490 particular, that the FORBIDDENBYTEs with the api ID are still intact).
Tim Petersf6fb5012002-04-12 07:38:53 +00001491 Then fills the original bytes with DEADBYTE.
Tim Petersddea2082002-03-23 10:03:50 +00001492 Then calls the underlying free.
1493*/
1494void
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001495_PyObject_DebugFreeApi(char api, void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001496{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001497 uchar *q = (uchar *)p - 2*SST; /* address returned from malloc */
1498 size_t nbytes;
Tim Petersddea2082002-03-23 10:03:50 +00001499
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001500 if (p == NULL)
1501 return;
1502 _PyObject_DebugCheckAddressApi(api, p);
1503 nbytes = read_size_t(q);
1504 nbytes += 4*SST;
1505 if (nbytes > 0)
1506 memset(q, DEADBYTE, nbytes);
1507 PyObject_Free(q);
Tim Petersddea2082002-03-23 10:03:50 +00001508}
1509
1510void *
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001511_PyObject_DebugReallocApi(char api, void *p, size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +00001512{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001513 uchar *q = (uchar *)p;
1514 uchar *tail;
1515 size_t total; /* nbytes + 4*SST */
1516 size_t original_nbytes;
1517 int i;
Tim Petersddea2082002-03-23 10:03:50 +00001518
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001519 if (p == NULL)
1520 return _PyObject_DebugMallocApi(api, nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001521
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001522 _PyObject_DebugCheckAddressApi(api, p);
1523 bumpserialno();
1524 original_nbytes = read_size_t(q - 2*SST);
1525 total = nbytes + 4*SST;
1526 if (total < nbytes)
1527 /* overflow: can't represent total as a size_t */
1528 return NULL;
Tim Petersddea2082002-03-23 10:03:50 +00001529
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001530 if (nbytes < original_nbytes) {
1531 /* shrinking: mark old extra memory dead */
1532 memset(q + nbytes, DEADBYTE, original_nbytes - nbytes + 2*SST);
1533 }
Tim Petersddea2082002-03-23 10:03:50 +00001534
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001535 /* Resize and add decorations. We may get a new pointer here, in which
1536 * case we didn't get the chance to mark the old memory with DEADBYTE,
1537 * but we live with that.
1538 */
1539 q = (uchar *)PyObject_Realloc(q - 2*SST, total);
1540 if (q == NULL)
1541 return NULL;
Tim Peters85cc1c42002-04-12 08:52:50 +00001542
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001543 write_size_t(q, nbytes);
1544 assert(q[SST] == (uchar)api);
1545 for (i = 1; i < SST; ++i)
1546 assert(q[SST + i] == FORBIDDENBYTE);
1547 q += 2*SST;
1548 tail = q + nbytes;
1549 memset(tail, FORBIDDENBYTE, SST);
1550 write_size_t(tail + SST, serialno);
Tim Peters85cc1c42002-04-12 08:52:50 +00001551
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001552 if (nbytes > original_nbytes) {
1553 /* growing: mark new extra memory clean */
1554 memset(q + original_nbytes, CLEANBYTE,
Stefan Krah735bb122010-11-26 10:54:09 +00001555 nbytes - original_nbytes);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001556 }
Tim Peters85cc1c42002-04-12 08:52:50 +00001557
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001558 return q;
Tim Petersddea2082002-03-23 10:03:50 +00001559}
1560
Tim Peters7ccfadf2002-04-01 06:04:21 +00001561/* Check the forbidden bytes on both ends of the memory allocated for p.
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001562 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
Tim Peters7ccfadf2002-04-01 06:04:21 +00001563 * and call Py_FatalError to kill the program.
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001564 * The API id, is also checked.
Tim Peters7ccfadf2002-04-01 06:04:21 +00001565 */
1566 void
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001567_PyObject_DebugCheckAddressApi(char api, const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001568{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001569 const uchar *q = (const uchar *)p;
1570 char msgbuf[64];
1571 char *msg;
1572 size_t nbytes;
1573 const uchar *tail;
1574 int i;
1575 char id;
Tim Petersddea2082002-03-23 10:03:50 +00001576
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001577 if (p == NULL) {
1578 msg = "didn't expect a NULL pointer";
1579 goto error;
1580 }
Tim Petersddea2082002-03-23 10:03:50 +00001581
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001582 /* Check the API id */
1583 id = (char)q[-SST];
1584 if (id != api) {
1585 msg = msgbuf;
1586 snprintf(msg, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);
1587 msgbuf[sizeof(msgbuf)-1] = 0;
1588 goto error;
1589 }
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001590
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001591 /* Check the stuff at the start of p first: if there's underwrite
1592 * corruption, the number-of-bytes field may be nuts, and checking
1593 * the tail could lead to a segfault then.
