blob: bf660ae9defa078642b490196af14b4bac8eb433 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
Łukasz Langa288234f2013-01-18 13:40:43 +01007.. testsetup::
8
9 from math import fsum
Georg Brandl116aa622007-08-15 14:28:22 +000010
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040011--------------
12
Ned Batchelder6faad352019-05-17 05:59:14 -040013This module provides access to the mathematical functions defined by the C
14standard.
Georg Brandl116aa622007-08-15 14:28:22 +000015
16These functions cannot be used with complex numbers; use the functions of the
17same name from the :mod:`cmath` module if you require support for complex
18numbers. The distinction between functions which support complex numbers and
19those which don't is made since most users do not want to learn quite as much
20mathematics as required to understand complex numbers. Receiving an exception
21instead of a complex result allows earlier detection of the unexpected complex
22number used as a parameter, so that the programmer can determine how and why it
23was generated in the first place.
24
25The following functions are provided by this module. Except when explicitly
26noted otherwise, all return values are floats.
27
Georg Brandl116aa622007-08-15 14:28:22 +000028
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000029Number-theoretic and representation functions
30---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000031
32.. function:: ceil(x)
33
Georg Brandl2a033732008-04-05 17:37:09 +000034 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
35 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030036 :class:`~numbers.Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000037
38
39.. function:: copysign(x, y)
40
Andrew Kuchling8cb1ec32014-02-16 11:11:25 -050041 Return a float with the magnitude (absolute value) of *x* but the sign of
42 *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)``
43 returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000044
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030045
Georg Brandl116aa622007-08-15 14:28:22 +000046.. function:: fabs(x)
47
48 Return the absolute value of *x*.
49
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030050
Georg Brandlc28e1fa2008-06-10 19:20:26 +000051.. function:: factorial(x)
52
Benjamin Petersonfea6a942008-07-02 16:11:42 +000053 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000054 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000055
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030056
Georg Brandl116aa622007-08-15 14:28:22 +000057.. function:: floor(x)
58
Georg Brandl2a033732008-04-05 17:37:09 +000059 Return the floor of *x*, the largest integer less than or equal to *x*.
60 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030061 :class:`~numbers.Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000062
63
64.. function:: fmod(x, y)
65
66 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
67 Python expression ``x % y`` may not return the same result. The intent of the C
68 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
69 precision) equal to ``x - n*y`` for some integer *n* such that the result has
70 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
71 returns a result with the sign of *y* instead, and may not be exactly computable
72 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
73 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
74 represented exactly as a float, and rounds to the surprising ``1e100``. For
75 this reason, function :func:`fmod` is generally preferred when working with
76 floats, while Python's ``x % y`` is preferred when working with integers.
77
78
79.. function:: frexp(x)
80
81 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
82 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
83 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
84 apart" the internal representation of a float in a portable way.
85
86
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000087.. function:: fsum(iterable)
88
89 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000090 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000091
Raymond Hettingerf3936f82009-02-19 05:48:05 +000092 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000093 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000094 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
95 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000096
Raymond Hettingerf3936f82009-02-19 05:48:05 +000097 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
98 typical case where the rounding mode is half-even. On some non-Windows
99 builds, the underlying C library uses extended precision addition and may
100 occasionally double-round an intermediate sum causing it to be off in its
101 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000102
Raymond Hettinger477be822009-02-19 06:44:30 +0000103 For further discussion and two alternative approaches, see the `ASPN cookbook
104 recipes for accurate floating point summation
Georg Brandl5d941342016-02-26 19:37:12 +0100105 <https://code.activestate.com/recipes/393090/>`_\.
Raymond Hettinger477be822009-02-19 06:44:30 +0000106
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000107
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300108.. function:: gcd(a, b)
109
110 Return the greatest common divisor of the integers *a* and *b*. If either
111 *a* or *b* is nonzero, then the value of ``gcd(a, b)`` is the largest
112 positive integer that divides both *a* and *b*. ``gcd(0, 0)`` returns
113 ``0``.
