blob: 6138af8884e053a5bbb315d2174c14f4540a5585 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
105 The file :file:`example/example3.cpp` contains a complete example that
106 demonstrates how to work with overloaded operators in more detail.
107
108Callbacks and passing anonymous functions
109=========================================
110
111The C++11 standard brought lambda functions and the generic polymorphic
112function wrapper ``std::function<>`` to the C++ programming language, which
113enable powerful new ways of working with functions. Lambda functions come in
114two flavors: stateless lambda function resemble classic function pointers that
115link to an anonymous piece of code, while stateful lambda functions
116additionally depend on captured variables that are stored in an anonymous
117*lambda closure object*.
118
119Here is a simple example of a C++ function that takes an arbitrary function
120(stateful or stateless) with signature ``int -> int`` as an argument and runs
121it with the value 10.
122
123.. code-block:: cpp
124
125 int func_arg(const std::function<int(int)> &f) {
126 return f(10);
127 }
128
129The example below is more involved: it takes a function of signature ``int -> int``
130and returns another function of the same kind. The return value is a stateful
131lambda function, which stores the value ``f`` in the capture object and adds 1 to
132its return value upon execution.
133
134.. code-block:: cpp
135
136 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
137 return [f](int i) {
138 return f(i) + 1;
139 };
140 }
141
Brad Harmon835fc062016-06-16 13:19:15 -0500142This example demonstrates using python named parameters in C++ callbacks which
143requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
144methods of classes:
145
146.. code-block:: cpp
147
148 py::cpp_function func_cpp() {
149 return py::cpp_function([](int i) { return i+1; },
150 py::arg("number"));
151 }
152
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200153After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500154trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200155
156.. code-block:: cpp
157
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200158 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200160 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200161 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200162
163 m.def("func_arg", &func_arg);
164 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500165 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 return m.ptr();
168 }
169
170The following interactive session shows how to call them from Python.
171
Wenzel Jakob99279f72016-06-03 11:19:29 +0200172.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200173
174 $ python
175 >>> import example
176 >>> def square(i):
177 ... return i * i
178 ...
179 >>> example.func_arg(square)
180 100L
181 >>> square_plus_1 = example.func_ret(square)
182 >>> square_plus_1(4)
183 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500184 >>> plus_1 = func_cpp()
185 >>> plus_1(number=43)
186 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200187
188.. note::
189
190 This functionality is very useful when generating bindings for callbacks in
191 C++ libraries (e.g. a graphical user interface library).
192
193 The file :file:`example/example5.cpp` contains a complete example that
194 demonstrates how to work with callbacks and anonymous functions in more detail.
195
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100196.. warning::
197
198 Keep in mind that passing a function from C++ to Python (or vice versa)
199 will instantiate a piece of wrapper code that translates function
200 invocations between the two languages. Copying the same function back and
201 forth between Python and C++ many times in a row will cause these wrappers
202 to accumulate, which can decrease performance.
203
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200204Overriding virtual functions in Python
205======================================
206
Wenzel Jakob93296692015-10-13 23:21:54 +0200207Suppose that a C++ class or interface has a virtual function that we'd like to
208to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
209given as a specific example of how one would do this with traditional C++
210code).
211
212.. code-block:: cpp
213
214 class Animal {
215 public:
216 virtual ~Animal() { }
217 virtual std::string go(int n_times) = 0;
218 };
219
220 class Dog : public Animal {
221 public:
222 std::string go(int n_times) {
223 std::string result;
224 for (int i=0; i<n_times; ++i)
225 result += "woof! ";
226 return result;
227 }
228 };
229
230Let's also suppose that we are given a plain function which calls the
231function ``go()`` on an arbitrary ``Animal`` instance.
232
233.. code-block:: cpp
234
235 std::string call_go(Animal *animal) {
236 return animal->go(3);
237 }
238
239Normally, the binding code for these classes would look as follows:
240
241.. code-block:: cpp
242
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200243 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200244 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200245
246 py::class_<Animal> animal(m, "Animal");
247 animal
248 .def("go", &Animal::go);
249
250 py::class_<Dog>(m, "Dog", animal)
251 .def(py::init<>());
252
253 m.def("call_go", &call_go);
254
255 return m.ptr();
256 }
257
258However, these bindings are impossible to extend: ``Animal`` is not
259constructible, and we clearly require some kind of "trampoline" that
260redirects virtual calls back to Python.
261
262Defining a new type of ``Animal`` from within Python is possible but requires a
263helper class that is defined as follows:
264
265.. code-block:: cpp
266
267 class PyAnimal : public Animal {
268 public:
269 /* Inherit the constructors */
270 using Animal::Animal;
271
272 /* Trampoline (need one for each virtual function) */
273 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200274 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200275 std::string, /* Return type */
276 Animal, /* Parent class */
277 go, /* Name of function */
278 n_times /* Argument(s) */
279 );
280 }
281 };
282
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200283The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
284functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200285a default implementation.
286
287There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
288:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
289after the *Name of the function* slot. This is useful when the C++ and Python
290versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
291
292The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200293
294.. code-block:: cpp
295 :emphasize-lines: 4,6,7
296
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200297 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200298 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200299
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200300 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200301 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200302 .def(py::init<>())
303 .def("go", &Animal::go);
304
305 py::class_<Dog>(m, "Dog", animal)
306 .def(py::init<>());
307
308 m.def("call_go", &call_go);
309
310 return m.ptr();
311 }
312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313Importantly, pybind11 is made aware of the trampoline trampoline helper class
314by specifying it as the *third* template argument to :class:`class_`. The
315second argument with the unique pointer is simply the default holder type used
316by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200317
318The Python session below shows how to override ``Animal::go`` and invoke it via
319a virtual method call.
