blob: 03d0e8e51264c65489f59075094f4bc468bd6db1 [file] [log] [blame]
Tim Peters1221c0a2002-03-23 00:20:15 +00001#include "Python.h"
Victor Stinnerd9ea5ca2020-04-15 02:57:50 +02002#include "pycore_pymem.h" // _PyTraceMalloc_Config
Tim Peters1221c0a2002-03-23 00:20:15 +00003
Benjamin Peterson3924f932016-09-18 19:12:48 -07004#include <stdbool.h>
5
Victor Stinner0611c262016-03-15 22:22:13 +01006
7/* Defined in tracemalloc.c */
8extern void _PyMem_DumpTraceback(int fd, const void *ptr);
9
10
Victor Stinner0507bf52013-07-07 02:05:46 +020011/* Python's malloc wrappers (see pymem.h) */
12
Victor Stinner34be8072016-03-14 12:04:26 +010013#undef uint
14#define uint unsigned int /* assuming >= 16 bits */
15
Victor Stinner0507bf52013-07-07 02:05:46 +020016/* Forward declaration */
Victor Stinnerc4aec362016-03-14 22:26:53 +010017static void* _PyMem_DebugRawMalloc(void *ctx, size_t size);
18static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize);
19static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size);
Victor Stinner9ed83c42017-10-31 12:18:10 -070020static void _PyMem_DebugRawFree(void *ctx, void *ptr);
Victor Stinnerc4aec362016-03-14 22:26:53 +010021
Victor Stinner0507bf52013-07-07 02:05:46 +020022static void* _PyMem_DebugMalloc(void *ctx, size_t size);
Victor Stinnerdb067af2014-05-02 22:31:14 +020023static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize);
Victor Stinner0507bf52013-07-07 02:05:46 +020024static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size);
Victor Stinnerc4aec362016-03-14 22:26:53 +010025static void _PyMem_DebugFree(void *ctx, void *p);
Victor Stinner0507bf52013-07-07 02:05:46 +020026
27static void _PyObject_DebugDumpAddress(const void *p);
Victor Stinner9e5d30c2020-03-07 00:54:20 +010028static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p);
Victor Stinner0507bf52013-07-07 02:05:46 +020029
Victor Stinner5d39e042017-11-29 17:20:38 +010030static void _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain);
31
Nick Coghlan6ba64f42013-09-29 00:28:55 +100032#if defined(__has_feature) /* Clang */
Alexey Izbyshevfd3a91c2018-11-12 02:14:51 +030033# if __has_feature(address_sanitizer) /* is ASAN enabled? */
Batuhan Taşkayac0052f32019-12-27 05:51:34 +030034# define _Py_NO_SANITIZE_ADDRESS \
35 __attribute__((no_sanitize("address")))
Alexey Izbyshevfd3a91c2018-11-12 02:14:51 +030036# endif
37# if __has_feature(thread_sanitizer) /* is TSAN enabled? */
38# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
39# endif
40# if __has_feature(memory_sanitizer) /* is MSAN enabled? */
41# define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
42# endif
43#elif defined(__GNUC__)
44# if defined(__SANITIZE_ADDRESS__) /* GCC 4.8+, is ASAN enabled? */
Batuhan Taşkayac0052f32019-12-27 05:51:34 +030045# define _Py_NO_SANITIZE_ADDRESS \
46 __attribute__((no_sanitize_address))
Alexey Izbyshevfd3a91c2018-11-12 02:14:51 +030047# endif
Hai Shi7e479c82019-08-14 04:50:19 -050048 // TSAN is supported since GCC 5.1, but __SANITIZE_THREAD__ macro
Alexey Izbyshevfd3a91c2018-11-12 02:14:51 +030049 // is provided only since GCC 7.
Hai Shi7e479c82019-08-14 04:50:19 -050050# if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1)
Alexey Izbyshevfd3a91c2018-11-12 02:14:51 +030051# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
52# endif
53#endif
54
Batuhan Taşkayac0052f32019-12-27 05:51:34 +030055#ifndef _Py_NO_SANITIZE_ADDRESS
56# define _Py_NO_SANITIZE_ADDRESS
Alexey Izbyshevfd3a91c2018-11-12 02:14:51 +030057#endif
58#ifndef _Py_NO_SANITIZE_THREAD
59# define _Py_NO_SANITIZE_THREAD
60#endif
61#ifndef _Py_NO_SANITIZE_MEMORY
62# define _Py_NO_SANITIZE_MEMORY
Nick Coghlan6ba64f42013-09-29 00:28:55 +100063#endif
64
Tim Peters1221c0a2002-03-23 00:20:15 +000065#ifdef WITH_PYMALLOC
66
Victor Stinner0507bf52013-07-07 02:05:46 +020067#ifdef MS_WINDOWS
68# include <windows.h>
69#elif defined(HAVE_MMAP)
70# include <sys/mman.h>
71# ifdef MAP_ANONYMOUS
72# define ARENAS_USE_MMAP
73# endif
Antoine Pitrou6f26be02011-05-03 18:18:59 +020074#endif
75
Victor Stinner0507bf52013-07-07 02:05:46 +020076/* Forward declaration */
77static void* _PyObject_Malloc(void *ctx, size_t size);
Victor Stinnerdb067af2014-05-02 22:31:14 +020078static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize);
Victor Stinner0507bf52013-07-07 02:05:46 +020079static void _PyObject_Free(void *ctx, void *p);
80static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size);
Martin v. Löwiscd83fa82013-06-27 12:23:29 +020081#endif
82
Victor Stinner0507bf52013-07-07 02:05:46 +020083
Victor Stinner9e00e802018-10-25 13:31:16 +020084/* bpo-35053: Declare tracemalloc configuration here rather than
85 Modules/_tracemalloc.c because _tracemalloc can be compiled as dynamic
86 library, whereas _Py_NewReference() requires it. */
87struct _PyTraceMalloc_Config _Py_tracemalloc_config = _PyTraceMalloc_Config_INIT;
88
89
Victor Stinner0507bf52013-07-07 02:05:46 +020090static void *
91_PyMem_RawMalloc(void *ctx, size_t size)
92{
Victor Stinnerdb067af2014-05-02 22:31:14 +020093 /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL
Victor Stinner0507bf52013-07-07 02:05:46 +020094 for malloc(0), which would be treated as an error. Some platforms would
95 return a pointer with no memory behind it, which would break pymalloc.
96 To solve these problems, allocate an extra byte. */
97 if (size == 0)
98 size = 1;
99 return malloc(size);
100}
101
102static void *
Victor Stinnerdb067af2014-05-02 22:31:14 +0200103_PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize)
104{
105 /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL
106 for calloc(0, 0), which would be treated as an error. Some platforms
107 would return a pointer with no memory behind it, which would break
108 pymalloc. To solve these problems, allocate an extra byte. */
109 if (nelem == 0 || elsize == 0) {
110 nelem = 1;
111 elsize = 1;
112 }
113 return calloc(nelem, elsize);
114}
115
116static void *
Victor Stinner0507bf52013-07-07 02:05:46 +0200117_PyMem_RawRealloc(void *ctx, void *ptr, size_t size)
118{
119 if (size == 0)
120 size = 1;
121 return realloc(ptr, size);
122}
123
124static void
125_PyMem_RawFree(void *ctx, void *ptr)
126{
127 free(ptr);
128}
129
130
131#ifdef MS_WINDOWS
132static void *
133_PyObject_ArenaVirtualAlloc(void *ctx, size_t size)
134{
135 return VirtualAlloc(NULL, size,
136 MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
137}
138
139static void
140_PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size)
141{
Victor Stinner725e6682013-07-07 03:06:16 +0200142 VirtualFree(ptr, 0, MEM_RELEASE);
Victor Stinner0507bf52013-07-07 02:05:46 +0200143}
144
145#elif defined(ARENAS_USE_MMAP)
146static void *
147_PyObject_ArenaMmap(void *ctx, size_t size)
148{
149 void *ptr;
150 ptr = mmap(NULL, size, PROT_READ|PROT_WRITE,
151 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
152 if (ptr == MAP_FAILED)
153 return NULL;
154 assert(ptr != NULL);
155 return ptr;
156}
157
158static void
159_PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size)
160{
161 munmap(ptr, size);
162}
163
164#else
165static void *
166_PyObject_ArenaMalloc(void *ctx, size_t size)
167{
168 return malloc(size);
169}
170
171static void
172_PyObject_ArenaFree(void *ctx, void *ptr, size_t size)
173{
174 free(ptr);
175}
176#endif
177
Victor Stinner5d39e042017-11-29 17:20:38 +0100178#define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree}
Victor Stinner0507bf52013-07-07 02:05:46 +0200179#ifdef WITH_PYMALLOC
Victor Stinner5d39e042017-11-29 17:20:38 +0100180# define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free}
Victor Stinner0507bf52013-07-07 02:05:46 +0200181#endif
Victor Stinner5d39e042017-11-29 17:20:38 +0100182
183#define PYRAW_ALLOC MALLOC_ALLOC
184#ifdef WITH_PYMALLOC
185# define PYOBJ_ALLOC PYMALLOC_ALLOC
186#else
187# define PYOBJ_ALLOC MALLOC_ALLOC
188#endif
189#define PYMEM_ALLOC PYOBJ_ALLOC
Victor Stinner0507bf52013-07-07 02:05:46 +0200190
Victor Stinner0507bf52013-07-07 02:05:46 +0200191typedef struct {
192 /* We tag each block with an API ID in order to tag API violations */
193 char api_id;
Victor Stinnerd8f0d922014-06-02 21:57:10 +0200194 PyMemAllocatorEx alloc;
Victor Stinner0507bf52013-07-07 02:05:46 +0200195} debug_alloc_api_t;
196static struct {
197 debug_alloc_api_t raw;
198 debug_alloc_api_t mem;
199 debug_alloc_api_t obj;
200} _PyMem_Debug = {
Victor Stinner5d39e042017-11-29 17:20:38 +0100201 {'r', PYRAW_ALLOC},
202 {'m', PYMEM_ALLOC},
203 {'o', PYOBJ_ALLOC}
Victor Stinner0507bf52013-07-07 02:05:46 +0200204 };
205
Victor Stinner5d39e042017-11-29 17:20:38 +0100206#define PYDBGRAW_ALLOC \
207 {&_PyMem_Debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree}
208#define PYDBGMEM_ALLOC \
209 {&_PyMem_Debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
210#define PYDBGOBJ_ALLOC \
211 {&_PyMem_Debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
Victor Stinner0507bf52013-07-07 02:05:46 +0200212
Victor Stinner9e87e772017-11-24 12:09:24 +0100213#ifdef Py_DEBUG
Victor Stinner5d39e042017-11-29 17:20:38 +0100214static PyMemAllocatorEx _PyMem_Raw = PYDBGRAW_ALLOC;
215static PyMemAllocatorEx _PyMem = PYDBGMEM_ALLOC;
216static PyMemAllocatorEx _PyObject = PYDBGOBJ_ALLOC;
Victor Stinner9e87e772017-11-24 12:09:24 +0100217#else
Victor Stinner5d39e042017-11-29 17:20:38 +0100218static PyMemAllocatorEx _PyMem_Raw = PYRAW_ALLOC;
219static PyMemAllocatorEx _PyMem = PYMEM_ALLOC;
220static PyMemAllocatorEx _PyObject = PYOBJ_ALLOC;
Victor Stinner9e87e772017-11-24 12:09:24 +0100221#endif
Eric Snow2ebc5ce2017-09-07 23:51:28 -0600222
Victor Stinner0507bf52013-07-07 02:05:46 +0200223
Victor Stinner5d39e042017-11-29 17:20:38 +0100224static int
225pymem_set_default_allocator(PyMemAllocatorDomain domain, int debug,
226 PyMemAllocatorEx *old_alloc)
227{
228 if (old_alloc != NULL) {
229 PyMem_GetAllocator(domain, old_alloc);
230 }
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800231
Victor Stinner5d39e042017-11-29 17:20:38 +0100232
233 PyMemAllocatorEx new_alloc;
234 switch(domain)
235 {
236 case PYMEM_DOMAIN_RAW:
237 new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC;
238 break;
239 case PYMEM_DOMAIN_MEM:
240 new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC;
241 break;
242 case PYMEM_DOMAIN_OBJ:
243 new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC;
244 break;
245 default:
246 /* unknown domain */
247 return -1;
248 }
249 PyMem_SetAllocator(domain, &new_alloc);
250 if (debug) {
251 _PyMem_SetupDebugHooksDomain(domain);
252 }
253 return 0;
254}
255
256
257int
258_PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain,
259 PyMemAllocatorEx *old_alloc)
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800260{
Victor Stinnerccb04422017-11-16 03:20:31 -0800261#ifdef Py_DEBUG
Victor Stinner5d39e042017-11-29 17:20:38 +0100262 const int debug = 1;
Victor Stinnerccb04422017-11-16 03:20:31 -0800263#else
Victor Stinner5d39e042017-11-29 17:20:38 +0100264 const int debug = 0;
Victor Stinnerccb04422017-11-16 03:20:31 -0800265#endif
Victor Stinner5d39e042017-11-29 17:20:38 +0100266 return pymem_set_default_allocator(domain, debug, old_alloc);
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800267}
Victor Stinner0507bf52013-07-07 02:05:46 +0200268
Victor Stinner5d39e042017-11-29 17:20:38 +0100269
Victor Stinner34be8072016-03-14 12:04:26 +0100270int
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200271_PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator)
Victor Stinner34be8072016-03-14 12:04:26 +0100272{
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200273 if (name == NULL || *name == '\0') {
Victor Stinner34be8072016-03-14 12:04:26 +0100274 /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200275 nameions): use default memory allocators */
276 *allocator = PYMEM_ALLOCATOR_DEFAULT;
Victor Stinner34be8072016-03-14 12:04:26 +0100277 }
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200278 else if (strcmp(name, "default") == 0) {
279 *allocator = PYMEM_ALLOCATOR_DEFAULT;
280 }
281 else if (strcmp(name, "debug") == 0) {
282 *allocator = PYMEM_ALLOCATOR_DEBUG;
283 }
284#ifdef WITH_PYMALLOC
285 else if (strcmp(name, "pymalloc") == 0) {
286 *allocator = PYMEM_ALLOCATOR_PYMALLOC;
287 }
288 else if (strcmp(name, "pymalloc_debug") == 0) {
289 *allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG;
290 }
291#endif
292 else if (strcmp(name, "malloc") == 0) {
293 *allocator = PYMEM_ALLOCATOR_MALLOC;
294 }
295 else if (strcmp(name, "malloc_debug") == 0) {
296 *allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG;
297 }
298 else {
299 /* unknown allocator */
300 return -1;
301 }
302 return 0;
303}
Victor Stinner34be8072016-03-14 12:04:26 +0100304
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200305
306int
307_PyMem_SetupAllocators(PyMemAllocatorName allocator)
308{
309 switch (allocator) {
310 case PYMEM_ALLOCATOR_NOT_SET:
311 /* do nothing */
312 break;
313
314 case PYMEM_ALLOCATOR_DEFAULT:
Victor Stinner5d39e042017-11-29 17:20:38 +0100315 (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, NULL);
316 (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_MEM, NULL);
317 (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_OBJ, NULL);
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200318 break;
319
320 case PYMEM_ALLOCATOR_DEBUG:
Victor Stinner5d39e042017-11-29 17:20:38 +0100321 (void)pymem_set_default_allocator(PYMEM_DOMAIN_RAW, 1, NULL);
322 (void)pymem_set_default_allocator(PYMEM_DOMAIN_MEM, 1, NULL);
323 (void)pymem_set_default_allocator(PYMEM_DOMAIN_OBJ, 1, NULL);
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200324 break;
325
Victor Stinner34be8072016-03-14 12:04:26 +0100326#ifdef WITH_PYMALLOC
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200327 case PYMEM_ALLOCATOR_PYMALLOC:
328 case PYMEM_ALLOCATOR_PYMALLOC_DEBUG:
329 {
Victor Stinner5d39e042017-11-29 17:20:38 +0100330 PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
331 PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);
Victor Stinner34be8072016-03-14 12:04:26 +0100332
Victor Stinner5d39e042017-11-29 17:20:38 +0100333 PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
334 PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &pymalloc);
335 PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &pymalloc);
Victor Stinner34be8072016-03-14 12:04:26 +0100336
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200337 if (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG) {