1594 */
1595 for (i = SST-1; i >= 1; --i) {
1596 if (*(q-i) != FORBIDDENBYTE) {
1597 msg = "bad leading pad byte";
1598 goto error;
1599 }
1600 }
Tim Petersddea2082002-03-23 10:03:50 +00001601
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001602 nbytes = read_size_t(q - 2*SST);
1603 tail = q + nbytes;
1604 for (i = 0; i < SST; ++i) {
1605 if (tail[i] != FORBIDDENBYTE) {
1606 msg = "bad trailing pad byte";
1607 goto error;
1608 }
1609 }
Tim Petersddea2082002-03-23 10:03:50 +00001610
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001611 return;
Tim Petersd1139e02002-03-28 07:32:11 +00001612
1613error:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001614 _PyObject_DebugDumpAddress(p);
1615 Py_FatalError(msg);
Tim Petersddea2082002-03-23 10:03:50 +00001616}
1617
Tim Peters7ccfadf2002-04-01 06:04:21 +00001618/* Display info to stderr about the memory block at p. */
Tim Petersddea2082002-03-23 10:03:50 +00001619void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001620_PyObject_DebugDumpAddress(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001621{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001622 const uchar *q = (const uchar *)p;
1623 const uchar *tail;
1624 size_t nbytes, serial;
1625 int i;
1626 int ok;
1627 char id;
Tim Petersddea2082002-03-23 10:03:50 +00001628
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001629 fprintf(stderr, "Debug memory block at address p=%p:", p);
1630 if (p == NULL) {
1631 fprintf(stderr, "\n");
1632 return;
1633 }
1634 id = (char)q[-SST];
1635 fprintf(stderr, " API '%c'\n", id);
Tim Petersddea2082002-03-23 10:03:50 +00001636
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001637 nbytes = read_size_t(q - 2*SST);
1638 fprintf(stderr, " %" PY_FORMAT_SIZE_T "u bytes originally "
1639 "requested\n", nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001640
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001641 /* In case this is nuts, check the leading pad bytes first. */
1642 fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1);
1643 ok = 1;
1644 for (i = 1; i <= SST-1; ++i) {
1645 if (*(q-i) != FORBIDDENBYTE) {
1646 ok = 0;
1647 break;
1648 }
1649 }
1650 if (ok)
1651 fputs("FORBIDDENBYTE, as expected.\n", stderr);
1652 else {
1653 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1654 FORBIDDENBYTE);
1655 for (i = SST-1; i >= 1; --i) {
1656 const uchar byte = *(q-i);
1657 fprintf(stderr, " at p-%d: 0x%02x", i, byte);
1658 if (byte != FORBIDDENBYTE)
1659 fputs(" *** OUCH", stderr);
1660 fputc('\n', stderr);
1661 }
Tim Peters449b5a82002-04-28 06:14:45 +00001662
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001663 fputs(" Because memory is corrupted at the start, the "
1664 "count of bytes requested\n"
1665 " may be bogus, and checking the trailing pad "
1666 "bytes may segfault.\n", stderr);
1667 }
Tim Petersddea2082002-03-23 10:03:50 +00001668
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001669 tail = q + nbytes;
1670 fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, tail);
1671 ok = 1;
1672 for (i = 0; i < SST; ++i) {
1673 if (tail[i] != FORBIDDENBYTE) {
1674 ok = 0;
1675 break;
1676 }
1677 }
1678 if (ok)
1679 fputs("FORBIDDENBYTE, as expected.\n", stderr);
1680 else {
1681 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
Stefan Krah735bb122010-11-26 10:54:09 +00001682 FORBIDDENBYTE);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001683 for (i = 0; i < SST; ++i) {
1684 const uchar byte = tail[i];
1685 fprintf(stderr, " at tail+%d: 0x%02x",
Stefan Krah735bb122010-11-26 10:54:09 +00001686 i, byte);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001687 if (byte != FORBIDDENBYTE)
1688 fputs(" *** OUCH", stderr);
1689 fputc('\n', stderr);
1690 }
1691 }
Tim Petersddea2082002-03-23 10:03:50 +00001692
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001693 serial = read_size_t(tail + SST);
1694 fprintf(stderr, " The block was made by call #%" PY_FORMAT_SIZE_T
1695 "u to debug malloc/realloc.\n", serial);
Tim Petersddea2082002-03-23 10:03:50 +00001696
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001697 if (nbytes > 0) {
1698 i = 0;
1699 fputs(" Data at p:", stderr);