320
Wenzel Jakob99279f72016-06-03 11:19:29 +0200321.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200322
323 >>> from example import *
324 >>> d = Dog()
325 >>> call_go(d)
326 u'woof! woof! woof! '
327 >>> class Cat(Animal):
328 ... def go(self, n_times):
329 ... return "meow! " * n_times
330 ...
331 >>> c = Cat()
332 >>> call_go(c)
333 u'meow! meow! meow! '
334
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200335Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200336
Wenzel Jakob93296692015-10-13 23:21:54 +0200337.. seealso::
338
339 The file :file:`example/example12.cpp` contains a complete example that
340 demonstrates how to override virtual functions using pybind11 in more
341 detail.
342
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100343
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200344.. _macro_notes:
345
346General notes regarding convenience macros
347==========================================
348
349pybind11 provides a few convenience macros such as
350:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
351``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
352in the preprocessor (which has no concept of types), they *will* get confused
353by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
354T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
355the beginnning of the next parameter. Use a ``typedef`` to bind the template to
356another name and use it in the macro to avoid this problem.
357
358
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100359Global Interpreter Lock (GIL)
360=============================
361
362The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
363used to acquire and release the global interpreter lock in the body of a C++
364function call. In this way, long-running C++ code can be parallelized using
365multiple Python threads. Taking the previous section as an example, this could
366be realized as follows (important changes highlighted):
367
368.. code-block:: cpp
369 :emphasize-lines: 8,9,33,34
370
371 class PyAnimal : public Animal {
372 public:
373 /* Inherit the constructors */
374 using Animal::Animal;
375
376 /* Trampoline (need one for each virtual function) */
377 std::string go(int n_times) {
378 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100379 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100380
381 PYBIND11_OVERLOAD_PURE(
382 std::string, /* Return type */
383 Animal, /* Parent class */
384 go, /* Name of function */
385 n_times /* Argument(s) */
386 );
387 }
388 };
389
390 PYBIND11_PLUGIN(example) {
391 py::module m("example", "pybind11 example plugin");
392
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200393 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100394 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100395 .def(py::init<>())
396 .def("go", &Animal::go);
397
398 py::class_<Dog>(m, "Dog", animal)
399 .def(py::init<>());
400
401 m.def("call_go", [](Animal *animal) -> std::string {
402 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100403 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100404 return call_go(animal);
405 });
406
407 return m.ptr();
408 }
409
Wenzel Jakob93296692015-10-13 23:21:54 +0200410Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200411===========================
412
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200413When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200414between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
415and the Python ``list``, ``set`` and ``dict`` data structures are automatically
416enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
417out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200418
419.. note::
420
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100421 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200422
423.. seealso::
424
425 The file :file:`example/example2.cpp` contains a complete example that
426 demonstrates how to pass STL data types in more detail.
427
Wenzel Jakobb2825952016-04-13 23:33:00 +0200428Binding sequence data types, iterators, the slicing protocol, etc.
429==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200430
431Please refer to the supplemental example for details.
432
433.. seealso::
434
435 The file :file:`example/example6.cpp` contains a complete example that
436 shows how to bind a sequence data type, including length queries
437 (``__len__``), iterators (``__iter__``), the slicing protocol and other
438 kinds of useful operations.
439
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200440Return value policies
441=====================
442
Wenzel Jakob93296692015-10-13 23:21:54 +0200443Python and C++ use wildly different ways of managing the memory and lifetime of
444objects managed by them. This can lead to issues when creating bindings for
445functions that return a non-trivial type. Just by looking at the type
446information, it is not clear whether Python should take charge of the returned
447value and eventually free its resources, or if this is handled on the C++ side.
448For this reason, pybind11 provides a several `return value policy` annotations
449that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100450functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200451
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200452.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
453
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200454+--------------------------------------------------+----------------------------------------------------------------------------+
455| Return value policy | Description |
456+==================================================+============================================================================+
457| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
458| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200459| | pointer. Otherwise, it uses :enum:`return_value::move` or |
460| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200461| | See below for a description of what all of these different policies do. |
462+--------------------------------------------------+----------------------------------------------------------------------------+
463| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200464| | return value is a pointer. You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200465+--------------------------------------------------+----------------------------------------------------------------------------+
466| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
467| | ownership. Python will call the destructor and delete operator when the |
468| | object's reference count reaches zero. Undefined behavior ensues when the |
469| | C++ side does the same.. |
470+--------------------------------------------------+----------------------------------------------------------------------------+
471| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
472| | This policy is comparably safe because the lifetimes of the two instances |
473| | are decoupled. |
474+--------------------------------------------------+----------------------------------------------------------------------------+
475| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
476| | that will be owned by Python. This policy is comparably safe because the |
477| | lifetimes of the two instances (move source and destination) are decoupled.|
478+--------------------------------------------------+----------------------------------------------------------------------------+
479| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
480| | responsible for managing the object's lifetime and deallocating it when |
481| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200482| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200483+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200484| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
485| | object without taking ownership similar to the above |
486| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
487| | the function or property's implicit ``this`` argument (called the *parent*)|
488| | is considered to be the the owner of the return value (the *child*). |
489| | pybind11 then couples the lifetime of the parent to the child via a |
490| | reference relationship that ensures that the parent cannot be garbage |
491| | collected while Python is still using the child. More advanced variations |
492| | of this scheme are also possible using combinations of |
493| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
494| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200495+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200496
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200497The following example snippet shows a use case of the
Wenzel Jakob93296692015-10-13 23:21:54 +0200498:enum:`return_value_policy::reference_internal` policy.