Victor Stinner34be8072016-03-14 12:04:26 +0100338 PyMem_SetupDebugHooks();
Victor Stinner5d39e042017-11-29 17:20:38 +0100339 }
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200340 break;
Victor Stinner34be8072016-03-14 12:04:26 +0100341 }
342#endif
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200343
344 case PYMEM_ALLOCATOR_MALLOC:
345 case PYMEM_ALLOCATOR_MALLOC_DEBUG:
346 {
Victor Stinner5d39e042017-11-29 17:20:38 +0100347 PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
348 PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);
349 PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &malloc_alloc);
350 PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &malloc_alloc);
351
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200352 if (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG) {
Victor Stinner5d39e042017-11-29 17:20:38 +0100353 PyMem_SetupDebugHooks();
354 }
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200355 break;
Victor Stinner5d39e042017-11-29 17:20:38 +0100356 }
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200357
358 default:
Victor Stinner34be8072016-03-14 12:04:26 +0100359 /* unknown allocator */
360 return -1;
361 }
362 return 0;
363}
364
Victor Stinner5d39e042017-11-29 17:20:38 +0100365
366static int
367pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b)
368{
369 return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0);
370}
371
372
373const char*
Victor Stinnerb16b4e42019-05-17 15:20:52 +0200374_PyMem_GetCurrentAllocatorName(void)
Victor Stinner5d39e042017-11-29 17:20:38 +0100375{
376 PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
377#ifdef WITH_PYMALLOC
378 PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
379#endif
380
381 if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
382 pymemallocator_eq(&_PyMem, &malloc_alloc) &&
383 pymemallocator_eq(&_PyObject, &malloc_alloc))
384 {
385 return "malloc";
386 }
387#ifdef WITH_PYMALLOC
388 if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
389 pymemallocator_eq(&_PyMem, &pymalloc) &&
390 pymemallocator_eq(&_PyObject, &pymalloc))
391 {
392 return "pymalloc";
393 }
394#endif
395
396 PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC;
397 PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC;
398 PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC;
399
400 if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) &&
401 pymemallocator_eq(&_PyMem, &dbg_mem) &&
402 pymemallocator_eq(&_PyObject, &dbg_obj))
403 {
404 /* Debug hooks installed */
405 if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
406 pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) &&
407 pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc))
408 {
409 return "malloc_debug";
410 }
411#ifdef WITH_PYMALLOC
412 if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
413 pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) &&
414 pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc))
415 {
416 return "pymalloc_debug";
417 }
418#endif
419 }
420 return NULL;
421}
422
423
424#undef MALLOC_ALLOC
425#undef PYMALLOC_ALLOC
426#undef PYRAW_ALLOC
427#undef PYMEM_ALLOC
428#undef PYOBJ_ALLOC
429#undef PYDBGRAW_ALLOC
430#undef PYDBGMEM_ALLOC
431#undef PYDBGOBJ_ALLOC
432
Victor Stinner0507bf52013-07-07 02:05:46 +0200433
Victor Stinner9e87e772017-11-24 12:09:24 +0100434static PyObjectArenaAllocator _PyObject_Arena = {NULL,
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800435#ifdef MS_WINDOWS
Victor Stinner9e87e772017-11-24 12:09:24 +0100436 _PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800437#elif defined(ARENAS_USE_MMAP)
Victor Stinner9e87e772017-11-24 12:09:24 +0100438 _PyObject_ArenaMmap, _PyObject_ArenaMunmap
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800439#else
Victor Stinner9e87e772017-11-24 12:09:24 +0100440 _PyObject_ArenaMalloc, _PyObject_ArenaFree
Victor Stinnerf7e5b562017-11-15 15:48:08 -0800441#endif
442 };
443
Victor Stinner0621e0e2016-04-19 17:02:55 +0200444#ifdef WITH_PYMALLOC
Victor Stinner34be8072016-03-14 12:04:26 +0100445static int
446_PyMem_DebugEnabled(void)
447{
448 return (_PyObject.malloc == _PyMem_DebugMalloc);
449}
450
Victor Stinner6bf992a2017-12-06 17:26:10 +0100451static int
Victor Stinner34be8072016-03-14 12:04:26 +0100452_PyMem_PymallocEnabled(void)
453{
454 if (_PyMem_DebugEnabled()) {
455 return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc);
456 }
457 else {
458 return (_PyObject.malloc == _PyObject_Malloc);
459 }
460}
461#endif
462
Victor Stinner5d39e042017-11-29 17:20:38 +0100463
464static void
465_PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain)
Victor Stinner0507bf52013-07-07 02:05:46 +0200466{
Victor Stinnerd8f0d922014-06-02 21:57:10 +0200467 PyMemAllocatorEx alloc;
Victor Stinner0507bf52013-07-07 02:05:46 +0200468
Victor Stinner5d39e042017-11-29 17:20:38 +0100469 if (domain == PYMEM_DOMAIN_RAW) {
470 if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) {
471 return;
472 }
Victor Stinner34be8072016-03-14 12:04:26 +0100473
Victor Stinner0507bf52013-07-07 02:05:46 +0200474 PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc);
Victor Stinner5d39e042017-11-29 17:20:38 +0100475 alloc.ctx = &_PyMem_Debug.raw;
476 alloc.malloc = _PyMem_DebugRawMalloc;
477 alloc.calloc = _PyMem_DebugRawCalloc;
478 alloc.realloc = _PyMem_DebugRawRealloc;
479 alloc.free = _PyMem_DebugRawFree;
Victor Stinner0507bf52013-07-07 02:05:46 +0200480 PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
481 }
Victor Stinner5d39e042017-11-29 17:20:38 +0100482 else if (domain == PYMEM_DOMAIN_MEM) {
483 if (_PyMem.malloc == _PyMem_DebugMalloc) {
484 return;
485 }
Victor Stinner0507bf52013-07-07 02:05:46 +0200486
Victor Stinnerad524372016-03-16 12:12:53 +0100487 PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc);
Victor Stinner5d39e042017-11-29 17:20:38 +0100488 alloc.ctx = &_PyMem_Debug.mem;
489 alloc.malloc = _PyMem_DebugMalloc;
490 alloc.calloc = _PyMem_DebugCalloc;
491 alloc.realloc = _PyMem_DebugRealloc;
492 alloc.free = _PyMem_DebugFree;
Victor Stinnerad524372016-03-16 12:12:53 +0100493 PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
494 }
Victor Stinner5d39e042017-11-29 17:20:38 +0100495 else if (domain == PYMEM_DOMAIN_OBJ) {
496 if (_PyObject.malloc == _PyMem_DebugMalloc) {
497 return;
498 }
Victor Stinnerad524372016-03-16 12:12:53 +0100499
Victor Stinner0507bf52013-07-07 02:05:46 +0200500 PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc);
Victor Stinner5d39e042017-11-29 17:20:38 +0100501 alloc.ctx = &_PyMem_Debug.obj;
502 alloc.malloc = _PyMem_DebugMalloc;
503 alloc.calloc = _PyMem_DebugCalloc;
504 alloc.realloc = _PyMem_DebugRealloc;
505 alloc.free = _PyMem_DebugFree;
Victor Stinner0507bf52013-07-07 02:05:46 +0200506 PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
507 }
Victor Stinner0507bf52013-07-07 02:05:46 +0200508}
509
Victor Stinner5d39e042017-11-29 17:20:38 +0100510
511void
512PyMem_SetupDebugHooks(void)
513{
514 _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_RAW);
515 _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_MEM);
516 _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_OBJ);
517}
518
Victor Stinner0507bf52013-07-07 02:05:46 +0200519void
Victor Stinnerd8f0d922014-06-02 21:57:10 +0200520PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Victor Stinner0507bf52013-07-07 02:05:46 +0200521{
522 switch(domain)
523 {
524 case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break;
525 case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break;
526 case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break;
527 default:
Victor Stinnerdb067af2014-05-02 22:31:14 +0200528 /* unknown domain: set all attributes to NULL */
Victor Stinner0507bf52013-07-07 02:05:46 +0200529 allocator->ctx = NULL;
530 allocator->malloc = NULL;
Victor Stinnerdb067af2014-05-02 22:31:14 +0200531 allocator->calloc = NULL;
Victor Stinner0507bf52013-07-07 02:05:46 +0200532 allocator->realloc = NULL;
533 allocator->free = NULL;
534 }
535}
536
537void
Victor Stinnerd8f0d922014-06-02 21:57:10 +0200538PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Victor Stinner0507bf52013-07-07 02:05:46 +0200539{
540 switch(domain)
541 {
542 case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break;
543 case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break;
544 case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break;
545 /* ignore unknown domain */
546 }
Victor Stinner0507bf52013-07-07 02:05:46 +0200547}
548
549void
550PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
551{
Victor Stinner9e87e772017-11-24 12:09:24 +0100552 *allocator = _PyObject_Arena;
Victor Stinner0507bf52013-07-07 02:05:46 +0200553}
554
555void
556PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
557{
Victor Stinner9e87e772017-11-24 12:09:24 +0100558 _PyObject_Arena = *allocator;
Victor Stinner0507bf52013-07-07 02:05:46 +0200559}
560
561void *
562PyMem_RawMalloc(size_t size)
563{
564 /*
565 * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
566 * Most python internals blindly use a signed Py_ssize_t to track
567 * things without checking for overflows or negatives.
568 * As size_t is unsigned, checking for size < 0 is not required.
569 */
570 if (size > (size_t)PY_SSIZE_T_MAX)
571 return NULL;
Victor Stinner0507bf52013-07-07 02:05:46 +0200572 return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size);
573}
574
Victor Stinnerdb067af2014-05-02 22:31:14 +0200575void *
576PyMem_RawCalloc(size_t nelem, size_t elsize)
577{
578 /* see PyMem_RawMalloc() */
579 if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
580 return NULL;
581 return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize);
582}
583
Victor Stinner0507bf52013-07-07 02:05:46 +0200584void*
585PyMem_RawRealloc(void *ptr, size_t new_size)
586{
587 /* see PyMem_RawMalloc() */
588 if (new_size > (size_t)PY_SSIZE_T_MAX)
589 return NULL;
590 return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size);
591}
592
Victor Stinner9e87e772017-11-24 12:09:24 +0100593void PyMem_RawFree(void *ptr)
Victor Stinner0507bf52013-07-07 02:05:46 +0200594{
595 _PyMem_Raw.free(_PyMem_Raw.ctx, ptr);
596}
597
Victor Stinner9ed83c42017-10-31 12:18:10 -0700598
Victor Stinner0507bf52013-07-07 02:05:46 +0200599void *
600PyMem_Malloc(size_t size)
601{
602 /* see PyMem_RawMalloc() */
603 if (size > (size_t)PY_SSIZE_T_MAX)
604 return NULL;
605 return _PyMem.malloc(_PyMem.ctx, size);
606}
607
608void *
Victor Stinnerdb067af2014-05-02 22:31:14 +0200609PyMem_Calloc(size_t nelem, size_t elsize)
610{
611 /* see PyMem_RawMalloc() */
612 if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
613 return NULL;
614 return _PyMem.calloc(_PyMem.ctx, nelem, elsize);
615}
616
617void *
Victor Stinner0507bf52013-07-07 02:05:46 +0200618PyMem_Realloc(void *ptr, size_t new_size)
619{
620 /* see PyMem_RawMalloc() */
621 if (new_size > (size_t)PY_SSIZE_T_MAX)
622 return NULL;
623 return _PyMem.realloc(_PyMem.ctx, ptr, new_size);
624}
625
626void
627PyMem_Free(void *ptr)
628{
629 _PyMem.free(_PyMem.ctx, ptr);
630}
631
Victor Stinner9ed83c42017-10-31 12:18:10 -0700632
Victor Stinner46972b72017-11-24 22:55:40 +0100633wchar_t*
634_PyMem_RawWcsdup(const wchar_t *str)
635{
Victor Stinnerb64de462017-12-01 18:27:09 +0100636 assert(str != NULL);
637
Victor Stinner46972b72017-11-24 22:55:40 +0100638 size_t len = wcslen(str);
639 if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) {
640 return NULL;
641 }
642
643 size_t size = (len + 1) * sizeof(wchar_t);
644 wchar_t *str2 = PyMem_RawMalloc(size);
645 if (str2 == NULL) {
646 return NULL;
647 }
648
649 memcpy(str2, str, size);
650 return str2;
651}
652
Victor Stinner49fc8ec2013-07-07 23:30:24 +0200653char *
654_PyMem_RawStrdup(const char *str)
655{
Victor Stinnerb64de462017-12-01 18:27:09 +0100656 assert(str != NULL);
657 size_t size = strlen(str) + 1;
658 char *copy = PyMem_RawMalloc(size);
659 if (copy == NULL) {
Victor Stinner49fc8ec2013-07-07 23:30:24 +0200660 return NULL;
Victor Stinnerb64de462017-12-01 18:27:09 +0100661 }
Victor Stinner49fc8ec2013-07-07 23:30:24 +0200662 memcpy(copy, str, size);
663 return copy;
664}
665
666char *
667_PyMem_Strdup(const char *str)
668{
Victor Stinnerb64de462017-12-01 18:27:09 +0100669 assert(str != NULL);
670 size_t size = strlen(str) + 1;
671 char *copy = PyMem_Malloc(size);
672 if (copy == NULL) {
Victor Stinner49fc8ec2013-07-07 23:30:24 +0200673 return NULL;
Victor Stinnerb64de462017-12-01 18:27:09 +0100674 }
Victor Stinner49fc8ec2013-07-07 23:30:24 +0200675 memcpy(copy, str, size);
676 return copy;
677}
678
Victor Stinner0507bf52013-07-07 02:05:46 +0200679void *
680PyObject_Malloc(size_t size)
681{
682 /* see PyMem_RawMalloc() */
683 if (size > (size_t)PY_SSIZE_T_MAX)
684 return NULL;
685 return _PyObject.malloc(_PyObject.ctx, size);
686}
687
688void *
Victor Stinnerdb067af2014-05-02 22:31:14 +0200689PyObject_Calloc(size_t nelem, size_t elsize)
690{
691 /* see PyMem_RawMalloc() */
692 if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
693 return NULL;
694 return _PyObject.calloc(_PyObject.ctx, nelem, elsize);
695}
696
697void *
Victor Stinner0507bf52013-07-07 02:05:46 +0200698PyObject_Realloc(void *ptr, size_t new_size)
699{
700 /* see PyMem_RawMalloc() */
701 if (new_size > (size_t)PY_SSIZE_T_MAX)
702 return NULL;
703 return _PyObject.realloc(_PyObject.ctx, ptr, new_size);
704}
705
706void
707PyObject_Free(void *ptr)
708{
709 _PyObject.free(_PyObject.ctx, ptr);
710}
711
712
Benjamin Peterson05159c42009-12-03 03:01:27 +0000713/* If we're using GCC, use __builtin_expect() to reduce overhead of
714 the valgrind checks */
715#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
716# define UNLIKELY(value) __builtin_expect((value), 0)
Inada Naokifb265042019-07-17 21:23:57 +0900717# define LIKELY(value) __builtin_expect((value), 1)
Benjamin Peterson05159c42009-12-03 03:01:27 +0000718#else
719# define UNLIKELY(value) (value)
Inada Naokifb265042019-07-17 21:23:57 +0900720# define LIKELY(value) (value)
Benjamin Peterson05159c42009-12-03 03:01:27 +0000721#endif
722
Inada Naokifb265042019-07-17 21:23:57 +0900723#ifdef WITH_PYMALLOC
724
725#ifdef WITH_VALGRIND
726#include <valgrind/valgrind.h>
727
Benjamin Peterson05159c42009-12-03 03:01:27 +0000728/* -1 indicates that we haven't checked that we're running on valgrind yet. */
729static int running_on_valgrind = -1;
730#endif
731
Victor Stinner9ed83c42017-10-31 12:18:10 -0700732
Victor Stinner9e87e772017-11-24 12:09:24 +0100733/* An object allocator for Python.