1700 /* print up to 8 bytes at the start */
1701 while (q < tail && i < 8) {
1702 fprintf(stderr, " %02x", *q);
1703 ++i;
1704 ++q;
1705 }
1706 /* and up to 8 at the end */
1707 if (q < tail) {
1708 if (tail - q > 8) {
1709 fputs(" ...", stderr);
1710 q = tail - 8;
1711 }
1712 while (q < tail) {
1713 fprintf(stderr, " %02x", *q);
1714 ++q;
1715 }
1716 }
1717 fputc('\n', stderr);
1718 }
Tim Petersddea2082002-03-23 10:03:50 +00001719}
1720
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001721static size_t
1722printone(const char* msg, size_t value)
Tim Peters16bcb6b2002-04-05 05:45:31 +00001723{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001724 int i, k;
1725 char buf[100];
1726 size_t origvalue = value;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001727
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001728 fputs(msg, stderr);
1729 for (i = (int)strlen(msg); i < 35; ++i)
1730 fputc(' ', stderr);
1731 fputc('=', stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001732
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001733 /* Write the value with commas. */
1734 i = 22;
1735 buf[i--] = '\0';
1736 buf[i--] = '\n';
1737 k = 3;
1738 do {
1739 size_t nextvalue = value / 10;
1740 uint digit = (uint)(value - nextvalue * 10);
1741 value = nextvalue;
1742 buf[i--] = (char)(digit + '0');
1743 --k;
1744 if (k == 0 && value && i >= 0) {
1745 k = 3;
1746 buf[i--] = ',';
1747 }
1748 } while (value && i >= 0);
Tim Peters49f26812002-04-06 01:45:35 +00001749
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001750 while (i >= 0)
1751 buf[i--] = ' ';
1752 fputs(buf, stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001753
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001754 return origvalue;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001755}
1756
Tim Peters08d82152002-04-18 22:25:03 +00001757/* Print summary info to stderr about the state of pymalloc's structures.
1758 * In Py_DEBUG mode, also perform some expensive internal consistency
1759 * checks.
1760 */
Tim Peters7ccfadf2002-04-01 06:04:21 +00001761void
Tim Peters0e871182002-04-13 08:29:14 +00001762_PyObject_DebugMallocStats(void)
Tim Peters7ccfadf2002-04-01 06:04:21 +00001763{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001764 uint i;
1765 const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
1766 /* # of pools, allocated blocks, and free blocks per class index */
1767 size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1768 size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1769 size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1770 /* total # of allocated bytes in used and full pools */
1771 size_t allocated_bytes = 0;
1772 /* total # of available bytes in used pools */
1773 size_t available_bytes = 0;
1774 /* # of free pools + pools not yet carved out of current arena */
1775 uint numfreepools = 0;
1776 /* # of bytes for arena alignment padding */
1777 size_t arena_alignment = 0;
1778 /* # of bytes in used and full pools used for pool_headers */
1779 size_t pool_header_bytes = 0;
1780 /* # of bytes in used and full pools wasted due to quantization,
1781 * i.e. the necessarily leftover space at the ends of used and
1782 * full pools.
1783 */
1784 size_t quantization = 0;
1785 /* # of arenas actually allocated. */
1786 size_t narenas = 0;
1787 /* running total -- should equal narenas * ARENA_SIZE */
1788 size_t total;
1789 char buf[128];
Tim Peters7ccfadf2002-04-01 06:04:21 +00001790
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001791 fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
Stefan Krah735bb122010-11-26 10:54:09 +00001792 SMALL_REQUEST_THRESHOLD, numclasses);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001793
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001794 for (i = 0; i < numclasses; ++i)
1795 numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
Tim Peters7ccfadf2002-04-01 06:04:21 +00001796
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001797 /* Because full pools aren't linked to from anything, it's easiest
1798 * to march over all the arenas. If we're lucky, most of the memory
1799 * will be living in full pools -- would be a shame to miss them.