114
Benjamin Petersone960d182015-05-12 17:24:17 -0400115 .. versionadded:: 3.5
116
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300117
Tal Einatd5519ed2015-05-31 22:05:00 +0300118.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
119
120 Return ``True`` if the values *a* and *b* are close to each other and
121 ``False`` otherwise.
122
123 Whether or not two values are considered close is determined according to
124 given absolute and relative tolerances.
125
126 *rel_tol* is the relative tolerance -- it is the maximum allowed difference
127 between *a* and *b*, relative to the larger absolute value of *a* or *b*.
128 For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
129 tolerance is ``1e-09``, which assures that the two values are the same
130 within about 9 decimal digits. *rel_tol* must be greater than zero.
131
132 *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
133 zero. *abs_tol* must be at least zero.
134
135 If no errors occur, the result will be:
136 ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
137
138 The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
139 handled according to IEEE rules. Specifically, ``NaN`` is not considered
140 close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
141 considered close to themselves.
142
143 .. versionadded:: 3.5
144
145 .. seealso::
146
147 :pep:`485` -- A function for testing approximate equality
148
149
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000150.. function:: isfinite(x)
151
152 Return ``True`` if *x* is neither an infinity nor a NaN, and
153 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
154
Mark Dickinsonc7622422010-07-11 19:47:37 +0000155 .. versionadded:: 3.2
156
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000157
Christian Heimes072c0f12008-01-03 23:01:04 +0000158.. function:: isinf(x)
159
Mark Dickinsonc7622422010-07-11 19:47:37 +0000160 Return ``True`` if *x* is a positive or negative infinity, and
161 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000162
Christian Heimes072c0f12008-01-03 23:01:04 +0000163
164.. function:: isnan(x)
165
Mark Dickinsonc7622422010-07-11 19:47:37 +0000166 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000167
Christian Heimes072c0f12008-01-03 23:01:04 +0000168
Mark Dickinson73934b92019-05-18 12:29:50 +0100169.. function:: isqrt(n)
170
171 Return the integer square root of the nonnegative integer *n*. This is the
172 floor of the exact square root of *n*, or equivalently the greatest integer
173 *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
174
175 For some applications, it may be more convenient to have the least integer
176 *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
177 the exact square root of *n*. For positive *n*, this can be computed using
178 ``a = 1 + isqrt(n - 1)``.
179
180 .. versionadded:: 3.8
181
182
Georg Brandl116aa622007-08-15 14:28:22 +0000183.. function:: ldexp(x, i)
184
185 Return ``x * (2**i)``. This is essentially the inverse of function
186 :func:`frexp`.
187
188
189.. function:: modf(x)
190
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000191 Return the fractional and integer parts of *x*. Both results carry the sign
192 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000193
Christian Heimes400adb02008-02-01 08:12:03 +0000194
Pablo Galindobc098512019-02-07 07:04:02 +0000195.. function:: prod(iterable, *, start=1)
196
197 Calculate the product of all the elements in the input *iterable*.
198 The default *start* value for the product is ``1``.
199
200 When the iterable is empty, return the start value. This function is
201 intended specifically for use with numeric values and may reject
202 non-numeric types.
203
204 .. versionadded:: 3.8
205
206
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100207.. function:: remainder(x, y)
208
209 Return the IEEE 754-style remainder of *x* with respect to *y*. For
210 finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
211 where ``n`` is the closest integer to the exact value of the quotient ``x /
212 y``. If ``x / y`` is exactly halfway between two consecutive integers, the
213 nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
214 y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
215
216 Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
217 *x* for any finite *x*, and ``remainder(x, 0)`` and
218 ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
219 If the result of the remainder operation is zero, that zero will have
220 the same sign as *x*.
221
222 On platforms using IEEE 754 binary floating-point, the result of this
223 operation is always exactly representable: no rounding error is introduced.