734
735 Here is an introduction to the layers of the Python memory architecture,
736 showing where the object allocator is actually used (layer +2), It is
737 called for every object allocation and deallocation (PyObject_New/Del),
738 unless the object-specific allocators implement a proprietary allocation
739 scheme (ex.: ints use a simple free list). This is also the place where
740 the cyclic garbage collector operates selectively on container objects.
741
742
743 Object-specific allocators
744 _____ ______ ______ ________
745 [ int ] [ dict ] [ list ] ... [ string ] Python core |
746+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
747 _______________________________ | |
748 [ Python's object allocator ] | |
749+2 | ####### Object memory ####### | <------ Internal buffers ------> |
750 ______________________________________________________________ |
751 [ Python's raw memory allocator (PyMem_ API) ] |
752+1 | <----- Python memory (under PyMem manager's control) ------> | |
753 __________________________________________________________________
754 [ Underlying general-purpose allocator (ex: C library malloc) ]
755 0 | <------ Virtual memory allocated for the python process -------> |
756
757 =========================================================================
758 _______________________________________________________________________
759 [ OS-specific Virtual Memory Manager (VMM) ]
760-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
761 __________________________________ __________________________________
762 [ ] [ ]
763-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
764
765*/
766/*==========================================================================*/
767
768/* A fast, special-purpose memory allocator for small blocks, to be used
769 on top of a general-purpose malloc -- heavily based on previous art. */
770
771/* Vladimir Marangozov -- August 2000 */
772
773/*
774 * "Memory management is where the rubber meets the road -- if we do the wrong
775 * thing at any level, the results will not be good. And if we don't make the
776 * levels work well together, we are in serious trouble." (1)
777 *
778 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
779 * "Dynamic Storage Allocation: A Survey and Critical Review",
780 * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
781 */
782
783/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
784
785/*==========================================================================*/
786
787/*
788 * Allocation strategy abstract:
789 *
790 * For small requests, the allocator sub-allocates <Big> blocks of memory.
791 * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
792 * system's allocator.
793 *
794 * Small requests are grouped in size classes spaced 8 bytes apart, due
795 * to the required valid alignment of the returned address. Requests of
796 * a particular size are serviced from memory pools of 4K (one VMM page).
797 * Pools are fragmented on demand and contain free lists of blocks of one
798 * particular size class. In other words, there is a fixed-size allocator
799 * for each size class. Free pools are shared by the different allocators
800 * thus minimizing the space reserved for a particular size class.
801 *
802 * This allocation strategy is a variant of what is known as "simple
803 * segregated storage based on array of free lists". The main drawback of
804 * simple segregated storage is that we might end up with lot of reserved
805 * memory for the different free lists, which degenerate in time. To avoid
806 * this, we partition each free list in pools and we share dynamically the
807 * reserved space between all free lists. This technique is quite efficient
808 * for memory intensive programs which allocate mainly small-sized blocks.
809 *
810 * For small requests we have the following table:
811 *
812 * Request in bytes Size of allocated block Size class idx
813 * ----------------------------------------------------------------
814 * 1-8 8 0
815 * 9-16 16 1
816 * 17-24 24 2
817 * 25-32 32 3
818 * 33-40 40 4
819 * 41-48 48 5
820 * 49-56 56 6
821 * 57-64 64 7
822 * 65-72 72 8
823 * ... ... ...
824 * 497-504 504 62
825 * 505-512 512 63
826 *
827 * 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
828 * allocator.
829 */
830
831/*==========================================================================*/
832
833/*
834 * -- Main tunable settings section --
835 */
836
837/*
838 * Alignment of addresses returned to the user. 8-bytes alignment works
839 * on most current architectures (with 32-bit or 64-bit address busses).
840 * The alignment value is also used for grouping small requests in size
841 * classes spaced ALIGNMENT bytes apart.
842 *
843 * You shouldn't change this unless you know what you are doing.
844 */
Inada Naokif0be4bb2019-05-14 18:51:15 +0900845
846#if SIZEOF_VOID_P > 4
847#define ALIGNMENT 16 /* must be 2^N */
848#define ALIGNMENT_SHIFT 4
849#else
Victor Stinner9e87e772017-11-24 12:09:24 +0100850#define ALIGNMENT 8 /* must be 2^N */
851#define ALIGNMENT_SHIFT 3
Inada Naokif0be4bb2019-05-14 18:51:15 +0900852#endif
Victor Stinner9e87e772017-11-24 12:09:24 +0100853
854/* Return the number of bytes in size class I, as a uint. */
855#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
856
857/*
858 * Max size threshold below which malloc requests are considered to be
859 * small enough in order to use preallocated memory pools. You can tune
860 * this value according to your application behaviour and memory needs.
861 *
862 * Note: a size threshold of 512 guarantees that newly created dictionaries
863 * will be allocated from preallocated memory pools on 64-bit.
864 *
865 * The following invariants must hold:
866 * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
867 * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
868 *
869 * Although not required, for better performance and space efficiency,
870 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
871 */
872#define SMALL_REQUEST_THRESHOLD 512
873#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
874
875/*
876 * The system's VMM page size can be obtained on most unices with a
877 * getpagesize() call or deduced from various header files. To make
878 * things simpler, we assume that it is 4K, which is OK for most systems.
879 * It is probably better if this is the native page size, but it doesn't
880 * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
881 * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
882 * violation fault. 4K is apparently OK for all the platforms that python
883 * currently targets.
884 */
885#define SYSTEM_PAGE_SIZE (4 * 1024)
886#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
887
888/*
889 * Maximum amount of memory managed by the allocator for small requests.
890 */
891#ifdef WITH_MEMORY_LIMITS
892#ifndef SMALL_MEMORY_LIMIT
893#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
894#endif
895#endif
896
897/*
898 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
899 * on a page boundary. This is a reserved virtual address space for the
900 * current process (obtained through a malloc()/mmap() call). In no way this
901 * means that the memory arenas will be used entirely. A malloc(<Big>) is
902 * usually an address range reservation for <Big> bytes, unless all pages within
903 * this space are referenced subsequently. So malloc'ing big blocks and not
904 * using them does not mean "wasting memory". It's an addressable range
905 * wastage...
906 *
907 * Arenas are allocated with mmap() on systems supporting anonymous memory
908 * mappings to reduce heap fragmentation.
909 */
910#define ARENA_SIZE (256 << 10) /* 256KB */
911
912#ifdef WITH_MEMORY_LIMITS
913#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
914#endif
915
916/*
917 * Size of the pools used for small blocks. Should be a power of 2,
918 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
919 */
920#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
921#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
922
Tim Peters1c263e32019-05-31 21:16:04 -0500923#define MAX_POOLS_IN_ARENA (ARENA_SIZE / POOL_SIZE)
924#if MAX_POOLS_IN_ARENA * POOL_SIZE != ARENA_SIZE
925# error "arena size not an exact multiple of pool size"
926#endif
927
Victor Stinner9e87e772017-11-24 12:09:24 +0100928/*
929 * -- End of tunable settings section --
930 */
931
932/*==========================================================================*/
933
Victor Stinner9e87e772017-11-24 12:09:24 +0100934/* When you say memory, my mind reasons in terms of (pointers to) blocks */
935typedef uint8_t block;
936
937/* Pool for small blocks. */
938struct pool_header {
939 union { block *_padding;
940 uint count; } ref; /* number of allocated blocks */
941 block *freeblock; /* pool's free list head */
942 struct pool_header *nextpool; /* next pool of this size class */
943 struct pool_header *prevpool; /* previous pool "" */
944 uint arenaindex; /* index into arenas of base adr */
945 uint szidx; /* block size class index */
946 uint nextoffset; /* bytes to virgin block */
947 uint maxnextoffset; /* largest valid nextoffset */
948};
949
950typedef struct pool_header *poolp;
951
952/* Record keeping for arenas. */
953struct arena_object {
954 /* The address of the arena, as returned by malloc. Note that 0
955 * will never be returned by a successful malloc, and is used
956 * here to mark an arena_object that doesn't correspond to an
957 * allocated arena.
958 */
959 uintptr_t address;
960
961 /* Pool-aligned pointer to the next pool to be carved off. */
962 block* pool_address;
963
964 /* The number of available pools in the arena: free pools + never-
965 * allocated pools.
966 */
967 uint nfreepools;
968
969 /* The total number of pools in the arena, whether or not available. */
970 uint ntotalpools;
971
972 /* Singly-linked list of available pools. */
973 struct pool_header* freepools;
974
975 /* Whenever this arena_object is not associated with an allocated
976 * arena, the nextarena member is used to link all unassociated
977 * arena_objects in the singly-linked `unused_arena_objects` list.
978 * The prevarena member is unused in this case.
979 *
980 * When this arena_object is associated with an allocated arena
981 * with at least one available pool, both members are used in the
982 * doubly-linked `usable_arenas` list, which is maintained in
983 * increasing order of `nfreepools` values.
984 *
985 * Else this arena_object is associated with an allocated arena
986 * all of whose pools are in use. `nextarena` and `prevarena`
987 * are both meaningless in this case.
988 */
989 struct arena_object* nextarena;
990 struct arena_object* prevarena;
991};
992
993#define POOL_OVERHEAD _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT)
994
995#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
996
997/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
998#define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE))
999
1000/* Return total number of blocks in pool of size index I, as a uint. */
1001#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
1002
1003/*==========================================================================*/
1004
1005/*
Victor Stinner9e87e772017-11-24 12:09:24 +01001006 * Pool table -- headed, circular, doubly-linked lists of partially used pools.
1007
1008This is involved. For an index i, usedpools[i+i] is the header for a list of
1009all partially used pools holding small blocks with "size class idx" i. So
1010usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
101116, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
1012
1013Pools are carved off an arena's highwater mark (an arena_object's pool_address
1014member) as needed. Once carved off, a pool is in one of three states forever
1015after:
1016
1017used == partially used, neither empty nor full
1018 At least one block in the pool is currently allocated, and at least one
1019 block in the pool is not currently allocated (note this implies a pool
1020 has room for at least two blocks).
1021 This is a pool's initial state, as a pool is created only when malloc
1022 needs space.
1023 The pool holds blocks of a fixed size, and is in the circular list headed
1024 at usedpools[i] (see above). It's linked to the other used pools of the
1025 same size class via the pool_header's nextpool and prevpool members.
1026 If all but one block is currently allocated, a malloc can cause a
1027 transition to the full state. If all but one block is not currently
1028 allocated, a free can cause a transition to the empty state.
1029
1030full == all the pool's blocks are currently allocated
1031 On transition to full, a pool is unlinked from its usedpools[] list.
1032 It's not linked to from anything then anymore, and its nextpool and
1033 prevpool members are meaningless until it transitions back to used.
1034 A free of a block in a full pool puts the pool back in the used state.
1035 Then it's linked in at the front of the appropriate usedpools[] list, so
1036 that the next allocation for its size class will reuse the freed block.
1037
1038empty == all the pool's blocks are currently available for allocation
1039 On transition to empty, a pool is unlinked from its usedpools[] list,
1040 and linked to the front of its arena_object's singly-linked freepools list,
1041 via its nextpool member. The prevpool member has no meaning in this case.
1042 Empty pools have no inherent size class: the next time a malloc finds
1043 an empty list in usedpools[], it takes the first pool off of freepools.
1044 If the size class needed happens to be the same as the size class the pool
1045 last had, some pool initialization can be skipped.
1046
1047
1048Block Management
1049
1050Blocks within pools are again carved out as needed. pool->freeblock points to
1051the start of a singly-linked list of free blocks within the pool. When a
1052block is freed, it's inserted at the front of its pool's freeblock list. Note
1053that the available blocks in a pool are *not* linked all together when a pool
1054is initialized. Instead only "the first two" (lowest addresses) blocks are
1055set up, returning the first such block, and setting pool->freeblock to a
1056one-block list holding the second such block. This is consistent with that
1057pymalloc strives at all levels (arena, pool, and block) never to touch a piece
1058of memory until it's actually needed.
1059
1060So long as a pool is in the used state, we're certain there *is* a block
1061available for allocating, and pool->freeblock is not NULL. If pool->freeblock
1062points to the end of the free list before we've carved the entire pool into
1063blocks, that means we simply haven't yet gotten to one of the higher-address
1064blocks. The offset from the pool_header to the start of "the next" virgin
1065block is stored in the pool_header nextoffset member, and the largest value
1066of nextoffset that makes sense is stored in the maxnextoffset member when a
1067pool is initialized. All the blocks in a pool have been passed out at least
1068once when and only when nextoffset > maxnextoffset.
1069
1070
1071Major obscurity: While the usedpools vector is declared to have poolp
1072entries, it doesn't really. It really contains two pointers per (conceptual)
1073poolp entry, the nextpool and prevpool members of a pool_header. The
1074excruciating initialization code below fools C so that
1075
1076 usedpool[i+i]
1077
1078"acts like" a genuine poolp, but only so long as you only reference its
1079nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
1080compensating for that a pool_header's nextpool and prevpool members
1081immediately follow a pool_header's first two members:
1082
1083 union { block *_padding;
1084 uint count; } ref;
1085 block *freeblock;
1086
1087each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
1088contains is a fudged-up pointer p such that *if* C believes it's a poolp
1089pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
1090circular list is empty).
1091
1092It's unclear why the usedpools setup is so convoluted. It could be to
1093minimize the amount of cache required to hold this heavily-referenced table
1094(which only *needs* the two interpool pointer members of a pool_header). OTOH,
1095referencing code has to remember to "double the index" and doing so isn't
1096free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
1097on that C doesn't insert any padding anywhere in a pool_header at or before
1098the prevpool member.
1099**************************************************************************** */
1100
1101#define PTA(x) ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
1102#define PT(x) PTA(x), PTA(x)
1103
1104static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
1105 PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
1106#if NB_SMALL_SIZE_CLASSES > 8
1107 , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
1108#if NB_SMALL_SIZE_CLASSES > 16
1109 , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
1110#if NB_SMALL_SIZE_CLASSES > 24
1111 , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
1112#if NB_SMALL_SIZE_CLASSES > 32
1113 , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
1114#if NB_SMALL_SIZE_CLASSES > 40
1115 , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
1116#if NB_SMALL_SIZE_CLASSES > 48
1117 , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
1118#if NB_SMALL_SIZE_CLASSES > 56
1119 , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
1120#if NB_SMALL_SIZE_CLASSES > 64
1121#error "NB_SMALL_SIZE_CLASSES should be less than 64"
1122#endif /* NB_SMALL_SIZE_CLASSES > 64 */
1123#endif /* NB_SMALL_SIZE_CLASSES > 56 */
1124#endif /* NB_SMALL_SIZE_CLASSES > 48 */
1125#endif /* NB_SMALL_SIZE_CLASSES > 40 */
1126#endif /* NB_SMALL_SIZE_CLASSES > 32 */
1127#endif /* NB_SMALL_SIZE_CLASSES > 24 */
1128#endif /* NB_SMALL_SIZE_CLASSES > 16 */
1129#endif /* NB_SMALL_SIZE_CLASSES > 8 */
1130};
1131
1132/*==========================================================================
1133Arena management.
1134
1135`arenas` is a vector of arena_objects. It contains maxarenas entries, some of
1136which may not be currently used (== they're arena_objects that aren't
1137currently associated with an allocated arena). Note that arenas proper are
1138separately malloc'ed.
1139
1140Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
1141we do try to free() arenas, and use some mild heuristic strategies to increase
1142the likelihood that arenas eventually can be freed.
1143
1144unused_arena_objects
1145
1146 This is a singly-linked list of the arena_objects that are currently not
1147 being used (no arena is associated with them). Objects are taken off the
1148 head of the list in new_arena(), and are pushed on the head of the list in
1149 PyObject_Free() when the arena is empty. Key invariant: an arena_object
1150 is on this list if and only if its .address member is 0.
1151
1152usable_arenas
1153
1154 This is a doubly-linked list of the arena_objects associated with arenas
1155 that have pools available. These pools are either waiting to be reused,
1156 or have not been used before. The list is sorted to have the most-
1157 allocated arenas first (ascending order based on the nfreepools member).
1158 This means that the next allocation will come from a heavily used arena,
1159 which gives the nearly empty arenas a chance to be returned to the system.
