blob: d35192be397ab8e541bfe7584efa747a571481b7 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
105 The file :file:`example/example3.cpp` contains a complete example that
106 demonstrates how to work with overloaded operators in more detail.
107
108Callbacks and passing anonymous functions
109=========================================
110
111The C++11 standard brought lambda functions and the generic polymorphic
112function wrapper ``std::function<>`` to the C++ programming language, which
113enable powerful new ways of working with functions. Lambda functions come in
114two flavors: stateless lambda function resemble classic function pointers that
115link to an anonymous piece of code, while stateful lambda functions
116additionally depend on captured variables that are stored in an anonymous
117*lambda closure object*.
118
119Here is a simple example of a C++ function that takes an arbitrary function
120(stateful or stateless) with signature ``int -> int`` as an argument and runs
121it with the value 10.
122
123.. code-block:: cpp
124
125 int func_arg(const std::function<int(int)> &f) {
126 return f(10);
127 }
128
129The example below is more involved: it takes a function of signature ``int -> int``
130and returns another function of the same kind. The return value is a stateful
131lambda function, which stores the value ``f`` in the capture object and adds 1 to
132its return value upon execution.
133
134.. code-block:: cpp
135
136 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
137 return [f](int i) {
138 return f(i) + 1;
139 };
140 }
141
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200142After including the extra header file :file:`pybind11/functional.h`, it is almost
Wenzel Jakob93296692015-10-13 23:21:54 +0200143trivial to generate binding code for both of these functions.
144
145.. code-block:: cpp
146
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200147 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200148
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200149 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200150 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200151
152 m.def("func_arg", &func_arg);
153 m.def("func_ret", &func_ret);
154
155 return m.ptr();
156 }
157
158The following interactive session shows how to call them from Python.
159
160.. code-block:: python
161
162 $ python
163 >>> import example
164 >>> def square(i):
165 ... return i * i
166 ...
167 >>> example.func_arg(square)
168 100L
169 >>> square_plus_1 = example.func_ret(square)
170 >>> square_plus_1(4)
171 17L
172 >>>
173
174.. note::
175
176 This functionality is very useful when generating bindings for callbacks in
177 C++ libraries (e.g. a graphical user interface library).
178
179 The file :file:`example/example5.cpp` contains a complete example that
180 demonstrates how to work with callbacks and anonymous functions in more detail.
181
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100182.. warning::
183
184 Keep in mind that passing a function from C++ to Python (or vice versa)
185 will instantiate a piece of wrapper code that translates function
186 invocations between the two languages. Copying the same function back and
187 forth between Python and C++ many times in a row will cause these wrappers
188 to accumulate, which can decrease performance.
189
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200190Overriding virtual functions in Python
191======================================
192
Wenzel Jakob93296692015-10-13 23:21:54 +0200193Suppose that a C++ class or interface has a virtual function that we'd like to
194to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
195given as a specific example of how one would do this with traditional C++
196code).
197
198.. code-block:: cpp
199
200 class Animal {
201 public:
202 virtual ~Animal() { }
203 virtual std::string go(int n_times) = 0;
204 };
205
206 class Dog : public Animal {
207 public:
208 std::string go(int n_times) {
209 std::string result;
210 for (int i=0; i<n_times; ++i)
211 result += "woof! ";
212 return result;
213 }
214 };
215
216Let's also suppose that we are given a plain function which calls the
217function ``go()`` on an arbitrary ``Animal`` instance.
218
219.. code-block:: cpp
220
221 std::string call_go(Animal *animal) {
222 return animal->go(3);
223 }
224
225Normally, the binding code for these classes would look as follows:
226
227.. code-block:: cpp
228
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200229 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200230 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200231
232 py::class_<Animal> animal(m, "Animal");
233 animal
234 .def("go", &Animal::go);
235
236 py::class_<Dog>(m, "Dog", animal)
237 .def(py::init<>());
238
239 m.def("call_go", &call_go);
240
241 return m.ptr();
242 }
243
244However, these bindings are impossible to extend: ``Animal`` is not
245constructible, and we clearly require some kind of "trampoline" that
246redirects virtual calls back to Python.
247
248Defining a new type of ``Animal`` from within Python is possible but requires a
249helper class that is defined as follows:
250
251.. code-block:: cpp
252
253 class PyAnimal : public Animal {
254 public:
255 /* Inherit the constructors */
256 using Animal::Animal;
257
258 /* Trampoline (need one for each virtual function) */
259 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200260 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200261 std::string, /* Return type */
262 Animal, /* Parent class */
263 go, /* Name of function */
264 n_times /* Argument(s) */
265 );
266 }
267 };
268
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200269The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
270functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob93296692015-10-13 23:21:54 +0200271a default implementation. The binding code also needs a few minor adaptations
272(highlighted):
273
274.. code-block:: cpp
275 :emphasize-lines: 4,6,7
276
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200277 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200278 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200279
280 py::class_<PyAnimal> animal(m, "Animal");
281 animal
282 .alias<Animal>()
283 .def(py::init<>())
284 .def("go", &Animal::go);
285
286 py::class_<Dog>(m, "Dog", animal)
287 .def(py::init<>());
288
289 m.def("call_go", &call_go);
290
291 return m.ptr();
292 }
293
294Importantly, the trampoline helper class is used as the template argument to
295:class:`class_`, and a call to :func:`class_::alias` informs the binding
296generator that this is merely an alias for the underlying type ``Animal``.
297Following this, we are able to define a constructor as usual.
298
299The Python session below shows how to override ``Animal::go`` and invoke it via
300a virtual method call.
301
Wenzel Jakobde3ad072016-02-02 11:38:21 +0100302.. code-block:: python
Wenzel Jakob93296692015-10-13 23:21:54 +0200303
304 >>> from example import *
305 >>> d = Dog()
306 >>> call_go(d)
307 u'woof! woof! woof! '
308 >>> class Cat(Animal):
309 ... def go(self, n_times):
310 ... return "meow! " * n_times
311 ...
312 >>> c = Cat()
313 >>> call_go(c)
314 u'meow! meow! meow! '
315
316.. seealso::
317
318 The file :file:`example/example12.cpp` contains a complete example that
319 demonstrates how to override virtual functions using pybind11 in more
320 detail.
321
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100322
323Global Interpreter Lock (GIL)
324=============================
325
326The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
327used to acquire and release the global interpreter lock in the body of a C++
328function call. In this way, long-running C++ code can be parallelized using
329multiple Python threads. Taking the previous section as an example, this could
330be realized as follows (important changes highlighted):
331
332.. code-block:: cpp
333 :emphasize-lines: 8,9,33,34
334
335 class PyAnimal : public Animal {
336 public:
337 /* Inherit the constructors */
338 using Animal::Animal;
339
340 /* Trampoline (need one for each virtual function) */
341 std::string go(int n_times) {
342 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100343 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100344
345 PYBIND11_OVERLOAD_PURE(
346 std::string, /* Return type */
347 Animal, /* Parent class */
348 go, /* Name of function */
349 n_times /* Argument(s) */
350 );
351 }
352 };
353
354 PYBIND11_PLUGIN(example) {
355 py::module m("example", "pybind11 example plugin");
356
357 py::class_<PyAnimal> animal(m, "Animal");
358 animal
359 .alias<Animal>()
360 .def(py::init<>())
361 .def("go", &Animal::go);
362
363 py::class_<Dog>(m, "Dog", animal)
364 .def(py::init<>());
365
366 m.def("call_go", [](Animal *animal) -> std::string {
367 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100368 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100369 return call_go(animal);
370 });
371
372 return m.ptr();
373 }
374
Wenzel Jakob93296692015-10-13 23:21:54 +0200375Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200376===========================
377
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200378When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200379between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
380and the Python ``list``, ``set`` and ``dict`` data structures are automatically
381enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
382out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200383
384.. note::
385
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100386 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200387
388.. seealso::
389
390 The file :file:`example/example2.cpp` contains a complete example that
391 demonstrates how to pass STL data types in more detail.
392
Wenzel Jakobb2825952016-04-13 23:33:00 +0200393Binding sequence data types, iterators, the slicing protocol, etc.
394==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200395
396Please refer to the supplemental example for details.
397
398.. seealso::
399
400 The file :file:`example/example6.cpp` contains a complete example that
401 shows how to bind a sequence data type, including length queries
402 (``__len__``), iterators (``__iter__``), the slicing protocol and other
403 kinds of useful operations.
404
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200405Return value policies
406=====================
407
Wenzel Jakob93296692015-10-13 23:21:54 +0200408Python and C++ use wildly different ways of managing the memory and lifetime of
409objects managed by them. This can lead to issues when creating bindings for
410functions that return a non-trivial type. Just by looking at the type
411information, it is not clear whether Python should take charge of the returned
412value and eventually free its resources, or if this is handled on the C++ side.
413For this reason, pybind11 provides a several `return value policy` annotations
414that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100415functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200416
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200417.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
418
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200419+--------------------------------------------------+----------------------------------------------------------------------------+
420| Return value policy | Description |
421+==================================================+============================================================================+
422| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
423| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200424| | pointer. Otherwise, it uses :enum:`return_value::move` or |
425| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200426| | See below for a description of what all of these different policies do. |
427+--------------------------------------------------+----------------------------------------------------------------------------+
428| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200429| | return value is a pointer. You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200430+--------------------------------------------------+----------------------------------------------------------------------------+
431| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
432| | ownership. Python will call the destructor and delete operator when the |
433| | object's reference count reaches zero. Undefined behavior ensues when the |
434| | C++ side does the same.. |
435+--------------------------------------------------+----------------------------------------------------------------------------+
436| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
437| | This policy is comparably safe because the lifetimes of the two instances |
438| | are decoupled. |
439+--------------------------------------------------+----------------------------------------------------------------------------+
440| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
441| | that will be owned by Python. This policy is comparably safe because the |
442| | lifetimes of the two instances (move source and destination) are decoupled.|
443+--------------------------------------------------+----------------------------------------------------------------------------+
444| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
445| | responsible for managing the object's lifetime and deallocating it when |
446| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200447| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200448+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200449| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
450| | object without taking ownership similar to the above |
451| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
452| | the function or property's implicit ``this`` argument (called the *parent*)|
453| | is considered to be the the owner of the return value (the *child*). |
454| | pybind11 then couples the lifetime of the parent to the child via a |
455| | reference relationship that ensures that the parent cannot be garbage |
456| | collected while Python is still using the child. More advanced variations |
457| | of this scheme are also possible using combinations of |
458| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
459| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200460+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200461
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200462The following example snippet shows a use case of the
Wenzel Jakob93296692015-10-13 23:21:54 +0200463:enum:`return_value_policy::reference_internal` policy.
464
465.. code-block:: cpp
466
467 class Example {
468 public:
469 Internal &get_internal() { return internal; }
470 private:
471 Internal internal;
472 };
473
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200474 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200475 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200476
477 py::class_<Example>(m, "Example")
478 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200479 .def("get_internal", &Example::get_internal, "Return the internal data",
480 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200481
482 return m.ptr();
483 }
484
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200485.. warning::
486
487 Code with invalid call policies might access unitialized memory or free
488 data structures multiple times, which can lead to hard-to-debug
489 non-determinism and segmentation faults, hence it is worth spending the
490 time to understand all the different options in the table above.
491
492.. note::
493
494 The next section on :ref:`call_policies` discusses *call policies* that can be
495 specified *in addition* to a return value policy from the list above. Call
496 policies indicate reference relationships that can involve both return values
497 and parameters of functions.
498
499.. note::
500
501 As an alternative to elaborate call policies and lifetime management logic,
502 consider using smart pointers (see the section on :ref:`smart_pointers` for
503 details). Smart pointers can tell whether an object is still referenced from
504 C++ or Python, which generally eliminates the kinds of inconsistencies that
505 can lead to crashes or undefined behavior. For functions returning smart
506 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100507
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200508.. _call_policies:
509
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100510Additional call policies
511========================
512
513In addition to the above return value policies, further `call policies` can be
514specified to indicate dependencies between parameters. There is currently just
515one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
516argument with index ``Patient`` should be kept alive at least until the
517argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200518indices start at one, while zero refers to the return value. For methods, index
519one refers to the implicit ``this`` pointer, while regular arguments begin at
520index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100521
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200522Consider the following example: the binding code for a list append operation
523that ties the lifetime of the newly added element to the underlying container
524might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100525
526.. code-block:: cpp
527
528 py::class_<List>(m, "List")
529 .def("append", &List::append, py::keep_alive<1, 2>());
530
531.. note::
532
533 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
534 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
535 0) policies from Boost.Python.
536
Wenzel Jakob61587162016-01-18 22:38:52 +0100537.. seealso::
538
539 The file :file:`example/example13.cpp` contains a complete example that
540 demonstrates using :class:`keep_alive` in more detail.
541
Wenzel Jakob93296692015-10-13 23:21:54 +0200542Implicit type conversions
543=========================
544
545Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200546that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200547could be a fixed and an arbitrary precision number type).
548
549.. code-block:: cpp
550
551 py::class_<A>(m, "A")
552 /// ... members ...
553
554 py::class_<B>(m, "B")
555 .def(py::init<A>())
556 /// ... members ...
557
558 m.def("func",
559 [](const B &) { /* .... */ }
560 );
561
562To invoke the function ``func`` using a variable ``a`` containing an ``A``
563instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
564will automatically apply an implicit type conversion, which makes it possible
565to directly write ``func(a)``.
566
567In this situation (i.e. where ``B`` has a constructor that converts from
568``A``), the following statement enables similar implicit conversions on the
569Python side:
570
571.. code-block:: cpp
572
573 py::implicitly_convertible<A, B>();
574
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200575Unique pointers
576===============
577
578Given a class ``Example`` with Python bindings, it's possible to return
579instances wrapped in C++11 unique pointers, like so
580
581.. code-block:: cpp
582
583 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
584
585.. code-block:: cpp
586
587 m.def("create_example", &create_example);
588
589In other words, there is nothing special that needs to be done. While returning
590unique pointers in this way is allowed, it is *illegal* to use them as function
591arguments. For instance, the following function signature cannot be processed
592by pybind11.
593
594.. code-block:: cpp
595
596 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
597
598The above signature would imply that Python needs to give up ownership of an
599object that is passed to this function, which is generally not possible (for
600instance, the object might be referenced elsewhere).
601
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200602.. _smart_pointers:
603
Wenzel Jakob93296692015-10-13 23:21:54 +0200604Smart pointers
605==============
606
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200607This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200608types with internal reference counting. For the simpler C++11 unique pointers,
609refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200610
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200611The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200612template type, which denotes a special *holder* type that is used to manage
613references to the object. When wrapping a type named ``Type``, the default
614value of this template parameter is ``std::unique_ptr<Type>``, which means that
615the object is deallocated when Python's reference count goes to zero.
616
Wenzel Jakob1853b652015-10-18 15:38:50 +0200617It is possible to switch to other types of reference counting wrappers or smart
618pointers, which is useful in codebases that rely on them. For instance, the
619following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200620
621.. code-block:: cpp
622
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100623 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100624
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100625Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200626
Wenzel Jakob1853b652015-10-18 15:38:50 +0200627To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100628argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200629be declared at the top level before any binding code:
630
631.. code-block:: cpp
632
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200633 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200634
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100635.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100636
637 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
638 placeholder name that is used as a template parameter of the second
639 argument. Thus, feel free to use any identifier, but use it consistently on
640 both sides; also, don't use the name of a type that already exists in your
641 codebase.
642
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100643One potential stumbling block when using holder types is that they need to be
644applied consistently. Can you guess what's broken about the following binding
645code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100646
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100647.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100648
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100649 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100650
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100651 class Parent {
652 public:
653 Parent() : child(std::make_shared<Child>()) { }
654 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
655 private:
656 std::shared_ptr<Child> child;
657 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100658
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100659 PYBIND11_PLUGIN(example) {
660 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100661
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100662 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
663
664 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
665 .def(py::init<>())
666 .def("get_child", &Parent::get_child);
667
668 return m.ptr();
669 }
670
671The following Python code will cause undefined behavior (and likely a
672segmentation fault).
673
674.. code-block:: python
675
676 from example import Parent
677 print(Parent().get_child())
678
679The problem is that ``Parent::get_child()`` returns a pointer to an instance of
680``Child``, but the fact that this instance is already managed by
681``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
682pybind11 will create a second independent ``std::shared_ptr<...>`` that also
683claims ownership of the pointer. In the end, the object will be freed **twice**
684since these shared pointers have no way of knowing about each other.
685
686There are two ways to resolve this issue:
687
6881. For types that are managed by a smart pointer class, never use raw pointers
689 in function arguments or return values. In other words: always consistently
690 wrap pointers into their designated holder types (such as
691 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
692 should be modified as follows:
693
694.. code-block:: cpp
695
696 std::shared_ptr<Child> get_child() { return child; }
697
6982. Adjust the definition of ``Child`` by specifying
699 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
700 base class. This adds a small bit of information to ``Child`` that allows
701 pybind11 to realize that there is already an existing
702 ``std::shared_ptr<...>`` and communicate with it. In this case, the
703 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100704
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100705.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
706
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100707.. code-block:: cpp
708
709 class Child : public std::enable_shared_from_this<Child> { };
710
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100711.. seealso::
712
713 The file :file:`example/example8.cpp` contains a complete example that
714 demonstrates how to work with custom reference-counting holder types in
715 more detail.
716
Wenzel Jakob93296692015-10-13 23:21:54 +0200717.. _custom_constructors:
718
719Custom constructors
720===================
721
722The syntax for binding constructors was previously introduced, but it only
723works when a constructor with the given parameters actually exists on the C++
724side. To extend this to more general cases, let's take a look at what actually
725happens under the hood: the following statement
726
727.. code-block:: cpp
728
729 py::class_<Example>(m, "Example")
730 .def(py::init<int>());
731
732is short hand notation for
733
734.. code-block:: cpp
735
736 py::class_<Example>(m, "Example")
737 .def("__init__",
738 [](Example &instance, int arg) {
739 new (&instance) Example(arg);
740 }
741 );
742
743In other words, :func:`init` creates an anonymous function that invokes an
744in-place constructor. Memory allocation etc. is already take care of beforehand
745within pybind11.
746
747Catching and throwing exceptions
748================================
749
750When C++ code invoked from Python throws an ``std::exception``, it is
751automatically converted into a Python ``Exception``. pybind11 defines multiple
752special exception classes that will map to different types of Python
753exceptions:
754
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200755.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
756
Wenzel Jakob978e3762016-04-07 18:00:41 +0200757+--------------------------------------+------------------------------+
758| C++ exception type | Python exception type |
759+======================================+==============================+
760| :class:`std::exception` | ``RuntimeError`` |
761+--------------------------------------+------------------------------+
762| :class:`std::bad_alloc` | ``MemoryError`` |
763+--------------------------------------+------------------------------+
764| :class:`std::domain_error` | ``ValueError`` |
765+--------------------------------------+------------------------------+
766| :class:`std::invalid_argument` | ``ValueError`` |
767+--------------------------------------+------------------------------+
768| :class:`std::length_error` | ``ValueError`` |
769+--------------------------------------+------------------------------+
770| :class:`std::out_of_range` | ``ValueError`` |
771+--------------------------------------+------------------------------+
772| :class:`std::range_error` | ``ValueError`` |
773+--------------------------------------+------------------------------+
774| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
775| | implement custom iterators) |
776+--------------------------------------+------------------------------+
777| :class:`pybind11::index_error` | ``IndexError`` (used to |
778| | indicate out of bounds |
779| | accesses in ``__getitem__``, |
780| | ``__setitem__``, etc.) |
781+--------------------------------------+------------------------------+
782| :class:`pybind11::error_already_set` | Indicates that the Python |
783| | exception flag has already |
784| | been initialized |
785+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200786
787When a Python function invoked from C++ throws an exception, it is converted
788into a C++ exception of type :class:`error_already_set` whose string payload
789contains a textual summary.
790
791There is also a special exception :class:`cast_error` that is thrown by
792:func:`handle::call` when the input arguments cannot be converted to Python
793objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200794
795Buffer protocol
796===============
797
798Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob978e3762016-04-07 18:00:41 +0200799data between plugin libraries. Types can expose a buffer view [#f1]_,
800which provides fast direct access to the raw internal representation. Suppose
801we want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200802
803.. code-block:: cpp
804
805 class Matrix {
806 public:
807 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
808 m_data = new float[rows*cols];
809 }
810 float *data() { return m_data; }
811 size_t rows() const { return m_rows; }
812 size_t cols() const { return m_cols; }
813 private:
814 size_t m_rows, m_cols;
815 float *m_data;
816 };
817
818The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200819making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200820completely avoid copy operations with Python expressions like
821``np.array(matrix_instance, copy = False)``.
822
823.. code-block:: cpp
824
825 py::class_<Matrix>(m, "Matrix")
826 .def_buffer([](Matrix &m) -> py::buffer_info {
827 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +0200828 m.data(), /* Pointer to buffer */
829 sizeof(float), /* Size of one scalar */
830 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
831 2, /* Number of dimensions */
832 { m.rows(), m.cols() }, /* Buffer dimensions */
833 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200834 sizeof(float) }
835 );
836 });
837
838The snippet above binds a lambda function, which can create ``py::buffer_info``
839description records on demand describing a given matrix. The contents of
840``py::buffer_info`` mirror the Python buffer protocol specification.
841
842.. code-block:: cpp
843
844 struct buffer_info {
845 void *ptr;
846 size_t itemsize;
847 std::string format;
848 int ndim;
849 std::vector<size_t> shape;
850 std::vector<size_t> strides;
851 };
852
853To create a C++ function that can take a Python buffer object as an argument,
854simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
855in a great variety of configurations, hence some safety checks are usually
856necessary in the function body. Below, you can see an basic example on how to
857define a custom constructor for the Eigen double precision matrix
858(``Eigen::MatrixXd``) type, which supports initialization from compatible
859buffer
860objects (e.g. a NumPy matrix).
861
862.. code-block:: cpp
863
864 py::class_<Eigen::MatrixXd>(m, "MatrixXd")
865 .def("__init__", [](Eigen::MatrixXd &m, py::buffer b) {
866 /* Request a buffer descriptor from Python */
867 py::buffer_info info = b.request();
868
869 /* Some sanity checks ... */
Wenzel Jakob876eeab2016-05-04 22:22:48 +0200870 if (info.format != py::format_descriptor<double>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200871 throw std::runtime_error("Incompatible format: expected a double array!");
872
873 if (info.ndim != 2)
874 throw std::runtime_error("Incompatible buffer dimension!");
875
876 if (info.strides[0] == sizeof(double)) {
877 /* Buffer has the right layout -- directly copy. */
878 new (&m) Eigen::MatrixXd(info.shape[0], info.shape[1]);
879 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
880 } else {
881 /* Oops -- the buffer is transposed */
882 new (&m) Eigen::MatrixXd(info.shape[1], info.shape[0]);
883 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
884 m.transposeInPlace();
885 }
886 });
887
Wenzel Jakob93296692015-10-13 23:21:54 +0200888.. seealso::
889
890 The file :file:`example/example7.cpp` contains a complete example that
891 demonstrates using the buffer protocol with pybind11 in more detail.
892
Wenzel Jakob1c329aa2016-04-13 02:37:36 +0200893.. [#f1] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +0200894
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200895NumPy support
896=============
897
898By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
899restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +0200900type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200901
902In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +0200903array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200904template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +0200905NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200906
907.. code-block:: cpp
908
Wenzel Jakob93296692015-10-13 23:21:54 +0200909 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200910
Wenzel Jakobf1032df2016-05-05 10:00:00 +0200911When it is invoked with a different type (e.g. an integer or a list of
912integers), the binding code will attempt to cast the input into a NumPy array
913of the requested type. Note that this feature requires the
914:file:``pybind11/numpy.h`` header to be included.
915
916Data in NumPy arrays is not guaranteed to packed in a dense manner;
917furthermore, entries can be separated by arbitrary column and row strides.
918Sometimes, it can be useful to require a function to only accept dense arrays
919using either the C (row-major) or Fortran (column-major) ordering. This can be
920accomplished via a second template argument with values ``py::array::c_style``
921or ``py::array::f_style``.
922
923.. code-block:: cpp
924
925 void f(py::array_t<double, py::array::c_style> array);
926
927As before, the implementation will attempt to convert non-conforming arguments
928into an array satisfying the specified requirements.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200929
930Vectorizing functions
931=====================
932
933Suppose we want to bind a function with the following signature to Python so
934that it can process arbitrary NumPy array arguments (vectors, matrices, general
935N-D arrays) in addition to its normal arguments:
936
937.. code-block:: cpp
938
939 double my_func(int x, float y, double z);
940
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200941After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200942
943.. code-block:: cpp
944
945 m.def("vectorized_func", py::vectorize(my_func));
946
947Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200948each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +0200949solutions like ``numpy.vectorize()`` is that the loop over the elements runs
950entirely on the C++ side and can be crunched down into a tight, optimized loop
951by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200952``numpy.dtype.float64``.
953
954.. code-block:: python
955
956 >>> x = np.array([[1, 3],[5, 7]])
957 >>> y = np.array([[2, 4],[6, 8]])
958 >>> z = 3
959 >>> result = vectorized_func(x, y, z)
960
961The scalar argument ``z`` is transparently replicated 4 times. The input
962arrays ``x`` and ``y`` are automatically converted into the right types (they
963are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
964``numpy.dtype.float32``, respectively)
965
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200966Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200967because it makes little sense to wrap it in a NumPy array. For instance,
968suppose the function signature was
969
970.. code-block:: cpp
971
972 double my_func(int x, float y, my_custom_type *z);
973
974This can be done with a stateful Lambda closure:
975
976.. code-block:: cpp
977
978 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
979 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +0200980 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200981 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
982 return py::vectorize(stateful_closure)(x, y);
983 }
984 );
985
Wenzel Jakob61587162016-01-18 22:38:52 +0100986In cases where the computation is too complicated to be reduced to
987``vectorize``, it will be necessary to create and access the buffer contents
988manually. The following snippet contains a complete example that shows how this
989works (the code is somewhat contrived, since it could have been done more
990simply using ``vectorize``).
991
992.. code-block:: cpp
993
994 #include <pybind11/pybind11.h>
995 #include <pybind11/numpy.h>
996
997 namespace py = pybind11;
998
999 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1000 auto buf1 = input1.request(), buf2 = input2.request();
1001
1002 if (buf1.ndim != 1 || buf2.ndim != 1)
1003 throw std::runtime_error("Number of dimensions must be one");
1004
1005 if (buf1.shape[0] != buf2.shape[0])
1006 throw std::runtime_error("Input shapes must match");
1007
1008 auto result = py::array(py::buffer_info(
1009 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1010 sizeof(double), /* Size of one item */
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001011 py::format_descriptor<double>::value, /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001012 buf1.ndim, /* How many dimensions? */
1013 { buf1.shape[0] }, /* Number of elements for each dimension */
1014 { sizeof(double) } /* Strides for each dimension */
1015 ));
1016
1017 auto buf3 = result.request();
1018
1019 double *ptr1 = (double *) buf1.ptr,
1020 *ptr2 = (double *) buf2.ptr,
1021 *ptr3 = (double *) buf3.ptr;
1022
1023 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1024 ptr3[idx] = ptr1[idx] + ptr2[idx];
1025
1026 return result;
1027 }
1028
1029 PYBIND11_PLUGIN(test) {
1030 py::module m("test");
1031 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1032 return m.ptr();
1033 }
1034
Wenzel Jakob93296692015-10-13 23:21:54 +02001035.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001036
Wenzel Jakob93296692015-10-13 23:21:54 +02001037 The file :file:`example/example10.cpp` contains a complete example that
1038 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001039
Wenzel Jakob93296692015-10-13 23:21:54 +02001040Functions taking Python objects as arguments
1041============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001042
Wenzel Jakob93296692015-10-13 23:21:54 +02001043pybind11 exposes all major Python types using thin C++ wrapper classes. These
1044wrapper classes can also be used as parameters of functions in bindings, which
1045makes it possible to directly work with native Python types on the C++ side.
1046For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001047
Wenzel Jakob93296692015-10-13 23:21:54 +02001048.. code-block:: cpp
1049
1050 void print_dict(py::dict dict) {
1051 /* Easily interact with Python types */
1052 for (auto item : dict)
1053 std::cout << "key=" << item.first << ", "
1054 << "value=" << item.second << std::endl;
1055 }
1056
1057Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001058:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001059:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1060:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1061:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001062
Wenzel Jakob436b7312015-10-20 01:04:30 +02001063In this kind of mixed code, it is often necessary to convert arbitrary C++
1064types to Python, which can be done using :func:`cast`:
1065
1066.. code-block:: cpp
1067
1068 MyClass *cls = ..;
1069 py::object obj = py::cast(cls);
1070
1071The reverse direction uses the following syntax:
1072
1073.. code-block:: cpp
1074
1075 py::object obj = ...;
1076 MyClass *cls = obj.cast<MyClass *>();
1077
1078When conversion fails, both directions throw the exception :class:`cast_error`.
1079
Wenzel Jakob93296692015-10-13 23:21:54 +02001080.. seealso::
1081
1082 The file :file:`example/example2.cpp` contains a complete example that
1083 demonstrates passing native Python types in more detail.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001084
1085Default arguments revisited
1086===========================
1087
1088The section on :ref:`default_args` previously discussed basic usage of default
1089arguments using pybind11. One noteworthy aspect of their implementation is that
1090default arguments are converted to Python objects right at declaration time.
1091Consider the following example:
1092
1093.. code-block:: cpp
1094
1095 py::class_<MyClass>("MyClass")
1096 .def("myFunction", py::arg("arg") = SomeType(123));
1097
1098In this case, pybind11 must already be set up to deal with values of the type
1099``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1100exception will be thrown.
1101
1102Another aspect worth highlighting is that the "preview" of the default argument
1103in the function signature is generated using the object's ``__repr__`` method.
1104If not available, the signature may not be very helpful, e.g.:
1105
1106.. code-block:: python
1107
1108 FUNCTIONS
1109 ...
1110 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001111 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001112 ...
1113
1114The first way of addressing this is by defining ``SomeType.__repr__``.
1115Alternatively, it is possible to specify the human-readable preview of the
1116default argument manually using the ``arg_t`` notation:
1117
1118.. code-block:: cpp
1119
1120 py::class_<MyClass>("MyClass")
1121 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1122
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001123Sometimes it may be necessary to pass a null pointer value as a default
1124argument. In this case, remember to cast it to the underlying type in question,
1125like so:
1126
1127.. code-block:: cpp
1128
1129 py::class_<MyClass>("MyClass")
1130 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1131
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001132Partitioning code over multiple extension modules
1133=================================================
1134
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001135It's straightforward to split binding code over multiple extension modules,
1136while referencing types that are declared elsewhere. Everything "just" works
1137without any special precautions. One exception to this rule occurs when
1138extending a type declared in another extension module. Recall the basic example
1139from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001140
1141.. code-block:: cpp
1142
1143 py::class_<Pet> pet(m, "Pet");
1144 pet.def(py::init<const std::string &>())
1145 .def_readwrite("name", &Pet::name);
1146
1147 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1148 .def(py::init<const std::string &>())
1149 .def("bark", &Dog::bark);
1150
1151Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1152whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1153course that the variable ``pet`` is not available anymore though it is needed
1154to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1155However, it can be acquired as follows:
1156
1157.. code-block:: cpp
1158
1159 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1160
1161 py::class_<Dog>(m, "Dog", pet)
1162 .def(py::init<const std::string &>())
1163 .def("bark", &Dog::bark);
1164
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001165Alternatively, we can rely on the ``base`` tag, which performs an automated
1166lookup of the corresponding Python type. However, this also requires invoking
1167the ``import`` function once to ensure that the pybind11 binding code of the
1168module ``basic`` has been executed.
1169
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001170.. code-block:: cpp
1171
1172 py::module::import("basic");
1173
1174 py::class_<Dog>(m, "Dog", py::base<Pet>())
1175 .def(py::init<const std::string &>())
1176 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001177
Wenzel Jakob978e3762016-04-07 18:00:41 +02001178Naturally, both methods will fail when there are cyclic dependencies.
1179
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001180Note that compiling code which has its default symbol visibility set to
1181*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1182ability to access types defined in another extension module. Workarounds
1183include changing the global symbol visibility (not recommended, because it will
1184lead unnecessarily large binaries) or manually exporting types that are
1185accessed by multiple extension modules:
1186
1187.. code-block:: cpp
1188
1189 #ifdef _WIN32
1190 # define EXPORT_TYPE __declspec(dllexport)
1191 #else
1192 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1193 #endif
1194
1195 class EXPORT_TYPE Dog : public Animal {
1196 ...
1197 };
1198
1199
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001200Treating STL data structures as opaque objects
1201==============================================
1202
1203pybind11 heavily relies on a template matching mechanism to convert parameters
1204and return values that are constructed from STL data types such as vectors,
1205linked lists, hash tables, etc. This even works in a recursive manner, for
1206instance to deal with lists of hash maps of pairs of elementary and custom
1207types, etc.
1208
Wenzel Jakob08712282016-04-22 16:52:15 +02001209However, a fundamental limitation of this approach is that internal conversions
1210between Python and C++ types involve a copy operation that prevents
Wenzel Jakob978e3762016-04-07 18:00:41 +02001211pass-by-reference semantics. What does this mean?
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001212
1213Suppose we bind the following function
1214
1215.. code-block:: cpp
1216
1217 void append_1(std::vector<int> &v) {
1218 v.push_back(1);
1219 }
1220
Wenzel Jakob06f56ee2016-04-28 16:25:24 +02001221and call it from Python, the following happens:
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001222
1223.. code-block:: python
1224
1225 >>> v = [5, 6]
1226 >>> append_1(v)
1227 >>> print(v)
1228 [5, 6]
1229
1230As you can see, when passing STL data structures by reference, modifications
Wenzel Jakob08712282016-04-22 16:52:15 +02001231are not propagated back the Python side. A similar situation arises when
1232exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1233functions:
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001234
Wenzel Jakob08712282016-04-22 16:52:15 +02001235.. code-block:: cpp
1236
1237 /* ... definition ... */
1238
1239 class MyClass {
1240 std::vector<int> contents;
1241 };
1242
1243 /* ... binding code ... */
1244
1245 py::class_<MyClass>(m, "MyClass")
1246 .def(py::init<>)
1247 .def_readwrite("contents", &MyClass::contents);
1248
1249In this case, properties can be read and written in their entirety. However, an
1250``append`` operaton involving such a list type has no effect:
1251
1252.. code-block:: python
1253
1254 >>> m = MyClass()
1255 >>> m.contents = [5, 6]
1256 >>> print(m.contents)
1257 [5, 6]
1258 >>> m.contents.append(7)
1259 >>> print(m.contents)
1260 [5, 6]
1261
Wenzel Jakob06f56ee2016-04-28 16:25:24 +02001262To deal with both of the above situations, pybind11 provides a macro named
1263``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
1264machinery of types, thus rendering them *opaque*. The contents of opaque
1265objects are never inspected or extracted, hence they can be passed by
1266reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
1267the declaration
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001268
1269.. code-block:: cpp
1270
Wenzel Jakob06f56ee2016-04-28 16:25:24 +02001271 PYBIND11_MAKE_OPAQUE(std::vector<int>);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001272
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001273before any binding code (e.g. invocations to ``class_::def()``, etc.). This
Wenzel Jakob06f56ee2016-04-28 16:25:24 +02001274macro must be specified at the top level, since instantiates a partial template
1275overload. If your binding code consists of multiple compilation units, it must
1276be present in every file preceding any usage of ``std::vector<int>``. Opaque
1277types must also have a corresponding ``class_`` declaration to associate them
1278with a name in Python, and to define a set of available operations:
1279
1280.. code-block:: cpp
1281
1282 py::class_<std::vector<int>>(m, "IntVector")
1283 .def(py::init<>())
1284 .def("clear", &std::vector<int>::clear)
1285 .def("pop_back", &std::vector<int>::pop_back)
1286 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
1287 .def("__iter__", [](std::vector<int> &v) {
1288 return py::make_iterator(v.begin(), v.end());
1289 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
1290 // ....
1291
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001292
1293.. seealso::
1294
1295 The file :file:`example/example14.cpp` contains a complete example that
Wenzel Jakob08712282016-04-22 16:52:15 +02001296 demonstrates how to create and expose opaque types using pybind11 in more
1297 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001298
1299Pickling support
1300================
1301
1302Python's ``pickle`` module provides a powerful facility to serialize and
1303de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001304unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001305Suppose the class in question has the following signature:
1306
1307.. code-block:: cpp
1308
1309 class Pickleable {
1310 public:
1311 Pickleable(const std::string &value) : m_value(value) { }
1312 const std::string &value() const { return m_value; }
1313
1314 void setExtra(int extra) { m_extra = extra; }
1315 int extra() const { return m_extra; }
1316 private:
1317 std::string m_value;
1318 int m_extra = 0;
1319 };
1320
1321The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f2]_
1322looks as follows:
1323
1324.. code-block:: cpp
1325
1326 py::class_<Pickleable>(m, "Pickleable")
1327 .def(py::init<std::string>())
1328 .def("value", &Pickleable::value)
1329 .def("extra", &Pickleable::extra)
1330 .def("setExtra", &Pickleable::setExtra)
1331 .def("__getstate__", [](const Pickleable &p) {
1332 /* Return a tuple that fully encodes the state of the object */
1333 return py::make_tuple(p.value(), p.extra());
1334 })
1335 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1336 if (t.size() != 2)
1337 throw std::runtime_error("Invalid state!");
1338
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001339 /* Invoke the in-place constructor. Note that this is needed even
1340 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001341 new (&p) Pickleable(t[0].cast<std::string>());
1342
1343 /* Assign any additional state */
1344 p.setExtra(t[1].cast<int>());
1345 });
1346
1347An instance can now be pickled as follows:
1348
1349.. code-block:: python
1350
1351 try:
1352 import cPickle as pickle # Use cPickle on Python 2.7
1353 except ImportError:
1354 import pickle
1355
1356 p = Pickleable("test_value")
1357 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001358 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001359
Wenzel Jakob81e09752016-04-30 23:13:03 +02001360Note that only the cPickle module is supported on Python 2.7. The second
1361argument to ``dumps`` is also crucial: it selects the pickle protocol version
13622, since the older version 1 is not supported. Newer versions are also fine—for
1363instance, specify ``-1`` to always use the latest available version. Beware:
1364failure to follow these instructions will cause important pybind11 memory
1365allocation routines to be skipped during unpickling, which will likely lead to
1366memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001367
1368.. seealso::
1369
1370 The file :file:`example/example15.cpp` contains a complete example that
1371 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1372
1373.. [#f2] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001374
1375Generating documentation using Sphinx
1376=====================================
1377
1378Sphinx [#f3]_ has the ability to inspect the signatures and documentation
1379strings in pybind11-based extension modules to automatically generate beautiful
1380documentation in a variety formats. The pbtest repository [#f4]_ contains a
1381simple example repository which uses this approach.
1382
1383There are two potential gotchas when using this approach: first, make sure that
1384the resulting strings do not contain any :kbd:`TAB` characters, which break the
1385docstring parsing routines. You may want to use C++11 raw string literals,
1386which are convenient for multi-line comments. Conveniently, any excess
1387indentation will be automatically be removed by Sphinx. However, for this to
1388work, it is important that all lines are indented consistently, i.e.:
1389
1390.. code-block:: cpp
1391
1392 // ok
1393 m.def("foo", &foo, R"mydelimiter(
1394 The foo function
1395
1396 Parameters
1397 ----------
1398 )mydelimiter");
1399
1400 // *not ok*
1401 m.def("foo", &foo, R"mydelimiter(The foo function
1402
1403 Parameters
1404 ----------
1405 )mydelimiter");
1406
1407.. [#f3] http://www.sphinx-doc.org
1408.. [#f4] http://github.com/pybind/pbtest
1409