499
500.. code-block:: cpp
501
502 class Example {
503 public:
504 Internal &get_internal() { return internal; }
505 private:
506 Internal internal;
507 };
508
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200509 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200510 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200511
512 py::class_<Example>(m, "Example")
513 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200514 .def("get_internal", &Example::get_internal, "Return the internal data",
515 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200516
517 return m.ptr();
518 }
519
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200520.. warning::
521
522 Code with invalid call policies might access unitialized memory or free
523 data structures multiple times, which can lead to hard-to-debug
524 non-determinism and segmentation faults, hence it is worth spending the
525 time to understand all the different options in the table above.
526
527.. note::
528
529 The next section on :ref:`call_policies` discusses *call policies* that can be
530 specified *in addition* to a return value policy from the list above. Call
531 policies indicate reference relationships that can involve both return values
532 and parameters of functions.
533
534.. note::
535
536 As an alternative to elaborate call policies and lifetime management logic,
537 consider using smart pointers (see the section on :ref:`smart_pointers` for
538 details). Smart pointers can tell whether an object is still referenced from
539 C++ or Python, which generally eliminates the kinds of inconsistencies that
540 can lead to crashes or undefined behavior. For functions returning smart
541 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100542
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200543.. _call_policies:
544
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100545Additional call policies
546========================
547
548In addition to the above return value policies, further `call policies` can be
549specified to indicate dependencies between parameters. There is currently just
550one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
551argument with index ``Patient`` should be kept alive at least until the
552argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200553indices start at one, while zero refers to the return value. For methods, index
554one refers to the implicit ``this`` pointer, while regular arguments begin at
555index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100556
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200557Consider the following example: the binding code for a list append operation
558that ties the lifetime of the newly added element to the underlying container
559might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100560
561.. code-block:: cpp
562
563 py::class_<List>(m, "List")
564 .def("append", &List::append, py::keep_alive<1, 2>());
565
566.. note::
567
568 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
569 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
570 0) policies from Boost.Python.
571
Wenzel Jakob61587162016-01-18 22:38:52 +0100572.. seealso::
573
574 The file :file:`example/example13.cpp` contains a complete example that
575 demonstrates using :class:`keep_alive` in more detail.
576
Wenzel Jakob93296692015-10-13 23:21:54 +0200577Implicit type conversions
578=========================
579
580Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200581that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200582could be a fixed and an arbitrary precision number type).
583
584.. code-block:: cpp
585
586 py::class_<A>(m, "A")
587 /// ... members ...
588
589 py::class_<B>(m, "B")
590 .def(py::init<A>())
591 /// ... members ...
592
593 m.def("func",
594 [](const B &) { /* .... */ }
595 );
596
597To invoke the function ``func`` using a variable ``a`` containing an ``A``
598instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
599will automatically apply an implicit type conversion, which makes it possible
600to directly write ``func(a)``.
601
602In this situation (i.e. where ``B`` has a constructor that converts from
603``A``), the following statement enables similar implicit conversions on the
604Python side:
605
606.. code-block:: cpp
607
608 py::implicitly_convertible<A, B>();
609
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200610.. _static_properties:
611
612Static properties
613=================
614
615The section on :ref:`properties` discussed the creation of instance properties
616that are implemented in terms of C++ getters and setters.
617
618Static properties can also be created in a similar way to expose getters and
619setters of static class attributes. It is important to note that the implicit
620``self`` argument also exists in this case and is used to pass the Python
621``type`` subclass instance. This parameter will often not be needed by the C++
622side, and the following example illustrates how to instantiate a lambda getter
623function that ignores it:
624
625.. code-block:: cpp
626
627 py::class_<Foo>(m, "Foo")
628 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
629
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200630Unique pointers
631===============
632
633Given a class ``Example`` with Python bindings, it's possible to return
634instances wrapped in C++11 unique pointers, like so
635
636.. code-block:: cpp
637
638 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
639
640.. code-block:: cpp
641
642 m.def("create_example", &create_example);
643
644In other words, there is nothing special that needs to be done. While returning
645unique pointers in this way is allowed, it is *illegal* to use them as function
646arguments. For instance, the following function signature cannot be processed
647by pybind11.
648
649.. code-block:: cpp
650
651 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
652
653The above signature would imply that Python needs to give up ownership of an
654object that is passed to this function, which is generally not possible (for
655instance, the object might be referenced elsewhere).
656
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200657.. _smart_pointers:
658
Wenzel Jakob93296692015-10-13 23:21:54 +0200659Smart pointers
660==============
661
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200662This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200663types with internal reference counting. For the simpler C++11 unique pointers,
664refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200665
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200666The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200667template type, which denotes a special *holder* type that is used to manage
668references to the object. When wrapping a type named ``Type``, the default
669value of this template parameter is ``std::unique_ptr<Type>``, which means that
670the object is deallocated when Python's reference count goes to zero.
671
Wenzel Jakob1853b652015-10-18 15:38:50 +0200672It is possible to switch to other types of reference counting wrappers or smart
673pointers, which is useful in codebases that rely on them. For instance, the
674following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200675
676.. code-block:: cpp
677
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100678 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100679
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100680Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200681
Wenzel Jakob1853b652015-10-18 15:38:50 +0200682To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100683argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200684be declared at the top level before any binding code:
685
686.. code-block:: cpp
687
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200688 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200689
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100690.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100691
692 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
693 placeholder name that is used as a template parameter of the second
694 argument. Thus, feel free to use any identifier, but use it consistently on
695 both sides; also, don't use the name of a type that already exists in your
696 codebase.