1160 In my unscientific tests this dramatically improved the number of arenas
1161 that could be freed.
1162
1163Note that an arena_object associated with an arena all of whose pools are
1164currently in use isn't on either list.
Tim Peters1c263e32019-05-31 21:16:04 -05001165
1166Changed in Python 3.8: keeping usable_arenas sorted by number of free pools
1167used to be done by one-at-a-time linear search when an arena's number of
1168free pools changed. That could, overall, consume time quadratic in the
1169number of arenas. That didn't really matter when there were only a few
1170hundred arenas (typical!), but could be a timing disaster when there were
1171hundreds of thousands. See bpo-37029.
1172
1173Now we have a vector of "search fingers" to eliminate the need to search:
1174nfp2lasta[nfp] returns the last ("rightmost") arena in usable_arenas
1175with nfp free pools. This is NULL if and only if there is no arena with
1176nfp free pools in usable_arenas.
Victor Stinner9e87e772017-11-24 12:09:24 +01001177*/
1178
1179/* Array of objects used to track chunks of memory (arenas). */
1180static struct arena_object* arenas = NULL;
1181/* Number of slots currently allocated in the `arenas` vector. */
1182static uint maxarenas = 0;
1183
1184/* The head of the singly-linked, NULL-terminated list of available
1185 * arena_objects.
1186 */
1187static struct arena_object* unused_arena_objects = NULL;
1188
1189/* The head of the doubly-linked, NULL-terminated at each end, list of
1190 * arena_objects associated with arenas that have pools available.
1191 */
1192static struct arena_object* usable_arenas = NULL;
1193
Tim Peters1c263e32019-05-31 21:16:04 -05001194/* nfp2lasta[nfp] is the last arena in usable_arenas with nfp free pools */
1195static struct arena_object* nfp2lasta[MAX_POOLS_IN_ARENA + 1] = { NULL };
1196
Victor Stinner9e87e772017-11-24 12:09:24 +01001197/* How many arena_objects do we initially allocate?
1198 * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
1199 * `arenas` vector.
1200 */
1201#define INITIAL_ARENA_OBJECTS 16
1202
1203/* Number of arenas allocated that haven't been free()'d. */
1204static size_t narenas_currently_allocated = 0;
1205
1206/* Total number of times malloc() called to allocate an arena. */
1207static size_t ntimes_arena_allocated = 0;
1208/* High water mark (max value ever seen) for narenas_currently_allocated. */
1209static size_t narenas_highwater = 0;
1210
Neil Schemenauer5d25f2b2019-07-10 12:04:16 -07001211static Py_ssize_t raw_allocated_blocks;
Victor Stinner9e87e772017-11-24 12:09:24 +01001212
Antoine Pitrouf9d0b122012-12-09 14:28:26 +01001213Py_ssize_t
1214_Py_GetAllocatedBlocks(void)
1215{
Neil Schemenauer5d25f2b2019-07-10 12:04:16 -07001216 Py_ssize_t n = raw_allocated_blocks;
1217 /* add up allocated blocks for used pools */
1218 for (uint i = 0; i < maxarenas; ++i) {
1219 /* Skip arenas which are not allocated. */
Tim Petersb64c2c62019-07-10 16:24:01 -05001220 if (arenas[i].address == 0) {
Neil Schemenauer5d25f2b2019-07-10 12:04:16 -07001221 continue;
1222 }
1223
1224 uintptr_t base = (uintptr_t)_Py_ALIGN_UP(arenas[i].address, POOL_SIZE);
1225
1226 /* visit every pool in the arena */
1227 assert(base <= (uintptr_t) arenas[i].pool_address);
1228 for (; base < (uintptr_t) arenas[i].pool_address; base += POOL_SIZE) {
1229 poolp p = (poolp)base;
1230 n += p->ref.count;
1231 }
1232 }
1233 return n;
Antoine Pitrouf9d0b122012-12-09 14:28:26 +01001234}
1235
1236
Thomas Woutersa9773292006-04-21 09:43:23 +00001237/* Allocate a new arena. If we run out of memory, return NULL. Else
1238 * allocate a new arena, and return the address of an arena_object
1239 * describing the new arena. It's expected that the caller will set
1240 * `usable_arenas` to the return value.
1241 */
1242static struct arena_object*
Tim Petersd97a1c02002-03-30 06:09:22 +00001243new_arena(void)
1244{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001245 struct arena_object* arenaobj;
1246 uint excess; /* number of bytes above pool alignment */
Victor Stinnerba108822012-03-10 00:21:44 +01001247 void *address;
Victor Stinner34be8072016-03-14 12:04:26 +01001248 static int debug_stats = -1;
Tim Petersd97a1c02002-03-30 06:09:22 +00001249
Victor Stinner34be8072016-03-14 12:04:26 +01001250 if (debug_stats == -1) {
Serhiy Storchaka4ae06c52017-12-12 13:55:04 +02001251 const char *opt = Py_GETENV("PYTHONMALLOCSTATS");
Victor Stinner34be8072016-03-14 12:04:26 +01001252 debug_stats = (opt != NULL && *opt != '\0');
1253 }
1254 if (debug_stats)
David Malcolm49526f42012-06-22 14:55:41 -04001255 _PyObject_DebugMallocStats(stderr);
Victor Stinner34be8072016-03-14 12:04:26 +01001256
Victor Stinner9e87e772017-11-24 12:09:24 +01001257 if (unused_arena_objects == NULL) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001258 uint i;
1259 uint numarenas;
1260 size_t nbytes;
Tim Peters0e871182002-04-13 08:29:14 +00001261
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001262 /* Double the number of arena objects on each allocation.
1263 * Note that it's possible for `numarenas` to overflow.
1264 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001265 numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
1266 if (numarenas <= maxarenas)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001267 return NULL; /* overflow */
Martin v. Löwis5aca8822008-09-11 06:55:48 +00001268#if SIZEOF_SIZE_T <= SIZEOF_INT
Victor Stinner9e87e772017-11-24 12:09:24 +01001269 if (numarenas > SIZE_MAX / sizeof(*arenas))
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001270 return NULL; /* overflow */
Martin v. Löwis5aca8822008-09-11 06:55:48 +00001271#endif
Victor Stinner9e87e772017-11-24 12:09:24 +01001272 nbytes = numarenas * sizeof(*arenas);
1273 arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001274 if (arenaobj == NULL)
1275 return NULL;
Victor Stinner9e87e772017-11-24 12:09:24 +01001276 arenas = arenaobj;
Thomas Woutersa9773292006-04-21 09:43:23 +00001277
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001278 /* We might need to fix pointers that were copied. However,
1279 * new_arena only gets called when all the pages in the
1280 * previous arenas are full. Thus, there are *no* pointers
1281 * into the old array. Thus, we don't have to worry about
1282 * invalid pointers. Just to be sure, some asserts:
1283 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001284 assert(usable_arenas == NULL);
1285 assert(unused_arena_objects == NULL);
Thomas Woutersa9773292006-04-21 09:43:23 +00001286
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001287 /* Put the new arenas on the unused_arena_objects list. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001288 for (i = maxarenas; i < numarenas; ++i) {
1289 arenas[i].address = 0; /* mark as unassociated */
1290 arenas[i].nextarena = i < numarenas - 1 ?
1291 &arenas[i+1] : NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001292 }
Thomas Woutersa9773292006-04-21 09:43:23 +00001293
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001294 /* Update globals. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001295 unused_arena_objects = &arenas[maxarenas];
1296 maxarenas = numarenas;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001297 }
Tim Petersd97a1c02002-03-30 06:09:22 +00001298
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001299 /* Take the next available arena object off the head of the list. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001300 assert(unused_arena_objects != NULL);
1301 arenaobj = unused_arena_objects;
1302 unused_arena_objects = arenaobj->nextarena;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001303 assert(arenaobj->address == 0);
Victor Stinner9e87e772017-11-24 12:09:24 +01001304 address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
Victor Stinner0507bf52013-07-07 02:05:46 +02001305 if (address == NULL) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001306 /* The allocation failed: return NULL after putting the
1307 * arenaobj back.
1308 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001309 arenaobj->nextarena = unused_arena_objects;
1310 unused_arena_objects = arenaobj;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001311 return NULL;
1312 }
Benjamin Peterson5d4b09c2016-09-18 19:24:52 -07001313 arenaobj->address = (uintptr_t)address;
Tim Petersd97a1c02002-03-30 06:09:22 +00001314
Victor Stinner9e87e772017-11-24 12:09:24 +01001315 ++narenas_currently_allocated;
1316 ++ntimes_arena_allocated;
1317 if (narenas_currently_allocated > narenas_highwater)
1318 narenas_highwater = narenas_currently_allocated;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001319 arenaobj->freepools = NULL;
1320 /* pool_address <- first pool-aligned address in the arena
1321 nfreepools <- number of whole pools that fit after alignment */
Victor Stinner9e87e772017-11-24 12:09:24 +01001322 arenaobj->pool_address = (block*)arenaobj->address;
Tim Peters1c263e32019-05-31 21:16:04 -05001323 arenaobj->nfreepools = MAX_POOLS_IN_ARENA;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001324 excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
1325 if (excess != 0) {
1326 --arenaobj->nfreepools;
1327 arenaobj->pool_address += POOL_SIZE - excess;
1328 }
1329 arenaobj->ntotalpools = arenaobj->nfreepools;
Thomas Woutersa9773292006-04-21 09:43:23 +00001330
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001331 return arenaobj;
Tim Petersd97a1c02002-03-30 06:09:22 +00001332}
1333
Victor Stinner9ed83c42017-10-31 12:18:10 -07001334
Thomas Woutersa9773292006-04-21 09:43:23 +00001335/*
Benjamin Peterson3924f932016-09-18 19:12:48 -07001336address_in_range(P, POOL)
Thomas Woutersa9773292006-04-21 09:43:23 +00001337
1338Return true if and only if P is an address that was allocated by pymalloc.
1339POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
1340(the caller is asked to compute this because the macro expands POOL more than
1341once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
Benjamin Peterson3924f932016-09-18 19:12:48 -07001342variable and pass the latter to the macro; because address_in_range is
Thomas Woutersa9773292006-04-21 09:43:23 +00001343called on every alloc/realloc/free, micro-efficiency is important here).
1344
1345Tricky: Let B be the arena base address associated with the pool, B =
1346arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
1347
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001348 B <= P < B + ARENA_SIZE
Thomas Woutersa9773292006-04-21 09:43:23 +00001349
1350Subtracting B throughout, this is true iff
1351
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001352 0 <= P-B < ARENA_SIZE
Thomas Woutersa9773292006-04-21 09:43:23 +00001353
1354By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
1355
1356Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
1357before the first arena has been allocated. `arenas` is still NULL in that
1358case. We're relying on that maxarenas is also 0 in that case, so that
1359(POOL)->arenaindex < maxarenas must be false, saving us from trying to index
1360into a NULL arenas.
1361
1362Details: given P and POOL, the arena_object corresponding to P is AO =
1363arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
1364stores, etc), POOL is the correct address of P's pool, AO.address is the
1365correct base address of the pool's arena, and P must be within ARENA_SIZE of
1366AO.address. In addition, AO.address is not 0 (no arena can start at address 0
Benjamin Peterson3924f932016-09-18 19:12:48 -07001367(NULL)). Therefore address_in_range correctly reports that obmalloc
Thomas Woutersa9773292006-04-21 09:43:23 +00001368controls P.
1369
1370Now suppose obmalloc does not control P (e.g., P was obtained via a direct
1371call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
1372in this case -- it may even be uninitialized trash. If the trash arenaindex
1373is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
1374control P.
1375
1376Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
1377allocated arena, obmalloc controls all the memory in slice AO.address :
1378AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
1379so P doesn't lie in that slice, so the macro correctly reports that P is not
1380controlled by obmalloc.
1381
1382Finally, if P is not controlled by obmalloc and AO corresponds to an unused
1383arena_object (one not currently associated with an allocated arena),
1384AO.address is 0, and the second test in the macro reduces to:
1385
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001386 P < ARENA_SIZE
Thomas Woutersa9773292006-04-21 09:43:23 +00001387
1388If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
1389that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
1390of the test still passes, and the third clause (AO.address != 0) is necessary
1391to get the correct result: AO.address is 0 in this case, so the macro
1392correctly reports that P is not controlled by obmalloc (despite that P lies in
1393slice AO.address : AO.address + ARENA_SIZE).
1394
1395Note: The third (AO.address != 0) clause was added in Python 2.5. Before
13962.5, arenas were never free()'ed, and an arenaindex < maxarena always
1397corresponded to a currently-allocated arena, so the "P is not controlled by
1398obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
1399was impossible.
1400
1401Note that the logic is excruciating, and reading up possibly uninitialized
1402memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
1403creates problems for some memory debuggers. The overwhelming advantage is
1404that this test determines whether an arbitrary address is controlled by
1405obmalloc in a small constant time, independent of the number of arenas
1406obmalloc controls. Since this test is needed at every entry point, it's
1407extremely desirable that it be this fast.
1408*/
Thomas Woutersa9773292006-04-21 09:43:23 +00001409
Batuhan Taşkayac0052f32019-12-27 05:51:34 +03001410static bool _Py_NO_SANITIZE_ADDRESS
Alexey Izbyshevfd3a91c2018-11-12 02:14:51 +03001411 _Py_NO_SANITIZE_THREAD
1412 _Py_NO_SANITIZE_MEMORY
Benjamin Peterson3924f932016-09-18 19:12:48 -07001413address_in_range(void *p, poolp pool)
1414{
1415 // Since address_in_range may be reading from memory which was not allocated
1416 // by Python, it is important that pool->arenaindex is read only once, as
1417 // another thread may be concurrently modifying the value without holding
1418 // the GIL. The following dance forces the compiler to read pool->arenaindex
1419 // only once.
1420 uint arenaindex = *((volatile uint *)&pool->arenaindex);
Victor Stinner9e87e772017-11-24 12:09:24 +01001421 return arenaindex < maxarenas &&
1422 (uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE &&
1423 arenas[arenaindex].address != 0;
Benjamin Peterson3924f932016-09-18 19:12:48 -07001424}
Tim Peters338e0102002-04-01 19:23:44 +00001425
Victor Stinner9ed83c42017-10-31 12:18:10 -07001426
Neil Schemenauera35c6882001-02-27 04:45:05 +00001427/*==========================================================================*/
1428
Inada Naokifb265042019-07-17 21:23:57 +09001429// Called when freelist is exhausted. Extend the freelist if there is
1430// space for a block. Otherwise, remove this pool from usedpools.
1431static void
1432pymalloc_pool_extend(poolp pool, uint size)
Neil Schemenauera35c6882001-02-27 04:45:05 +00001433{
Inada Naokifb265042019-07-17 21:23:57 +09001434 if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) {
1435 /* There is room for another block. */
1436 pool->freeblock = (block*)pool + pool->nextoffset;
1437 pool->nextoffset += INDEX2SIZE(size);
1438 *(block **)(pool->freeblock) = NULL;
1439 return;
1440 }
1441
1442 /* Pool is full, unlink from used pools. */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001443 poolp next;
Inada Naokifb265042019-07-17 21:23:57 +09001444 next = pool->nextpool;
1445 pool = pool->prevpool;
1446 next->prevpool = pool;
1447 pool->nextpool = next;
1448}
Neil Schemenauera35c6882001-02-27 04:45:05 +00001449
Inada Naokifb265042019-07-17 21:23:57 +09001450/* called when pymalloc_alloc can not allocate a block from usedpool.
1451 * This function takes new pool and allocate a block from it.
1452 */
1453static void*
1454allocate_from_new_pool(uint size)
1455{
Victor Stinner9ed83c42017-10-31 12:18:10 -07001456 /* There isn't a pool of the right size class immediately
1457 * available: use a free pool.
1458 */
Inada Naokifb265042019-07-17 21:23:57 +09001459 if (UNLIKELY(usable_arenas == NULL)) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001460 /* No arena has a free pool: allocate a new arena. */
1461#ifdef WITH_MEMORY_LIMITS
Victor Stinner9e87e772017-11-24 12:09:24 +01001462 if (narenas_currently_allocated >= MAX_ARENAS) {
Inada Naokifb265042019-07-17 21:23:57 +09001463 return NULL;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001464 }
1465#endif
Victor Stinner9e87e772017-11-24 12:09:24 +01001466 usable_arenas = new_arena();
1467 if (usable_arenas == NULL) {
Inada Naokifb265042019-07-17 21:23:57 +09001468 return NULL;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001469 }
Inada Naokifb265042019-07-17 21:23:57 +09001470 usable_arenas->nextarena = usable_arenas->prevarena = NULL;
Tim Peters1c263e32019-05-31 21:16:04 -05001471 assert(nfp2lasta[usable_arenas->nfreepools] == NULL);
1472 nfp2lasta[usable_arenas->nfreepools] = usable_arenas;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001473 }
Victor Stinner9e87e772017-11-24 12:09:24 +01001474 assert(usable_arenas->address != 0);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001475
Tim Peters1c263e32019-05-31 21:16:04 -05001476 /* This arena already had the smallest nfreepools value, so decreasing
1477 * nfreepools doesn't change that, and we don't need to rearrange the
1478 * usable_arenas list. However, if the arena becomes wholly allocated,
1479 * we need to remove its arena_object from usable_arenas.
1480 */
1481 assert(usable_arenas->nfreepools > 0);
1482 if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) {
1483 /* It's the last of this size, so there won't be any. */
1484 nfp2lasta[usable_arenas->nfreepools] = NULL;
1485 }
1486 /* If any free pools will remain, it will be the new smallest. */
1487 if (usable_arenas->nfreepools > 1) {
1488 assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL);
1489 nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas;
1490 }
1491
Victor Stinner9ed83c42017-10-31 12:18:10 -07001492 /* Try to get a cached free pool. */
Inada Naokifb265042019-07-17 21:23:57 +09001493 poolp pool = usable_arenas->freepools;
1494 if (LIKELY(pool != NULL)) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001495 /* Unlink from cached pools. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001496 usable_arenas->freepools = pool->nextpool;
Inada Naokifb265042019-07-17 21:23:57 +09001497 usable_arenas->nfreepools--;
1498 if (UNLIKELY(usable_arenas->nfreepools == 0)) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001499 /* Wholly allocated: remove. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001500 assert(usable_arenas->freepools == NULL);
1501 assert(usable_arenas->nextarena == NULL ||
1502 usable_arenas->nextarena->prevarena ==
1503 usable_arenas);
Victor Stinner9e87e772017-11-24 12:09:24 +01001504 usable_arenas = usable_arenas->nextarena;
1505 if (usable_arenas != NULL) {
1506 usable_arenas->prevarena = NULL;
1507 assert(usable_arenas->address != 0);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001508 }
1509 }
Victor Stinner9ed83c42017-10-31 12:18:10 -07001510 else {
1511 /* nfreepools > 0: it must be that freepools
1512 * isn't NULL, or that we haven't yet carved
1513 * off all the arena's pools for the first
1514 * time.
1515 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001516 assert(usable_arenas->freepools != NULL ||
1517 usable_arenas->pool_address <=
1518 (block*)usable_arenas->address +
Victor Stinner9ed83c42017-10-31 12:18:10 -07001519 ARENA_SIZE - POOL_SIZE);
1520 }
Inada Naokifb265042019-07-17 21:23:57 +09001521 }
1522 else {
1523 /* Carve off a new pool. */
1524 assert(usable_arenas->nfreepools > 0);
1525 assert(usable_arenas->freepools == NULL);
1526 pool = (poolp)usable_arenas->pool_address;
1527 assert((block*)pool <= (block*)usable_arenas->address +
1528 ARENA_SIZE - POOL_SIZE);
1529 pool->arenaindex = (uint)(usable_arenas - arenas);
1530 assert(&arenas[pool->arenaindex] == usable_arenas);
1531 pool->szidx = DUMMY_SIZE_IDX;
1532 usable_arenas->pool_address += POOL_SIZE;
1533 --usable_arenas->nfreepools;
Thomas Woutersa9773292006-04-21 09:43:23 +00001534
Inada Naokifb265042019-07-17 21:23:57 +09001535 if (usable_arenas->nfreepools == 0) {
1536 assert(usable_arenas->nextarena == NULL ||
1537 usable_arenas->nextarena->prevarena ==
1538 usable_arenas);
1539 /* Unlink the arena: it is completely allocated. */
1540 usable_arenas = usable_arenas->nextarena;
1541 if (usable_arenas != NULL) {
1542 usable_arenas->prevarena = NULL;
1543 assert(usable_arenas->address != 0);
1544 }
Victor Stinner9ed83c42017-10-31 12:18:10 -07001545 }
Inada Naokifb265042019-07-17 21:23:57 +09001546 }
1547
1548 /* Frontlink to used pools. */
1549 block *bp;
1550 poolp next = usedpools[size + size]; /* == prev */
1551 pool->nextpool = next;
1552 pool->prevpool = next;
1553 next->nextpool = pool;
1554 next->prevpool = pool;
1555 pool->ref.count = 1;
1556 if (pool->szidx == size) {
1557 /* Luckily, this pool last contained blocks
1558 * of the same size class, so its header
1559 * and free list are already initialized.
Victor Stinner9ed83c42017-10-31 12:18:10 -07001560 */
Inada Naokifb265042019-07-17 21:23:57 +09001561 bp = pool->freeblock;
1562 assert(bp != NULL);
1563 pool->freeblock = *(block **)bp;
1564 return bp;
1565 }
1566 /*
1567 * Initialize the pool header, set up the free list to
1568 * contain just the second block, and return the first
1569 * block.
1570 */
1571 pool->szidx = size;
1572 size = INDEX2SIZE(size);
1573 bp = (block *)pool + POOL_OVERHEAD;
1574 pool->nextoffset = POOL_OVERHEAD + (size << 1);
1575 pool->maxnextoffset = POOL_SIZE - size;
1576 pool->freeblock = bp + size;
1577 *(block **)(pool->freeblock) = NULL;
1578 return bp;
1579}
1580
1581/* pymalloc allocator
1582
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001583 Return a pointer to newly allocated memory if pymalloc allocated memory.
Inada Naokifb265042019-07-17 21:23:57 +09001584
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001585 Return NULL if pymalloc failed to allocate the memory block: on bigger
Inada Naokifb265042019-07-17 21:23:57 +09001586 requests, on error in the code below (as a last chance to serve the request)
1587 or when the max memory limit has been reached.
1588*/
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001589static inline void*
1590pymalloc_alloc(void *ctx, size_t nbytes)
Inada Naokifb265042019-07-17 21:23:57 +09001591{
1592#ifdef WITH_VALGRIND
1593 if (UNLIKELY(running_on_valgrind == -1)) {
1594 running_on_valgrind = RUNNING_ON_VALGRIND;
1595 }
1596 if (UNLIKELY(running_on_valgrind)) {
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001597 return NULL;
Inada Naokifb265042019-07-17 21:23:57 +09001598 }
1599#endif
1600
1601 if (UNLIKELY(nbytes == 0)) {
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001602 return NULL;
Inada Naokifb265042019-07-17 21:23:57 +09001603 }
1604 if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) {
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001605 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001606 }
Neil Schemenauera35c6882001-02-27 04:45:05 +00001607
Inada Naokifb265042019-07-17 21:23:57 +09001608 uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
1609 poolp pool = usedpools[size + size];
1610 block *bp;
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001611
Inada Naokifb265042019-07-17 21:23:57 +09001612 if (LIKELY(pool != pool->nextpool)) {
1613 /*
1614 * There is a used pool for this size class.
1615 * Pick up the head block of its free list.
1616 */
1617 ++pool->ref.count;
1618 bp = pool->freeblock;
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001619 assert(bp != NULL);
Neil Schemenauera35c6882001-02-27 04:45:05 +00001620
Inada Naokifb265042019-07-17 21:23:57 +09001621 if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) {
1622 // Reached the end of the free list, try to extend it.
1623 pymalloc_pool_extend(pool, size);
1624 }
1625 }
1626 else {
1627 /* There isn't a pool of the right size class immediately
1628 * available: use a free pool.
1629 */
1630 bp = allocate_from_new_pool(size);
Antoine Pitrouf9d0b122012-12-09 14:28:26 +01001631 }
Victor Stinner9ed83c42017-10-31 12:18:10 -07001632
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001633 return (void *)bp;
Neil Schemenauera35c6882001-02-27 04:45:05 +00001634}
1635
Victor Stinner9ed83c42017-10-31 12:18:10 -07001636
Victor Stinnerdb067af2014-05-02 22:31:14 +02001637static void *
1638_PyObject_Malloc(void *ctx, size_t nbytes)
1639{
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001640 void* ptr = pymalloc_alloc(ctx, nbytes);
1641 if (LIKELY(ptr != NULL)) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001642 return ptr;
1643 }
1644
1645 ptr = PyMem_RawMalloc(nbytes);
1646 if (ptr != NULL) {
Neil Schemenauer5d25f2b2019-07-10 12:04:16 -07001647 raw_allocated_blocks++;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001648 }
1649 return ptr;
Victor Stinnerdb067af2014-05-02 22:31:14 +02001650}
1651
Victor Stinner9ed83c42017-10-31 12:18:10 -07001652
Victor Stinnerdb067af2014-05-02 22:31:14 +02001653static void *
1654_PyObject_Calloc(void *ctx, size_t nelem, size_t elsize)
1655{
Victor Stinner9ed83c42017-10-31 12:18:10 -07001656 assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
1657 size_t nbytes = nelem * elsize;
1658
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001659 void* ptr = pymalloc_alloc(ctx, nbytes);
1660 if (LIKELY(ptr != NULL)) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001661 memset(ptr, 0, nbytes);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001662 return ptr;
1663 }
1664
1665 ptr = PyMem_RawCalloc(nelem, elsize);
1666 if (ptr != NULL) {
Neil Schemenauer5d25f2b2019-07-10 12:04:16 -07001667 raw_allocated_blocks++;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001668 }
1669 return ptr;
Victor Stinnerdb067af2014-05-02 22:31:14 +02001670}
1671
Neil Schemenauera35c6882001-02-27 04:45:05 +00001672
Inada Naokifb265042019-07-17 21:23:57 +09001673static void
1674insert_to_usedpool(poolp pool)
Neil Schemenauera35c6882001-02-27 04:45:05 +00001675{
Inada Naokifb265042019-07-17 21:23:57 +09001676 assert(pool->ref.count > 0); /* else the pool is empty */
Neil Schemenauera35c6882001-02-27 04:45:05 +00001677
Inada Naokifb265042019-07-17 21:23:57 +09001678 uint size = pool->szidx;
1679 poolp next = usedpools[size + size];
1680 poolp prev = next->prevpool;
Antoine Pitrouf9d0b122012-12-09 14:28:26 +01001681
Inada Naokifb265042019-07-17 21:23:57 +09001682 /* insert pool before next: prev <-> pool <-> next */
1683 pool->nextpool = next;
1684 pool->prevpool = prev;
1685 next->prevpool = pool;
1686 prev->nextpool = pool;
1687}
Benjamin Peterson05159c42009-12-03 03:01:27 +00001688
Inada Naokifb265042019-07-17 21:23:57 +09001689static void
1690insert_to_freepool(poolp pool)
1691{
1692 poolp next = pool->nextpool;
1693 poolp prev = pool->prevpool;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001694 next->prevpool = prev;
1695 prev->nextpool = next;
1696
1697 /* Link the pool to freepools. This is a singly-linked
1698 * list, and pool->prevpool isn't used there.
1699 */
Inada Naokifb265042019-07-17 21:23:57 +09001700 struct arena_object *ao = &arenas[pool->arenaindex];
Victor Stinner9ed83c42017-10-31 12:18:10 -07001701 pool->nextpool = ao->freepools;
1702 ao->freepools = pool;
Inada Naokifb265042019-07-17 21:23:57 +09001703 uint nf = ao->nfreepools;
Tim Peters1c263e32019-05-31 21:16:04 -05001704 /* If this is the rightmost arena with this number of free pools,
1705 * nfp2lasta[nf] needs to change. Caution: if nf is 0, there
1706 * are no arenas in usable_arenas with that value.
1707 */
1708 struct arena_object* lastnf = nfp2lasta[nf];
Victor Stinner18f8dcf2019-08-20 12:28:02 +01001709 assert((nf == 0 && lastnf == NULL) ||
1710 (nf > 0 &&
Tim Peters1c263e32019-05-31 21:16:04 -05001711 lastnf != NULL &&
1712 lastnf->nfreepools == nf &&
1713 (lastnf->nextarena == NULL ||
1714 nf < lastnf->nextarena->nfreepools)));
1715 if (lastnf == ao) { /* it is the rightmost */
1716 struct arena_object* p = ao->prevarena;
1717 nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL;
1718 }
1719 ao->nfreepools = ++nf;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001720
1721 /* All the rest is arena management. We just freed
1722 * a pool, and there are 4 cases for arena mgmt:
1723 * 1. If all the pools are free, return the arena to
Tim Petersd1c85a22019-06-12 22:41:03 -05001724 * the system free(). Except if this is the last
1725 * arena in the list, keep it to avoid thrashing:
1726 * keeping one wholly free arena in the list avoids
1727 * pathological cases where a simple loop would
1728 * otherwise provoke needing to allocate and free an
1729 * arena on every iteration. See bpo-37257.
Victor Stinner9ed83c42017-10-31 12:18:10 -07001730 * 2. If this is the only free pool in the arena,
1731 * add the arena back to the `usable_arenas` list.
1732 * 3. If the "next" arena has a smaller count of free
1733 * pools, we have to "slide this arena right" to
1734 * restore that usable_arenas is sorted in order of
1735 * nfreepools.
1736 * 4. Else there's nothing more to do.
1737 */
Tim Petersd1c85a22019-06-12 22:41:03 -05001738 if (nf == ao->ntotalpools && ao->nextarena != NULL) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001739 /* Case 1. First unlink ao from usable_arenas.
1740 */
1741 assert(ao->prevarena == NULL ||
1742 ao->prevarena->address != 0);
1743 assert(ao ->nextarena == NULL ||
1744 ao->nextarena->address != 0);
1745
1746 /* Fix the pointer in the prevarena, or the
1747 * usable_arenas pointer.
1748 */
1749 if (ao->prevarena == NULL) {
Victor Stinner9e87e772017-11-24 12:09:24 +01001750 usable_arenas = ao->nextarena;
1751 assert(usable_arenas == NULL ||
1752 usable_arenas->address != 0);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001753 }
1754 else {
1755 assert(ao->prevarena->nextarena == ao);
1756 ao->prevarena->nextarena =
1757 ao->nextarena;
1758 }
1759 /* Fix the pointer in the nextarena. */
1760 if (ao->nextarena != NULL) {
1761 assert(ao->nextarena->prevarena == ao);
1762 ao->nextarena->prevarena =
1763 ao->prevarena;
1764 }
1765 /* Record that this arena_object slot is
1766 * available to be reused.
1767 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001768 ao->nextarena = unused_arena_objects;
1769 unused_arena_objects = ao;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001770
1771 /* Free the entire arena. */
Victor Stinner9e87e772017-11-24 12:09:24 +01001772 _PyObject_Arena.free(_PyObject_Arena.ctx,
Victor Stinner9ed83c42017-10-31 12:18:10 -07001773 (void *)ao->address, ARENA_SIZE);
1774 ao->address = 0; /* mark unassociated */
Victor Stinner9e87e772017-11-24 12:09:24 +01001775 --narenas_currently_allocated;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001776
Inada Naokifb265042019-07-17 21:23:57 +09001777 return;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001778 }
1779
1780 if (nf == 1) {
1781 /* Case 2. Put ao at the head of
1782 * usable_arenas. Note that because
1783 * ao->nfreepools was 0 before, ao isn't
1784 * currently on the usable_arenas list.
1785 */
Victor Stinner9e87e772017-11-24 12:09:24 +01001786 ao->nextarena = usable_arenas;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001787 ao->prevarena = NULL;
Victor Stinner9e87e772017-11-24 12:09:24 +01001788 if (usable_arenas)
1789 usable_arenas->prevarena = ao;
1790 usable_arenas = ao;
1791 assert(usable_arenas->address != 0);
Tim Peters1c263e32019-05-31 21:16:04 -05001792 if (nfp2lasta[1] == NULL) {
1793 nfp2lasta[1] = ao;
1794 }
Victor Stinner9ed83c42017-10-31 12:18:10 -07001795
Inada Naokifb265042019-07-17 21:23:57 +09001796 return;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001797 }
1798
1799 /* If this arena is now out of order, we need to keep
1800 * the list sorted. The list is kept sorted so that
1801 * the "most full" arenas are used first, which allows
1802 * the nearly empty arenas to be completely freed. In
1803 * a few un-scientific tests, it seems like this
1804 * approach allowed a lot more memory to be freed.
1805 */
Tim Peters1c263e32019-05-31 21:16:04 -05001806 /* If this is the only arena with nf, record that. */
1807 if (nfp2lasta[nf] == NULL) {
1808 nfp2lasta[nf] = ao;
1809 } /* else the rightmost with nf doesn't change */
1810 /* If this was the rightmost of the old size, it remains in place. */
1811 if (ao == lastnf) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001812 /* Case 4. Nothing to do. */
Inada Naokifb265042019-07-17 21:23:57 +09001813 return;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001814 }
Tim Peters1c263e32019-05-31 21:16:04 -05001815 /* If ao were the only arena in the list, the last block would have
1816 * gotten us out.
1817 */
1818 assert(ao->nextarena != NULL);
1819
1820 /* Case 3: We have to move the arena towards the end of the list,
1821 * because it has more free pools than the arena to its right. It needs
1822 * to move to follow lastnf.
Victor Stinner9ed83c42017-10-31 12:18:10 -07001823 * First unlink ao from usable_arenas.
1824 */
1825 if (ao->prevarena != NULL) {
1826 /* ao isn't at the head of the list */
1827 assert(ao->prevarena->nextarena == ao);
1828 ao->prevarena->nextarena = ao->nextarena;
1829 }
1830 else {
1831 /* ao is at the head of the list */
Victor Stinner9e87e772017-11-24 12:09:24 +01001832 assert(usable_arenas == ao);
1833 usable_arenas = ao->nextarena;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001834 }
1835 ao->nextarena->prevarena = ao->prevarena;
Tim Peters1c263e32019-05-31 21:16:04 -05001836 /* And insert after lastnf. */
1837 ao->prevarena = lastnf;
1838 ao->nextarena = lastnf->nextarena;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001839 if (ao->nextarena != NULL) {
1840 ao->nextarena->prevarena = ao;
1841 }
Tim Peters1c263e32019-05-31 21:16:04 -05001842 lastnf->nextarena = ao;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001843 /* Verify that the swaps worked. */
1844 assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools);
1845 assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools);
1846 assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao);
Victor Stinner9e87e772017-11-24 12:09:24 +01001847 assert((usable_arenas == ao && ao->prevarena == NULL)
Victor Stinner9ed83c42017-10-31 12:18:10 -07001848 || ao->prevarena->nextarena == ao);
Inada Naokifb265042019-07-17 21:23:57 +09001849}
Victor Stinner9ed83c42017-10-31 12:18:10 -07001850
Inada Naokifb265042019-07-17 21:23:57 +09001851/* Free a memory block allocated by pymalloc_alloc().
1852 Return 1 if it was freed.
1853 Return 0 if the block was not allocated by pymalloc_alloc(). */
1854static inline int
1855pymalloc_free(void *ctx, void *p)
1856{
1857 assert(p != NULL);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001858
Inada Naokifb265042019-07-17 21:23:57 +09001859#ifdef WITH_VALGRIND
1860 if (UNLIKELY(running_on_valgrind > 0)) {
1861 return 0;
1862 }
1863#endif
1864
1865 poolp pool = POOL_ADDR(p);
1866 if (UNLIKELY(!address_in_range(p, pool))) {
1867 return 0;
1868 }
1869 /* We allocated this address. */
1870
1871 /* Link p to the start of the pool's freeblock list. Since
1872 * the pool had at least the p block outstanding, the pool
1873 * wasn't empty (so it's already in a usedpools[] list, or
1874 * was full and is in no list -- it's not in the freeblocks
1875 * list in any case).
1876 */
1877 assert(pool->ref.count > 0); /* else it was empty */
1878 block *lastfree = pool->freeblock;
1879 *(block **)p = lastfree;
1880 pool->freeblock = (block *)p;
1881 pool->ref.count--;
1882
1883 if (UNLIKELY(lastfree == NULL)) {
1884 /* Pool was full, so doesn't currently live in any list:
1885 * link it to the front of the appropriate usedpools[] list.
1886 * This mimics LRU pool usage for new allocations and
1887 * targets optimal filling when several pools contain
1888 * blocks of the same size class.
1889 */
1890 insert_to_usedpool(pool);
1891 return 1;
1892 }
1893
1894 /* freeblock wasn't NULL, so the pool wasn't full,
1895 * and the pool is in a usedpools[] list.
1896 */
1897 if (LIKELY(pool->ref.count != 0)) {
1898 /* pool isn't empty: leave it in usedpools */
1899 return 1;
1900 }
1901
1902 /* Pool is now empty: unlink from usedpools, and
1903 * link to the front of freepools. This ensures that
1904 * previously freed pools will be allocated later
1905 * (being not referenced, they are perhaps paged out).
1906 */
1907 insert_to_freepool(pool);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001908 return 1;
1909}
1910
1911
1912static void
1913_PyObject_Free(void *ctx, void *p)
1914{
1915 /* PyObject_Free(NULL) has no effect */
1916 if (p == NULL) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001917 return;
1918 }
Neil Schemenauera35c6882001-02-27 04:45:05 +00001919
Inada Naokifb265042019-07-17 21:23:57 +09001920 if (UNLIKELY(!pymalloc_free(ctx, p))) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07001921 /* pymalloc didn't allocate this address */
1922 PyMem_RawFree(p);
Neil Schemenauer5d25f2b2019-07-10 12:04:16 -07001923 raw_allocated_blocks--;
Victor Stinner9ed83c42017-10-31 12:18:10 -07001924 }
Neil Schemenauera35c6882001-02-27 04:45:05 +00001925}
1926
Neil Schemenauera35c6882001-02-27 04:45:05 +00001927
Victor Stinner9ed83c42017-10-31 12:18:10 -07001928/* pymalloc realloc.
1929
1930 If nbytes==0, then as the Python docs promise, we do not treat this like
1931 free(p), and return a non-NULL result.
1932
1933 Return 1 if pymalloc reallocated memory and wrote the new pointer into
1934 newptr_p.
1935
1936 Return 0 if pymalloc didn't allocated p. */
1937static int
1938pymalloc_realloc(void *ctx, void **newptr_p, void *p, size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +00001939{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001940 void *bp;
1941 poolp pool;
1942 size_t size;
Neil Schemenauera35c6882001-02-27 04:45:05 +00001943
Victor Stinner9ed83c42017-10-31 12:18:10 -07001944 assert(p != NULL);
Georg Brandld492ad82008-07-23 16:13:07 +00001945
Benjamin Peterson05159c42009-12-03 03:01:27 +00001946#ifdef WITH_VALGRIND
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001947 /* Treat running_on_valgrind == -1 the same as 0 */
Victor Stinner9ed83c42017-10-31 12:18:10 -07001948 if (UNLIKELY(running_on_valgrind > 0)) {
1949 return 0;
1950 }
Benjamin Peterson05159c42009-12-03 03:01:27 +00001951#endif
1952
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001953 pool = POOL_ADDR(p);
Victor Stinner9ed83c42017-10-31 12:18:10 -07001954 if (!address_in_range(p, pool)) {
1955 /* pymalloc is not managing this block.
1956
1957 If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take
1958 over this block. However, if we do, we need to copy the valid data
1959 from the C-managed block to one of our blocks, and there's no
1960 portable way to know how much of the memory space starting at p is
1961 valid.
1962
1963 As bug 1185883 pointed out the hard way, it's possible that the
1964 C-managed block is "at the end" of allocated VM space, so that a
1965 memory fault can occur if we try to copy nbytes bytes starting at p.
1966 Instead we punt: let C continue to manage this block. */
1967 return 0;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001968 }
Victor Stinner9ed83c42017-10-31 12:18:10 -07001969
1970 /* pymalloc is in charge of this block */
1971 size = INDEX2SIZE(pool->szidx);
1972 if (nbytes <= size) {
1973 /* The block is staying the same or shrinking.
1974
1975 If it's shrinking, there's a tradeoff: it costs cycles to copy the
1976 block to a smaller size class, but it wastes memory not to copy it.
1977
1978 The compromise here is to copy on shrink only if at least 25% of
1979 size can be shaved off. */
1980 if (4 * nbytes > 3 * size) {
1981 /* It's the same, or shrinking and new/old > 3/4. */
1982 *newptr_p = p;
1983 return 1;
1984 }
1985 size = nbytes;
1986 }
1987
1988 bp = _PyObject_Malloc(ctx, nbytes);
1989 if (bp != NULL) {
1990 memcpy(bp, p, size);
1991 _PyObject_Free(ctx, p);
1992 }
1993 *newptr_p = bp;
1994 return 1;
1995}
1996
1997
1998static void *
1999_PyObject_Realloc(void *ctx, void *ptr, size_t nbytes)
2000{
2001 void *ptr2;
2002
2003 if (ptr == NULL) {
2004 return _PyObject_Malloc(ctx, nbytes);
2005 }
2006
2007 if (pymalloc_realloc(ctx, &ptr2, ptr, nbytes)) {
2008 return ptr2;
2009 }
2010
2011 return PyMem_RawRealloc(ptr, nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +00002012}
2013
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002014#else /* ! WITH_PYMALLOC */
Tim Petersddea2082002-03-23 10:03:50 +00002015
2016/*==========================================================================*/
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00002017/* pymalloc not enabled: Redirect the entry points to malloc. These will
2018 * only be used by extensions that are compiled with pymalloc enabled. */
Tim Peters62c06ba2002-03-23 22:28:18 +00002019
Antoine Pitrou92840532012-12-17 23:05:59 +01002020Py_ssize_t
2021_Py_GetAllocatedBlocks(void)
2022{
2023 return 0;
2024}
2025
Tim Peters1221c0a2002-03-23 00:20:15 +00002026#endif /* WITH_PYMALLOC */
2027
Victor Stinner34be8072016-03-14 12:04:26 +01002028
Tim Petersddea2082002-03-23 10:03:50 +00002029/*==========================================================================*/
Tim Peters62c06ba2002-03-23 22:28:18 +00002030/* A x-platform debugging allocator. This doesn't manage memory directly,
2031 * it wraps a real allocator, adding extra debugging info to the memory blocks.
2032 */
Tim Petersddea2082002-03-23 10:03:50 +00002033
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002034/* Uncomment this define to add the "serialno" field */
2035/* #define PYMEM_DEBUG_SERIALNO */
2036
2037#ifdef PYMEM_DEBUG_SERIALNO
Victor Stinner9e87e772017-11-24 12:09:24 +01002038static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
2039
Tim Peterse0850172002-03-24 00:34:21 +00002040/* serialno is always incremented via calling this routine. The point is
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002041 * to supply a single place to set a breakpoint.
2042 */
Tim Peterse0850172002-03-24 00:34:21 +00002043static void
Neil Schemenauerbd02b142002-03-28 21:05:38 +00002044bumpserialno(void)
Tim Peterse0850172002-03-24 00:34:21 +00002045{
Victor Stinner9e87e772017-11-24 12:09:24 +01002046 ++serialno;
Tim Peterse0850172002-03-24 00:34:21 +00002047}
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002048#endif
Tim Peterse0850172002-03-24 00:34:21 +00002049
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002050#define SST SIZEOF_SIZE_T
Tim Peterse0850172002-03-24 00:34:21 +00002051
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002052#ifdef PYMEM_DEBUG_SERIALNO
2053# define PYMEM_DEBUG_EXTRA_BYTES 4 * SST
2054#else
2055# define PYMEM_DEBUG_EXTRA_BYTES 3 * SST
2056#endif
2057
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002058/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
2059static size_t
2060read_size_t(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00002061{
Benjamin Peterson19517e42016-09-18 19:22:22 -07002062 const uint8_t *q = (const uint8_t *)p;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002063 size_t result = *q++;
2064 int i;
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002065
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002066 for (i = SST; --i > 0; ++q)
2067 result = (result << 8) | *q;
2068 return result;
Tim Petersddea2082002-03-23 10:03:50 +00002069}
2070
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002071/* Write n as a big-endian size_t, MSB at address p, LSB at
2072 * p + sizeof(size_t) - 1.
2073 */
Tim Petersddea2082002-03-23 10:03:50 +00002074static void
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002075write_size_t(void *p, size_t n)
Tim Petersddea2082002-03-23 10:03:50 +00002076{
Benjamin Peterson19517e42016-09-18 19:22:22 -07002077 uint8_t *q = (uint8_t *)p + SST - 1;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002078 int i;
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002079
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002080 for (i = SST; --i >= 0; --q) {
Benjamin Peterson19517e42016-09-18 19:22:22 -07002081 *q = (uint8_t)(n & 0xff);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002082 n >>= 8;
2083 }
Tim Petersddea2082002-03-23 10:03:50 +00002084}
2085
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002086/* Let S = sizeof(size_t). The debug malloc asks for 4 * S extra bytes and
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002087 fills them with useful stuff, here calling the underlying malloc's result p:
Tim Petersddea2082002-03-23 10:03:50 +00002088
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002089p[0: S]
2090 Number of bytes originally asked for. This is a size_t, big-endian (easier
2091 to read in a memory dump).
Georg Brandl7cba5fd2013-09-25 09:04:23 +02002092p[S]
Tim Petersdf099f52013-09-19 21:06:37 -05002093 API ID. See PEP 445. This is a character, but seems undocumented.
2094p[S+1: 2*S]
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002095 Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002096p[2*S: 2*S+n]
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002097 The requested memory, filled with copies of PYMEM_CLEANBYTE.
Tim Petersddea2082002-03-23 10:03:50 +00002098 Used to catch reference to uninitialized memory.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002099 &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
Tim Petersddea2082002-03-23 10:03:50 +00002100 handled the request itself.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002101p[2*S+n: 2*S+n+S]
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002102 Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002103p[2*S+n+S: 2*S+n+2*S]
Victor Stinner0507bf52013-07-07 02:05:46 +02002104 A serial number, incremented by 1 on each call to _PyMem_DebugMalloc
2105 and _PyMem_DebugRealloc.
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002106 This is a big-endian size_t.
Tim Petersddea2082002-03-23 10:03:50 +00002107 If "bad memory" is detected later, the serial number gives an
2108 excellent way to set a breakpoint on the next run, to capture the
2109 instant at which this block was passed out.
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002110
2111If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks
2112for 3 * S extra bytes, and omits the last serialno field.
Tim Petersddea2082002-03-23 10:03:50 +00002113*/
2114
Victor Stinner0507bf52013-07-07 02:05:46 +02002115static void *
Victor Stinnerc4aec362016-03-14 22:26:53 +01002116_PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes)
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00002117{
Victor Stinner0507bf52013-07-07 02:05:46 +02002118 debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002119 uint8_t *p; /* base address of malloc'ed pad block */
Victor Stinner9ed83c42017-10-31 12:18:10 -07002120 uint8_t *data; /* p + 2*SST == pointer to data bytes */
2121 uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002122 size_t total; /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */
Victor Stinner9ed83c42017-10-31 12:18:10 -07002123
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002124 if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07002125 /* integer overflow: can't represent total as a Py_ssize_t */
2126 return NULL;
2127 }
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002128 total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;
Victor Stinner9ed83c42017-10-31 12:18:10 -07002129
2130 /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN]
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002131 ^--- p ^--- data ^--- tail
Victor Stinner9ed83c42017-10-31 12:18:10 -07002132 S: nbytes stored as size_t
2133 I: API identifier (1 byte)
2134 F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after)
2135 C: Clean bytes used later to store actual data
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002136 N: Serial number stored as size_t
2137
2138 If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field
2139 is omitted. */
Victor Stinner9ed83c42017-10-31 12:18:10 -07002140
2141 if (use_calloc) {
2142 p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total);
2143 }
2144 else {
2145 p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total);
2146 }
2147 if (p == NULL) {
2148 return NULL;
2149 }
2150 data = p + 2*SST;
Tim Petersddea2082002-03-23 10:03:50 +00002151
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002152#ifdef PYMEM_DEBUG_SERIALNO
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002153 bumpserialno();
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002154#endif
Tim Petersddea2082002-03-23 10:03:50 +00002155
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002156 /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
2157 write_size_t(p, nbytes);
Benjamin Peterson19517e42016-09-18 19:22:22 -07002158 p[SST] = (uint8_t)api->api_id;
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002159 memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);
Tim Petersddea2082002-03-23 10:03:50 +00002160
Victor Stinner9ed83c42017-10-31 12:18:10 -07002161 if (nbytes > 0 && !use_calloc) {
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002162 memset(data, PYMEM_CLEANBYTE, nbytes);
Victor Stinner9ed83c42017-10-31 12:18:10 -07002163 }
Tim Petersddea2082002-03-23 10:03:50 +00002164
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002165 /* at tail, write pad (SST bytes) and serialno (SST bytes) */
Victor Stinner9ed83c42017-10-31 12:18:10 -07002166 tail = data + nbytes;
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002167 memset(tail, PYMEM_FORBIDDENBYTE, SST);
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002168#ifdef PYMEM_DEBUG_SERIALNO
Victor Stinner9e87e772017-11-24 12:09:24 +01002169 write_size_t(tail + SST, serialno);
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002170#endif
Tim Petersddea2082002-03-23 10:03:50 +00002171
Victor Stinner9ed83c42017-10-31 12:18:10 -07002172 return data;
Tim Petersddea2082002-03-23 10:03:50 +00002173}
2174
Victor Stinnerdb067af2014-05-02 22:31:14 +02002175static void *
Victor Stinnerc4aec362016-03-14 22:26:53 +01002176_PyMem_DebugRawMalloc(void *ctx, size_t nbytes)
Victor Stinnerdb067af2014-05-02 22:31:14 +02002177{
Victor Stinnerc4aec362016-03-14 22:26:53 +01002178 return _PyMem_DebugRawAlloc(0, ctx, nbytes);
Victor Stinnerdb067af2014-05-02 22:31:14 +02002179}
2180
2181static void *
Victor Stinnerc4aec362016-03-14 22:26:53 +01002182_PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize)
Victor Stinnerdb067af2014-05-02 22:31:14 +02002183{
2184 size_t nbytes;
Victor Stinner9ed83c42017-10-31 12:18:10 -07002185 assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
Victor Stinnerdb067af2014-05-02 22:31:14 +02002186 nbytes = nelem * elsize;
Victor Stinnerc4aec362016-03-14 22:26:53 +01002187 return _PyMem_DebugRawAlloc(1, ctx, nbytes);
Victor Stinnerdb067af2014-05-02 22:31:14 +02002188}
2189
Victor Stinner9ed83c42017-10-31 12:18:10 -07002190
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002191/* The debug free first checks the 2*SST bytes on each end for sanity (in
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00002192 particular, that the FORBIDDENBYTEs with the api ID are still intact).
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002193 Then fills the original bytes with PYMEM_DEADBYTE.
Tim Petersddea2082002-03-23 10:03:50 +00002194 Then calls the underlying free.
2195*/
Victor Stinner0507bf52013-07-07 02:05:46 +02002196static void
Victor Stinnerc4aec362016-03-14 22:26:53 +01002197_PyMem_DebugRawFree(void *ctx, void *p)
Tim Petersddea2082002-03-23 10:03:50 +00002198{
Victor Stinner9ed83c42017-10-31 12:18:10 -07002199 /* PyMem_Free(NULL) has no effect */
2200 if (p == NULL) {
2201 return;
2202 }
2203
Victor Stinner0507bf52013-07-07 02:05:46 +02002204 debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
Benjamin Peterson19517e42016-09-18 19:22:22 -07002205 uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002206 size_t nbytes;
Tim Petersddea2082002-03-23 10:03:50 +00002207
Victor Stinner9e5d30c2020-03-07 00:54:20 +01002208 _PyMem_DebugCheckAddress(__func__, api->api_id, p);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002209 nbytes = read_size_t(q);
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002210 nbytes += PYMEM_DEBUG_EXTRA_BYTES;
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002211 memset(q, PYMEM_DEADBYTE, nbytes);
Victor Stinner0507bf52013-07-07 02:05:46 +02002212 api->alloc.free(api->alloc.ctx, q);
Tim Petersddea2082002-03-23 10:03:50 +00002213}
2214
Victor Stinner9ed83c42017-10-31 12:18:10 -07002215
Victor Stinner0507bf52013-07-07 02:05:46 +02002216static void *
Victor Stinnerc4aec362016-03-14 22:26:53 +01002217_PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +00002218{
Victor Stinner9ed83c42017-10-31 12:18:10 -07002219 if (p == NULL) {
2220 return _PyMem_DebugRawAlloc(0, ctx, nbytes);
2221 }
2222
Victor Stinner0507bf52013-07-07 02:05:46 +02002223 debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002224 uint8_t *head; /* base address of malloc'ed pad block */
2225 uint8_t *data; /* pointer to data bytes */
2226 uint8_t *r;
Victor Stinner9ed83c42017-10-31 12:18:10 -07002227 uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
2228 size_t total; /* 2 * SST + nbytes + 2 * SST */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002229 size_t original_nbytes;
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002230#define ERASED_SIZE 64
2231 uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */
Tim Petersddea2082002-03-23 10:03:50 +00002232
Victor Stinner9e5d30c2020-03-07 00:54:20 +01002233 _PyMem_DebugCheckAddress(__func__, api->api_id, p);
Victor Stinner9ed83c42017-10-31 12:18:10 -07002234
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002235 data = (uint8_t *)p;
2236 head = data - 2*SST;
2237 original_nbytes = read_size_t(head);
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002238 if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
Victor Stinner9ed83c42017-10-31 12:18:10 -07002239 /* integer overflow: can't represent total as a Py_ssize_t */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002240 return NULL;
Victor Stinner9ed83c42017-10-31 12:18:10 -07002241 }
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002242 total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;
Tim Petersddea2082002-03-23 10:03:50 +00002243
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002244 tail = data + original_nbytes;
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002245#ifdef PYMEM_DEBUG_SERIALNO
2246 size_t block_serialno = read_size_t(tail + SST);
2247#endif
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002248 /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and
2249 ERASED_SIZE bytes at the end as dead and save the copy of erased bytes.
2250 */
2251 if (original_nbytes <= sizeof(save)) {
2252 memcpy(save, data, original_nbytes);
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002253 memset(data - 2 * SST, PYMEM_DEADBYTE,
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002254 original_nbytes + PYMEM_DEBUG_EXTRA_BYTES);
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002255 }
2256 else {
2257 memcpy(save, data, ERASED_SIZE);
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002258 memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST);
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002259 memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE);
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002260 memset(tail - ERASED_SIZE, PYMEM_DEADBYTE,
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002261 ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST);
Victor Stinner9ed83c42017-10-31 12:18:10 -07002262 }
Tim Peters85cc1c42002-04-12 08:52:50 +00002263
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002264 /* Resize and add decorations. */
2265 r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total);
2266 if (r == NULL) {
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002267 /* if realloc() failed: rewrite header and footer which have
2268 just been erased */
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002269 nbytes = original_nbytes;
Victor Stinner9ed83c42017-10-31 12:18:10 -07002270 }
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002271 else {
2272 head = r;
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002273#ifdef PYMEM_DEBUG_SERIALNO
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002274 bumpserialno();
Victor Stinner9e87e772017-11-24 12:09:24 +01002275 block_serialno = serialno;
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002276#endif
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002277 }
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002278 data = head + 2*SST;
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002279
2280 write_size_t(head, nbytes);
2281 head[SST] = (uint8_t)api->api_id;
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002282 memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);
Victor Stinnerc4266362013-07-09 00:44:43 +02002283
Victor Stinner9ed83c42017-10-31 12:18:10 -07002284 tail = data + nbytes;
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002285 memset(tail, PYMEM_FORBIDDENBYTE, SST);
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002286#ifdef PYMEM_DEBUG_SERIALNO
Victor Stinner9e87e772017-11-24 12:09:24 +01002287 write_size_t(tail + SST, block_serialno);
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002288#endif
Serhiy Storchaka3cc4c532017-11-07 12:46:42 +02002289
2290 /* Restore saved bytes. */
2291 if (original_nbytes <= sizeof(save)) {
2292 memcpy(data, save, Py_MIN(nbytes, original_nbytes));
2293 }
2294 else {
2295 size_t i = original_nbytes - ERASED_SIZE;
2296 memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE));
2297 if (nbytes > i) {
2298 memcpy(data + i, &save[ERASED_SIZE],
2299 Py_MIN(nbytes - i, ERASED_SIZE));
2300 }
2301 }
2302
2303 if (r == NULL) {
2304 return NULL;
2305 }
Tim Peters85cc1c42002-04-12 08:52:50 +00002306
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002307 if (nbytes > original_nbytes) {
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002308 /* growing: mark new extra memory clean */
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002309 memset(data + original_nbytes, PYMEM_CLEANBYTE,
2310 nbytes - original_nbytes);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002311 }
Tim Peters85cc1c42002-04-12 08:52:50 +00002312
Victor Stinner9ed83c42017-10-31 12:18:10 -07002313 return data;
Tim Petersddea2082002-03-23 10:03:50 +00002314}
2315
Victor Stinnerd12d0e72019-11-07 12:42:07 +01002316static inline void
Victor Stinner9e5d30c2020-03-07 00:54:20 +01002317_PyMem_DebugCheckGIL(const char *func)
Victor Stinnerc4aec362016-03-14 22:26:53 +01002318{
Victor Stinnerd12d0e72019-11-07 12:42:07 +01002319 if (!PyGILState_Check()) {
Victor Stinner9e5d30c2020-03-07 00:54:20 +01002320 _Py_FatalErrorFunc(func,
2321 "Python memory allocator called "
2322 "without holding the GIL");
Victor Stinnerd12d0e72019-11-07 12:42:07 +01002323 }
Victor Stinnerc4aec362016-03-14 22:26:53 +01002324}
2325
2326static void *
2327_PyMem_DebugMalloc(void *ctx, size_t nbytes)
2328{
Victor Stinner9e5d30c2020-03-07 00:54:20 +01002329 _PyMem_DebugCheckGIL(__func__);
Victor Stinnerc4aec362016-03-14 22:26:53 +01002330 return _PyMem_DebugRawMalloc(ctx, nbytes);
2331}
2332
2333static void *
2334_PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize)
2335{
Victor Stinner9e5d30c2020-03-07 00:54:20 +01002336 _PyMem_DebugCheckGIL(__func__);
Victor Stinnerc4aec362016-03-14 22:26:53 +01002337 return _PyMem_DebugRawCalloc(ctx, nelem, elsize);
2338}
2339
Victor Stinner9ed83c42017-10-31 12:18:10 -07002340
Victor Stinnerc4aec362016-03-14 22:26:53 +01002341static void
2342_PyMem_DebugFree(void *ctx, void *ptr)
2343{
Victor Stinner9e5d30c2020-03-07 00:54:20 +01002344 _PyMem_DebugCheckGIL(__func__);
Victor Stinner0aed3a42016-03-23 11:30:43 +01002345 _PyMem_DebugRawFree(ctx, ptr);
Victor Stinnerc4aec362016-03-14 22:26:53 +01002346}
2347
Victor Stinner9ed83c42017-10-31 12:18:10 -07002348
Victor Stinnerc4aec362016-03-14 22:26:53 +01002349static void *
2350_PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes)
2351{
Victor Stinner9e5d30c2020-03-07 00:54:20 +01002352 _PyMem_DebugCheckGIL(__func__);
Victor Stinnerc4aec362016-03-14 22:26:53 +01002353 return _PyMem_DebugRawRealloc(ctx, ptr, nbytes);
2354}
2355
Tim Peters7ccfadf2002-04-01 06:04:21 +00002356/* Check the forbidden bytes on both ends of the memory allocated for p.
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00002357 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
Tim Peters7ccfadf2002-04-01 06:04:21 +00002358 * and call Py_FatalError to kill the program.
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00002359 * The API id, is also checked.
Tim Peters7ccfadf2002-04-01 06:04:21 +00002360 */
Victor Stinner0507bf52013-07-07 02:05:46 +02002361static void
Victor Stinner9e5d30c2020-03-07 00:54:20 +01002362_PyMem_DebugCheckAddress(const char *func, char api, const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00002363{
Victor Stinner87d3b9d2020-03-25 19:27:36 +01002364 assert(p != NULL);
2365
Benjamin Peterson19517e42016-09-18 19:22:22 -07002366 const uint8_t *q = (const uint8_t *)p;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002367 size_t nbytes;
Benjamin Peterson19517e42016-09-18 19:22:22 -07002368 const uint8_t *tail;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002369 int i;
2370 char id;
Tim Petersddea2082002-03-23 10:03:50 +00002371
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002372 /* Check the API id */
2373 id = (char)q[-SST];
2374 if (id != api) {
Victor Stinner87d3b9d2020-03-25 19:27:36 +01002375 _PyObject_DebugDumpAddress(p);
2376 _Py_FatalErrorFormat(func,
2377 "bad ID: Allocated using API '%c', "
2378 "verified using API '%c'",
2379 id, api);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002380 }
Kristján Valur Jónssonae4cfb12009-09-28 13:45:02 +00002381
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002382 /* Check the stuff at the start of p first: if there's underwrite
2383 * corruption, the number-of-bytes field may be nuts, and checking
2384 * the tail could lead to a segfault then.
2385 */
2386 for (i = SST-1; i >= 1; --i) {
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002387 if (*(q-i) != PYMEM_FORBIDDENBYTE) {
Victor Stinner87d3b9d2020-03-25 19:27:36 +01002388 _PyObject_DebugDumpAddress(p);
2389 _Py_FatalErrorFunc(func, "bad leading pad byte");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002390 }
2391 }
Tim Petersddea2082002-03-23 10:03:50 +00002392
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002393 nbytes = read_size_t(q - 2*SST);
2394 tail = q + nbytes;
2395 for (i = 0; i < SST; ++i) {
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002396 if (tail[i] != PYMEM_FORBIDDENBYTE) {
Victor Stinner87d3b9d2020-03-25 19:27:36 +01002397 _PyObject_DebugDumpAddress(p);
2398 _Py_FatalErrorFunc(func, "bad trailing pad byte");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002399 }
2400 }
Tim Petersddea2082002-03-23 10:03:50 +00002401}
2402
Tim Peters7ccfadf2002-04-01 06:04:21 +00002403/* Display info to stderr about the memory block at p. */
Victor Stinner0507bf52013-07-07 02:05:46 +02002404static void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00002405_PyObject_DebugDumpAddress(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00002406{
Benjamin Peterson19517e42016-09-18 19:22:22 -07002407 const uint8_t *q = (const uint8_t *)p;
2408 const uint8_t *tail;
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002409 size_t nbytes;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002410 int i;
2411 int ok;
2412 char id;
Tim Petersddea2082002-03-23 10:03:50 +00002413
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002414 fprintf(stderr, "Debug memory block at address p=%p:", p);
2415 if (p == NULL) {
2416 fprintf(stderr, "\n");
2417 return;
2418 }
2419 id = (char)q[-SST];
2420 fprintf(stderr, " API '%c'\n", id);
Tim Petersddea2082002-03-23 10:03:50 +00002421
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002422 nbytes = read_size_t(q - 2*SST);
Victor Stinnerd36cf5f2020-06-10 18:38:05 +02002423 fprintf(stderr, " %zu bytes originally requested\n", nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00002424
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002425 /* In case this is nuts, check the leading pad bytes first. */
2426 fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1);
2427 ok = 1;
2428 for (i = 1; i <= SST-1; ++i) {
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002429 if (*(q-i) != PYMEM_FORBIDDENBYTE) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002430 ok = 0;
2431 break;
2432 }
2433 }
2434 if (ok)
2435 fputs("FORBIDDENBYTE, as expected.\n", stderr);
2436 else {
2437 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002438 PYMEM_FORBIDDENBYTE);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002439 for (i = SST-1; i >= 1; --i) {
Benjamin Peterson19517e42016-09-18 19:22:22 -07002440 const uint8_t byte = *(q-i);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002441 fprintf(stderr, " at p-%d: 0x%02x", i, byte);
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002442 if (byte != PYMEM_FORBIDDENBYTE)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002443 fputs(" *** OUCH", stderr);
2444 fputc('\n', stderr);
2445 }
Tim Peters449b5a82002-04-28 06:14:45 +00002446
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002447 fputs(" Because memory is corrupted at the start, the "
2448 "count of bytes requested\n"
2449 " may be bogus, and checking the trailing pad "
2450 "bytes may segfault.\n", stderr);
2451 }
Tim Petersddea2082002-03-23 10:03:50 +00002452
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002453 tail = q + nbytes;
Zackery Spytz1a2252e2019-05-06 10:56:51 -06002454 fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, (void *)tail);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002455 ok = 1;
2456 for (i = 0; i < SST; ++i) {
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002457 if (tail[i] != PYMEM_FORBIDDENBYTE) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002458 ok = 0;
2459 break;
2460 }
2461 }
2462 if (ok)
2463 fputs("FORBIDDENBYTE, as expected.\n", stderr);
2464 else {
2465 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002466 PYMEM_FORBIDDENBYTE);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002467 for (i = 0; i < SST; ++i) {
Benjamin Peterson19517e42016-09-18 19:22:22 -07002468 const uint8_t byte = tail[i];
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002469 fprintf(stderr, " at tail+%d: 0x%02x",
Stefan Krah735bb122010-11-26 10:54:09 +00002470 i, byte);
Victor Stinner60ec6ef2019-10-07 22:31:42 +02002471 if (byte != PYMEM_FORBIDDENBYTE)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002472 fputs(" *** OUCH", stderr);
2473 fputc('\n', stderr);
2474 }
2475 }
Tim Petersddea2082002-03-23 10:03:50 +00002476
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002477#ifdef PYMEM_DEBUG_SERIALNO
2478 size_t serial = read_size_t(tail + SST);
Victor Stinnerd36cf5f2020-06-10 18:38:05 +02002479 fprintf(stderr,
2480 " The block was made by call #%zu to debug malloc/realloc.\n",
2481 serial);
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002482#endif
Tim Petersddea2082002-03-23 10:03:50 +00002483
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002484 if (nbytes > 0) {
2485 i = 0;
2486 fputs(" Data at p:", stderr);
2487 /* print up to 8 bytes at the start */
2488 while (q < tail && i < 8) {
2489 fprintf(stderr, " %02x", *q);
2490 ++i;
2491 ++q;
2492 }
2493 /* and up to 8 at the end */
2494 if (q < tail) {
2495 if (tail - q > 8) {
2496 fputs(" ...", stderr);
2497 q = tail - 8;
2498 }
2499 while (q < tail) {
2500 fprintf(stderr, " %02x", *q);
2501 ++q;
2502 }
2503 }
2504 fputc('\n', stderr);
2505 }
Victor Stinner0611c262016-03-15 22:22:13 +01002506 fputc('\n', stderr);
2507
2508 fflush(stderr);
2509 _PyMem_DumpTraceback(fileno(stderr), p);
Tim Petersddea2082002-03-23 10:03:50 +00002510}
2511
David Malcolm49526f42012-06-22 14:55:41 -04002512
Thomas Wouters73e5a5b2006-06-08 15:35:45 +00002513static size_t
David Malcolm49526f42012-06-22 14:55:41 -04002514printone(FILE *out, const char* msg, size_t value)
Tim Peters16bcb6b2002-04-05 05:45:31 +00002515{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002516 int i, k;
2517 char buf[100];
2518 size_t origvalue = value;
Tim Peters16bcb6b2002-04-05 05:45:31 +00002519
David Malcolm49526f42012-06-22 14:55:41 -04002520 fputs(msg, out);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002521 for (i = (int)strlen(msg); i < 35; ++i)
David Malcolm49526f42012-06-22 14:55:41 -04002522 fputc(' ', out);
2523 fputc('=', out);
Tim Peters49f26812002-04-06 01:45:35 +00002524
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002525 /* Write the value with commas. */
2526 i = 22;
2527 buf[i--] = '\0';
2528 buf[i--] = '\n';
2529 k = 3;
2530 do {
2531 size_t nextvalue = value / 10;
Benjamin Peterson2dba1ee2013-02-20 16:54:30 -05002532 unsigned int digit = (unsigned int)(value - nextvalue * 10);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002533 value = nextvalue;
2534 buf[i--] = (char)(digit + '0');
2535 --k;
2536 if (k == 0 && value && i >= 0) {
2537 k = 3;
2538 buf[i--] = ',';
2539 }
2540 } while (value && i >= 0);
Tim Peters49f26812002-04-06 01:45:35 +00002541
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002542 while (i >= 0)
2543 buf[i--] = ' ';
David Malcolm49526f42012-06-22 14:55:41 -04002544 fputs(buf, out);
Tim Peters49f26812002-04-06 01:45:35 +00002545
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002546 return origvalue;
Tim Peters16bcb6b2002-04-05 05:45:31 +00002547}
2548
David Malcolm49526f42012-06-22 14:55:41 -04002549void
2550_PyDebugAllocatorStats(FILE *out,
2551 const char *block_name, int num_blocks, size_t sizeof_block)
2552{
2553 char buf1[128];
2554 char buf2[128];
2555 PyOS_snprintf(buf1, sizeof(buf1),
Victor Stinnerd36cf5f2020-06-10 18:38:05 +02002556 "%d %ss * %zd bytes each",
David Malcolm49526f42012-06-22 14:55:41 -04002557 num_blocks, block_name, sizeof_block);
2558 PyOS_snprintf(buf2, sizeof(buf2),
2559 "%48s ", buf1);
2560 (void)printone(out, buf2, num_blocks * sizeof_block);
2561}
2562
Victor Stinner34be8072016-03-14 12:04:26 +01002563
David Malcolm49526f42012-06-22 14:55:41 -04002564#ifdef WITH_PYMALLOC
2565
Victor Stinner34be8072016-03-14 12:04:26 +01002566#ifdef Py_DEBUG
2567/* Is target in the list? The list is traversed via the nextpool pointers.
2568 * The list may be NULL-terminated, or circular. Return 1 if target is in
2569 * list, else 0.
2570 */
2571static int
2572pool_is_in_list(const poolp target, poolp list)
2573{
2574 poolp origlist = list;
2575 assert(target != NULL);
2576 if (list == NULL)
2577 return 0;
2578 do {
2579 if (target == list)
2580 return 1;
2581 list = list->nextpool;
2582 } while (list != NULL && list != origlist);
2583 return 0;
2584}
2585#endif
2586
David Malcolm49526f42012-06-22 14:55:41 -04002587/* Print summary info to "out" about the state of pymalloc's structures.
Tim Peters08d82152002-04-18 22:25:03 +00002588 * In Py_DEBUG mode, also perform some expensive internal consistency
2589 * checks.
Victor Stinner6bf992a2017-12-06 17:26:10 +01002590 *
2591 * Return 0 if the memory debug hooks are not installed or no statistics was
Leo Ariasc3d95082018-02-03 18:36:10 -06002592 * written into out, return 1 otherwise.
Tim Peters08d82152002-04-18 22:25:03 +00002593 */
Victor Stinner6bf992a2017-12-06 17:26:10 +01002594int
David Malcolm49526f42012-06-22 14:55:41 -04002595_PyObject_DebugMallocStats(FILE *out)
Tim Peters7ccfadf2002-04-01 06:04:21 +00002596{
Victor Stinner6bf992a2017-12-06 17:26:10 +01002597 if (!_PyMem_PymallocEnabled()) {
2598 return 0;
2599 }
2600
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002601 uint i;
2602 const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
2603 /* # of pools, allocated blocks, and free blocks per class index */
2604 size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
2605 size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
2606 size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
2607 /* total # of allocated bytes in used and full pools */
2608 size_t allocated_bytes = 0;
2609 /* total # of available bytes in used pools */
2610 size_t available_bytes = 0;
2611 /* # of free pools + pools not yet carved out of current arena */
2612 uint numfreepools = 0;
2613 /* # of bytes for arena alignment padding */
2614 size_t arena_alignment = 0;
2615 /* # of bytes in used and full pools used for pool_headers */
2616 size_t pool_header_bytes = 0;
2617 /* # of bytes in used and full pools wasted due to quantization,
2618 * i.e. the necessarily leftover space at the ends of used and
2619 * full pools.
2620 */
2621 size_t quantization = 0;
2622 /* # of arenas actually allocated. */
2623 size_t narenas = 0;
2624 /* running total -- should equal narenas * ARENA_SIZE */
2625 size_t total;
2626 char buf[128];
Tim Peters7ccfadf2002-04-01 06:04:21 +00002627
David Malcolm49526f42012-06-22 14:55:41 -04002628 fprintf(out, "Small block threshold = %d, in %u size classes.\n",
Stefan Krah735bb122010-11-26 10:54:09 +00002629 SMALL_REQUEST_THRESHOLD, numclasses);
Tim Peters7ccfadf2002-04-01 06:04:21 +00002630
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002631 for (i = 0; i < numclasses; ++i)
2632 numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
Tim Peters7ccfadf2002-04-01 06:04:21 +00002633
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002634 /* Because full pools aren't linked to from anything, it's easiest
2635 * to march over all the arenas. If we're lucky, most of the memory
2636 * will be living in full pools -- would be a shame to miss them.
2637 */
Victor Stinner9e87e772017-11-24 12:09:24 +01002638 for (i = 0; i < maxarenas; ++i) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002639 uint j;
Victor Stinner9e87e772017-11-24 12:09:24 +01002640 uintptr_t base = arenas[i].address;
Thomas Woutersa9773292006-04-21 09:43:23 +00002641
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002642 /* Skip arenas which are not allocated. */
Victor Stinner9e87e772017-11-24 12:09:24 +01002643 if (arenas[i].address == (uintptr_t)NULL)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002644 continue;
2645 narenas += 1;
Thomas Woutersa9773292006-04-21 09:43:23 +00002646
Victor Stinner9e87e772017-11-24 12:09:24 +01002647 numfreepools += arenas[i].nfreepools;
Tim Peters7ccfadf2002-04-01 06:04:21 +00002648
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002649 /* round up to pool alignment */
Benjamin Peterson5d4b09c2016-09-18 19:24:52 -07002650 if (base & (uintptr_t)POOL_SIZE_MASK) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002651 arena_alignment += POOL_SIZE;
Benjamin Peterson5d4b09c2016-09-18 19:24:52 -07002652 base &= ~(uintptr_t)POOL_SIZE_MASK;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002653 base += POOL_SIZE;
2654 }
Tim Peters7ccfadf2002-04-01 06:04:21 +00002655
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002656 /* visit every pool in the arena */
Victor Stinner9e87e772017-11-24 12:09:24 +01002657 assert(base <= (uintptr_t) arenas[i].pool_address);
2658 for (j = 0; base < (uintptr_t) arenas[i].pool_address;
Benjamin Peterson19517e42016-09-18 19:22:22 -07002659 ++j, base += POOL_SIZE) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002660 poolp p = (poolp)base;
2661 const uint sz = p->szidx;
2662 uint freeblocks;
Tim Peters08d82152002-04-18 22:25:03 +00002663
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002664 if (p->ref.count == 0) {
2665 /* currently unused */
Victor Stinner34be8072016-03-14 12:04:26 +01002666#ifdef Py_DEBUG
Victor Stinner9e87e772017-11-24 12:09:24 +01002667 assert(pool_is_in_list(p, arenas[i].freepools));
Victor Stinner34be8072016-03-14 12:04:26 +01002668#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002669 continue;
2670 }
2671 ++numpools[sz];
2672 numblocks[sz] += p->ref.count;
2673 freeblocks = NUMBLOCKS(sz) - p->ref.count;
2674 numfreeblocks[sz] += freeblocks;
Tim Peters08d82152002-04-18 22:25:03 +00002675#ifdef Py_DEBUG
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002676 if (freeblocks > 0)
Victor Stinner9e87e772017-11-24 12:09:24 +01002677 assert(pool_is_in_list(p, usedpools[sz + sz]));
Tim Peters08d82152002-04-18 22:25:03 +00002678#endif
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002679 }
2680 }
Victor Stinner9e87e772017-11-24 12:09:24 +01002681 assert(narenas == narenas_currently_allocated);
Tim Peters7ccfadf2002-04-01 06:04:21 +00002682
David Malcolm49526f42012-06-22 14:55:41 -04002683 fputc('\n', out);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002684 fputs("class size num pools blocks in use avail blocks\n"
2685 "----- ---- --------- ------------- ------------\n",
David Malcolm49526f42012-06-22 14:55:41 -04002686 out);
Tim Peters7ccfadf2002-04-01 06:04:21 +00002687
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002688 for (i = 0; i < numclasses; ++i) {
2689 size_t p = numpools[i];
2690 size_t b = numblocks[i];
2691 size_t f = numfreeblocks[i];
2692 uint size = INDEX2SIZE(i);
2693 if (p == 0) {
2694 assert(b == 0 && f == 0);
2695 continue;
2696 }
Victor Stinnerd36cf5f2020-06-10 18:38:05 +02002697 fprintf(out, "%5u %6u %11zu %15zu %13zu\n",
Stefan Krah735bb122010-11-26 10:54:09 +00002698 i, size, p, b, f);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002699 allocated_bytes += b * size;
2700 available_bytes += f * size;
2701 pool_header_bytes += p * POOL_OVERHEAD;
2702 quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
2703 }
David Malcolm49526f42012-06-22 14:55:41 -04002704 fputc('\n', out);
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002705#ifdef PYMEM_DEBUG_SERIALNO
2706 if (_PyMem_DebugEnabled()) {
Victor Stinner9e87e772017-11-24 12:09:24 +01002707 (void)printone(out, "# times object malloc called", serialno);
Victor Stinnere8f9acf2019-04-12 21:54:06 +02002708 }
2709#endif
Victor Stinner9e87e772017-11-24 12:09:24 +01002710 (void)printone(out, "# arenas allocated total", ntimes_arena_allocated);
2711 (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas);
2712 (void)printone(out, "# arenas highwater mark", narenas_highwater);
David Malcolm49526f42012-06-22 14:55:41 -04002713 (void)printone(out, "# arenas allocated current", narenas);
Thomas Woutersa9773292006-04-21 09:43:23 +00002714
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002715 PyOS_snprintf(buf, sizeof(buf),
Victor Stinnerd36cf5f2020-06-10 18:38:05 +02002716 "%zu arenas * %d bytes/arena",
2717 narenas, ARENA_SIZE);
David Malcolm49526f42012-06-22 14:55:41 -04002718 (void)printone(out, buf, narenas * ARENA_SIZE);
Tim Peters16bcb6b2002-04-05 05:45:31 +00002719
David Malcolm49526f42012-06-22 14:55:41 -04002720 fputc('\n', out);
Tim Peters16bcb6b2002-04-05 05:45:31 +00002721
David Malcolm49526f42012-06-22 14:55:41 -04002722 total = printone(out, "# bytes in allocated blocks", allocated_bytes);
2723 total += printone(out, "# bytes in available blocks", available_bytes);
Tim Peters49f26812002-04-06 01:45:35 +00002724
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002725 PyOS_snprintf(buf, sizeof(buf),
2726 "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
David Malcolm49526f42012-06-22 14:55:41 -04002727 total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);
Tim Peters16bcb6b2002-04-05 05:45:31 +00002728
David Malcolm49526f42012-06-22 14:55:41 -04002729 total += printone(out, "# bytes lost to pool headers", pool_header_bytes);
2730 total += printone(out, "# bytes lost to quantization", quantization);
2731 total += printone(out, "# bytes lost to arena alignment", arena_alignment);
2732 (void)printone(out, "Total", total);
Victor Stinner6bf992a2017-12-06 17:26:10 +01002733 return 1;
Tim Peters7ccfadf2002-04-01 06:04:21 +00002734}
2735
David Malcolm49526f42012-06-22 14:55:41 -04002736#endif /* #ifdef WITH_PYMALLOC */