224
225 .. versionadded:: 3.7
226
227
Christian Heimes400adb02008-02-01 08:12:03 +0000228.. function:: trunc(x)
229
Serhiy Storchakabfdcd432013-10-13 23:09:14 +0300230 Return the :class:`~numbers.Real` value *x* truncated to an
231 :class:`~numbers.Integral` (usually an integer). Delegates to
Eric Appelt308eab92018-03-10 02:44:12 -0600232 :meth:`x.__trunc__() <object.__trunc__>`.
Christian Heimes400adb02008-02-01 08:12:03 +0000233
Christian Heimes400adb02008-02-01 08:12:03 +0000234
Georg Brandl116aa622007-08-15 14:28:22 +0000235Note that :func:`frexp` and :func:`modf` have a different call/return pattern
236than their C equivalents: they take a single argument and return a pair of
237values, rather than returning their second return value through an 'output
238parameter' (there is no such thing in Python).
239
240For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
241floating-point numbers of sufficiently large magnitude are exact integers.
242Python floats typically carry no more than 53 bits of precision (the same as the
243platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
244necessarily has no fractional bits.
245
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000246
247Power and logarithmic functions
248-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000249
Georg Brandl116aa622007-08-15 14:28:22 +0000250.. function:: exp(x)
251
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300252 Return *e* raised to the power *x*, where *e* = 2.718281... is the base
253 of natural logarithms. This is usually more accurate than ``math.e ** x``
254 or ``pow(math.e, x)``.
255
Georg Brandl116aa622007-08-15 14:28:22 +0000256
Mark Dickinson664b5112009-12-16 20:23:42 +0000257.. function:: expm1(x)
258
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300259 Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural
260 logarithms. For small floats *x*, the subtraction in ``exp(x) - 1``
Raymond Hettinger1081d482011-03-31 12:04:53 -0700261 can result in a `significant loss of precision
Georg Brandl5d941342016-02-26 19:37:12 +0100262 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
Raymond Hettinger1081d482011-03-31 12:04:53 -0700263 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000264
265 >>> from math import exp, expm1
266 >>> exp(1e-5) - 1 # gives result accurate to 11 places
267 1.0000050000069649e-05
268 >>> expm1(1e-5) # result accurate to full precision
269 1.0000050000166668e-05
270
Mark Dickinson45f992a2009-12-19 11:20:49 +0000271 .. versionadded:: 3.2
272
Mark Dickinson664b5112009-12-16 20:23:42 +0000273
Georg Brandl116aa622007-08-15 14:28:22 +0000274.. function:: log(x[, base])
275
Georg Brandla6053b42009-09-01 08:11:14 +0000276 With one argument, return the natural logarithm of *x* (to base *e*).
277
278 With two arguments, return the logarithm of *x* to the given *base*,
279 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000280
Georg Brandl116aa622007-08-15 14:28:22 +0000281
Christian Heimes53876d92008-04-19 00:31:39 +0000282.. function:: log1p(x)
283
284 Return the natural logarithm of *1+x* (base *e*). The
285 result is calculated in a way which is accurate for *x* near zero.
286
Christian Heimes53876d92008-04-19 00:31:39 +0000287
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200288.. function:: log2(x)
289
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500290 Return the base-2 logarithm of *x*. This is usually more accurate than
291 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200292
293 .. versionadded:: 3.3
294
Victor Stinner9415afc2011-09-21 03:35:18 +0200295 .. seealso::
296
297 :meth:`int.bit_length` returns the number of bits necessary to represent
298 an integer in binary, excluding the sign and leading zeros.
299
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200300
Georg Brandl116aa622007-08-15 14:28:22 +0000301.. function:: log10(x)
302
Georg Brandla6053b42009-09-01 08:11:14 +0000303 Return the base-10 logarithm of *x*. This is usually more accurate
304 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000305
306
307.. function:: pow(x, y)
308
Christian Heimesa342c012008-04-20 21:01:16 +0000309 Return ``x`` raised to the power ``y``. Exceptional cases follow
310 Annex 'F' of the C99 standard as far as possible. In particular,
311 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
312 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
313 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
314 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000315
Ezio Melotti739d5492013-02-23 04:53:44 +0200316 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
317 its arguments to type :class:`float`. Use ``**`` or the built-in
318 :func:`pow` function for computing exact integer powers.
