blob: 96a451ee498a160b71734ce12586670e35b8e057 [file] [log] [blame]
Tim Peters1221c0a2002-03-23 00:20:15 +00001#include "Python.h"
2
Benjamin Peterson3924f932016-09-18 19:12:48 -07003#include <stdbool.h>
4
Victor Stinner0611c262016-03-15 22:22:13 +01005
6/* Defined in tracemalloc.c */
7extern void _PyMem_DumpTraceback(int fd, const void *ptr);
8
9
Victor Stinner0507bf52013-07-07 02:05:46 +020010/* Python's malloc wrappers (see pymem.h) */
11
Victor Stinner34be8072016-03-14 12:04:26 +010012#undef uint
13#define uint unsigned int /* assuming >= 16 bits */
14
Victor Stinner0507bf52013-07-07 02:05:46 +020015/* Forward declaration */
Victor Stinnerc4aec362016-03-14 22:26:53 +010016static void* _PyMem_DebugRawMalloc(void *ctx, size_t size);
17static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize);
18static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size);
Victor Stinner9ed83c42017-10-31 12:18:10 -070019static void _PyMem_DebugRawFree(void *ctx, void *ptr);
Victor Stinnerc4aec362016-03-14 22:26:53 +010020
Victor Stinner0507bf52013-07-07 02:05:46 +020021static void* _PyMem_DebugMalloc(void *ctx, size_t size);
Victor Stinnerdb067af2014-05-02 22:31:14 +020022static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize);
Victor Stinner0507bf52013-07-07 02:05:46 +020023static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size);
Victor Stinnerc4aec362016-03-14 22:26:53 +010024static void _PyMem_DebugFree(void *ctx, void *p);
Victor Stinner0507bf52013-07-07 02:05:46 +020025
26static void _PyObject_DebugDumpAddress(const void *p);
27static void _PyMem_DebugCheckAddress(char api_id, const void *p);
Victor Stinner0507bf52013-07-07 02:05:46 +020028
Nick Coghlan6ba64f42013-09-29 00:28:55 +100029#if defined(__has_feature) /* Clang */
30 #if __has_feature(address_sanitizer) /* is ASAN enabled? */
31 #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
Benjamin Peterson3924f932016-09-18 19:12:48 -070032 __attribute__((no_address_safety_analysis))
Nick Coghlan6ba64f42013-09-29 00:28:55 +100033 #else
34 #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
35 #endif
36#else
37 #if defined(__SANITIZE_ADDRESS__) /* GCC 4.8.x, is ASAN enabled? */
38 #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
Benjamin Peterson3924f932016-09-18 19:12:48 -070039 __attribute__((no_address_safety_analysis))
Nick Coghlan6ba64f42013-09-29 00:28:55 +100040 #else
41 #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
42 #endif
43#endif
44
Tim Peters1221c0a2002-03-23 00:20:15 +000045#ifdef WITH_PYMALLOC
46
Victor Stinner0507bf52013-07-07 02:05:46 +020047#ifdef MS_WINDOWS
48# include <windows.h>
49#elif defined(HAVE_MMAP)
50# include <sys/mman.h>
51# ifdef MAP_ANONYMOUS
52# define ARENAS_USE_MMAP
53# endif
Antoine Pitrou6f26be02011-05-03 18:18:59 +020054#endif
55
Victor Stinner0507bf52013-07-07 02:05:46 +020056/* Forward declaration */
57static void* _PyObject_Malloc(void *ctx, size_t size);
Victor Stinnerdb067af2014-05-02 22:31:14 +020058static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize);
Victor Stinner0507bf52013-07-07 02:05:46 +020059static void _PyObject_Free(void *ctx, void *p);
60static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size);
Martin v. Löwiscd83fa82013-06-27 12:23:29 +020061#endif
62
Victor Stinner0507bf52013-07-07 02:05:46 +020063
64static void *
65_PyMem_RawMalloc(void *ctx, size_t size)
66{
Victor Stinnerdb067af2014-05-02 22:31:14 +020067 /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL
Victor Stinner0507bf52013-07-07 02:05:46 +020068 for malloc(0), which would be treated as an error. Some platforms would
69 return a pointer with no memory behind it, which would break pymalloc.
70 To solve these problems, allocate an extra byte. */
71 if (size == 0)
72 size = 1;
73 return malloc(size);
74}
75
76static void *
Victor Stinnerdb067af2014-05-02 22:31:14 +020077_PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize)
78{
79 /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL
80 for calloc(0, 0), which would be treated as an error. Some platforms
81 would return a pointer with no memory behind it, which would break
82 pymalloc. To solve these problems, allocate an extra byte. */
83 if (nelem == 0 || elsize == 0) {
84 nelem = 1;
85 elsize = 1;
86 }
87 return calloc(nelem, elsize);
88}
89
90static void *
Victor Stinner0507bf52013-07-07 02:05:46 +020091_PyMem_RawRealloc(void *ctx, void *ptr, size_t size)
92{
93 if (size == 0)
94 size = 1;
95 return realloc(ptr, size);
96}
97
98static void
99_PyMem_RawFree(void *ctx, void *ptr)
100{
101 free(ptr);
102}
103
104
105#ifdef MS_WINDOWS
106static void *
107_PyObject_ArenaVirtualAlloc(void *ctx, size_t size)
108{
109 return VirtualAlloc(NULL, size,
110 MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
111}
112
113static void
114_PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size)
115{
Victor Stinner725e6682013-07-07 03:06:16 +0200116 VirtualFree(ptr, 0, MEM_RELEASE);
Victor Stinner0507bf52013-07-07 02:05:46 +0200117}
118
119#elif defined(ARENAS_USE_MMAP)
120static void *
121_PyObject_ArenaMmap(void *ctx, size_t size)
122{
123 void *ptr;
124 ptr = mmap(NULL, size, PROT_READ|PROT_WRITE,
125 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
126 if (ptr == MAP_FAILED)
127 return NULL;
128 assert(ptr != NULL);
129 return ptr;
130}
131
132static void
133_PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size)
134{
135 munmap(ptr, size);
136}
137
138#else
139static void *
140_PyObject_ArenaMalloc(void *ctx, size_t size)
141{
142 return malloc(size);
143}
144
145static void
146_PyObject_ArenaFree(void *ctx, void *ptr, size_t size)
147{
148 free(ptr);
149}
150#endif
151
152
Victor Stinnerdb067af2014-05-02 22:31:14 +0200153#define PYRAW_FUNCS _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree
Victor Stinner0507bf52013-07-07 02:05:46 +0200154#ifdef WITH_PYMALLOC
Victor Stinnerdb067af2014-05-02 22:31:14 +0200155# define PYOBJ_FUNCS _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free
Victor Stinner0507bf52013-07-07 02:05:46 +0200156#else
Victor Stinner6cf185d2013-10-10 15:58:42 +0200157# define PYOBJ_FUNCS PYRAW_FUNCS
Victor Stinner0507bf52013-07-07 02:05:46 +0200158#endif
Victor Stinner15932592016-04-22 18:52:22 +0200159#define PYMEM_FUNCS PYOBJ_FUNCS
Victor Stinner0507bf52013-07-07 02:05:46 +0200160
Victor Stinner0507bf52013-07-07 02:05:46 +0200161typedef struct {
162 /* We tag each block with an API ID in order to tag API violations */
163 char api_id;
Victor Stinnerd8f0d922014-06-02 21:57:10 +0200164 PyMemAllocatorEx alloc;
Victor Stinner0507bf52013-07-07 02:05:46 +0200165} debug_alloc_api_t;
166static struct {
167 debug_alloc_api_t raw;
168 debug_alloc_api_t mem;
169 debug_alloc_api_t obj;
170} _PyMem_Debug = {
171 {'r', {NULL, PYRAW_FUNCS}},
Victor Stinner6cf185d2013-10-10 15:58:42 +0200172 {'m', {NULL, PYMEM_FUNCS}},
173 {'o', {NULL, PYOBJ_FUNCS}}
Victor Stinner0507bf52013-07-07 02:05:46 +0200174 };
175
Victor Stinnerc4aec362016-03-14 22:26:53 +0100176#define PYRAWDBG_FUNCS \
177 _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree
178#define PYDBG_FUNCS \
179 _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree
Victor Stinner0507bf52013-07-07 02:05:46 +0200180
Victor Stinner9e87e772017-11-24 12:09:24 +0100181static PyMemAllocatorEx _PyMem_Raw = {
182#ifdef Py_DEBUG
183 &_PyMem_Debug.raw, PYRAWDBG_FUNCS
184#else
185 NULL, PYRAW_FUNCS
186#endif
187 };
Eric Snow2ebc5ce2017-09-07 23:51:28 -0600188
Victor Stinner9e87e772017-11-24 12:09:24 +0100189static PyMemAllocatorEx _PyMem = {
190#ifdef Py_DEBUG
191 &_PyMem_Debug.mem, PYDBG_FUNCS
192#else
193 NULL, PYMEM_FUNCS
194#endif
195 };
Victor Stinner0507bf52013-07-07 02:05:46 +0200196
Victor Stinner9e87e772017-11-24 12:09:24 +0100197static PyMemAllocatorEx _PyObject = {
198#ifdef Py_DEBUG
199 &_PyMem_Debug.obj, PYDBG_FUNCS
200#else
201 NULL, PYOBJ_FUNCS
202#endif
203 };
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800204
205void
206_PyMem_GetDefaultRawAllocator(PyMemAllocatorEx *alloc_p)
207{
Victor Stinnerccb04422017-11-16 03:20:31 -0800208#ifdef Py_DEBUG
Victor Stinner9e87e772017-11-24 12:09:24 +0100209 PyMemAllocatorEx alloc = {&_PyMem_Debug.raw, PYDBG_FUNCS};
Victor Stinnerccb04422017-11-16 03:20:31 -0800210#else
Victor Stinner9e87e772017-11-24 12:09:24 +0100211 PyMemAllocatorEx alloc = {NULL, PYRAW_FUNCS};
Victor Stinnerccb04422017-11-16 03:20:31 -0800212#endif
Victor Stinner9e87e772017-11-24 12:09:24 +0100213 *alloc_p = alloc;
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800214}
Victor Stinner0507bf52013-07-07 02:05:46 +0200215
Victor Stinner34be8072016-03-14 12:04:26 +0100216int
217_PyMem_SetupAllocators(const char *opt)
218{
219 if (opt == NULL || *opt == '\0') {
220 /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line
221 options): use default allocators */
222#ifdef Py_DEBUG
223# ifdef WITH_PYMALLOC
224 opt = "pymalloc_debug";
225# else
226 opt = "malloc_debug";
227# endif
228#else
229 /* !Py_DEBUG */
230# ifdef WITH_PYMALLOC
231 opt = "pymalloc";
232# else
233 opt = "malloc";
234# endif
235#endif
236 }
237
238 if (strcmp(opt, "debug") == 0) {
239 PyMem_SetupDebugHooks();
240 }
241 else if (strcmp(opt, "malloc") == 0 || strcmp(opt, "malloc_debug") == 0)
242 {
243 PyMemAllocatorEx alloc = {NULL, PYRAW_FUNCS};
244
245 PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
246 PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
247 PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
248
249 if (strcmp(opt, "malloc_debug") == 0)
250 PyMem_SetupDebugHooks();
251 }
252#ifdef WITH_PYMALLOC
253 else if (strcmp(opt, "pymalloc") == 0
254 || strcmp(opt, "pymalloc_debug") == 0)
255 {
Victor Stinner15932592016-04-22 18:52:22 +0200256 PyMemAllocatorEx raw_alloc = {NULL, PYRAW_FUNCS};
257 PyMemAllocatorEx mem_alloc = {NULL, PYMEM_FUNCS};
Victor Stinner34be8072016-03-14 12:04:26 +0100258 PyMemAllocatorEx obj_alloc = {NULL, PYOBJ_FUNCS};
259
Victor Stinner15932592016-04-22 18:52:22 +0200260 PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &raw_alloc);
261 PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &mem_alloc);
Victor Stinner34be8072016-03-14 12:04:26 +0100262 PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &obj_alloc);
263
264 if (strcmp(opt, "pymalloc_debug") == 0)
265 PyMem_SetupDebugHooks();
266 }
267#endif
268 else {
269 /* unknown allocator */
270 return -1;
271 }
272 return 0;
273}
274
Victor Stinner9e87e772017-11-24 12:09:24 +0100275#undef PYRAW_FUNCS
276#undef PYMEM_FUNCS
277#undef PYOBJ_FUNCS
278#undef PYRAWDBG_FUNCS
279#undef PYDBG_FUNCS
Victor Stinner0507bf52013-07-07 02:05:46 +0200280
Victor Stinner9e87e772017-11-24 12:09:24 +0100281static PyObjectArenaAllocator _PyObject_Arena = {NULL,
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800282#ifdef MS_WINDOWS
Victor Stinner9e87e772017-11-24 12:09:24 +0100283 _PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800284#elif defined(ARENAS_USE_MMAP)
Victor Stinner9e87e772017-11-24 12:09:24 +0100285 _PyObject_ArenaMmap, _PyObject_ArenaMunmap
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800286#else
Victor Stinner9e87e772017-11-24 12:09:24 +0100287 _PyObject_ArenaMalloc, _PyObject_ArenaFree
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800288#endif
289 };
290
Victor Stinner0621e0e2016-04-19 17:02:55 +0200291#ifdef WITH_PYMALLOC
Victor Stinner34be8072016-03-14 12:04:26 +0100292static int
293_PyMem_DebugEnabled(void)
294{
295 return (_PyObject.malloc == _PyMem_DebugMalloc);
296}
297
Victor Stinner34be8072016-03-14 12:04:26 +0100298int
299_PyMem_PymallocEnabled(void)
300{
301 if (_PyMem_DebugEnabled()) {
302 return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc);
303 }
304 else {
305 return (_PyObject.malloc == _PyObject_Malloc);
306 }
307}
308#endif
309
Victor Stinner0507bf52013-07-07 02:05:46 +0200310void
311PyMem_SetupDebugHooks(void)
312{
Victor Stinnerd8f0d922014-06-02 21:57:10 +0200313 PyMemAllocatorEx alloc;
Victor Stinner0507bf52013-07-07 02:05:46 +0200314
Victor Stinnerc4aec362016-03-14 22:26:53 +0100315 alloc.malloc = _PyMem_DebugRawMalloc;
316 alloc.calloc = _PyMem_DebugRawCalloc;
317 alloc.realloc = _PyMem_DebugRawRealloc;
318 alloc.free = _PyMem_DebugRawFree;
Victor Stinner34be8072016-03-14 12:04:26 +0100319
Victor Stinnerc4aec362016-03-14 22:26:53 +0100320 if (_PyMem_Raw.malloc != _PyMem_DebugRawMalloc) {
Victor Stinner0507bf52013-07-07 02:05:46 +0200321 alloc.ctx = &_PyMem_Debug.raw;
322 PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc);
323 PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
324 }
325
Victor Stinnerc4aec362016-03-14 22:26:53 +0100326 alloc.malloc = _PyMem_DebugMalloc;
327 alloc.calloc = _PyMem_DebugCalloc;
328 alloc.realloc = _PyMem_DebugRealloc;
329 alloc.free = _PyMem_DebugFree;
330
Victor Stinnerad524372016-03-16 12:12:53 +0100331 if (_PyMem.malloc != _PyMem_DebugMalloc) {
332 alloc.ctx = &_PyMem_Debug.mem;
333 PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc);
334 PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
335 }
336
Victor Stinner0507bf52013-07-07 02:05:46 +0200337 if (_PyObject.malloc != _PyMem_DebugMalloc) {
338 alloc.ctx = &_PyMem_Debug.obj;
339 PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc);
340 PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
341 }
Victor Stinner0507bf52013-07-07 02:05:46 +0200342}
343
344void
Victor Stinnerd8f0d922014-06-02 21:57:10 +0200345PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Victor Stinner0507bf52013-07-07 02:05:46 +0200346{
347 switch(domain)
348 {
349 case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break;
350 case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break;
351 case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break;
352 default:
Victor Stinnerdb067af2014-05-02 22:31:14 +0200353 /* unknown domain: set all attributes to NULL */
Victor Stinner0507bf52013-07-07 02:05:46 +0200354 allocator->ctx = NULL;
355 allocator->malloc = NULL;
Victor Stinnerdb067af2014-05-02 22:31:14 +0200356 allocator->calloc = NULL;
Victor Stinner0507bf52013-07-07 02:05:46 +0200357 allocator->realloc = NULL;
358 allocator->free = NULL;
359 }
360}
361
362void
Victor Stinnerd8f0d922014-06-02 21:57:10 +0200363PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Victor Stinner0507bf52013-07-07 02:05:46 +0200364{
365 switch(domain)
366 {
367 case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break;
368 case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break;
369 case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break;
370 /* ignore unknown domain */
371 }
Victor Stinner0507bf52013-07-07 02:05:46 +0200372}
373
374void
375PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
376{
Victor Stinner9e87e772017-11-24 12:09:24 +0100377 *allocator = _PyObject_Arena;
Victor Stinner0507bf52013-07-07 02:05:46 +0200378}
379
380void
381PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
382{
Victor Stinner9e87e772017-11-24 12:09:24 +0100383 _PyObject_Arena = *allocator;
Victor Stinner0507bf52013-07-07 02:05:46 +0200384}
385
386void *
387PyMem_RawMalloc(size_t size)
388{
389 /*
390 * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
391 * Most python internals blindly use a signed Py_ssize_t to track
392 * things without checking for overflows or negatives.
393 * As size_t is unsigned, checking for size < 0 is not required.
394 */
395 if (size > (size_t)PY_SSIZE_T_MAX)
396 return NULL;
Victor Stinner0507bf52013-07-07 02:05:46 +0200397 return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size);
398}
399
Victor Stinnerdb067af2014-05-02 22:31:14 +0200400void *
401PyMem_RawCalloc(size_t nelem, size_t elsize)
402{
403 /* see PyMem_RawMalloc() */
404 if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
405 return NULL;
406 return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize);
407}
408
Victor Stinner0507bf52013-07-07 02:05:46 +0200409void*
410PyMem_RawRealloc(void *ptr, size_t new_size)
411{
412 /* see PyMem_RawMalloc() */
413 if (new_size > (size_t)PY_SSIZE_T_MAX)
414 return NULL;
415 return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size);
416}
417
Victor Stinner9e87e772017-11-24 12:09:24 +0100418void PyMem_RawFree(void *ptr)
Victor Stinner0507bf52013-07-07 02:05:46 +0200419{
420 _PyMem_Raw.free(_PyMem_Raw.ctx, ptr);
421}
422
Victor Stinner9ed83c42017-10-31 12:18:10 -0700423
Victor Stinner0507bf52013-07-07 02:05:46 +0200424void *
425PyMem_Malloc(size_t size)
426{
427 /* see PyMem_RawMalloc() */
428 if (size > (size_t)PY_SSIZE_T_MAX)
429 return NULL;
430 return _PyMem.malloc(_PyMem.ctx, size);
431}
432
433void *
Victor Stinnerdb067af2014-05-02 22:31:14 +0200434PyMem_Calloc(size_t nelem, size_t elsize)
435{
436 /* see PyMem_RawMalloc() */
437 if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
438 return NULL;
439 return _PyMem.calloc(_PyMem.ctx, nelem, elsize);
440}
441
442void *
Victor Stinner0507bf52013-07-07 02:05:46 +0200443PyMem_Realloc(void *ptr, size_t new_size)
444{
445 /* see PyMem_RawMalloc() */
446 if (new_size > (size_t)PY_SSIZE_T_MAX)
447 return NULL;
448 return _PyMem.realloc(_PyMem.ctx, ptr, new_size);
449}
450
451void
452PyMem_Free(void *ptr)
453{
454 _PyMem.free(_PyMem.ctx, ptr);
455}
456
Victor Stinner9ed83c42017-10-31 12:18:10 -0700457
Victor Stinner49fc8ec2013-07-07 23:30:24 +0200458char *
459_PyMem_RawStrdup(const char *str)
460{
461 size_t size;
462 char *copy;
463
464 size = strlen(str) + 1;
465 copy = PyMem_RawMalloc(size);
466 if (copy == NULL)
467 return NULL;
468 memcpy(copy, str, size);
469 return copy;
470}
471
472char *
473_PyMem_Strdup(const char *str)
474{
475 size_t size;
476 char *copy;
477
478 size = strlen(str) + 1;
479 copy = PyMem_Malloc(size);
480 if (copy == NULL)
481 return NULL;
482 memcpy(copy, str, size);
483 return copy;
484}
485
Victor Stinner0507bf52013-07-07 02:05:46 +0200486void *
487PyObject_Malloc(size_t size)
488{
489 /* see PyMem_RawMalloc() */
490 if (size > (size_t)PY_SSIZE_T_MAX)
491 return NULL;
492 return _PyObject.malloc(_PyObject.ctx, size);
493}
494
495void *
Victor Stinnerdb067af2014-05-02 22:31:14 +0200496PyObject_Calloc(size_t nelem, size_t elsize)
497{
498 /* see PyMem_RawMalloc() */
499 if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
500 return NULL;
501 return _PyObject.calloc(_PyObject.ctx, nelem, elsize);
502}
503
504void *
Victor Stinner0507bf52013-07-07 02:05:46 +0200505PyObject_Realloc(void *ptr, size_t new_size)
506{
507 /* see PyMem_RawMalloc() */
508 if (new_size > (size_t)PY_SSIZE_T_MAX)
509 return NULL;
510 return _PyObject.realloc(_PyObject.ctx, ptr, new_size);
511}
512
513void
514PyObject_Free(void *ptr)
515{
516 _PyObject.free(_PyObject.ctx, ptr);
517}
518
519
520#ifdef WITH_PYMALLOC
521
Benjamin Peterson05159c42009-12-03 03:01:27 +0000522#ifdef WITH_VALGRIND
523#include <valgrind/valgrind.h>
524
525/* If we're using GCC, use __builtin_expect() to reduce overhead of
526 the valgrind checks */
527#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
528# define UNLIKELY(value) __builtin_expect((value), 0)
529#else
530# define UNLIKELY(value) (value)
531#endif
532
533/* -1 indicates that we haven't checked that we're running on valgrind yet. */
534static int running_on_valgrind = -1;
535#endif
536
Victor Stinner9ed83c42017-10-31 12:18:10 -0700537
Victor Stinner9e87e772017-11-24 12:09:24 +0100538/* An object allocator for Python.
539
540 Here is an introduction to the layers of the Python memory architecture,
541 showing where the object allocator is actually used (layer +2), It is
542 called for every object allocation and deallocation (PyObject_New/Del),
543 unless the object-specific allocators implement a proprietary allocation
544 scheme (ex.: ints use a simple free list). This is also the place where
545 the cyclic garbage collector operates selectively on container objects.
546
547
548 Object-specific allocators
549 _____ ______ ______ ________
550 [ int ] [ dict ] [ list ] ... [ string ] Python core |
551+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
552 _______________________________ | |
553 [ Python's object allocator ] | |
554+2 | ####### Object memory ####### | <------ Internal buffers ------> |
555 ______________________________________________________________ |
556 [ Python's raw memory allocator (PyMem_ API) ] |
557+1 | <----- Python memory (under PyMem manager's control) ------> | |
558 __________________________________________________________________
559 [ Underlying general-purpose allocator (ex: C library malloc) ]
560 0 | <------ Virtual memory allocated for the python process -------> |
561
562 =========================================================================
563 _______________________________________________________________________
564 [ OS-specific Virtual Memory Manager (VMM) ]
565-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
566 __________________________________ __________________________________
567 [ ] [ ]
568-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
569
570*/
571/*==========================================================================*/
572
573/* A fast, special-purpose memory allocator for small blocks, to be used
574 on top of a general-purpose malloc -- heavily based on previous art. */
575
576/* Vladimir Marangozov -- August 2000 */
577
578/*
579 * "Memory management is where the rubber meets the road -- if we do the wrong
580 * thing at any level, the results will not be good. And if we don't make the
581 * levels work well together, we are in serious trouble." (1)
582 *
583 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
584 * "Dynamic Storage Allocation: A Survey and Critical Review",
585 * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
586 */
587
588/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
589
590/*==========================================================================*/
591
592/*
593 * Allocation strategy abstract:
594 *
595 * For small requests, the allocator sub-allocates <Big> blocks of memory.
596 * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
597 * system's allocator.
598 *
599 * Small requests are grouped in size classes spaced 8 bytes apart, due
600 * to the required valid alignment of the returned address. Requests of
601 * a particular size are serviced from memory pools of 4K (one VMM page).
602 * Pools are fragmented on demand and contain free lists of blocks of one
603 * particular size class. In other words, there is a fixed-size allocator
604 * for each size class. Free pools are shared by the different allocators
605 * thus minimizing the space reserved for a particular size class.
606 *
607 * This allocation strategy is a variant of what is known as "simple
608 * segregated storage based on array of free lists". The main drawback of
609 * simple segregated storage is that we might end up with lot of reserved
610 * memory for the different free lists, which degenerate in time. To avoid
611 * this, we partition each free list in pools and we share dynamically the
612 * reserved space between all free lists. This technique is quite efficient
613 * for memory intensive programs which allocate mainly small-sized blocks.
614 *
615 * For small requests we have the following table:
616 *
617 * Request in bytes Size of allocated block Size class idx
618 * ----------------------------------------------------------------
619 * 1-8 8 0
620 * 9-16 16 1
621 * 17-24 24 2
622 * 25-32 32 3
623 * 33-40 40 4
624 * 41-48 48 5
625 * 49-56 56 6
626 * 57-64 64 7
627 * 65-72 72 8
628 * ... ... ...
629 * 497-504 504 62
630 * 505-512 512 63
631 *
632 * 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
633 * allocator.
634 */
635
636/*==========================================================================*/
637
638/*
639 * -- Main tunable settings section --
640 */
641
642/*
643 * Alignment of addresses returned to the user. 8-bytes alignment works
644 * on most current architectures (with 32-bit or 64-bit address busses).
645 * The alignment value is also used for grouping small requests in size
646 * classes spaced ALIGNMENT bytes apart.
647 *
648 * You shouldn't change this unless you know what you are doing.
649 */
650#define ALIGNMENT 8 /* must be 2^N */
651#define ALIGNMENT_SHIFT 3
652
653/* Return the number of bytes in size class I, as a uint. */
654#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
655
656/*
657 * Max size threshold below which malloc requests are considered to be
658 * small enough in order to use preallocated memory pools. You can tune
659 * this value according to your application behaviour and memory needs.
660 *
661 * Note: a size threshold of 512 guarantees that newly created dictionaries
662 * will be allocated from preallocated memory pools on 64-bit.
663 *
664 * The following invariants must hold:
665 * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
666 * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
667 *
668 * Although not required, for better performance and space efficiency,
669 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
670 */
671#define SMALL_REQUEST_THRESHOLD 512
672#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
673
674/*
675 * The system's VMM page size can be obtained on most unices with a
676 * getpagesize() call or deduced from various header files. To make
677 * things simpler, we assume that it is 4K, which is OK for most systems.
678 * It is probably better if this is the native page size, but it doesn't
679 * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
680 * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
681 * violation fault. 4K is apparently OK for all the platforms that python
682 * currently targets.
683 */
684#define SYSTEM_PAGE_SIZE (4 * 1024)
685#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
686
687/*
688 * Maximum amount of memory managed by the allocator for small requests.
689 */
690#ifdef WITH_MEMORY_LIMITS
691#ifndef SMALL_MEMORY_LIMIT
692#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
693#endif
694#endif
695
696/*
697 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
698 * on a page boundary. This is a reserved virtual address space for the
699 * current process (obtained through a malloc()/mmap() call). In no way this
700 * means that the memory arenas will be used entirely. A malloc(<Big>) is
701 * usually an address range reservation for <Big> bytes, unless all pages within
702 * this space are referenced subsequently. So malloc'ing big blocks and not
703 * using them does not mean "wasting memory". It's an addressable range
704 * wastage...
705 *
706 * Arenas are allocated with mmap() on systems supporting anonymous memory
707 * mappings to reduce heap fragmentation.
708 */
709#define ARENA_SIZE (256 << 10) /* 256KB */
710
711#ifdef WITH_MEMORY_LIMITS
712#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
713#endif
714
715/*
716 * Size of the pools used for small blocks. Should be a power of 2,
717 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
718 */
719#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
720#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
721
722/*
723 * -- End of tunable settings section --
724 */
725
726/*==========================================================================*/
727
728/*
729 * Locking
730 *
731 * To reduce lock contention, it would probably be better to refine the
732 * crude function locking with per size class locking. I'm not positive
733 * however, whether it's worth switching to such locking policy because
734 * of the performance penalty it might introduce.
735 *
736 * The following macros describe the simplest (should also be the fastest)
737 * lock object on a particular platform and the init/fini/lock/unlock
738 * operations on it. The locks defined here are not expected to be recursive
739 * because it is assumed that they will always be called in the order:
740 * INIT, [LOCK, UNLOCK]*, FINI.
741 */
742
743/*
744 * Python's threads are serialized, so object malloc locking is disabled.
745 */
746#define SIMPLELOCK_DECL(lock) /* simple lock declaration */
747#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
748#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
749#define SIMPLELOCK_LOCK(lock) /* acquire released lock */
750#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
751
752/* When you say memory, my mind reasons in terms of (pointers to) blocks */
753typedef uint8_t block;
754
755/* Pool for small blocks. */
756struct pool_header {
757 union { block *_padding;
758 uint count; } ref; /* number of allocated blocks */
759 block *freeblock; /* pool's free list head */
760 struct pool_header *nextpool; /* next pool of this size class */
761 struct pool_header *prevpool; /* previous pool "" */
762 uint arenaindex; /* index into arenas of base adr */
763 uint szidx; /* block size class index */
764 uint nextoffset; /* bytes to virgin block */
765 uint maxnextoffset; /* largest valid nextoffset */
766};
767
768typedef struct pool_header *poolp;
769
770/* Record keeping for arenas. */
771struct arena_object {
772 /* The address of the arena, as returned by malloc. Note that 0
773 * will never be returned by a successful malloc, and is used
774 * here to mark an arena_object that doesn't correspond to an
775 * allocated arena.
776 */
777 uintptr_t address;
778
779 /* Pool-aligned pointer to the next pool to be carved off. */
780 block* pool_address;
781
782 /* The number of available pools in the arena: free pools + never-
783 * allocated pools.
784 */
785 uint nfreepools;
786
787 /* The total number of pools in the arena, whether or not available. */
788 uint ntotalpools;
789
790 /* Singly-linked list of available pools. */
791 struct pool_header* freepools;
792
793 /* Whenever this arena_object is not associated with an allocated
794 * arena, the nextarena member is used to link all unassociated
795 * arena_objects in the singly-linked `unused_arena_objects` list.
796 * The prevarena member is unused in this case.
797 *
798 * When this arena_object is associated with an allocated arena
799 * with at least one available pool, both members are used in the
800 * doubly-linked `usable_arenas` list, which is maintained in
801 * increasing order of `nfreepools` values.
802 *
803 * Else this arena_object is associated with an allocated arena
804 * all of whose pools are in use. `nextarena` and `prevarena`
805 * are both meaningless in this case.
806 */
807 struct arena_object* nextarena;
808 struct arena_object* prevarena;
809};
810
811#define POOL_OVERHEAD _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT)
812
813#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
814
815/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
816#define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE))
817
818/* Return total number of blocks in pool of size index I, as a uint. */
819#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
820
821/*==========================================================================*/
822
823/*
824 * This malloc lock
825 */
826SIMPLELOCK_DECL(_malloc_lock)
827#define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
828#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
829#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
830#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
831
832/*
833 * Pool table -- headed, circular, doubly-linked lists of partially used pools.
834
835This is involved. For an index i, usedpools[i+i] is the header for a list of
836all partially used pools holding small blocks with "size class idx" i. So
837usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
83816, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
839
840Pools are carved off an arena's highwater mark (an arena_object's pool_address
841member) as needed. Once carved off, a pool is in one of three states forever
842after:
843
844used == partially used, neither empty nor full
845 At least one block in the pool is currently allocated, and at least one
846 block in the pool is not currently allocated (note this implies a pool
847 has room for at least two blocks).
848 This is a pool's initial state, as a pool is created only when malloc
849 needs space.
850 The pool holds blocks of a fixed size, and is in the circular list headed
851 at usedpools[i] (see above). It's linked to the other used pools of the
852 same size class via the pool_header's nextpool and prevpool members.
853 If all but one block is currently allocated, a malloc can cause a
854 transition to the full state. If all but one block is not currently
855 allocated, a free can cause a transition to the empty state.
856
857full == all the pool's blocks are currently allocated
858 On transition to full, a pool is unlinked from its usedpools[] list.
859 It's not linked to from anything then anymore, and its nextpool and
860 prevpool members are meaningless until it transitions back to used.
861 A free of a block in a full pool puts the pool back in the used state.
862 Then it's linked in at the front of the appropriate usedpools[] list, so
863 that the next allocation for its size class will reuse the freed block.
864
865empty == all the pool's blocks are currently available for allocation
866 On transition to empty, a pool is unlinked from its usedpools[] list,
867 and linked to the front of its arena_object's singly-linked freepools list,
868 via its nextpool member. The prevpool member has no meaning in this case.
869 Empty pools have no inherent size class: the next time a malloc finds
870 an empty list in usedpools[], it takes the first pool off of freepools.
871 If the size class needed happens to be the same as the size class the pool
872 last had, some pool initialization can be skipped.
873
874
875Block Management
876
877Blocks within pools are again carved out as needed. pool->freeblock points to
878the start of a singly-linked list of free blocks within the pool. When a
879block is freed, it's inserted at the front of its pool's freeblock list. Note
880that the available blocks in a pool are *not* linked all together when a pool
881is initialized. Instead only "the first two" (lowest addresses) blocks are
882set up, returning the first such block, and setting pool->freeblock to a
883one-block list holding the second such block. This is consistent with that
884pymalloc strives at all levels (arena, pool, and block) never to touch a piece
885of memory until it's actually needed.
886
887So long as a pool is in the used state, we're certain there *is* a block
888available for allocating, and pool->freeblock is not NULL. If pool->freeblock
889points to the end of the free list before we've carved the entire pool into
890blocks, that means we simply haven't yet gotten to one of the higher-address
891blocks. The offset from the pool_header to the start of "the next" virgin
892block is stored in the pool_header nextoffset member, and the largest value
893of nextoffset that makes sense is stored in the maxnextoffset member when a
894pool is initialized. All the blocks in a pool have been passed out at least
895once when and only when nextoffset > maxnextoffset.
896
897
898Major obscurity: While the usedpools vector is declared to have poolp
899entries, it doesn't really. It really contains two pointers per (conceptual)
900poolp entry, the nextpool and prevpool members of a pool_header. The
901excruciating initialization code below fools C so that
902
903 usedpool[i+i]
904
905"acts like" a genuine poolp, but only so long as you only reference its
906nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
907compensating for that a pool_header's nextpool and prevpool members
908immediately follow a pool_header's first two members:
909
910 union { block *_padding;
911 uint count; } ref;
912 block *freeblock;
913
914each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
915contains is a fudged-up pointer p such that *if* C believes it's a poolp
916pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
917circular list is empty).
918
919It's unclear why the usedpools setup is so convoluted. It could be to
920minimize the amount of cache required to hold this heavily-referenced table
921(which only *needs* the two interpool pointer members of a pool_header). OTOH,
922referencing code has to remember to "double the index" and doing so isn't
923free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
924on that C doesn't insert any padding anywhere in a pool_header at or before
925the prevpool member.
926**************************************************************************** */
927
928#define PTA(x) ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
929#define PT(x) PTA(x), PTA(x)
930
931static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
932 PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
933#if NB_SMALL_SIZE_CLASSES > 8
934 , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
935#if NB_SMALL_SIZE_CLASSES > 16
936 , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
937#if NB_SMALL_SIZE_CLASSES > 24
938 , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
939#if NB_SMALL_SIZE_CLASSES > 32
940 , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
941#if NB_SMALL_SIZE_CLASSES > 40
942 , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
943#if NB_SMALL_SIZE_CLASSES > 48
944 , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
945#if NB_SMALL_SIZE_CLASSES > 56
946 , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
947#if NB_SMALL_SIZE_CLASSES > 64
948#error "NB_SMALL_SIZE_CLASSES should be less than 64"
949#endif /* NB_SMALL_SIZE_CLASSES > 64 */
950#endif /* NB_SMALL_SIZE_CLASSES > 56 */
951#endif /* NB_SMALL_SIZE_CLASSES > 48 */
952#endif /* NB_SMALL_SIZE_CLASSES > 40 */
953#endif /* NB_SMALL_SIZE_CLASSES > 32 */
954#endif /* NB_SMALL_SIZE_CLASSES > 24 */
955#endif /* NB_SMALL_SIZE_CLASSES > 16 */
956#endif /* NB_SMALL_SIZE_CLASSES > 8 */
957};
958
959/*==========================================================================
960Arena management.
961
962`arenas` is a vector of arena_objects. It contains maxarenas entries, some of
963which may not be currently used (== they're arena_objects that aren't
964currently associated with an allocated arena). Note that arenas proper are
965separately malloc'ed.
966
967Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
968we do try to free() arenas, and use some mild heuristic strategies to increase
969the likelihood that arenas eventually can be freed.
970
971unused_arena_objects
972
973 This is a singly-linked list of the arena_objects that are currently not
974 being used (no arena is associated with them). Objects are taken off the
975 head of the list in new_arena(), and are pushed on the head of the list in
976 PyObject_Free() when the arena is empty. Key invariant: an arena_object
977 is on this list if and only if its .address member is 0.
978
979usable_arenas
980
981 This is a doubly-linked list of the arena_objects associated with arenas
982 that have pools available. These pools are either waiting to be reused,
983 or have not been used before. The list is sorted to have the most-
984 allocated arenas first (ascending order based on the nfreepools member).
985 This means that the next allocation will come from a heavily used arena,
986 which gives the nearly empty arenas a chance to be returned to the system.
987 In my unscientific tests this dramatically improved the number of arenas
988 that could be freed.
989
990Note that an arena_object associated with an arena all of whose pools are
991currently in use isn't on either list.
992*/
993
994/* Array of objects used to track chunks of memory (arenas). */
995static struct arena_object* arenas = NULL;
996/* Number of slots currently allocated in the `arenas` vector. */
997static uint maxarenas = 0;
998
999/* The head of the singly-linked, NULL-terminated list of available
1000 * arena_objects.
1001 */
1002static struct arena_object* unused_arena_objects = NULL;
1003
1004/* The head of the doubly-linked, NULL-terminated at each end, list of
1005 * arena_objects associated with arenas that have pools available.
1006 */
1007static struct arena_object* usable_arenas = NULL;
1008
1009/* How many arena_objects do we initially allocate?
1010 * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
1011 * `arenas` vector.
1012 */
1013#define INITIAL_ARENA_OBJECTS 16
1014
1015/* Number of arenas allocated that haven't been free()'d. */
1016static size_t narenas_currently_allocated = 0;
1017
1018/* Total number of times malloc() called to allocate an arena. */
1019static size_t ntimes_arena_allocated = 0;
1020/* High water mark (max value ever seen) for narenas_currently_allocated. */
1021static size_t narenas_highwater = 0;
1022
1023static Py_ssize_t _Py_AllocatedBlocks = 0;
1024
Antoine Pitrouf9d0b122012-12-09 14:28:26 +01001025Py_ssize_t
1026_Py_GetAllocatedBlocks(void)
1027{
Victor Stinner9e87e772017-11-24 12:09:24 +01001028 return _Py_AllocatedBlocks;
Antoine Pitrouf9d0b122012-12-09 14:28:26 +01001029}
1030
1031
Thomas Woutersa9773292006-04-21 09:43:23 +00001032/* Allocate a new arena. If we run out of memory, return NULL. Else
1033 * allocate a new arena, and return the address of an arena_object
1034 * describing the new arena. It's expected that the caller will set
1035 * `usable_arenas` to the return value.
1036 */
1037static struct arena_object*
Tim Petersd97a1c02002-03-30 06:09:22 +00001038new_arena(void)
1039{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001040 struct arena_object* arenaobj;
1041 uint excess; /* number of bytes above pool alignment */
Victor Stinnerba108822012-03-10 00:21:44 +01001042 void *address;
Victor Stinner34be8072016-03-14 12:04:26 +01001043 static int debug_stats = -1;
Tim Petersd97a1c02002-03-30 06:09:22 +00001044
Victor Stinner34be8072016-03-14 12:04:26 +01001045 if (debug_stats == -1) {
1046 char *opt = Py_GETENV("PYTHONMALLOCSTATS");
1047 debug_stats = (opt != NULL && *opt != '\0');
1048 }
1049 if (debug_stats)
David Malcolm49526f42012-06-22 14:55:41 -04001050 _PyObject_DebugMallocStats(stderr);
Victor Stinner34be8072016-03-14 12:04:26 +01001051
Victor Stinner9e87e772017-11-24 12:09:24 +01001052 if (unused_arena_objects == NULL) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001053 uint i;
1054 uint numarenas;
1055 size_t nbytes;
Tim Peters0e871182002-04-13 08:29:14 +00001056
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001057 /* Double the number of arena objects on each allocation.
1058 * Note that it's possible for `numarenas` to overflow.
1059 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001060 numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
1061 if (numarenas <= maxarenas)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001062 return NULL; /* overflow */
Martin v. Löwis5aca8822008-09-11 06:55:48 +00001063#if SIZEOF_SIZE_T <= SIZEOF_INT
Victor Stinner9e87e772017-11-24 12:09:24 +01001064 if (numarenas > SIZE_MAX / sizeof(*arenas))
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001065 return NULL; /* overflow */
Martin v. Löwis5aca8822008-09-11 06:55:48 +00001066#endif
Victor Stinner9e87e772017-11-24 12:09:24 +01001067 nbytes = numarenas * sizeof(*arenas);
1068 arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001069 if (arenaobj == NULL)
1070 return NULL;
Victor Stinner9e87e772017-11-24 12:09:24 +01001071 arenas = arenaobj;
Thomas Woutersa9773292006-04-21 09:43:23 +00001072
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001073 /* We might need to fix pointers that were copied. However,
1074 * new_arena only gets called when all the pages in the
1075 * previous arenas are full. Thus, there are *no* pointers
1076 * into the old array. Thus, we don't have to worry about
1077 * invalid pointers. Just to be sure, some asserts:
1078 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001079 assert(usable_arenas == NULL);
1080 assert(unused_arena_objects == NULL);
Thomas Woutersa9773292006-04-21 09:43:23 +00001081
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001082 /* Put the new arenas on the unused_arena_objects list. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001083 for (i = maxarenas; i < numarenas; ++i) {
1084 arenas[i].address = 0; /* mark as unassociated */
1085 arenas[i].nextarena = i < numarenas - 1 ?
1086 &arenas[i+1] : NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001087 }
Thomas Woutersa9773292006-04-21 09:43:23 +00001088
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001089 /* Update globals. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001090 unused_arena_objects = &arenas[maxarenas];
1091 maxarenas = numarenas;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001092 }
Tim Petersd97a1c02002-03-30 06:09:22 +00001093
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001094 /* Take the next available arena object off the head of the list. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001095 assert(unused_arena_objects != NULL);
1096 arenaobj = unused_arena_objects;
1097 unused_arena_objects = arenaobj->nextarena;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001098 assert(arenaobj->address == 0);
Victor Stinner9e87e772017-11-24 12:09:24 +01001099 address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
Victor Stinner0507bf52013-07-07 02:05:46 +02001100 if (address == NULL) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001101 /* The allocation failed: return NULL after putting the
1102 * arenaobj back.
1103 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001104 arenaobj->nextarena = unused_arena_objects;
1105 unused_arena_objects = arenaobj;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001106 return NULL;
1107 }
Benjamin Peterson5d4b09c2016-09-18 19:24:52 -07001108 arenaobj->address = (uintptr_t)address;
Tim Petersd97a1c02002-03-30 06:09:22 +00001109
Victor Stinner9e87e772017-11-24 12:09:24 +01001110 ++narenas_currently_allocated;
1111 ++ntimes_arena_allocated;
1112 if (narenas_currently_allocated > narenas_highwater)
1113 narenas_highwater = narenas_currently_allocated;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001114 arenaobj->freepools = NULL;
1115 /* pool_address <- first pool-aligned address in the arena
1116 nfreepools <- number of whole pools that fit after alignment */
Victor Stinner9e87e772017-11-24 12:09:24 +01001117 arenaobj->pool_address = (block*)arenaobj->address;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001118 arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
1119 assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
1120 excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
1121 if (excess != 0) {
1122 --arenaobj->nfreepools;
1123 arenaobj->pool_address += POOL_SIZE - excess;
1124 }
1125 arenaobj->ntotalpools = arenaobj->nfreepools;
Thomas Woutersa9773292006-04-21 09:43:23 +00001126
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001127 return arenaobj;
Tim Petersd97a1c02002-03-30 06:09:22 +00001128}
1129
Victor Stinner9ed83c42017-10-31 12:18:10 -07001130
Thomas Woutersa9773292006-04-21 09:43:23 +00001131/*
Benjamin Peterson3924f932016-09-18 19:12:48 -07001132address_in_range(P, POOL)
Thomas Woutersa9773292006-04-21 09:43:23 +00001133
1134Return true if and only if P is an address that was allocated by pymalloc.
1135POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
1136(the caller is asked to compute this because the macro expands POOL more than
1137once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
Benjamin Peterson3924f932016-09-18 19:12:48 -07001138variable and pass the latter to the macro; because address_in_range is
Thomas Woutersa9773292006-04-21 09:43:23 +00001139called on every alloc/realloc/free, micro-efficiency is important here).
1140
1141Tricky: Let B be the arena base address associated with the pool, B =
1142arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
1143
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001144 B <= P < B + ARENA_SIZE
Thomas Woutersa9773292006-04-21 09:43:23 +00001145
1146Subtracting B throughout, this is true iff
1147
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001148 0 <= P-B < ARENA_SIZE
Thomas Woutersa9773292006-04-21 09:43:23 +00001149
1150By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
1151
1152Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
1153before the first arena has been allocated. `arenas` is still NULL in that
1154case. We're relying on that maxarenas is also 0 in that case, so that
1155(POOL)->arenaindex < maxarenas must be false, saving us from trying to index
1156into a NULL arenas.
1157
1158Details: given P and POOL, the arena_object corresponding to P is AO =
1159arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
1160stores, etc), POOL is the correct address of P's pool, AO.address is the
1161correct base address of the pool's arena, and P must be within ARENA_SIZE of
1162AO.address. In addition, AO.address is not 0 (no arena can start at address 0
Benjamin Peterson3924f932016-09-18 19:12:48 -07001163(NULL)). Therefore address_in_range correctly reports that obmalloc
Thomas Woutersa9773292006-04-21 09:43:23 +00001164controls P.
1165
1166Now suppose obmalloc does not control P (e.g., P was obtained via a direct
1167call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
1168in this case -- it may even be uninitialized trash. If the trash arenaindex
1169is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
1170control P.
1171
1172Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
1173allocated arena, obmalloc controls all the memory in slice AO.address :
1174AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
1175so P doesn't lie in that slice, so the macro correctly reports that P is not
1176controlled by obmalloc.
1177
1178Finally, if P is not controlled by obmalloc and AO corresponds to an unused
1179arena_object (one not currently associated with an allocated arena),
1180AO.address is 0, and the second test in the macro reduces to:
1181
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001182 P < ARENA_SIZE
Thomas Woutersa9773292006-04-21 09:43:23 +00001183
1184If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
1185that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
1186of the test still passes, and the third clause (AO.address != 0) is necessary
1187to get the correct result: AO.address is 0 in this case, so the macro
1188correctly reports that P is not controlled by obmalloc (despite that P lies in
1189slice AO.address : AO.address + ARENA_SIZE).
1190
1191Note: The third (AO.address != 0) clause was added in Python 2.5. Before
11922.5, arenas were never free()'ed, and an arenaindex < maxarena always
1193corresponded to a currently-allocated arena, so the "P is not controlled by
1194obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
1195was impossible.
1196
1197Note that the logic is excruciating, and reading up possibly uninitialized
1198memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
1199creates problems for some memory debuggers. The overwhelming advantage is
1200that this test determines whether an arbitrary address is controlled by
1201obmalloc in a small constant time, independent of the number of arenas
1202obmalloc controls. Since this test is needed at every entry point, it's
1203extremely desirable that it be this fast.
1204*/
Thomas Woutersa9773292006-04-21 09:43:23 +00001205
Benjamin Peterson3924f932016-09-18 19:12:48 -07001206static bool ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
1207address_in_range(void *p, poolp pool)
1208{
1209 // Since address_in_range may be reading from memory which was not allocated
1210 // by Python, it is important that pool->arenaindex is read only once, as
1211 // another thread may be concurrently modifying the value without holding
1212 // the GIL. The following dance forces the compiler to read pool->arenaindex
1213 // only once.
1214 uint arenaindex = *((volatile uint *)&pool->arenaindex);
Victor Stinner9e87e772017-11-24 12:09:24 +01001215 return arenaindex < maxarenas &&
1216 (uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE &&
1217 arenas[arenaindex].address != 0;
Benjamin Peterson3924f932016-09-18 19:12:48 -07001218}
Tim Peters338e0102002-04-01 19:23:44 +00001219
Victor Stinner9ed83c42017-10-31 12:18:10 -07001220
Neil Schemenauera35c6882001-02-27 04:45:05 +00001221/*==========================================================================*/
1222
Victor Stinner9ed83c42017-10-31 12:18:10 -07001223/* pymalloc allocator
Neil Schemenauera35c6882001-02-27 04:45:05 +00001224
Victor Stinner9ed83c42017-10-31 12:18:10 -07001225 The basic blocks are ordered by decreasing execution frequency,
1226 which minimizes the number of jumps in the most common cases,
1227 improves branching prediction and instruction scheduling (small
1228 block allocations typically result in a couple of instructions).
1229 Unless the optimizer reorders everything, being too smart...
Neil Schemenauera35c6882001-02-27 04:45:05 +00001230
Victor Stinner9ed83c42017-10-31 12:18:10 -07001231 Return 1 if pymalloc allocated memory and wrote the pointer into *ptr_p.
1232
1233 Return 0 if pymalloc failed to allocate the memory block: on bigger
1234 requests, on error in the code below (as a last chance to serve the request)
1235 or when the max memory limit has been reached. */
1236static int
1237pymalloc_alloc(void *ctx, void **ptr_p, size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +00001238{
Victor Stinner9e87e772017-11-24 12:09:24 +01001239 block *bp;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001240 poolp pool;
1241 poolp next;
1242 uint size;
Neil Schemenauera35c6882001-02-27 04:45:05 +00001243
Benjamin Peterson05159c42009-12-03 03:01:27 +00001244#ifdef WITH_VALGRIND
Victor Stinner9ed83c42017-10-31 12:18:10 -07001245 if (UNLIKELY(running_on_valgrind == -1)) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001246 running_on_valgrind = RUNNING_ON_VALGRIND;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001247 }
1248 if (UNLIKELY(running_on_valgrind)) {
1249 return 0;
1250 }
Benjamin Peterson05159c42009-12-03 03:01:27 +00001251#endif
1252
Victor Stinner9ed83c42017-10-31 12:18:10 -07001253 if (nbytes == 0) {
1254 return 0;
1255 }
1256 if (nbytes > SMALL_REQUEST_THRESHOLD) {
1257 return 0;
1258 }
T. Wouters06bb4872017-03-31 10:10:19 -07001259
Victor Stinner9ed83c42017-10-31 12:18:10 -07001260 LOCK();
1261 /*
1262 * Most frequent paths first
1263 */
1264 size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
Victor Stinner9e87e772017-11-24 12:09:24 +01001265 pool = usedpools[size + size];
Victor Stinner9ed83c42017-10-31 12:18:10 -07001266 if (pool != pool->nextpool) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001267 /*
Victor Stinner9ed83c42017-10-31 12:18:10 -07001268 * There is a used pool for this size class.
1269 * Pick up the head block of its free list.
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001270 */
Victor Stinner9ed83c42017-10-31 12:18:10 -07001271 ++pool->ref.count;
1272 bp = pool->freeblock;
1273 assert(bp != NULL);
Victor Stinner9e87e772017-11-24 12:09:24 +01001274 if ((pool->freeblock = *(block **)bp) != NULL) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001275 goto success;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001276 }
Thomas Woutersa9773292006-04-21 09:43:23 +00001277
Victor Stinner9ed83c42017-10-31 12:18:10 -07001278 /*
1279 * Reached the end of the free list, try to extend it.
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001280 */
Victor Stinner9ed83c42017-10-31 12:18:10 -07001281 if (pool->nextoffset <= pool->maxnextoffset) {
1282 /* There is room for another block. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001283 pool->freeblock = (block*)pool +
Victor Stinner9ed83c42017-10-31 12:18:10 -07001284 pool->nextoffset;
1285 pool->nextoffset += INDEX2SIZE(size);
Victor Stinner9e87e772017-11-24 12:09:24 +01001286 *(block **)(pool->freeblock) = NULL;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001287 goto success;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001288 }
Thomas Woutersa9773292006-04-21 09:43:23 +00001289
Victor Stinner9ed83c42017-10-31 12:18:10 -07001290 /* Pool is full, unlink from used pools. */
1291 next = pool->nextpool;
1292 pool = pool->prevpool;
1293 next->prevpool = pool;
1294 pool->nextpool = next;
1295 goto success;
1296 }
Thomas Woutersa9773292006-04-21 09:43:23 +00001297
Victor Stinner9ed83c42017-10-31 12:18:10 -07001298 /* There isn't a pool of the right size class immediately
1299 * available: use a free pool.
1300 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001301 if (usable_arenas == NULL) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001302 /* No arena has a free pool: allocate a new arena. */
1303#ifdef WITH_MEMORY_LIMITS
Victor Stinner9e87e772017-11-24 12:09:24 +01001304 if (narenas_currently_allocated >= MAX_ARENAS) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001305 goto failed;
1306 }
1307#endif
Victor Stinner9e87e772017-11-24 12:09:24 +01001308 usable_arenas = new_arena();
1309 if (usable_arenas == NULL) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001310 goto failed;
1311 }
Victor Stinner9e87e772017-11-24 12:09:24 +01001312 usable_arenas->nextarena =
1313 usable_arenas->prevarena = NULL;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001314 }
Victor Stinner9e87e772017-11-24 12:09:24 +01001315 assert(usable_arenas->address != 0);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001316
1317 /* Try to get a cached free pool. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001318 pool = usable_arenas->freepools;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001319 if (pool != NULL) {
1320 /* Unlink from cached pools. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001321 usable_arenas->freepools = pool->nextpool;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001322
1323 /* This arena already had the smallest nfreepools
1324 * value, so decreasing nfreepools doesn't change
1325 * that, and we don't need to rearrange the
1326 * usable_arenas list. However, if the arena has
1327 * become wholly allocated, we need to remove its
1328 * arena_object from usable_arenas.
1329 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001330 --usable_arenas->nfreepools;
1331 if (usable_arenas->nfreepools == 0) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001332 /* Wholly allocated: remove. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001333 assert(usable_arenas->freepools == NULL);
1334 assert(usable_arenas->nextarena == NULL ||
1335 usable_arenas->nextarena->prevarena ==
1336 usable_arenas);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001337
Victor Stinner9e87e772017-11-24 12:09:24 +01001338 usable_arenas = usable_arenas->nextarena;
1339 if (usable_arenas != NULL) {
1340 usable_arenas->prevarena = NULL;
1341 assert(usable_arenas->address != 0);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001342 }
1343 }
Victor Stinner9ed83c42017-10-31 12:18:10 -07001344 else {
1345 /* nfreepools > 0: it must be that freepools
1346 * isn't NULL, or that we haven't yet carved
1347 * off all the arena's pools for the first
1348 * time.
1349 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001350 assert(usable_arenas->freepools != NULL ||
1351 usable_arenas->pool_address <=
1352 (block*)usable_arenas->address +
Victor Stinner9ed83c42017-10-31 12:18:10 -07001353 ARENA_SIZE - POOL_SIZE);
1354 }
Thomas Woutersa9773292006-04-21 09:43:23 +00001355
Victor Stinner9ed83c42017-10-31 12:18:10 -07001356 init_pool:
1357 /* Frontlink to used pools. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001358 next = usedpools[size + size]; /* == prev */
Victor Stinner9ed83c42017-10-31 12:18:10 -07001359 pool->nextpool = next;
1360 pool->prevpool = next;
1361 next->nextpool = pool;
1362 next->prevpool = pool;
1363 pool->ref.count = 1;
1364 if (pool->szidx == size) {
1365 /* Luckily, this pool last contained blocks
1366 * of the same size class, so its header
1367 * and free list are already initialized.
1368 */
1369 bp = pool->freeblock;
1370 assert(bp != NULL);
Victor Stinner9e87e772017-11-24 12:09:24 +01001371 pool->freeblock = *(block **)bp;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001372 goto success;
1373 }
1374 /*
1375 * Initialize the pool header, set up the free list to
1376 * contain just the second block, and return the first
1377 * block.
1378 */
1379 pool->szidx = size;
1380 size = INDEX2SIZE(size);
Victor Stinner9e87e772017-11-24 12:09:24 +01001381 bp = (block *)pool + POOL_OVERHEAD;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001382 pool->nextoffset = POOL_OVERHEAD + (size << 1);
1383 pool->maxnextoffset = POOL_SIZE - size;
1384 pool->freeblock = bp + size;
Victor Stinner9e87e772017-11-24 12:09:24 +01001385 *(block **)(pool->freeblock) = NULL;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001386 goto success;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001387 }
Neil Schemenauera35c6882001-02-27 04:45:05 +00001388
Victor Stinner9ed83c42017-10-31 12:18:10 -07001389 /* Carve off a new pool. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001390 assert(usable_arenas->nfreepools > 0);
1391 assert(usable_arenas->freepools == NULL);
1392 pool = (poolp)usable_arenas->pool_address;
1393 assert((block*)pool <= (block*)usable_arenas->address +
Victor Stinner9ed83c42017-10-31 12:18:10 -07001394 ARENA_SIZE - POOL_SIZE);
Victor Stinner9e87e772017-11-24 12:09:24 +01001395 pool->arenaindex = (uint)(usable_arenas - arenas);
1396 assert(&arenas[pool->arenaindex] == usable_arenas);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001397 pool->szidx = DUMMY_SIZE_IDX;
Victor Stinner9e87e772017-11-24 12:09:24 +01001398 usable_arenas->pool_address += POOL_SIZE;
1399 --usable_arenas->nfreepools;
Neil Schemenauera35c6882001-02-27 04:45:05 +00001400
Victor Stinner9e87e772017-11-24 12:09:24 +01001401 if (usable_arenas->nfreepools == 0) {
1402 assert(usable_arenas->nextarena == NULL ||
1403 usable_arenas->nextarena->prevarena ==
1404 usable_arenas);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001405 /* Unlink the arena: it is completely allocated. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001406 usable_arenas = usable_arenas->nextarena;
1407 if (usable_arenas != NULL) {
1408 usable_arenas->prevarena = NULL;
1409 assert(usable_arenas->address != 0);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001410 }
Antoine Pitrouf9d0b122012-12-09 14:28:26 +01001411 }
Victor Stinner9ed83c42017-10-31 12:18:10 -07001412
1413 goto init_pool;
1414
1415success:
1416 UNLOCK();
1417 assert(bp != NULL);
1418 *ptr_p = (void *)bp;
1419 return 1;
1420
1421failed:
1422 UNLOCK();
1423 return 0;
Neil Schemenauera35c6882001-02-27 04:45:05 +00001424}
1425
Victor Stinner9ed83c42017-10-31 12:18:10 -07001426
Victor Stinnerdb067af2014-05-02 22:31:14 +02001427static void *
1428_PyObject_Malloc(void *ctx, size_t nbytes)
1429{
Victor Stinner9ed83c42017-10-31 12:18:10 -07001430 void* ptr;
1431 if (pymalloc_alloc(ctx, &ptr, nbytes)) {
Victor Stinner9e87e772017-11-24 12:09:24 +01001432 _Py_AllocatedBlocks++;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001433 return ptr;
1434 }
1435
1436 ptr = PyMem_RawMalloc(nbytes);
1437 if (ptr != NULL) {
Victor Stinner9e87e772017-11-24 12:09:24 +01001438 _Py_AllocatedBlocks++;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001439 }
1440 return ptr;
Victor Stinnerdb067af2014-05-02 22:31:14 +02001441}
1442
Victor Stinner9ed83c42017-10-31 12:18:10 -07001443
Victor Stinnerdb067af2014-05-02 22:31:14 +02001444static void *
1445_PyObject_Calloc(void *ctx, size_t nelem, size_t elsize)
1446{
Victor Stinner9ed83c42017-10-31 12:18:10 -07001447 void* ptr;
1448
1449 assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
1450 size_t nbytes = nelem * elsize;
1451
1452 if (pymalloc_alloc(ctx, &ptr, nbytes)) {
1453 memset(ptr, 0, nbytes);
Victor Stinner9e87e772017-11-24 12:09:24 +01001454 _Py_AllocatedBlocks++;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001455 return ptr;
1456 }
1457
1458 ptr = PyMem_RawCalloc(nelem, elsize);
1459 if (ptr != NULL) {
Victor Stinner9e87e772017-11-24 12:09:24 +01001460 _Py_AllocatedBlocks++;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001461 }
1462 return ptr;
Victor Stinnerdb067af2014-05-02 22:31:14 +02001463}
1464
Neil Schemenauera35c6882001-02-27 04:45:05 +00001465
Victor Stinner9ed83c42017-10-31 12:18:10 -07001466/* Free a memory block allocated by pymalloc_alloc().
1467 Return 1 if it was freed.
1468 Return 0 if the block was not allocated by pymalloc_alloc(). */
1469static int
1470pymalloc_free(void *ctx, void *p)
Neil Schemenauera35c6882001-02-27 04:45:05 +00001471{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001472 poolp pool;
Victor Stinner9e87e772017-11-24 12:09:24 +01001473 block *lastfree;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001474 poolp next, prev;
1475 uint size;
Neil Schemenauera35c6882001-02-27 04:45:05 +00001476
Victor Stinner9ed83c42017-10-31 12:18:10 -07001477 assert(p != NULL);
Antoine Pitrouf9d0b122012-12-09 14:28:26 +01001478
Benjamin Peterson05159c42009-12-03 03:01:27 +00001479#ifdef WITH_VALGRIND
Victor Stinner9ed83c42017-10-31 12:18:10 -07001480 if (UNLIKELY(running_on_valgrind > 0)) {
1481 return 0;
1482 }
Benjamin Peterson05159c42009-12-03 03:01:27 +00001483#endif
1484
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001485 pool = POOL_ADDR(p);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001486 if (!address_in_range(p, pool)) {
1487 return 0;
1488 }
1489 /* We allocated this address. */
Thomas Woutersa9773292006-04-21 09:43:23 +00001490
Victor Stinner9ed83c42017-10-31 12:18:10 -07001491 LOCK();
Thomas Woutersa9773292006-04-21 09:43:23 +00001492
Victor Stinner9ed83c42017-10-31 12:18:10 -07001493 /* Link p to the start of the pool's freeblock list. Since
1494 * the pool had at least the p block outstanding, the pool
1495 * wasn't empty (so it's already in a usedpools[] list, or
1496 * was full and is in no list -- it's not in the freeblocks
1497 * list in any case).
1498 */
1499 assert(pool->ref.count > 0); /* else it was empty */
Victor Stinner9e87e772017-11-24 12:09:24 +01001500 *(block **)p = lastfree = pool->freeblock;
1501 pool->freeblock = (block *)p;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001502 if (!lastfree) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001503 /* Pool was full, so doesn't currently live in any list:
1504 * link it to the front of the appropriate usedpools[] list.
1505 * This mimics LRU pool usage for new allocations and
1506 * targets optimal filling when several pools contain
1507 * blocks of the same size class.
1508 */
1509 --pool->ref.count;
1510 assert(pool->ref.count > 0); /* else the pool is empty */
1511 size = pool->szidx;
Victor Stinner9e87e772017-11-24 12:09:24 +01001512 next = usedpools[size + size];
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001513 prev = next->prevpool;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001514
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001515 /* insert pool before next: prev <-> pool <-> next */
1516 pool->nextpool = next;
1517 pool->prevpool = prev;
1518 next->prevpool = pool;
1519 prev->nextpool = pool;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001520 goto success;
1521 }
1522
1523 struct arena_object* ao;
1524 uint nf; /* ao->nfreepools */
1525
1526 /* freeblock wasn't NULL, so the pool wasn't full,
1527 * and the pool is in a usedpools[] list.
1528 */
1529 if (--pool->ref.count != 0) {
1530 /* pool isn't empty: leave it in usedpools */
1531 goto success;
1532 }
1533 /* Pool is now empty: unlink from usedpools, and
1534 * link to the front of freepools. This ensures that
1535 * previously freed pools will be allocated later
1536 * (being not referenced, they are perhaps paged out).
1537 */
1538 next = pool->nextpool;
1539 prev = pool->prevpool;
1540 next->prevpool = prev;
1541 prev->nextpool = next;
1542
1543 /* Link the pool to freepools. This is a singly-linked
1544 * list, and pool->prevpool isn't used there.
1545 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001546 ao = &arenas[pool->arenaindex];
Victor Stinner9ed83c42017-10-31 12:18:10 -07001547 pool->nextpool = ao->freepools;
1548 ao->freepools = pool;
1549 nf = ++ao->nfreepools;
1550
1551 /* All the rest is arena management. We just freed
1552 * a pool, and there are 4 cases for arena mgmt:
1553 * 1. If all the pools are free, return the arena to
1554 * the system free().
1555 * 2. If this is the only free pool in the arena,
1556 * add the arena back to the `usable_arenas` list.
1557 * 3. If the "next" arena has a smaller count of free
1558 * pools, we have to "slide this arena right" to
1559 * restore that usable_arenas is sorted in order of
1560 * nfreepools.
1561 * 4. Else there's nothing more to do.
1562 */
1563 if (nf == ao->ntotalpools) {
1564 /* Case 1. First unlink ao from usable_arenas.
1565 */
1566 assert(ao->prevarena == NULL ||
1567 ao->prevarena->address != 0);
1568 assert(ao ->nextarena == NULL ||
1569 ao->nextarena->address != 0);
1570
1571 /* Fix the pointer in the prevarena, or the
1572 * usable_arenas pointer.
1573 */
1574 if (ao->prevarena == NULL) {
Victor Stinner9e87e772017-11-24 12:09:24 +01001575 usable_arenas = ao->nextarena;
1576 assert(usable_arenas == NULL ||
1577 usable_arenas->address != 0);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001578 }
1579 else {
1580 assert(ao->prevarena->nextarena == ao);
1581 ao->prevarena->nextarena =
1582 ao->nextarena;
1583 }
1584 /* Fix the pointer in the nextarena. */
1585 if (ao->nextarena != NULL) {
1586 assert(ao->nextarena->prevarena == ao);
1587 ao->nextarena->prevarena =
1588 ao->prevarena;
1589 }
1590 /* Record that this arena_object slot is
1591 * available to be reused.
1592 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001593 ao->nextarena = unused_arena_objects;
1594 unused_arena_objects = ao;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001595
1596 /* Free the entire arena. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001597 _PyObject_Arena.free(_PyObject_Arena.ctx,
Victor Stinner9ed83c42017-10-31 12:18:10 -07001598 (void *)ao->address, ARENA_SIZE);
1599 ao->address = 0; /* mark unassociated */
Victor Stinner9e87e772017-11-24 12:09:24 +01001600 --narenas_currently_allocated;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001601
1602 goto success;
1603 }
1604
1605 if (nf == 1) {
1606 /* Case 2. Put ao at the head of
1607 * usable_arenas. Note that because
1608 * ao->nfreepools was 0 before, ao isn't
1609 * currently on the usable_arenas list.
1610 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001611 ao->nextarena = usable_arenas;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001612 ao->prevarena = NULL;
Victor Stinner9e87e772017-11-24 12:09:24 +01001613 if (usable_arenas)
1614 usable_arenas->prevarena = ao;
1615 usable_arenas = ao;
1616 assert(usable_arenas->address != 0);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001617
1618 goto success;
1619 }
1620
1621 /* If this arena is now out of order, we need to keep
1622 * the list sorted. The list is kept sorted so that
1623 * the "most full" arenas are used first, which allows
1624 * the nearly empty arenas to be completely freed. In
1625 * a few un-scientific tests, it seems like this
1626 * approach allowed a lot more memory to be freed.
1627 */
1628 if (ao->nextarena == NULL ||
1629 nf <= ao->nextarena->nfreepools) {
1630 /* Case 4. Nothing to do. */
1631 goto success;
1632 }
1633 /* Case 3: We have to move the arena towards the end
1634 * of the list, because it has more free pools than
1635 * the arena to its right.
1636 * First unlink ao from usable_arenas.
1637 */
1638 if (ao->prevarena != NULL) {
1639 /* ao isn't at the head of the list */
1640 assert(ao->prevarena->nextarena == ao);
1641 ao->prevarena->nextarena = ao->nextarena;
1642 }
1643 else {
1644 /* ao is at the head of the list */
Victor Stinner9e87e772017-11-24 12:09:24 +01001645 assert(usable_arenas == ao);
1646 usable_arenas = ao->nextarena;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001647 }
1648 ao->nextarena->prevarena = ao->prevarena;
1649
1650 /* Locate the new insertion point by iterating over
1651 * the list, using our nextarena pointer.
1652 */
1653 while (ao->nextarena != NULL && nf > ao->nextarena->nfreepools) {
1654 ao->prevarena = ao->nextarena;
1655 ao->nextarena = ao->nextarena->nextarena;
1656 }
1657
1658 /* Insert ao at this point. */
1659 assert(ao->nextarena == NULL || ao->prevarena == ao->nextarena->prevarena);
1660 assert(ao->prevarena->nextarena == ao->nextarena);
1661
1662 ao->prevarena->nextarena = ao;
1663 if (ao->nextarena != NULL) {
1664 ao->nextarena->prevarena = ao;
1665 }
1666
1667 /* Verify that the swaps worked. */
1668 assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools);
1669 assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools);
1670 assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao);
Victor Stinner9e87e772017-11-24 12:09:24 +01001671 assert((usable_arenas == ao && ao->prevarena == NULL)
Victor Stinner9ed83c42017-10-31 12:18:10 -07001672 || ao->prevarena->nextarena == ao);
1673
1674 goto success;
1675
1676success:
1677 UNLOCK();
1678 return 1;
1679}
1680
1681
1682static void
1683_PyObject_Free(void *ctx, void *p)
1684{
1685 /* PyObject_Free(NULL) has no effect */
1686 if (p == NULL) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001687 return;
1688 }
Neil Schemenauera35c6882001-02-27 04:45:05 +00001689
Victor Stinner9e87e772017-11-24 12:09:24 +01001690 _Py_AllocatedBlocks--;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001691 if (!pymalloc_free(ctx, p)) {
1692 /* pymalloc didn't allocate this address */
1693 PyMem_RawFree(p);
1694 }
Neil Schemenauera35c6882001-02-27 04:45:05 +00001695}
1696
Neil Schemenauera35c6882001-02-27 04:45:05 +00001697
Victor Stinner9ed83c42017-10-31 12:18:10 -07001698/* pymalloc realloc.
1699
1700 If nbytes==0, then as the Python docs promise, we do not treat this like
1701 free(p), and return a non-NULL result.
1702
1703 Return 1 if pymalloc reallocated memory and wrote the new pointer into
1704 newptr_p.
1705
1706 Return 0 if pymalloc didn't allocated p. */
1707static int
1708pymalloc_realloc(void *ctx, void **newptr_p, void *p, size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +00001709{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001710 void *bp;
1711 poolp pool;
1712 size_t size;
Neil Schemenauera35c6882001-02-27 04:45:05 +00001713
Victor Stinner9ed83c42017-10-31 12:18:10 -07001714 assert(p != NULL);
Georg Brandld492ad82008-07-23 16:13:07 +00001715
Benjamin Peterson05159c42009-12-03 03:01:27 +00001716#ifdef WITH_VALGRIND
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001717 /* Treat running_on_valgrind == -1 the same as 0 */
Victor Stinner9ed83c42017-10-31 12:18:10 -07001718 if (UNLIKELY(running_on_valgrind > 0)) {
1719 return 0;
1720 }
Benjamin Peterson05159c42009-12-03 03:01:27 +00001721#endif
1722
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001723 pool = POOL_ADDR(p);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001724 if (!address_in_range(p, pool)) {
1725 /* pymalloc is not managing this block.
1726
1727 If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take
1728 over this block. However, if we do, we need to copy the valid data
1729 from the C-managed block to one of our blocks, and there's no
1730 portable way to know how much of the memory space starting at p is
1731 valid.
1732
1733 As bug 1185883 pointed out the hard way, it's possible that the
1734 C-managed block is "at the end" of allocated VM space, so that a
1735 memory fault can occur if we try to copy nbytes bytes starting at p.
1736 Instead we punt: let C continue to manage this block. */
1737 return 0;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001738 }
Victor Stinner9ed83c42017-10-31 12:18:10 -07001739
1740 /* pymalloc is in charge of this block */
1741 size = INDEX2SIZE(pool->szidx);
1742 if (nbytes <= size) {
1743 /* The block is staying the same or shrinking.
1744
1745 If it's shrinking, there's a tradeoff: it costs cycles to copy the
1746 block to a smaller size class, but it wastes memory not to copy it.
1747
1748 The compromise here is to copy on shrink only if at least 25% of
1749 size can be shaved off. */
1750 if (4 * nbytes > 3 * size) {
1751 /* It's the same, or shrinking and new/old > 3/4. */
1752 *newptr_p = p;
1753 return 1;
1754 }
1755 size = nbytes;
1756 }
1757
1758 bp = _PyObject_Malloc(ctx, nbytes);
1759 if (bp != NULL) {
1760 memcpy(bp, p, size);
1761 _PyObject_Free(ctx, p);
1762 }
1763 *newptr_p = bp;
1764 return 1;
1765}
1766
1767
1768static void *
1769_PyObject_Realloc(void *ctx, void *ptr, size_t nbytes)
1770{
1771 void *ptr2;
1772
1773 if (ptr == NULL) {
1774 return _PyObject_Malloc(ctx, nbytes);
1775 }
1776
1777 if (pymalloc_realloc(ctx, &ptr2, ptr, nbytes)) {
1778 return ptr2;
1779 }
1780
1781 return PyMem_RawRealloc(ptr, nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +00001782}
1783
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001784#else /* ! WITH_PYMALLOC */
Tim Petersddea2082002-03-23 10:03:50 +00001785
1786/*==========================================================================*/
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001787/* pymalloc not enabled: Redirect the entry points to malloc. These will
1788 * only be used by extensions that are compiled with pymalloc enabled. */
Tim Peters62c06ba2002-03-23 22:28:18 +00001789
Antoine Pitrou92840532012-12-17 23:05:59 +01001790Py_ssize_t
1791_Py_GetAllocatedBlocks(void)
1792{
1793 return 0;
1794}
1795
Tim Peters1221c0a2002-03-23 00:20:15 +00001796#endif /* WITH_PYMALLOC */
1797
Victor Stinner34be8072016-03-14 12:04:26 +01001798
Tim Petersddea2082002-03-23 10:03:50 +00001799/*==========================================================================*/
Tim Peters62c06ba2002-03-23 22:28:18 +00001800/* A x-platform debugging allocator. This doesn't manage memory directly,
1801 * it wraps a real allocator, adding extra debugging info to the memory blocks.
1802 */
Tim Petersddea2082002-03-23 10:03:50 +00001803
Tim Petersf6fb5012002-04-12 07:38:53 +00001804/* Special bytes broadcast into debug memory blocks at appropriate times.
1805 * Strings of these are unlikely to be valid addresses, floats, ints or
1806 * 7-bit ASCII.
1807 */
1808#undef CLEANBYTE
1809#undef DEADBYTE
1810#undef FORBIDDENBYTE
1811#define CLEANBYTE 0xCB /* clean (newly allocated) memory */
Tim Peters889f61d2002-07-10 19:29:49 +00001812#define DEADBYTE 0xDB /* dead (newly freed) memory */
Tim Petersf6fb5012002-04-12 07:38:53 +00001813#define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */
Tim Petersddea2082002-03-23 10:03:50 +00001814
Victor Stinner9e87e772017-11-24 12:09:24 +01001815static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
1816
Tim Peterse0850172002-03-24 00:34:21 +00001817/* serialno is always incremented via calling this routine. The point is
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001818 * to supply a single place to set a breakpoint.
1819 */
Tim Peterse0850172002-03-24 00:34:21 +00001820static void
Neil Schemenauerbd02b142002-03-28 21:05:38 +00001821bumpserialno(void)
Tim Peterse0850172002-03-24 00:34:21 +00001822{
Victor Stinner9e87e772017-11-24 12:09:24 +01001823 ++serialno;
Tim Peterse0850172002-03-24 00:34:21 +00001824}
1825
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001826#define SST SIZEOF_SIZE_T
Tim Peterse0850172002-03-24 00:34:21 +00001827
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001828/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
1829static size_t
1830read_size_t(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001831{
Benjamin Peterson19517e42016-09-18 19:22:22 -07001832 const uint8_t *q = (const uint8_t *)p;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001833 size_t result = *q++;
1834 int i;
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001835
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001836 for (i = SST; --i > 0; ++q)
1837 result = (result << 8) | *q;
1838 return result;
Tim Petersddea2082002-03-23 10:03:50 +00001839}
1840
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001841/* Write n as a big-endian size_t, MSB at address p, LSB at
1842 * p + sizeof(size_t) - 1.
1843 */
Tim Petersddea2082002-03-23 10:03:50 +00001844static void
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001845write_size_t(void *p, size_t n)
Tim Petersddea2082002-03-23 10:03:50 +00001846{
Benjamin Peterson19517e42016-09-18 19:22:22 -07001847 uint8_t *q = (uint8_t *)p + SST - 1;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001848 int i;
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001849
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001850 for (i = SST; --i >= 0; --q) {
Benjamin Peterson19517e42016-09-18 19:22:22 -07001851 *q = (uint8_t)(n & 0xff);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001852 n >>= 8;
1853 }
Tim Petersddea2082002-03-23 10:03:50 +00001854}
1855
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001856/* Let S = sizeof(size_t). The debug malloc asks for 4*S extra bytes and
1857 fills them with useful stuff, here calling the underlying malloc's result p:
Tim Petersddea2082002-03-23 10:03:50 +00001858
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001859p[0: S]
1860 Number of bytes originally asked for. This is a size_t, big-endian (easier
1861 to read in a memory dump).
Georg Brandl7cba5fd2013-09-25 09:04:23 +02001862p[S]
Tim Petersdf099f52013-09-19 21:06:37 -05001863 API ID. See PEP 445. This is a character, but seems undocumented.
1864p[S+1: 2*S]
Tim Petersf6fb5012002-04-12 07:38:53 +00001865 Copies of FORBIDDENBYTE. Used to catch under- writes and reads.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001866p[2*S: 2*S+n]
Tim Petersf6fb5012002-04-12 07:38:53 +00001867 The requested memory, filled with copies of CLEANBYTE.
Tim Petersddea2082002-03-23 10:03:50 +00001868 Used to catch reference to uninitialized memory.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001869 &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
Tim Petersddea2082002-03-23 10:03:50 +00001870 handled the request itself.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001871p[2*S+n: 2*S+n+S]
Tim Petersf6fb5012002-04-12 07:38:53 +00001872 Copies of FORBIDDENBYTE. Used to catch over- writes and reads.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001873p[2*S+n+S: 2*S+n+2*S]
Victor Stinner0507bf52013-07-07 02:05:46 +02001874 A serial number, incremented by 1 on each call to _PyMem_DebugMalloc
1875 and _PyMem_DebugRealloc.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001876 This is a big-endian size_t.
Tim Petersddea2082002-03-23 10:03:50 +00001877 If "bad memory" is detected later, the serial number gives an
1878 excellent way to set a breakpoint on the next run, to capture the
1879 instant at which this block was passed out.
1880*/
1881
Victor Stinner0507bf52013-07-07 02:05:46 +02001882static void *
Victor Stinnerc4aec362016-03-14 22:26:53 +01001883_PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes)
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001884{
Victor Stinner0507bf52013-07-07 02:05:46 +02001885 debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02001886 uint8_t *p; /* base address of malloc'ed pad block */
Victor Stinner9ed83c42017-10-31 12:18:10 -07001887 uint8_t *data; /* p + 2*SST == pointer to data bytes */
1888 uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
1889 size_t total; /* 2 * SST + nbytes + 2 * SST */
1890
1891 if (nbytes > (size_t)PY_SSIZE_T_MAX - 4 * SST) {
1892 /* integer overflow: can't represent total as a Py_ssize_t */
1893 return NULL;
1894 }
1895 total = nbytes + 4 * SST;
1896
1897 /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN]
1898 * ^--- p ^--- data ^--- tail
1899 S: nbytes stored as size_t
1900 I: API identifier (1 byte)
1901 F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after)
1902 C: Clean bytes used later to store actual data
1903 N: Serial number stored as size_t */
1904
1905 if (use_calloc) {
1906 p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total);
1907 }
1908 else {
1909 p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total);
1910 }
1911 if (p == NULL) {
1912 return NULL;
1913 }
1914 data = p + 2*SST;
Tim Petersddea2082002-03-23 10:03:50 +00001915
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001916 bumpserialno();
Tim Petersddea2082002-03-23 10:03:50 +00001917
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001918 /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
1919 write_size_t(p, nbytes);
Benjamin Peterson19517e42016-09-18 19:22:22 -07001920 p[SST] = (uint8_t)api->api_id;
Victor Stinner0507bf52013-07-07 02:05:46 +02001921 memset(p + SST + 1, FORBIDDENBYTE, SST-1);
Tim Petersddea2082002-03-23 10:03:50 +00001922
Victor Stinner9ed83c42017-10-31 12:18:10 -07001923 if (nbytes > 0 && !use_calloc) {
1924 memset(data, CLEANBYTE, nbytes);
1925 }
Tim Petersddea2082002-03-23 10:03:50 +00001926
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001927 /* at tail, write pad (SST bytes) and serialno (SST bytes) */
Victor Stinner9ed83c42017-10-31 12:18:10 -07001928 tail = data + nbytes;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001929 memset(tail, FORBIDDENBYTE, SST);
Victor Stinner9e87e772017-11-24 12:09:24 +01001930 write_size_t(tail + SST, serialno);
Tim Petersddea2082002-03-23 10:03:50 +00001931
Victor Stinner9ed83c42017-10-31 12:18:10 -07001932 return data;
Tim Petersddea2082002-03-23 10:03:50 +00001933}
1934
Victor Stinnerdb067af2014-05-02 22:31:14 +02001935static void *
Victor Stinnerc4aec362016-03-14 22:26:53 +01001936_PyMem_DebugRawMalloc(void *ctx, size_t nbytes)
Victor Stinnerdb067af2014-05-02 22:31:14 +02001937{
Victor Stinnerc4aec362016-03-14 22:26:53 +01001938 return _PyMem_DebugRawAlloc(0, ctx, nbytes);
Victor Stinnerdb067af2014-05-02 22:31:14 +02001939}
1940
1941static void *
Victor Stinnerc4aec362016-03-14 22:26:53 +01001942_PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize)
Victor Stinnerdb067af2014-05-02 22:31:14 +02001943{
1944 size_t nbytes;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001945 assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
Victor Stinnerdb067af2014-05-02 22:31:14 +02001946 nbytes = nelem * elsize;
Victor Stinnerc4aec362016-03-14 22:26:53 +01001947 return _PyMem_DebugRawAlloc(1, ctx, nbytes);
Victor Stinnerdb067af2014-05-02 22:31:14 +02001948}
1949
Victor Stinner9ed83c42017-10-31 12:18:10 -07001950
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00001951/* The debug free first checks the 2*SST bytes on each end for sanity (in
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00001952 particular, that the FORBIDDENBYTEs with the api ID are still intact).
Tim Petersf6fb5012002-04-12 07:38:53 +00001953 Then fills the original bytes with DEADBYTE.
Tim Petersddea2082002-03-23 10:03:50 +00001954 Then calls the underlying free.
1955*/
Victor Stinner0507bf52013-07-07 02:05:46 +02001956static void
Victor Stinnerc4aec362016-03-14 22:26:53 +01001957_PyMem_DebugRawFree(void *ctx, void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001958{
Victor Stinner9ed83c42017-10-31 12:18:10 -07001959 /* PyMem_Free(NULL) has no effect */
1960 if (p == NULL) {
1961 return;
1962 }
1963
Victor Stinner0507bf52013-07-07 02:05:46 +02001964 debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
Benjamin Peterson19517e42016-09-18 19:22:22 -07001965 uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001966 size_t nbytes;
Tim Petersddea2082002-03-23 10:03:50 +00001967
Victor Stinner0507bf52013-07-07 02:05:46 +02001968 _PyMem_DebugCheckAddress(api->api_id, p);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001969 nbytes = read_size_t(q);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001970 nbytes += 4 * SST;
1971 memset(q, DEADBYTE, nbytes);
Victor Stinner0507bf52013-07-07 02:05:46 +02001972 api->alloc.free(api->alloc.ctx, q);
Tim Petersddea2082002-03-23 10:03:50 +00001973}
1974
Victor Stinner9ed83c42017-10-31 12:18:10 -07001975
Victor Stinner0507bf52013-07-07 02:05:46 +02001976static void *
Victor Stinnerc4aec362016-03-14 22:26:53 +01001977_PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +00001978{
Victor Stinner9ed83c42017-10-31 12:18:10 -07001979 if (p == NULL) {
1980 return _PyMem_DebugRawAlloc(0, ctx, nbytes);
1981 }
1982
Victor Stinner0507bf52013-07-07 02:05:46 +02001983 debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02001984 uint8_t *head; /* base address of malloc'ed pad block */
1985 uint8_t *data; /* pointer to data bytes */
1986 uint8_t *r;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001987 uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
1988 size_t total; /* 2 * SST + nbytes + 2 * SST */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001989 size_t original_nbytes;
Victor Stinner9e87e772017-11-24 12:09:24 +01001990 size_t block_serialno;
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02001991#define ERASED_SIZE 64
1992 uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */
Tim Petersddea2082002-03-23 10:03:50 +00001993
Victor Stinner0507bf52013-07-07 02:05:46 +02001994 _PyMem_DebugCheckAddress(api->api_id, p);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001995
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02001996 data = (uint8_t *)p;
1997 head = data - 2*SST;
1998 original_nbytes = read_size_t(head);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001999 if (nbytes > (size_t)PY_SSIZE_T_MAX - 4*SST) {
2000 /* integer overflow: can't represent total as a Py_ssize_t */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002001 return NULL;
Victor Stinner9ed83c42017-10-31 12:18:10 -07002002 }
2003 total = nbytes + 4*SST;
Tim Petersddea2082002-03-23 10:03:50 +00002004
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002005 tail = data + original_nbytes;
Victor Stinner9e87e772017-11-24 12:09:24 +01002006 block_serialno = read_size_t(tail + SST);
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002007 /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and
2008 ERASED_SIZE bytes at the end as dead and save the copy of erased bytes.
2009 */
2010 if (original_nbytes <= sizeof(save)) {
2011 memcpy(save, data, original_nbytes);
2012 memset(data - 2*SST, DEADBYTE, original_nbytes + 4*SST);
2013 }
2014 else {
2015 memcpy(save, data, ERASED_SIZE);
2016 memset(head, DEADBYTE, ERASED_SIZE + 2*SST);
2017 memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE);
2018 memset(tail - ERASED_SIZE, DEADBYTE, ERASED_SIZE + 2*SST);
Victor Stinner9ed83c42017-10-31 12:18:10 -07002019 }
Tim Peters85cc1c42002-04-12 08:52:50 +00002020
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002021 /* Resize and add decorations. */
2022 r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total);
2023 if (r == NULL) {
2024 nbytes = original_nbytes;
Victor Stinner9ed83c42017-10-31 12:18:10 -07002025 }
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002026 else {
2027 head = r;
2028 bumpserialno();
Victor Stinner9e87e772017-11-24 12:09:24 +01002029 block_serialno = serialno;
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002030 }
2031
2032 write_size_t(head, nbytes);
2033 head[SST] = (uint8_t)api->api_id;
2034 memset(head + SST + 1, FORBIDDENBYTE, SST-1);
2035 data = head + 2*SST;
Victor Stinnerc4266362013-07-09 00:44:43 +02002036
Victor Stinner9ed83c42017-10-31 12:18:10 -07002037 tail = data + nbytes;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002038 memset(tail, FORBIDDENBYTE, SST);
Victor Stinner9e87e772017-11-24 12:09:24 +01002039 write_size_t(tail + SST, block_serialno);
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002040
2041 /* Restore saved bytes. */
2042 if (original_nbytes <= sizeof(save)) {
2043 memcpy(data, save, Py_MIN(nbytes, original_nbytes));
2044 }
2045 else {
2046 size_t i = original_nbytes - ERASED_SIZE;
2047 memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE));
2048 if (nbytes > i) {
2049 memcpy(data + i, &save[ERASED_SIZE],
2050 Py_MIN(nbytes - i, ERASED_SIZE));
2051 }
2052 }
2053
2054 if (r == NULL) {
2055 return NULL;
2056 }
Tim Peters85cc1c42002-04-12 08:52:50 +00002057
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002058 if (nbytes > original_nbytes) {
2059 /* growing: mark new extra memory clean */
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002060 memset(data + original_nbytes, CLEANBYTE, nbytes - original_nbytes);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002061 }
Tim Peters85cc1c42002-04-12 08:52:50 +00002062
Victor Stinner9ed83c42017-10-31 12:18:10 -07002063 return data;
Tim Petersddea2082002-03-23 10:03:50 +00002064}
2065
Victor Stinnerc4aec362016-03-14 22:26:53 +01002066static void
2067_PyMem_DebugCheckGIL(void)
2068{
Victor Stinnerc4aec362016-03-14 22:26:53 +01002069 if (!PyGILState_Check())
2070 Py_FatalError("Python memory allocator called "
2071 "without holding the GIL");
Victor Stinnerc4aec362016-03-14 22:26:53 +01002072}
2073
2074static void *
2075_PyMem_DebugMalloc(void *ctx, size_t nbytes)
2076{
2077 _PyMem_DebugCheckGIL();
2078 return _PyMem_DebugRawMalloc(ctx, nbytes);
2079}
2080
2081static void *
2082_PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize)
2083{
2084 _PyMem_DebugCheckGIL();
2085 return _PyMem_DebugRawCalloc(ctx, nelem, elsize);
2086}
2087
Victor Stinner9ed83c42017-10-31 12:18:10 -07002088
Victor Stinnerc4aec362016-03-14 22:26:53 +01002089static void
2090_PyMem_DebugFree(void *ctx, void *ptr)
2091{
2092 _PyMem_DebugCheckGIL();
Victor Stinner0aed3a42016-03-23 11:30:43 +01002093 _PyMem_DebugRawFree(ctx, ptr);
Victor Stinnerc4aec362016-03-14 22:26:53 +01002094}
2095
Victor Stinner9ed83c42017-10-31 12:18:10 -07002096
Victor Stinnerc4aec362016-03-14 22:26:53 +01002097static void *
2098_PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes)
2099{
2100 _PyMem_DebugCheckGIL();
2101 return _PyMem_DebugRawRealloc(ctx, ptr, nbytes);
2102}
2103
Tim Peters7ccfadf2002-04-01 06:04:21 +00002104/* Check the forbidden bytes on both ends of the memory allocated for p.
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00002105 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
Tim Peters7ccfadf2002-04-01 06:04:21 +00002106 * and call Py_FatalError to kill the program.
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00002107 * The API id, is also checked.
Tim Peters7ccfadf2002-04-01 06:04:21 +00002108 */
Victor Stinner0507bf52013-07-07 02:05:46 +02002109static void
2110_PyMem_DebugCheckAddress(char api, const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00002111{
Benjamin Peterson19517e42016-09-18 19:22:22 -07002112 const uint8_t *q = (const uint8_t *)p;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002113 char msgbuf[64];
Serhiy Storchakae2f92de2017-11-11 13:06:26 +02002114 const char *msg;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002115 size_t nbytes;
Benjamin Peterson19517e42016-09-18 19:22:22 -07002116 const uint8_t *tail;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002117 int i;
2118 char id;
Tim Petersddea2082002-03-23 10:03:50 +00002119
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002120 if (p == NULL) {
2121 msg = "didn't expect a NULL pointer";
2122 goto error;
2123 }
Tim Petersddea2082002-03-23 10:03:50 +00002124
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002125 /* Check the API id */
2126 id = (char)q[-SST];
2127 if (id != api) {
2128 msg = msgbuf;
Serhiy Storchakae2f92de2017-11-11 13:06:26 +02002129 snprintf(msgbuf, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002130 msgbuf[sizeof(msgbuf)-1] = 0;
2131 goto error;
2132 }
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00002133
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002134 /* Check the stuff at the start of p first: if there's underwrite
2135 * corruption, the number-of-bytes field may be nuts, and checking
2136 * the tail could lead to a segfault then.
2137 */
2138 for (i = SST-1; i >= 1; --i) {
2139 if (*(q-i) != FORBIDDENBYTE) {
2140 msg = "bad leading pad byte";
2141 goto error;
2142 }
2143 }
Tim Petersddea2082002-03-23 10:03:50 +00002144
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002145 nbytes = read_size_t(q - 2*SST);
2146 tail = q + nbytes;
2147 for (i = 0; i < SST; ++i) {
2148 if (tail[i] != FORBIDDENBYTE) {
2149 msg = "bad trailing pad byte";
2150 goto error;
2151 }
2152 }
Tim Petersddea2082002-03-23 10:03:50 +00002153
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002154 return;
Tim Petersd1139e02002-03-28 07:32:11 +00002155
2156error:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002157 _PyObject_DebugDumpAddress(p);
2158 Py_FatalError(msg);
Tim Petersddea2082002-03-23 10:03:50 +00002159}
2160
Tim Peters7ccfadf2002-04-01 06:04:21 +00002161/* Display info to stderr about the memory block at p. */
Victor Stinner0507bf52013-07-07 02:05:46 +02002162static void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00002163_PyObject_DebugDumpAddress(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00002164{
Benjamin Peterson19517e42016-09-18 19:22:22 -07002165 const uint8_t *q = (const uint8_t *)p;
2166 const uint8_t *tail;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002167 size_t nbytes, serial;
2168 int i;
2169 int ok;
2170 char id;
Tim Petersddea2082002-03-23 10:03:50 +00002171
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002172 fprintf(stderr, "Debug memory block at address p=%p:", p);
2173 if (p == NULL) {
2174 fprintf(stderr, "\n");
2175 return;
2176 }
2177 id = (char)q[-SST];
2178 fprintf(stderr, " API '%c'\n", id);
Tim Petersddea2082002-03-23 10:03:50 +00002179
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002180 nbytes = read_size_t(q - 2*SST);
2181 fprintf(stderr, " %" PY_FORMAT_SIZE_T "u bytes originally "
2182 "requested\n", nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00002183
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002184 /* In case this is nuts, check the leading pad bytes first. */
2185 fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1);
2186 ok = 1;
2187 for (i = 1; i <= SST-1; ++i) {
2188 if (*(q-i) != FORBIDDENBYTE) {
2189 ok = 0;
2190 break;
2191 }
2192 }
2193 if (ok)
2194 fputs("FORBIDDENBYTE, as expected.\n", stderr);
2195 else {
2196 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
2197 FORBIDDENBYTE);
2198 for (i = SST-1; i >= 1; --i) {
Benjamin Peterson19517e42016-09-18 19:22:22 -07002199 const uint8_t byte = *(q-i);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002200 fprintf(stderr, " at p-%d: 0x%02x", i, byte);
2201 if (byte != FORBIDDENBYTE)
2202 fputs(" *** OUCH", stderr);
2203 fputc('\n', stderr);
2204 }
Tim Peters449b5a82002-04-28 06:14:45 +00002205
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002206 fputs(" Because memory is corrupted at the start, the "
2207 "count of bytes requested\n"
2208 " may be bogus, and checking the trailing pad "
2209 "bytes may segfault.\n", stderr);
2210 }
Tim Petersddea2082002-03-23 10:03:50 +00002211
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002212 tail = q + nbytes;
2213 fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, tail);
2214 ok = 1;
2215 for (i = 0; i < SST; ++i) {
2216 if (tail[i] != FORBIDDENBYTE) {
2217 ok = 0;
2218 break;
2219 }
2220 }
2221 if (ok)
2222 fputs("FORBIDDENBYTE, as expected.\n", stderr);
2223 else {
2224 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
Stefan Krah735bb122010-11-26 10:54:09 +00002225 FORBIDDENBYTE);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002226 for (i = 0; i < SST; ++i) {
Benjamin Peterson19517e42016-09-18 19:22:22 -07002227 const uint8_t byte = tail[i];
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002228 fprintf(stderr, " at tail+%d: 0x%02x",
Stefan Krah735bb122010-11-26 10:54:09 +00002229 i, byte);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002230 if (byte != FORBIDDENBYTE)
2231 fputs(" *** OUCH", stderr);
2232 fputc('\n', stderr);
2233 }
2234 }
Tim Petersddea2082002-03-23 10:03:50 +00002235
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002236 serial = read_size_t(tail + SST);
2237 fprintf(stderr, " The block was made by call #%" PY_FORMAT_SIZE_T
2238 "u to debug malloc/realloc.\n", serial);
Tim Petersddea2082002-03-23 10:03:50 +00002239
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002240 if (nbytes > 0) {
2241 i = 0;
2242 fputs(" Data at p:", stderr);
2243 /* print up to 8 bytes at the start */
2244 while (q < tail && i < 8) {
2245 fprintf(stderr, " %02x", *q);
2246 ++i;
2247 ++q;
2248 }
2249 /* and up to 8 at the end */
2250 if (q < tail) {
2251 if (tail - q > 8) {
2252 fputs(" ...", stderr);
2253 q = tail - 8;
2254 }
2255 while (q < tail) {
2256 fprintf(stderr, " %02x", *q);
2257 ++q;
2258 }
2259 }
2260 fputc('\n', stderr);
2261 }
Victor Stinner0611c262016-03-15 22:22:13 +01002262 fputc('\n', stderr);
2263
2264 fflush(stderr);
2265 _PyMem_DumpTraceback(fileno(stderr), p);
Tim Petersddea2082002-03-23 10:03:50 +00002266}
2267
David Malcolm49526f42012-06-22 14:55:41 -04002268
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002269static size_t
David Malcolm49526f42012-06-22 14:55:41 -04002270printone(FILE *out, const char* msg, size_t value)
Tim Peters16bcb6b2002-04-05 05:45:31 +00002271{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002272 int i, k;
2273 char buf[100];
2274 size_t origvalue = value;
Tim Peters16bcb6b2002-04-05 05:45:31 +00002275
David Malcolm49526f42012-06-22 14:55:41 -04002276 fputs(msg, out);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002277 for (i = (int)strlen(msg); i < 35; ++i)
David Malcolm49526f42012-06-22 14:55:41 -04002278 fputc(' ', out);
2279 fputc('=', out);
Tim Peters49f26812002-04-06 01:45:35 +00002280
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002281 /* Write the value with commas. */
2282 i = 22;
2283 buf[i--] = '\0';
2284 buf[i--] = '\n';
2285 k = 3;
2286 do {
2287 size_t nextvalue = value / 10;
Benjamin Peterson2dba1ee2013-02-20 16:54:30 -05002288 unsigned int digit = (unsigned int)(value - nextvalue * 10);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002289 value = nextvalue;
2290 buf[i--] = (char)(digit + '0');
2291 --k;
2292 if (k == 0 && value && i >= 0) {
2293 k = 3;
2294 buf[i--] = ',';
2295 }
2296 } while (value && i >= 0);
Tim Peters49f26812002-04-06 01:45:35 +00002297
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002298 while (i >= 0)
2299 buf[i--] = ' ';
David Malcolm49526f42012-06-22 14:55:41 -04002300 fputs(buf, out);
Tim Peters49f26812002-04-06 01:45:35 +00002301
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002302 return origvalue;
Tim Peters16bcb6b2002-04-05 05:45:31 +00002303}
2304
David Malcolm49526f42012-06-22 14:55:41 -04002305void
2306_PyDebugAllocatorStats(FILE *out,
2307 const char *block_name, int num_blocks, size_t sizeof_block)
2308{
2309 char buf1[128];
2310 char buf2[128];
2311 PyOS_snprintf(buf1, sizeof(buf1),
Tim Peterseaa3bcc2013-09-05 22:57:04 -05002312 "%d %ss * %" PY_FORMAT_SIZE_T "d bytes each",
David Malcolm49526f42012-06-22 14:55:41 -04002313 num_blocks, block_name, sizeof_block);
2314 PyOS_snprintf(buf2, sizeof(buf2),
2315 "%48s ", buf1);
2316 (void)printone(out, buf2, num_blocks * sizeof_block);
2317}
2318
Victor Stinner34be8072016-03-14 12:04:26 +01002319
David Malcolm49526f42012-06-22 14:55:41 -04002320#ifdef WITH_PYMALLOC
2321
Victor Stinner34be8072016-03-14 12:04:26 +01002322#ifdef Py_DEBUG
2323/* Is target in the list? The list is traversed via the nextpool pointers.
2324 * The list may be NULL-terminated, or circular. Return 1 if target is in
2325 * list, else 0.
2326 */
2327static int
2328pool_is_in_list(const poolp target, poolp list)
2329{
2330 poolp origlist = list;
2331 assert(target != NULL);
2332 if (list == NULL)
2333 return 0;
2334 do {
2335 if (target == list)
2336 return 1;
2337 list = list->nextpool;
2338 } while (list != NULL && list != origlist);
2339 return 0;
2340}
2341#endif
2342
David Malcolm49526f42012-06-22 14:55:41 -04002343/* Print summary info to "out" about the state of pymalloc's structures.
Tim Peters08d82152002-04-18 22:25:03 +00002344 * In Py_DEBUG mode, also perform some expensive internal consistency
2345 * checks.
2346 */
Tim Peters7ccfadf2002-04-01 06:04:21 +00002347void
David Malcolm49526f42012-06-22 14:55:41 -04002348_PyObject_DebugMallocStats(FILE *out)
Tim Peters7ccfadf2002-04-01 06:04:21 +00002349{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002350 uint i;
2351 const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
2352 /* # of pools, allocated blocks, and free blocks per class index */
2353 size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
2354 size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
2355 size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
2356 /* total # of allocated bytes in used and full pools */
2357 size_t allocated_bytes = 0;
2358 /* total # of available bytes in used pools */
2359 size_t available_bytes = 0;
2360 /* # of free pools + pools not yet carved out of current arena */
2361 uint numfreepools = 0;
2362 /* # of bytes for arena alignment padding */
2363 size_t arena_alignment = 0;
2364 /* # of bytes in used and full pools used for pool_headers */
2365 size_t pool_header_bytes = 0;
2366 /* # of bytes in used and full pools wasted due to quantization,
2367 * i.e. the necessarily leftover space at the ends of used and
2368 * full pools.
2369 */
2370 size_t quantization = 0;
2371 /* # of arenas actually allocated. */
2372 size_t narenas = 0;
2373 /* running total -- should equal narenas * ARENA_SIZE */
2374 size_t total;
2375 char buf[128];
Tim Peters7ccfadf2002-04-01 06:04:21 +00002376
David Malcolm49526f42012-06-22 14:55:41 -04002377 fprintf(out, "Small block threshold = %d, in %u size classes.\n",
Stefan Krah735bb122010-11-26 10:54:09 +00002378 SMALL_REQUEST_THRESHOLD, numclasses);
Tim Peters7ccfadf2002-04-01 06:04:21 +00002379
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002380 for (i = 0; i < numclasses; ++i)
2381 numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
Tim Peters7ccfadf2002-04-01 06:04:21 +00002382
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002383 /* Because full pools aren't linked to from anything, it's easiest
2384 * to march over all the arenas. If we're lucky, most of the memory
2385 * will be living in full pools -- would be a shame to miss them.
2386 */
Victor Stinner9e87e772017-11-24 12:09:24 +01002387 for (i = 0; i < maxarenas; ++i) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002388 uint j;
Victor Stinner9e87e772017-11-24 12:09:24 +01002389 uintptr_t base = arenas[i].address;
Thomas Woutersa9773292006-04-21 09:43:23 +00002390
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002391 /* Skip arenas which are not allocated. */
Victor Stinner9e87e772017-11-24 12:09:24 +01002392 if (arenas[i].address == (uintptr_t)NULL)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002393 continue;
2394 narenas += 1;
Thomas Woutersa9773292006-04-21 09:43:23 +00002395
Victor Stinner9e87e772017-11-24 12:09:24 +01002396 numfreepools += arenas[i].nfreepools;
Tim Peters7ccfadf2002-04-01 06:04:21 +00002397
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002398 /* round up to pool alignment */
Benjamin Peterson5d4b09c2016-09-18 19:24:52 -07002399 if (base & (uintptr_t)POOL_SIZE_MASK) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002400 arena_alignment += POOL_SIZE;
Benjamin Peterson5d4b09c2016-09-18 19:24:52 -07002401 base &= ~(uintptr_t)POOL_SIZE_MASK;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002402 base += POOL_SIZE;
2403 }
Tim Peters7ccfadf2002-04-01 06:04:21 +00002404
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002405 /* visit every pool in the arena */
Victor Stinner9e87e772017-11-24 12:09:24 +01002406 assert(base <= (uintptr_t) arenas[i].pool_address);
2407 for (j = 0; base < (uintptr_t) arenas[i].pool_address;
Benjamin Peterson19517e42016-09-18 19:22:22 -07002408 ++j, base += POOL_SIZE) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002409 poolp p = (poolp)base;
2410 const uint sz = p->szidx;
2411 uint freeblocks;
Tim Peters08d82152002-04-18 22:25:03 +00002412
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002413 if (p->ref.count == 0) {
2414 /* currently unused */
Victor Stinner34be8072016-03-14 12:04:26 +01002415#ifdef Py_DEBUG
Victor Stinner9e87e772017-11-24 12:09:24 +01002416 assert(pool_is_in_list(p, arenas[i].freepools));
Victor Stinner34be8072016-03-14 12:04:26 +01002417#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002418 continue;
2419 }
2420 ++numpools[sz];
2421 numblocks[sz] += p->ref.count;
2422 freeblocks = NUMBLOCKS(sz) - p->ref.count;
2423 numfreeblocks[sz] += freeblocks;
Tim Peters08d82152002-04-18 22:25:03 +00002424#ifdef Py_DEBUG
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002425 if (freeblocks > 0)
Victor Stinner9e87e772017-11-24 12:09:24 +01002426 assert(pool_is_in_list(p, usedpools[sz + sz]));
Tim Peters08d82152002-04-18 22:25:03 +00002427#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002428 }
2429 }
Victor Stinner9e87e772017-11-24 12:09:24 +01002430 assert(narenas == narenas_currently_allocated);
Tim Peters7ccfadf2002-04-01 06:04:21 +00002431
David Malcolm49526f42012-06-22 14:55:41 -04002432 fputc('\n', out);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002433 fputs("class size num pools blocks in use avail blocks\n"
2434 "----- ---- --------- ------------- ------------\n",
David Malcolm49526f42012-06-22 14:55:41 -04002435 out);
Tim Peters7ccfadf2002-04-01 06:04:21 +00002436
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002437 for (i = 0; i < numclasses; ++i) {
2438 size_t p = numpools[i];
2439 size_t b = numblocks[i];
2440 size_t f = numfreeblocks[i];
2441 uint size = INDEX2SIZE(i);
2442 if (p == 0) {
2443 assert(b == 0 && f == 0);
2444 continue;
2445 }
David Malcolm49526f42012-06-22 14:55:41 -04002446 fprintf(out, "%5u %6u "
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002447 "%11" PY_FORMAT_SIZE_T "u "
2448 "%15" PY_FORMAT_SIZE_T "u "
2449 "%13" PY_FORMAT_SIZE_T "u\n",
Stefan Krah735bb122010-11-26 10:54:09 +00002450 i, size, p, b, f);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002451 allocated_bytes += b * size;
2452 available_bytes += f * size;
2453 pool_header_bytes += p * POOL_OVERHEAD;
2454 quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
2455 }
David Malcolm49526f42012-06-22 14:55:41 -04002456 fputc('\n', out);
Victor Stinner34be8072016-03-14 12:04:26 +01002457 if (_PyMem_DebugEnabled())
Victor Stinner9e87e772017-11-24 12:09:24 +01002458 (void)printone(out, "# times object malloc called", serialno);
2459 (void)printone(out, "# arenas allocated total", ntimes_arena_allocated);
2460 (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas);
2461 (void)printone(out, "# arenas highwater mark", narenas_highwater);
David Malcolm49526f42012-06-22 14:55:41 -04002462 (void)printone(out, "# arenas allocated current", narenas);
Thomas Woutersa9773292006-04-21 09:43:23 +00002463
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002464 PyOS_snprintf(buf, sizeof(buf),
2465 "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
2466 narenas, ARENA_SIZE);
David Malcolm49526f42012-06-22 14:55:41 -04002467 (void)printone(out, buf, narenas * ARENA_SIZE);
Tim Peters16bcb6b2002-04-05 05:45:31 +00002468
David Malcolm49526f42012-06-22 14:55:41 -04002469 fputc('\n', out);
Tim Peters16bcb6b2002-04-05 05:45:31 +00002470
David Malcolm49526f42012-06-22 14:55:41 -04002471 total = printone(out, "# bytes in allocated blocks", allocated_bytes);
2472 total += printone(out, "# bytes in available blocks", available_bytes);
Tim Peters49f26812002-04-06 01:45:35 +00002473
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002474 PyOS_snprintf(buf, sizeof(buf),
2475 "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
David Malcolm49526f42012-06-22 14:55:41 -04002476 total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);
Tim Peters16bcb6b2002-04-05 05:45:31 +00002477
David Malcolm49526f42012-06-22 14:55:41 -04002478 total += printone(out, "# bytes lost to pool headers", pool_header_bytes);
2479 total += printone(out, "# bytes lost to quantization", quantization);
2480 total += printone(out, "# bytes lost to arena alignment", arena_alignment);
2481 (void)printone(out, "Total", total);
Tim Peters7ccfadf2002-04-01 06:04:21 +00002482}
2483
David Malcolm49526f42012-06-22 14:55:41 -04002484#endif /* #ifdef WITH_PYMALLOC */