1800 */
1801 for (i = 0; i < maxarenas; ++i) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001802 uint j;
1803 uptr base = arenas[i].address;
Thomas Woutersa9773292006-04-21 09:43:23 +00001804
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001805 /* Skip arenas which are not allocated. */
1806 if (arenas[i].address == (uptr)NULL)
1807 continue;
1808 narenas += 1;
Thomas Woutersa9773292006-04-21 09:43:23 +00001809
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001810 numfreepools += arenas[i].nfreepools;
Tim Peters7ccfadf2002-04-01 06:04:21 +00001811
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001812 /* round up to pool alignment */
1813 if (base & (uptr)POOL_SIZE_MASK) {
1814 arena_alignment += POOL_SIZE;
1815 base &= ~(uptr)POOL_SIZE_MASK;
1816 base += POOL_SIZE;
1817 }
Tim Peters7ccfadf2002-04-01 06:04:21 +00001818
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001819 /* visit every pool in the arena */
1820 assert(base <= (uptr) arenas[i].pool_address);
1821 for (j = 0;
1822 base < (uptr) arenas[i].pool_address;
1823 ++j, base += POOL_SIZE) {
1824 poolp p = (poolp)base;
1825 const uint sz = p->szidx;
1826 uint freeblocks;
Tim Peters08d82152002-04-18 22:25:03 +00001827
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001828 if (p->ref.count == 0) {
1829 /* currently unused */
1830 assert(pool_is_in_list(p, arenas[i].freepools));
1831 continue;
1832 }
1833 ++numpools[sz];
1834 numblocks[sz] += p->ref.count;
1835 freeblocks = NUMBLOCKS(sz) - p->ref.count;
1836 numfreeblocks[sz] += freeblocks;
Tim Peters08d82152002-04-18 22:25:03 +00001837#ifdef Py_DEBUG
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001838 if (freeblocks > 0)
1839 assert(pool_is_in_list(p, usedpools[sz + sz]));
Tim Peters08d82152002-04-18 22:25:03 +00001840#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001841 }
1842 }
1843 assert(narenas == narenas_currently_allocated);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001844
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001845 fputc('\n', stderr);
1846 fputs("class size num pools blocks in use avail blocks\n"
1847 "----- ---- --------- ------------- ------------\n",
Stefan Krah735bb122010-11-26 10:54:09 +00001848 stderr);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001849
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001850 for (i = 0; i < numclasses; ++i) {
1851 size_t p = numpools[i];
1852 size_t b = numblocks[i];
1853 size_t f = numfreeblocks[i];
1854 uint size = INDEX2SIZE(i);
1855 if (p == 0) {
1856 assert(b == 0 && f == 0);
1857 continue;
1858 }
1859 fprintf(stderr, "%5u %6u "
1860 "%11" PY_FORMAT_SIZE_T "u "
1861 "%15" PY_FORMAT_SIZE_T "u "
1862 "%13" PY_FORMAT_SIZE_T "u\n",
Stefan Krah735bb122010-11-26 10:54:09 +00001863 i, size, p, b, f);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001864 allocated_bytes += b * size;
1865 available_bytes += f * size;
1866 pool_header_bytes += p * POOL_OVERHEAD;
1867 quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
1868 }
1869 fputc('\n', stderr);
1870 (void)printone("# times object malloc called", serialno);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001871
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001872 (void)printone("# arenas allocated total", ntimes_arena_allocated);
1873 (void)printone("# arenas reclaimed", ntimes_arena_allocated - narenas);
1874 (void)printone("# arenas highwater mark", narenas_highwater);
1875 (void)printone("# arenas allocated current", narenas);
Thomas Woutersa9773292006-04-21 09:43:23 +00001876
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001877 PyOS_snprintf(buf, sizeof(buf),
1878 "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
1879 narenas, ARENA_SIZE);
1880 (void)printone(buf, narenas * ARENA_SIZE);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001881
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001882 fputc('\n', stderr);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001883
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001884 total = printone("# bytes in allocated blocks", allocated_bytes);
1885 total += printone("# bytes in available blocks", available_bytes);
Tim Peters49f26812002-04-06 01:45:35 +00001886
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001887 PyOS_snprintf(buf, sizeof(buf),
1888 "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
1889 total += printone(buf, (size_t)numfreepools * POOL_SIZE);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001890
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001891 total += printone("# bytes lost to pool headers", pool_header_bytes);
1892 total += printone("# bytes lost to quantization", quantization);
1893 total += printone("# bytes lost to arena alignment", arena_alignment);
1894 (void)printone("Total", total);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001895}
1896
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001897#endif /* PYMALLOC_DEBUG */
Neal Norwitz7eb3c912004-06-06 19:20:22 +00001898
1899#ifdef Py_USING_MEMORY_DEBUGGER
Thomas Woutersa9773292006-04-21 09:43:23 +00001900/* Make this function last so gcc won't inline it since the definition is
1901 * after the reference.
1902 */
Neal Norwitz7eb3c912004-06-06 19:20:22 +00001903int
1904Py_ADDRESS_IN_RANGE(void *P, poolp pool)
1905{
Antoine Pitroub7fb2e22011-01-07 21:43:59 +00001906 uint arenaindex_temp = pool->arenaindex;
1907
1908 return arenaindex_temp < maxarenas &&
1909 (uptr)P - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE &&
1910 arenas[arenaindex_temp].address != 0;
Neal Norwitz7eb3c912004-06-06 19:20:22 +00001911}
1912#endif