319
Georg Brandl116aa622007-08-15 14:28:22 +0000320
321.. function:: sqrt(x)
322
323 Return the square root of *x*.
324
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300325
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000326Trigonometric functions
327-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000328
Georg Brandl116aa622007-08-15 14:28:22 +0000329.. function:: acos(x)
330
331 Return the arc cosine of *x*, in radians.
332
333
334.. function:: asin(x)
335
336 Return the arc sine of *x*, in radians.
337
338
339.. function:: atan(x)
340
341 Return the arc tangent of *x*, in radians.
342
343
344.. function:: atan2(y, x)
345
346 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
347 The vector in the plane from the origin to point ``(x, y)`` makes this angle
348 with the positive X axis. The point of :func:`atan2` is that the signs of both
349 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000350 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000351 -1)`` is ``-3*pi/4``.
352
353
354.. function:: cos(x)
355
356 Return the cosine of *x* radians.
357
358
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700359.. function:: dist(p, q)
360
361 Return the Euclidean distance between two points *p* and *q*, each
362 given as a tuple of coordinates. The two tuples must be the same size.
363
364 Roughly equivalent to::
365
366 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
367
368 .. versionadded:: 3.8
369
370
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700371.. function:: hypot(*coordinates)
Georg Brandl116aa622007-08-15 14:28:22 +0000372
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700373 Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
374 This is the length of the vector from the origin to the point
375 given by the coordinates.
376
377 For a two dimensional point ``(x, y)``, this is equivalent to computing
378 the hypotenuse of a right triangle using the Pythagorean theorem,
379 ``sqrt(x*x + y*y)``.
380
381 .. versionchanged:: 3.8
382 Added support for n-dimensional points. Formerly, only the two
383 dimensional case was supported.
Georg Brandl116aa622007-08-15 14:28:22 +0000384
385
386.. function:: sin(x)
387
388 Return the sine of *x* radians.
389
390
391.. function:: tan(x)
392
393 Return the tangent of *x* radians.
394
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300395
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000396Angular conversion
397------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000398
Georg Brandl116aa622007-08-15 14:28:22 +0000399.. function:: degrees(x)
400
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400401 Convert angle *x* from radians to degrees.
Georg Brandl116aa622007-08-15 14:28:22 +0000402
403
404.. function:: radians(x)
405
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400406 Convert angle *x* from degrees to radians.
Georg Brandl116aa622007-08-15 14:28:22 +0000407
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300408
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000409Hyperbolic functions
410--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000411
Georg Brandl5d941342016-02-26 19:37:12 +0100412`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
Raymond Hettinger1081d482011-03-31 12:04:53 -0700413are analogs of trigonometric functions that are based on hyperbolas
414instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000415
Christian Heimesa342c012008-04-20 21:01:16 +0000416.. function:: acosh(x)
417
418 Return the inverse hyperbolic cosine of *x*.
419
Christian Heimesa342c012008-04-20 21:01:16 +0000420
421.. function:: asinh(x)
422
423 Return the inverse hyperbolic sine of *x*.
424
Christian Heimesa342c012008-04-20 21:01:16 +0000425
426.. function:: atanh(x)
427
428 Return the inverse hyperbolic tangent of *x*.
429
Christian Heimesa342c012008-04-20 21:01:16 +0000430
Georg Brandl116aa622007-08-15 14:28:22 +0000431.. function:: cosh(x)
432
433 Return the hyperbolic cosine of *x*.
434
435
436.. function:: sinh(x)
437
438 Return the hyperbolic sine of *x*.
439
440
441.. function:: tanh(x)
442
443 Return the hyperbolic tangent of *x*.
444
Christian Heimes53876d92008-04-19 00:31:39 +0000445
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000446Special functions
447-----------------
448
Mark Dickinson45f992a2009-12-19 11:20:49 +0000449.. function:: erf(x)
450
Georg Brandl5d941342016-02-26 19:37:12 +0100451 Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
Raymond Hettinger1081d482011-03-31 12:04:53 -0700452 *x*.