697
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100698One potential stumbling block when using holder types is that they need to be
699applied consistently. Can you guess what's broken about the following binding
700code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100701
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100702.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100703
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100704 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100705
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100706 class Parent {
707 public:
708 Parent() : child(std::make_shared<Child>()) { }
709 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
710 private:
711 std::shared_ptr<Child> child;
712 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100713
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100714 PYBIND11_PLUGIN(example) {
715 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100716
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100717 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
718
719 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
720 .def(py::init<>())
721 .def("get_child", &Parent::get_child);
722
723 return m.ptr();
724 }
725
726The following Python code will cause undefined behavior (and likely a
727segmentation fault).
728
729.. code-block:: python
730
731 from example import Parent
732 print(Parent().get_child())
733
734The problem is that ``Parent::get_child()`` returns a pointer to an instance of
735``Child``, but the fact that this instance is already managed by
736``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
737pybind11 will create a second independent ``std::shared_ptr<...>`` that also
738claims ownership of the pointer. In the end, the object will be freed **twice**
739since these shared pointers have no way of knowing about each other.
740
741There are two ways to resolve this issue:
742
7431. For types that are managed by a smart pointer class, never use raw pointers
744 in function arguments or return values. In other words: always consistently
745 wrap pointers into their designated holder types (such as
746 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
747 should be modified as follows:
748
749.. code-block:: cpp
750
751 std::shared_ptr<Child> get_child() { return child; }
752
7532. Adjust the definition of ``Child`` by specifying
754 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
755 base class. This adds a small bit of information to ``Child`` that allows
756 pybind11 to realize that there is already an existing
757 ``std::shared_ptr<...>`` and communicate with it. In this case, the
758 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100759
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100760.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
761
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100762.. code-block:: cpp
763
764 class Child : public std::enable_shared_from_this<Child> { };
765
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200766
767Please take a look at the :ref:`macro_notes` before using this feature.
768
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100769.. seealso::
770
771 The file :file:`example/example8.cpp` contains a complete example that
772 demonstrates how to work with custom reference-counting holder types in
773 more detail.
774
Wenzel Jakob93296692015-10-13 23:21:54 +0200775.. _custom_constructors:
776
777Custom constructors
778===================
779
780The syntax for binding constructors was previously introduced, but it only
781works when a constructor with the given parameters actually exists on the C++
782side. To extend this to more general cases, let's take a look at what actually
783happens under the hood: the following statement
784
785.. code-block:: cpp
786
787 py::class_<Example>(m, "Example")
788 .def(py::init<int>());
789
790is short hand notation for
791
792.. code-block:: cpp
793
794 py::class_<Example>(m, "Example")
795 .def("__init__",
796 [](Example &instance, int arg) {
797 new (&instance) Example(arg);
798 }
799 );
800
801In other words, :func:`init` creates an anonymous function that invokes an
802in-place constructor. Memory allocation etc. is already take care of beforehand
803within pybind11.
804
805Catching and throwing exceptions
806================================
807
808When C++ code invoked from Python throws an ``std::exception``, it is
809automatically converted into a Python ``Exception``. pybind11 defines multiple
810special exception classes that will map to different types of Python
811exceptions:
812
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200813.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
814
Wenzel Jakob978e3762016-04-07 18:00:41 +0200815+--------------------------------------+------------------------------+
816| C++ exception type | Python exception type |
817+======================================+==============================+
818| :class:`std::exception` | ``RuntimeError`` |
819+--------------------------------------+------------------------------+
820| :class:`std::bad_alloc` | ``MemoryError`` |
821+--------------------------------------+------------------------------+
822| :class:`std::domain_error` | ``ValueError`` |
823+--------------------------------------+------------------------------+
824| :class:`std::invalid_argument` | ``ValueError`` |
825+--------------------------------------+------------------------------+
826| :class:`std::length_error` | ``ValueError`` |
827+--------------------------------------+------------------------------+
828| :class:`std::out_of_range` | ``ValueError`` |
829+--------------------------------------+------------------------------+
830| :class:`std::range_error` | ``ValueError`` |
831+--------------------------------------+------------------------------+
832| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
833| | implement custom iterators) |
834+--------------------------------------+------------------------------+
835| :class:`pybind11::index_error` | ``IndexError`` (used to |
836| | indicate out of bounds |
837| | accesses in ``__getitem__``, |
838| | ``__setitem__``, etc.) |
839+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400840| :class:`pybind11::value_error` | ``ValueError`` (used to |
841| | indicate wrong value passed |
842| | in ``container.remove(...)`` |
843+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200844| :class:`pybind11::error_already_set` | Indicates that the Python |
845| | exception flag has already |
846| | been initialized |
847+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200848
849When a Python function invoked from C++ throws an exception, it is converted
850into a C++ exception of type :class:`error_already_set` whose string payload
851contains a textual summary.
852
853There is also a special exception :class:`cast_error` that is thrown by
854:func:`handle::call` when the input arguments cannot be converted to Python
855objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200856
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200857.. _opaque:
858
859Treating STL data structures as opaque objects
860==============================================
861
862pybind11 heavily relies on a template matching mechanism to convert parameters
863and return values that are constructed from STL data types such as vectors,
864linked lists, hash tables, etc. This even works in a recursive manner, for
865instance to deal with lists of hash maps of pairs of elementary and custom
866types, etc.
867
868However, a fundamental limitation of this approach is that internal conversions
869between Python and C++ types involve a copy operation that prevents
870pass-by-reference semantics. What does this mean?
871
872Suppose we bind the following function
873
874.. code-block:: cpp
875
876 void append_1(std::vector<int> &v) {
877 v.push_back(1);
878 }
879
880and call it from Python, the following happens:
881
Wenzel Jakob99279f72016-06-03 11:19:29 +0200882.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200883
884 >>> v = [5, 6]
885 >>> append_1(v)
886 >>> print(v)
887 [5, 6]
888
889As you can see, when passing STL data structures by reference, modifications
890are not propagated back the Python side. A similar situation arises when
891exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
892functions:
893
894.. code-block:: cpp
895
896 /* ... definition ... */
897
898 class MyClass {
899 std::vector<int> contents;
900 };
901
902 /* ... binding code ... */
903
904 py::class_<MyClass>(m, "MyClass")
905 .def(py::init<>)
906 .def_readwrite("contents", &MyClass::contents);
907
908In this case, properties can be read and written in their entirety. However, an
909``append`` operaton involving such a list type has no effect:
910
Wenzel Jakob99279f72016-06-03 11:19:29 +0200911.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200912
913 >>> m = MyClass()
914 >>> m.contents = [5, 6]
915 >>> print(m.contents)
916 [5, 6]
917 >>> m.contents.append(7)
918 >>> print(m.contents)
919 [5, 6]
920
921To deal with both of the above situations, pybind11 provides a macro named
922``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
923machinery of types, thus rendering them *opaque*. The contents of opaque
924objects are never inspected or extracted, hence they can be passed by
925reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
926the declaration
927
928.. code-block:: cpp
929
930 PYBIND11_MAKE_OPAQUE(std::vector<int>);
931
932before any binding code (e.g. invocations to ``class_::def()``, etc.). This
933macro must be specified at the top level, since instantiates a partial template
934overload. If your binding code consists of multiple compilation units, it must
935be present in every file preceding any usage of ``std::vector<int>``. Opaque
936types must also have a corresponding ``class_`` declaration to associate them
937with a name in Python, and to define a set of available operations:
938
939.. code-block:: cpp
940
941 py::class_<std::vector<int>>(m, "IntVector")
942 .def(py::init<>())
943 .def("clear", &std::vector<int>::clear)
944 .def("pop_back", &std::vector<int>::pop_back)
945 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
946 .def("__iter__", [](std::vector<int> &v) {
947 return py::make_iterator(v.begin(), v.end());
948 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
949 // ....
950
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200951Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200952
953.. seealso::
954
955 The file :file:`example/example14.cpp` contains a complete example that
956 demonstrates how to create and expose opaque types using pybind11 in more
957 detail.
958
959.. _eigen:
960
961Transparent conversion of dense and sparse Eigen data types
962===========================================================
963
964Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
965its popularity and widespread adoption, pybind11 provides transparent
966conversion support between Eigen and Scientific Python linear algebra data types.
967
968Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +0100969pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200970
9711. Static and dynamic Eigen dense vectors and matrices to instances of
972 ``numpy.ndarray`` (and vice versa).
973
9741. Eigen sparse vectors and matrices to instances of
975 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
976
977This makes it possible to bind most kinds of functions that rely on these types.
978One major caveat are functions that take Eigen matrices *by reference* and modify
979them somehow, in which case the information won't be propagated to the caller.
980
981.. code-block:: cpp
982
983 /* The Python bindings of this function won't replicate
984 the intended effect of modifying the function argument */
985 void scale_by_2(Eigen::Vector3f &v) {
986 v *= 2;
987 }
988
989To see why this is, refer to the section on :ref:`opaque` (although that
990section specifically covers STL data types, the underlying issue is the same).
991The next two sections discuss an efficient alternative for exposing the
992underlying native Eigen types as opaque objects in a way that still integrates
993with NumPy and SciPy.
994
995.. [#f1] http://eigen.tuxfamily.org
996
997.. seealso::
998
999 The file :file:`example/eigen.cpp` contains a complete example that
1000 shows how to pass Eigen sparse and dense data types in more detail.
1001
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001002Buffer protocol
1003===============
1004
1005Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001006data between plugin libraries. Types can expose a buffer view [#f2]_, which
1007provides fast direct access to the raw internal data representation. Suppose we
1008want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001009
1010.. code-block:: cpp
1011
1012 class Matrix {
1013 public:
1014 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1015 m_data = new float[rows*cols];
1016 }
1017 float *data() { return m_data; }
1018 size_t rows() const { return m_rows; }
1019 size_t cols() const { return m_cols; }
1020 private:
1021 size_t m_rows, m_cols;
1022 float *m_data;
1023 };
1024
1025The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001026making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001027completely avoid copy operations with Python expressions like
1028``np.array(matrix_instance, copy = False)``.
1029
1030.. code-block:: cpp
1031
1032 py::class_<Matrix>(m, "Matrix")
1033 .def_buffer([](Matrix &m) -> py::buffer_info {
1034 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001035 m.data(), /* Pointer to buffer */
1036 sizeof(float), /* Size of one scalar */
1037 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
1038 2, /* Number of dimensions */
1039 { m.rows(), m.cols() }, /* Buffer dimensions */
1040 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001041 sizeof(float) }
1042 );
1043 });
1044
1045The snippet above binds a lambda function, which can create ``py::buffer_info``
1046description records on demand describing a given matrix. The contents of
1047``py::buffer_info`` mirror the Python buffer protocol specification.
1048
1049.. code-block:: cpp
1050
1051 struct buffer_info {
1052 void *ptr;
1053 size_t itemsize;
1054 std::string format;
1055 int ndim;
1056 std::vector<size_t> shape;
1057 std::vector<size_t> strides;
1058 };
1059
1060To create a C++ function that can take a Python buffer object as an argument,
1061simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1062in a great variety of configurations, hence some safety checks are usually
1063necessary in the function body. Below, you can see an basic example on how to
1064define a custom constructor for the Eigen double precision matrix
1065(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001066buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001067
1068.. code-block:: cpp
1069
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001070 /* Bind MatrixXd (or some other Eigen type) to Python */
1071 typedef Eigen::MatrixXd Matrix;
1072
1073 typedef Matrix::Scalar Scalar;
1074 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1075
1076 py::class_<Matrix>(m, "Matrix")
1077 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001078 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001079
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001080 /* Request a buffer descriptor from Python */
1081 py::buffer_info info = b.request();
1082
1083 /* Some sanity checks ... */
Wenzel Jakobe7628532016-05-05 10:04:44 +02001084 if (info.format != py::format_descriptor<Scalar>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001085 throw std::runtime_error("Incompatible format: expected a double array!");
1086
1087 if (info.ndim != 2)
1088 throw std::runtime_error("Incompatible buffer dimension!");
1089
Wenzel Jakobe7628532016-05-05 10:04:44 +02001090 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001091 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1092 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001093
1094 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001095 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001096
1097 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001098 });
1099
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001100For reference, the ``def_buffer()`` call for this Eigen data type should look
1101as follows:
1102
1103.. code-block:: cpp
1104
1105 .def_buffer([](Matrix &m) -> py::buffer_info {
1106 return py::buffer_info(
1107 m.data(), /* Pointer to buffer */
1108 sizeof(Scalar), /* Size of one scalar */
1109 /* Python struct-style format descriptor */
1110 py::format_descriptor<Scalar>::value,
1111 /* Number of dimensions */
1112 2,
1113 /* Buffer dimensions */
1114 { (size_t) m.rows(),
1115 (size_t) m.cols() },
1116 /* Strides (in bytes) for each index */
1117 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1118 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1119 );
1120 })
1121
1122For a much easier approach of binding Eigen types (although with some
1123limitations), refer to the section on :ref:`eigen`.
1124
Wenzel Jakob93296692015-10-13 23:21:54 +02001125.. seealso::
1126
1127 The file :file:`example/example7.cpp` contains a complete example that
1128 demonstrates using the buffer protocol with pybind11 in more detail.
1129
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001130.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001131
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001132NumPy support
1133=============
1134
1135By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1136restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001137type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001138
1139In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001140array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001141template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001142NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001143
1144.. code-block:: cpp
1145
Wenzel Jakob93296692015-10-13 23:21:54 +02001146 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001147
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001148When it is invoked with a different type (e.g. an integer or a list of
1149integers), the binding code will attempt to cast the input into a NumPy array
1150of the requested type. Note that this feature requires the
1151:file:``pybind11/numpy.h`` header to be included.
1152
1153Data in NumPy arrays is not guaranteed to packed in a dense manner;
1154furthermore, entries can be separated by arbitrary column and row strides.
1155Sometimes, it can be useful to require a function to only accept dense arrays
1156using either the C (row-major) or Fortran (column-major) ordering. This can be
1157accomplished via a second template argument with values ``py::array::c_style``
1158or ``py::array::f_style``.
1159
1160.. code-block:: cpp
1161
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001162 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001163
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001164The ``py::array::forcecast`` argument is the default value of the second
1165template paramenter, and it ensures that non-conforming arguments are converted
1166into an array satisfying the specified requirements instead of trying the next
1167function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001168
1169Vectorizing functions
1170=====================
1171
1172Suppose we want to bind a function with the following signature to Python so
1173that it can process arbitrary NumPy array arguments (vectors, matrices, general
1174N-D arrays) in addition to its normal arguments:
1175
1176.. code-block:: cpp
1177
1178 double my_func(int x, float y, double z);
1179
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001180After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001181
1182.. code-block:: cpp
1183
1184 m.def("vectorized_func", py::vectorize(my_func));
1185
1186Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001187each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001188solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1189entirely on the C++ side and can be crunched down into a tight, optimized loop
1190by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001191``numpy.dtype.float64``.
1192
Wenzel Jakob99279f72016-06-03 11:19:29 +02001193.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001194
1195 >>> x = np.array([[1, 3],[5, 7]])
1196 >>> y = np.array([[2, 4],[6, 8]])
1197 >>> z = 3
1198 >>> result = vectorized_func(x, y, z)
1199
1200The scalar argument ``z`` is transparently replicated 4 times. The input
1201arrays ``x`` and ``y`` are automatically converted into the right types (they
1202are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1203``numpy.dtype.float32``, respectively)
1204
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001205Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001206because it makes little sense to wrap it in a NumPy array. For instance,
1207suppose the function signature was
1208
1209.. code-block:: cpp
1210
1211 double my_func(int x, float y, my_custom_type *z);
1212
1213This can be done with a stateful Lambda closure:
1214
1215.. code-block:: cpp
1216
1217 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1218 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001219 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001220 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1221 return py::vectorize(stateful_closure)(x, y);
1222 }
1223 );
1224
Wenzel Jakob61587162016-01-18 22:38:52 +01001225In cases where the computation is too complicated to be reduced to
1226``vectorize``, it will be necessary to create and access the buffer contents
1227manually. The following snippet contains a complete example that shows how this
1228works (the code is somewhat contrived, since it could have been done more
1229simply using ``vectorize``).
1230
1231.. code-block:: cpp
1232
1233 #include <pybind11/pybind11.h>
1234 #include <pybind11/numpy.h>
1235
1236 namespace py = pybind11;
1237
1238 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1239 auto buf1 = input1.request(), buf2 = input2.request();
1240
1241 if (buf1.ndim != 1 || buf2.ndim != 1)
1242 throw std::runtime_error("Number of dimensions must be one");
1243
1244 if (buf1.shape[0] != buf2.shape[0])
1245 throw std::runtime_error("Input shapes must match");
1246
1247 auto result = py::array(py::buffer_info(
1248 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1249 sizeof(double), /* Size of one item */
Nils Wernerf7048f22016-05-19 11:17:17 +02001250 py::format_descriptor<double>::value(), /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001251 buf1.ndim, /* How many dimensions? */
1252 { buf1.shape[0] }, /* Number of elements for each dimension */
1253 { sizeof(double) } /* Strides for each dimension */
1254 ));
1255
1256 auto buf3 = result.request();
1257
1258 double *ptr1 = (double *) buf1.ptr,
1259 *ptr2 = (double *) buf2.ptr,
1260 *ptr3 = (double *) buf3.ptr;
1261
1262 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1263 ptr3[idx] = ptr1[idx] + ptr2[idx];
1264
1265 return result;
1266 }
1267
1268 PYBIND11_PLUGIN(test) {
1269 py::module m("test");
1270 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1271 return m.ptr();
1272 }
1273
Wenzel Jakob93296692015-10-13 23:21:54 +02001274.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001275
Wenzel Jakob93296692015-10-13 23:21:54 +02001276 The file :file:`example/example10.cpp` contains a complete example that
1277 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001278
Wenzel Jakob93296692015-10-13 23:21:54 +02001279Functions taking Python objects as arguments
1280============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001281
Wenzel Jakob93296692015-10-13 23:21:54 +02001282pybind11 exposes all major Python types using thin C++ wrapper classes. These
1283wrapper classes can also be used as parameters of functions in bindings, which
1284makes it possible to directly work with native Python types on the C++ side.
1285For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001286
Wenzel Jakob93296692015-10-13 23:21:54 +02001287.. code-block:: cpp
1288
1289 void print_dict(py::dict dict) {
1290 /* Easily interact with Python types */
1291 for (auto item : dict)
1292 std::cout << "key=" << item.first << ", "
1293 << "value=" << item.second << std::endl;
1294 }
1295
1296Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001297:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001298:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1299:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1300:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001301
Wenzel Jakob436b7312015-10-20 01:04:30 +02001302In this kind of mixed code, it is often necessary to convert arbitrary C++
1303types to Python, which can be done using :func:`cast`:
1304
1305.. code-block:: cpp
1306
1307 MyClass *cls = ..;
1308 py::object obj = py::cast(cls);
1309
1310The reverse direction uses the following syntax:
1311
1312.. code-block:: cpp
1313
1314 py::object obj = ...;
1315 MyClass *cls = obj.cast<MyClass *>();
1316
1317When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001318It is also possible to call python functions via ``operator()``.
1319
1320.. code-block:: cpp
1321
1322 py::function f = <...>;
1323 py::object result_py = f(1234, "hello", some_instance);
1324 MyClass &result = result_py.cast<MyClass>();
1325
1326The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1327supply arbitrary argument and keyword lists, although these cannot be mixed
1328with other parameters.
1329
1330.. code-block:: cpp
1331
1332 py::function f = <...>;
1333 py::tuple args = py::make_tuple(1234);
1334 py::dict kwargs;
1335 kwargs["y"] = py::cast(5678);
1336 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001337
Wenzel Jakob93296692015-10-13 23:21:54 +02001338.. seealso::
1339
1340 The file :file:`example/example2.cpp` contains a complete example that
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001341 demonstrates passing native Python types in more detail. The file
1342 :file:`example/example11.cpp` discusses usage of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001343
1344Default arguments revisited
1345===========================
1346
1347The section on :ref:`default_args` previously discussed basic usage of default
1348arguments using pybind11. One noteworthy aspect of their implementation is that
1349default arguments are converted to Python objects right at declaration time.
1350Consider the following example:
1351
1352.. code-block:: cpp
1353
1354 py::class_<MyClass>("MyClass")
1355 .def("myFunction", py::arg("arg") = SomeType(123));
1356
1357In this case, pybind11 must already be set up to deal with values of the type
1358``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1359exception will be thrown.
1360
1361Another aspect worth highlighting is that the "preview" of the default argument
1362in the function signature is generated using the object's ``__repr__`` method.
1363If not available, the signature may not be very helpful, e.g.:
1364
Wenzel Jakob99279f72016-06-03 11:19:29 +02001365.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001366
1367 FUNCTIONS
1368 ...
1369 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001370 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001371 ...
1372
1373The first way of addressing this is by defining ``SomeType.__repr__``.
1374Alternatively, it is possible to specify the human-readable preview of the
1375default argument manually using the ``arg_t`` notation:
1376
1377.. code-block:: cpp
1378
1379 py::class_<MyClass>("MyClass")
1380 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1381
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001382Sometimes it may be necessary to pass a null pointer value as a default
1383argument. In this case, remember to cast it to the underlying type in question,
1384like so:
1385
1386.. code-block:: cpp
1387
1388 py::class_<MyClass>("MyClass")
1389 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1390
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001391Binding functions that accept arbitrary numbers of arguments and keywords arguments
1392===================================================================================
1393
1394Python provides a useful mechanism to define functions that accept arbitrary
1395numbers of arguments and keyword arguments:
1396
1397.. code-block:: cpp
1398
1399 def generic(*args, **kwargs):
1400 # .. do something with args and kwargs
1401
1402Such functions can also be created using pybind11:
1403
1404.. code-block:: cpp
1405
1406 void generic(py::args args, py::kwargs kwargs) {
1407 /// .. do something with args
1408 if (kwargs)
1409 /// .. do something with kwargs
1410 }
1411
1412 /// Binding code
1413 m.def("generic", &generic);
1414
1415(See ``example/example11.cpp``). The class ``py::args`` derives from
1416``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note that the
1417``kwargs`` argument is invalid if no keyword arguments were actually provided.
1418Please refer to the other examples for details on how to iterate over these,
1419and on how to cast their entries into C++ objects.
1420
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001421Partitioning code over multiple extension modules
1422=================================================
1423
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001424It's straightforward to split binding code over multiple extension modules,
1425while referencing types that are declared elsewhere. Everything "just" works
1426without any special precautions. One exception to this rule occurs when
1427extending a type declared in another extension module. Recall the basic example
1428from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001429
1430.. code-block:: cpp
1431
1432 py::class_<Pet> pet(m, "Pet");
1433 pet.def(py::init<const std::string &>())
1434 .def_readwrite("name", &Pet::name);
1435
1436 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1437 .def(py::init<const std::string &>())
1438 .def("bark", &Dog::bark);
1439
1440Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1441whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1442course that the variable ``pet`` is not available anymore though it is needed
1443to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1444However, it can be acquired as follows:
1445
1446.. code-block:: cpp
1447
1448 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1449
1450 py::class_<Dog>(m, "Dog", pet)
1451 .def(py::init<const std::string &>())
1452 .def("bark", &Dog::bark);
1453
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001454Alternatively, we can rely on the ``base`` tag, which performs an automated
1455lookup of the corresponding Python type. However, this also requires invoking
1456the ``import`` function once to ensure that the pybind11 binding code of the
1457module ``basic`` has been executed.
1458
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001459.. code-block:: cpp
1460
1461 py::module::import("basic");
1462
1463 py::class_<Dog>(m, "Dog", py::base<Pet>())
1464 .def(py::init<const std::string &>())
1465 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001466
Wenzel Jakob978e3762016-04-07 18:00:41 +02001467Naturally, both methods will fail when there are cyclic dependencies.
1468
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001469Note that compiling code which has its default symbol visibility set to
1470*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1471ability to access types defined in another extension module. Workarounds
1472include changing the global symbol visibility (not recommended, because it will
1473lead unnecessarily large binaries) or manually exporting types that are
1474accessed by multiple extension modules:
1475
1476.. code-block:: cpp
1477
1478 #ifdef _WIN32
1479 # define EXPORT_TYPE __declspec(dllexport)
1480 #else
1481 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1482 #endif
1483
1484 class EXPORT_TYPE Dog : public Animal {
1485 ...
1486 };
1487
1488
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001489Pickling support
1490================
1491
1492Python's ``pickle`` module provides a powerful facility to serialize and
1493de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001494unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001495Suppose the class in question has the following signature:
1496
1497.. code-block:: cpp
1498
1499 class Pickleable {
1500 public:
1501 Pickleable(const std::string &value) : m_value(value) { }
1502 const std::string &value() const { return m_value; }
1503
1504 void setExtra(int extra) { m_extra = extra; }
1505 int extra() const { return m_extra; }
1506 private:
1507 std::string m_value;
1508 int m_extra = 0;
1509 };
1510
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001511The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001512looks as follows:
1513
1514.. code-block:: cpp
1515
1516 py::class_<Pickleable>(m, "Pickleable")
1517 .def(py::init<std::string>())
1518 .def("value", &Pickleable::value)
1519 .def("extra", &Pickleable::extra)
1520 .def("setExtra", &Pickleable::setExtra)
1521 .def("__getstate__", [](const Pickleable &p) {
1522 /* Return a tuple that fully encodes the state of the object */
1523 return py::make_tuple(p.value(), p.extra());
1524 })
1525 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1526 if (t.size() != 2)
1527 throw std::runtime_error("Invalid state!");
1528
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001529 /* Invoke the in-place constructor. Note that this is needed even
1530 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001531 new (&p) Pickleable(t[0].cast<std::string>());
1532
1533 /* Assign any additional state */
1534 p.setExtra(t[1].cast<int>());
1535 });
1536
1537An instance can now be pickled as follows:
1538
1539.. code-block:: python
1540
1541 try:
1542 import cPickle as pickle # Use cPickle on Python 2.7
1543 except ImportError:
1544 import pickle
1545
1546 p = Pickleable("test_value")
1547 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001548 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001549
Wenzel Jakob81e09752016-04-30 23:13:03 +02001550Note that only the cPickle module is supported on Python 2.7. The second
1551argument to ``dumps`` is also crucial: it selects the pickle protocol version
15522, since the older version 1 is not supported. Newer versions are also fine—for
1553instance, specify ``-1`` to always use the latest available version. Beware:
1554failure to follow these instructions will cause important pybind11 memory
1555allocation routines to be skipped during unpickling, which will likely lead to
1556memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001557
1558.. seealso::
1559
1560 The file :file:`example/example15.cpp` contains a complete example that
1561 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1562
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001563.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001564
1565Generating documentation using Sphinx
1566=====================================
1567
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001568Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001569strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001570documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001571simple example repository which uses this approach.
1572
1573There are two potential gotchas when using this approach: first, make sure that
1574the resulting strings do not contain any :kbd:`TAB` characters, which break the
1575docstring parsing routines. You may want to use C++11 raw string literals,
1576which are convenient for multi-line comments. Conveniently, any excess
1577indentation will be automatically be removed by Sphinx. However, for this to
1578work, it is important that all lines are indented consistently, i.e.:
1579
1580.. code-block:: cpp
1581
1582 // ok
1583 m.def("foo", &foo, R"mydelimiter(
1584 The foo function
1585
1586 Parameters
1587 ----------
1588 )mydelimiter");
1589
1590 // *not ok*
1591 m.def("foo", &foo, R"mydelimiter(The foo function
1592
1593 Parameters
1594 ----------
1595 )mydelimiter");
1596
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001597.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001598.. [#f5] http://github.com/pybind/python_example