453
454 The :func:`erf` function can be used to compute traditional statistical
455 functions such as the `cumulative standard normal distribution
Georg Brandl5d941342016-02-26 19:37:12 +0100456 <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
Raymond Hettinger1081d482011-03-31 12:04:53 -0700457
458 def phi(x):
459 'Cumulative distribution function for the standard normal distribution'
460 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000461
462 .. versionadded:: 3.2
463
464
465.. function:: erfc(x)
466
Raymond Hettinger1081d482011-03-31 12:04:53 -0700467 Return the complementary error function at *x*. The `complementary error
Georg Brandl5d941342016-02-26 19:37:12 +0100468 function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700469 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
470 from one would cause a `loss of significance
Georg Brandl5d941342016-02-26 19:37:12 +0100471 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000472
473 .. versionadded:: 3.2
474
475
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000476.. function:: gamma(x)
477
Georg Brandl5d941342016-02-26 19:37:12 +0100478 Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700479 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000480
Mark Dickinson56e09662009-10-01 16:13:29 +0000481 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000482
483
Mark Dickinson05d2e082009-12-11 20:17:17 +0000484.. function:: lgamma(x)
485
486 Return the natural logarithm of the absolute value of the Gamma
487 function at *x*.
488
Mark Dickinson45f992a2009-12-19 11:20:49 +0000489 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000490
491
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000492Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000493---------
Georg Brandl116aa622007-08-15 14:28:22 +0000494
495.. data:: pi
496
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300497 The mathematical constant *π* = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000498
499
500.. data:: e
501
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300502 The mathematical constant *e* = 2.718281..., to available precision.
503
Georg Brandl116aa622007-08-15 14:28:22 +0000504
Guido van Rossum0a891d72016-08-15 09:12:52 -0700505.. data:: tau
506
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300507 The mathematical constant *τ* = 6.283185..., to available precision.
508 Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
Guido van Rossum0a891d72016-08-15 09:12:52 -0700509 its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
510 Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
Sanyam Khurana338cd832018-01-20 05:55:37 +0530511 `Tau day <https://tauday.com/>`_ by eating twice as much pie!
Christian Heimes53876d92008-04-19 00:31:39 +0000512
Georg Brandl4770d6e2016-08-16 07:08:46 +0200513 .. versionadded:: 3.6
514
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300515
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000516.. data:: inf
517
518 A floating-point positive infinity. (For negative infinity, use
519 ``-math.inf``.) Equivalent to the output of ``float('inf')``.
520
521 .. versionadded:: 3.5
522
523
524.. data:: nan
525
526 A floating-point "not a number" (NaN) value. Equivalent to the output of
527 ``float('nan')``.
528
529 .. versionadded:: 3.5
530
531
Georg Brandl495f7b52009-10-27 15:28:25 +0000532.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000533
534 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000535 math library functions. Behavior in exceptional cases follows Annex F of
536 the C99 standard where appropriate. The current implementation will raise
537 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
538 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
539 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000540 ``exp(1000.0)``). A NaN will not be returned from any of the functions
541 above unless one or more of the input arguments was a NaN; in that case,
542 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000543 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
544 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000545
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000546 Note that Python makes no effort to distinguish signaling NaNs from
547 quiet NaNs, and behavior for signaling NaNs remains unspecified.
548 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000549
Georg Brandl116aa622007-08-15 14:28:22 +0000550
551.. seealso::
552
553 Module :mod:`cmath`
554 Complex number versions of many of these functions.
Mark Dickinson73934b92019-05-18 12:29:50 +0100555
556.. |nbsp| unicode:: 0xA0
557 :trim: