blob: 9195d57cfd82ddcd1e8ec8ed667c06d2a44eab7c [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
105 The file :file:`example/example3.cpp` contains a complete example that
106 demonstrates how to work with overloaded operators in more detail.
107
108Callbacks and passing anonymous functions
109=========================================
110
111The C++11 standard brought lambda functions and the generic polymorphic
112function wrapper ``std::function<>`` to the C++ programming language, which
113enable powerful new ways of working with functions. Lambda functions come in
114two flavors: stateless lambda function resemble classic function pointers that
115link to an anonymous piece of code, while stateful lambda functions
116additionally depend on captured variables that are stored in an anonymous
117*lambda closure object*.
118
119Here is a simple example of a C++ function that takes an arbitrary function
120(stateful or stateless) with signature ``int -> int`` as an argument and runs
121it with the value 10.
122
123.. code-block:: cpp
124
125 int func_arg(const std::function<int(int)> &f) {
126 return f(10);
127 }
128
129The example below is more involved: it takes a function of signature ``int -> int``
130and returns another function of the same kind. The return value is a stateful
131lambda function, which stores the value ``f`` in the capture object and adds 1 to
132its return value upon execution.
133
134.. code-block:: cpp
135
136 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
137 return [f](int i) {
138 return f(i) + 1;
139 };
140 }
141
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200142After including the extra header file :file:`pybind11/functional.h`, it is almost
Wenzel Jakob93296692015-10-13 23:21:54 +0200143trivial to generate binding code for both of these functions.
144
145.. code-block:: cpp
146
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200147 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200148
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200149 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200150 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200151
152 m.def("func_arg", &func_arg);
153 m.def("func_ret", &func_ret);
154
155 return m.ptr();
156 }
157
158The following interactive session shows how to call them from Python.
159
160.. code-block:: python
161
162 $ python
163 >>> import example
164 >>> def square(i):
165 ... return i * i
166 ...
167 >>> example.func_arg(square)
168 100L
169 >>> square_plus_1 = example.func_ret(square)
170 >>> square_plus_1(4)
171 17L
172 >>>
173
174.. note::
175
176 This functionality is very useful when generating bindings for callbacks in
177 C++ libraries (e.g. a graphical user interface library).
178
179 The file :file:`example/example5.cpp` contains a complete example that
180 demonstrates how to work with callbacks and anonymous functions in more detail.
181
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100182.. warning::
183
184 Keep in mind that passing a function from C++ to Python (or vice versa)
185 will instantiate a piece of wrapper code that translates function
186 invocations between the two languages. Copying the same function back and
187 forth between Python and C++ many times in a row will cause these wrappers
188 to accumulate, which can decrease performance.
189
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200190Overriding virtual functions in Python
191======================================
192
Wenzel Jakob93296692015-10-13 23:21:54 +0200193Suppose that a C++ class or interface has a virtual function that we'd like to
194to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
195given as a specific example of how one would do this with traditional C++
196code).
197
198.. code-block:: cpp
199
200 class Animal {
201 public:
202 virtual ~Animal() { }
203 virtual std::string go(int n_times) = 0;
204 };
205
206 class Dog : public Animal {
207 public:
208 std::string go(int n_times) {
209 std::string result;
210 for (int i=0; i<n_times; ++i)
211 result += "woof! ";
212 return result;
213 }
214 };
215
216Let's also suppose that we are given a plain function which calls the
217function ``go()`` on an arbitrary ``Animal`` instance.
218
219.. code-block:: cpp
220
221 std::string call_go(Animal *animal) {
222 return animal->go(3);
223 }
224
225Normally, the binding code for these classes would look as follows:
226
227.. code-block:: cpp
228
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200229 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200230 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200231
232 py::class_<Animal> animal(m, "Animal");
233 animal
234 .def("go", &Animal::go);
235
236 py::class_<Dog>(m, "Dog", animal)
237 .def(py::init<>());
238
239 m.def("call_go", &call_go);
240
241 return m.ptr();
242 }
243
244However, these bindings are impossible to extend: ``Animal`` is not
245constructible, and we clearly require some kind of "trampoline" that
246redirects virtual calls back to Python.
247
248Defining a new type of ``Animal`` from within Python is possible but requires a
249helper class that is defined as follows:
250
251.. code-block:: cpp
252
253 class PyAnimal : public Animal {
254 public:
255 /* Inherit the constructors */
256 using Animal::Animal;
257
258 /* Trampoline (need one for each virtual function) */
259 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200260 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200261 std::string, /* Return type */
262 Animal, /* Parent class */
263 go, /* Name of function */
264 n_times /* Argument(s) */
265 );
266 }
267 };
268
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200269The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
270functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob93296692015-10-13 23:21:54 +0200271a default implementation. The binding code also needs a few minor adaptations
272(highlighted):
273
274.. code-block:: cpp
275 :emphasize-lines: 4,6,7
276
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200277 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200278 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200279
280 py::class_<PyAnimal> animal(m, "Animal");
281 animal
282 .alias<Animal>()
283 .def(py::init<>())
284 .def("go", &Animal::go);
285
286 py::class_<Dog>(m, "Dog", animal)
287 .def(py::init<>());
288
289 m.def("call_go", &call_go);
290
291 return m.ptr();
292 }
293
294Importantly, the trampoline helper class is used as the template argument to
295:class:`class_`, and a call to :func:`class_::alias` informs the binding
296generator that this is merely an alias for the underlying type ``Animal``.
297Following this, we are able to define a constructor as usual.
298
299The Python session below shows how to override ``Animal::go`` and invoke it via
300a virtual method call.
301
Wenzel Jakobde3ad072016-02-02 11:38:21 +0100302.. code-block:: python
Wenzel Jakob93296692015-10-13 23:21:54 +0200303
304 >>> from example import *
305 >>> d = Dog()
306 >>> call_go(d)
307 u'woof! woof! woof! '
308 >>> class Cat(Animal):
309 ... def go(self, n_times):
310 ... return "meow! " * n_times
311 ...
312 >>> c = Cat()
313 >>> call_go(c)
314 u'meow! meow! meow! '
315
316.. seealso::
317
318 The file :file:`example/example12.cpp` contains a complete example that
319 demonstrates how to override virtual functions using pybind11 in more
320 detail.
321
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100322
323Global Interpreter Lock (GIL)
324=============================
325
326The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
327used to acquire and release the global interpreter lock in the body of a C++
328function call. In this way, long-running C++ code can be parallelized using
329multiple Python threads. Taking the previous section as an example, this could
330be realized as follows (important changes highlighted):
331
332.. code-block:: cpp
333 :emphasize-lines: 8,9,33,34
334
335 class PyAnimal : public Animal {
336 public:
337 /* Inherit the constructors */
338 using Animal::Animal;
339
340 /* Trampoline (need one for each virtual function) */
341 std::string go(int n_times) {
342 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100343 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100344
345 PYBIND11_OVERLOAD_PURE(
346 std::string, /* Return type */
347 Animal, /* Parent class */
348 go, /* Name of function */
349 n_times /* Argument(s) */
350 );
351 }
352 };
353
354 PYBIND11_PLUGIN(example) {
355 py::module m("example", "pybind11 example plugin");
356
357 py::class_<PyAnimal> animal(m, "Animal");
358 animal
359 .alias<Animal>()
360 .def(py::init<>())
361 .def("go", &Animal::go);
362
363 py::class_<Dog>(m, "Dog", animal)
364 .def(py::init<>());
365
366 m.def("call_go", [](Animal *animal) -> std::string {
367 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100368 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100369 return call_go(animal);
370 });
371
372 return m.ptr();
373 }
374
Wenzel Jakob93296692015-10-13 23:21:54 +0200375Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200376===========================
377
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200378When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200379between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
380and the Python ``list``, ``set`` and ``dict`` data structures are automatically
381enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
382out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200383
384.. note::
385
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100386 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200387
388.. seealso::
389
390 The file :file:`example/example2.cpp` contains a complete example that
391 demonstrates how to pass STL data types in more detail.
392
Wenzel Jakobb2825952016-04-13 23:33:00 +0200393Binding sequence data types, iterators, the slicing protocol, etc.
394==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200395
396Please refer to the supplemental example for details.
397
398.. seealso::
399
400 The file :file:`example/example6.cpp` contains a complete example that
401 shows how to bind a sequence data type, including length queries
402 (``__len__``), iterators (``__iter__``), the slicing protocol and other
403 kinds of useful operations.
404
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200405Return value policies
406=====================
407
Wenzel Jakob93296692015-10-13 23:21:54 +0200408Python and C++ use wildly different ways of managing the memory and lifetime of
409objects managed by them. This can lead to issues when creating bindings for
410functions that return a non-trivial type. Just by looking at the type
411information, it is not clear whether Python should take charge of the returned
412value and eventually free its resources, or if this is handled on the C++ side.
413For this reason, pybind11 provides a several `return value policy` annotations
414that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100415functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200416
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200417.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
418
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200419+--------------------------------------------------+----------------------------------------------------------------------------+
420| Return value policy | Description |
421+==================================================+============================================================================+
422| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
423| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200424| | pointer. Otherwise, it uses :enum:`return_value::move` or |
425| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200426| | See below for a description of what all of these different policies do. |
427+--------------------------------------------------+----------------------------------------------------------------------------+
428| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200429| | return value is a pointer. You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200430+--------------------------------------------------+----------------------------------------------------------------------------+
431| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
432| | ownership. Python will call the destructor and delete operator when the |
433| | object's reference count reaches zero. Undefined behavior ensues when the |
434| | C++ side does the same.. |
435+--------------------------------------------------+----------------------------------------------------------------------------+
436| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
437| | This policy is comparably safe because the lifetimes of the two instances |
438| | are decoupled. |
439+--------------------------------------------------+----------------------------------------------------------------------------+
440| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
441| | that will be owned by Python. This policy is comparably safe because the |
442| | lifetimes of the two instances (move source and destination) are decoupled.|
443+--------------------------------------------------+----------------------------------------------------------------------------+
444| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
445| | responsible for managing the object's lifetime and deallocating it when |
446| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200447| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200448+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200449| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
450| | object without taking ownership similar to the above |
451| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
452| | the function or property's implicit ``this`` argument (called the *parent*)|
453| | is considered to be the the owner of the return value (the *child*). |
454| | pybind11 then couples the lifetime of the parent to the child via a |
455| | reference relationship that ensures that the parent cannot be garbage |
456| | collected while Python is still using the child. More advanced variations |
457| | of this scheme are also possible using combinations of |
458| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
459| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200460+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200461
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200462The following example snippet shows a use case of the
Wenzel Jakob93296692015-10-13 23:21:54 +0200463:enum:`return_value_policy::reference_internal` policy.
464
465.. code-block:: cpp
466
467 class Example {
468 public:
469 Internal &get_internal() { return internal; }
470 private:
471 Internal internal;
472 };
473
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200474 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200475 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200476
477 py::class_<Example>(m, "Example")
478 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200479 .def("get_internal", &Example::get_internal, "Return the internal data",
480 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200481
482 return m.ptr();
483 }
484
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200485.. warning::
486
487 Code with invalid call policies might access unitialized memory or free
488 data structures multiple times, which can lead to hard-to-debug
489 non-determinism and segmentation faults, hence it is worth spending the
490 time to understand all the different options in the table above.
491
492.. note::
493
494 The next section on :ref:`call_policies` discusses *call policies* that can be
495 specified *in addition* to a return value policy from the list above. Call
496 policies indicate reference relationships that can involve both return values
497 and parameters of functions.
498
499.. note::
500
501 As an alternative to elaborate call policies and lifetime management logic,
502 consider using smart pointers (see the section on :ref:`smart_pointers` for
503 details). Smart pointers can tell whether an object is still referenced from
504 C++ or Python, which generally eliminates the kinds of inconsistencies that
505 can lead to crashes or undefined behavior. For functions returning smart
506 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100507
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200508.. _call_policies:
509
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100510Additional call policies
511========================
512
513In addition to the above return value policies, further `call policies` can be
514specified to indicate dependencies between parameters. There is currently just
515one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
516argument with index ``Patient`` should be kept alive at least until the
517argument with index ``Nurse`` is freed by the garbage collector; argument
518indices start at one, while zero refers to the return value. Arbitrarily many
519call policies can be specified.
520
521For instance, binding code for a a list append operation that ties the lifetime
522of the newly added element to the underlying container might be declared as
523follows:
524
525.. code-block:: cpp
526
527 py::class_<List>(m, "List")
528 .def("append", &List::append, py::keep_alive<1, 2>());
529
530.. note::
531
532 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
533 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
534 0) policies from Boost.Python.
535
Wenzel Jakob61587162016-01-18 22:38:52 +0100536.. seealso::
537
538 The file :file:`example/example13.cpp` contains a complete example that
539 demonstrates using :class:`keep_alive` in more detail.
540
Wenzel Jakob93296692015-10-13 23:21:54 +0200541Implicit type conversions
542=========================
543
544Suppose that instances of two types ``A`` and ``B`` are used in a project, and
545that an ``A`` can easily be converted into a an instance of type ``B`` (examples of this
546could be a fixed and an arbitrary precision number type).
547
548.. code-block:: cpp
549
550 py::class_<A>(m, "A")
551 /// ... members ...
552
553 py::class_<B>(m, "B")
554 .def(py::init<A>())
555 /// ... members ...
556
557 m.def("func",
558 [](const B &) { /* .... */ }
559 );
560
561To invoke the function ``func`` using a variable ``a`` containing an ``A``
562instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
563will automatically apply an implicit type conversion, which makes it possible
564to directly write ``func(a)``.
565
566In this situation (i.e. where ``B`` has a constructor that converts from
567``A``), the following statement enables similar implicit conversions on the
568Python side:
569
570.. code-block:: cpp
571
572 py::implicitly_convertible<A, B>();
573
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200574Unique pointers
575===============
576
577Given a class ``Example`` with Python bindings, it's possible to return
578instances wrapped in C++11 unique pointers, like so
579
580.. code-block:: cpp
581
582 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
583
584.. code-block:: cpp
585
586 m.def("create_example", &create_example);
587
588In other words, there is nothing special that needs to be done. While returning
589unique pointers in this way is allowed, it is *illegal* to use them as function
590arguments. For instance, the following function signature cannot be processed
591by pybind11.
592
593.. code-block:: cpp
594
595 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
596
597The above signature would imply that Python needs to give up ownership of an
598object that is passed to this function, which is generally not possible (for
599instance, the object might be referenced elsewhere).
600
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200601.. _smart_pointers:
602
Wenzel Jakob93296692015-10-13 23:21:54 +0200603Smart pointers
604==============
605
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200606This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200607types with internal reference counting. For the simpler C++11 unique pointers,
608refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200609
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200610The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200611template type, which denotes a special *holder* type that is used to manage
612references to the object. When wrapping a type named ``Type``, the default
613value of this template parameter is ``std::unique_ptr<Type>``, which means that
614the object is deallocated when Python's reference count goes to zero.
615
Wenzel Jakob1853b652015-10-18 15:38:50 +0200616It is possible to switch to other types of reference counting wrappers or smart
617pointers, which is useful in codebases that rely on them. For instance, the
618following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200619
620.. code-block:: cpp
621
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100622 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100623
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100624Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200625
Wenzel Jakob1853b652015-10-18 15:38:50 +0200626To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100627argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200628be declared at the top level before any binding code:
629
630.. code-block:: cpp
631
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200632 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200633
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100634.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100635
636 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
637 placeholder name that is used as a template parameter of the second
638 argument. Thus, feel free to use any identifier, but use it consistently on
639 both sides; also, don't use the name of a type that already exists in your
640 codebase.
641
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100642One potential stumbling block when using holder types is that they need to be
643applied consistently. Can you guess what's broken about the following binding
644code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100645
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100646.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100647
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100648 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100649
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100650 class Parent {
651 public:
652 Parent() : child(std::make_shared<Child>()) { }
653 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
654 private:
655 std::shared_ptr<Child> child;
656 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100657
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100658 PYBIND11_PLUGIN(example) {
659 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100660
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100661 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
662
663 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
664 .def(py::init<>())
665 .def("get_child", &Parent::get_child);
666
667 return m.ptr();
668 }
669
670The following Python code will cause undefined behavior (and likely a
671segmentation fault).
672
673.. code-block:: python
674
675 from example import Parent
676 print(Parent().get_child())
677
678The problem is that ``Parent::get_child()`` returns a pointer to an instance of
679``Child``, but the fact that this instance is already managed by
680``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
681pybind11 will create a second independent ``std::shared_ptr<...>`` that also
682claims ownership of the pointer. In the end, the object will be freed **twice**
683since these shared pointers have no way of knowing about each other.
684
685There are two ways to resolve this issue:
686
6871. For types that are managed by a smart pointer class, never use raw pointers
688 in function arguments or return values. In other words: always consistently
689 wrap pointers into their designated holder types (such as
690 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
691 should be modified as follows:
692
693.. code-block:: cpp
694
695 std::shared_ptr<Child> get_child() { return child; }
696
6972. Adjust the definition of ``Child`` by specifying
698 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
699 base class. This adds a small bit of information to ``Child`` that allows
700 pybind11 to realize that there is already an existing
701 ``std::shared_ptr<...>`` and communicate with it. In this case, the
702 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100703
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100704.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
705
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100706.. code-block:: cpp
707
708 class Child : public std::enable_shared_from_this<Child> { };
709
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100710.. seealso::
711
712 The file :file:`example/example8.cpp` contains a complete example that
713 demonstrates how to work with custom reference-counting holder types in
714 more detail.
715
Wenzel Jakob93296692015-10-13 23:21:54 +0200716.. _custom_constructors:
717
718Custom constructors
719===================
720
721The syntax for binding constructors was previously introduced, but it only
722works when a constructor with the given parameters actually exists on the C++
723side. To extend this to more general cases, let's take a look at what actually
724happens under the hood: the following statement
725
726.. code-block:: cpp
727
728 py::class_<Example>(m, "Example")
729 .def(py::init<int>());
730
731is short hand notation for
732
733.. code-block:: cpp
734
735 py::class_<Example>(m, "Example")
736 .def("__init__",
737 [](Example &instance, int arg) {
738 new (&instance) Example(arg);
739 }
740 );
741
742In other words, :func:`init` creates an anonymous function that invokes an
743in-place constructor. Memory allocation etc. is already take care of beforehand
744within pybind11.
745
746Catching and throwing exceptions
747================================
748
749When C++ code invoked from Python throws an ``std::exception``, it is
750automatically converted into a Python ``Exception``. pybind11 defines multiple
751special exception classes that will map to different types of Python
752exceptions:
753
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200754.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
755
Wenzel Jakob978e3762016-04-07 18:00:41 +0200756+--------------------------------------+------------------------------+
757| C++ exception type | Python exception type |
758+======================================+==============================+
759| :class:`std::exception` | ``RuntimeError`` |
760+--------------------------------------+------------------------------+
761| :class:`std::bad_alloc` | ``MemoryError`` |
762+--------------------------------------+------------------------------+
763| :class:`std::domain_error` | ``ValueError`` |
764+--------------------------------------+------------------------------+
765| :class:`std::invalid_argument` | ``ValueError`` |
766+--------------------------------------+------------------------------+
767| :class:`std::length_error` | ``ValueError`` |
768+--------------------------------------+------------------------------+
769| :class:`std::out_of_range` | ``ValueError`` |
770+--------------------------------------+------------------------------+
771| :class:`std::range_error` | ``ValueError`` |
772+--------------------------------------+------------------------------+
773| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
774| | implement custom iterators) |
775+--------------------------------------+------------------------------+
776| :class:`pybind11::index_error` | ``IndexError`` (used to |
777| | indicate out of bounds |
778| | accesses in ``__getitem__``, |
779| | ``__setitem__``, etc.) |
780+--------------------------------------+------------------------------+
781| :class:`pybind11::error_already_set` | Indicates that the Python |
782| | exception flag has already |
783| | been initialized |
784+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200785
786When a Python function invoked from C++ throws an exception, it is converted
787into a C++ exception of type :class:`error_already_set` whose string payload
788contains a textual summary.
789
790There is also a special exception :class:`cast_error` that is thrown by
791:func:`handle::call` when the input arguments cannot be converted to Python
792objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200793
794Buffer protocol
795===============
796
797Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob978e3762016-04-07 18:00:41 +0200798data between plugin libraries. Types can expose a buffer view [#f1]_,
799which provides fast direct access to the raw internal representation. Suppose
800we want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200801
802.. code-block:: cpp
803
804 class Matrix {
805 public:
806 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
807 m_data = new float[rows*cols];
808 }
809 float *data() { return m_data; }
810 size_t rows() const { return m_rows; }
811 size_t cols() const { return m_cols; }
812 private:
813 size_t m_rows, m_cols;
814 float *m_data;
815 };
816
817The following binding code exposes the ``Matrix`` contents as a buffer object,
818making it possible to cast Matrixes into NumPy arrays. It is even possible to
819completely avoid copy operations with Python expressions like
820``np.array(matrix_instance, copy = False)``.
821
822.. code-block:: cpp
823
824 py::class_<Matrix>(m, "Matrix")
825 .def_buffer([](Matrix &m) -> py::buffer_info {
826 return py::buffer_info(
827 m.data(), /* Pointer to buffer */
828 sizeof(float), /* Size of one scalar */
829 py::format_descriptor<float>::value(), /* Python struct-style format descriptor */
830 2, /* Number of dimensions */
831 { m.rows(), m.cols() }, /* Buffer dimensions */
832 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
833 sizeof(float) }
834 );
835 });
836
837The snippet above binds a lambda function, which can create ``py::buffer_info``
838description records on demand describing a given matrix. The contents of
839``py::buffer_info`` mirror the Python buffer protocol specification.
840
841.. code-block:: cpp
842
843 struct buffer_info {
844 void *ptr;
845 size_t itemsize;
846 std::string format;
847 int ndim;
848 std::vector<size_t> shape;
849 std::vector<size_t> strides;
850 };
851
852To create a C++ function that can take a Python buffer object as an argument,
853simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
854in a great variety of configurations, hence some safety checks are usually
855necessary in the function body. Below, you can see an basic example on how to
856define a custom constructor for the Eigen double precision matrix
857(``Eigen::MatrixXd``) type, which supports initialization from compatible
858buffer
859objects (e.g. a NumPy matrix).
860
861.. code-block:: cpp
862
863 py::class_<Eigen::MatrixXd>(m, "MatrixXd")
864 .def("__init__", [](Eigen::MatrixXd &m, py::buffer b) {
865 /* Request a buffer descriptor from Python */
866 py::buffer_info info = b.request();
867
868 /* Some sanity checks ... */
869 if (info.format != py::format_descriptor<double>::value())
870 throw std::runtime_error("Incompatible format: expected a double array!");
871
872 if (info.ndim != 2)
873 throw std::runtime_error("Incompatible buffer dimension!");
874
875 if (info.strides[0] == sizeof(double)) {
876 /* Buffer has the right layout -- directly copy. */
877 new (&m) Eigen::MatrixXd(info.shape[0], info.shape[1]);
878 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
879 } else {
880 /* Oops -- the buffer is transposed */
881 new (&m) Eigen::MatrixXd(info.shape[1], info.shape[0]);
882 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
883 m.transposeInPlace();
884 }
885 });
886
Wenzel Jakob93296692015-10-13 23:21:54 +0200887.. seealso::
888
889 The file :file:`example/example7.cpp` contains a complete example that
890 demonstrates using the buffer protocol with pybind11 in more detail.
891
Wenzel Jakob1c329aa2016-04-13 02:37:36 +0200892.. [#f1] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +0200893
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200894NumPy support
895=============
896
897By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
898restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +0200899type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200900
901In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +0200902array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200903template. For instance, the following function requires the argument to be a
904dense array of doubles in C-style ordering.
905
906.. code-block:: cpp
907
Wenzel Jakob93296692015-10-13 23:21:54 +0200908 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200909
910When it is invoked with a different type (e.g. an integer), the binding code
Wenzel Jakob978e3762016-04-07 18:00:41 +0200911will attempt to cast the input into a NumPy array of the requested type. Note
912that this feature requires the :file:``pybind11/numpy.h`` header to be
913included.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200914
915Vectorizing functions
916=====================
917
918Suppose we want to bind a function with the following signature to Python so
919that it can process arbitrary NumPy array arguments (vectors, matrices, general
920N-D arrays) in addition to its normal arguments:
921
922.. code-block:: cpp
923
924 double my_func(int x, float y, double z);
925
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200926After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200927
928.. code-block:: cpp
929
930 m.def("vectorized_func", py::vectorize(my_func));
931
932Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob978e3762016-04-07 18:00:41 +0200933each of the the array elements. The significant advantage of this compared to
934solutions like ``numpy.vectorize()`` is that the loop over the elements runs
935entirely on the C++ side and can be crunched down into a tight, optimized loop
936by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200937``numpy.dtype.float64``.
938
939.. code-block:: python
940
941 >>> x = np.array([[1, 3],[5, 7]])
942 >>> y = np.array([[2, 4],[6, 8]])
943 >>> z = 3
944 >>> result = vectorized_func(x, y, z)
945
946The scalar argument ``z`` is transparently replicated 4 times. The input
947arrays ``x`` and ``y`` are automatically converted into the right types (they
948are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
949``numpy.dtype.float32``, respectively)
950
951Sometimes we might want to explitly exclude an argument from the vectorization
952because it makes little sense to wrap it in a NumPy array. For instance,
953suppose the function signature was
954
955.. code-block:: cpp
956
957 double my_func(int x, float y, my_custom_type *z);
958
959This can be done with a stateful Lambda closure:
960
961.. code-block:: cpp
962
963 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
964 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +0200965 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200966 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
967 return py::vectorize(stateful_closure)(x, y);
968 }
969 );
970
Wenzel Jakob61587162016-01-18 22:38:52 +0100971In cases where the computation is too complicated to be reduced to
972``vectorize``, it will be necessary to create and access the buffer contents
973manually. The following snippet contains a complete example that shows how this
974works (the code is somewhat contrived, since it could have been done more
975simply using ``vectorize``).
976
977.. code-block:: cpp
978
979 #include <pybind11/pybind11.h>
980 #include <pybind11/numpy.h>
981
982 namespace py = pybind11;
983
984 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
985 auto buf1 = input1.request(), buf2 = input2.request();
986
987 if (buf1.ndim != 1 || buf2.ndim != 1)
988 throw std::runtime_error("Number of dimensions must be one");
989
990 if (buf1.shape[0] != buf2.shape[0])
991 throw std::runtime_error("Input shapes must match");
992
993 auto result = py::array(py::buffer_info(
994 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
995 sizeof(double), /* Size of one item */
996 py::format_descriptor<double>::value(), /* Buffer format */
997 buf1.ndim, /* How many dimensions? */
998 { buf1.shape[0] }, /* Number of elements for each dimension */
999 { sizeof(double) } /* Strides for each dimension */
1000 ));
1001
1002 auto buf3 = result.request();
1003
1004 double *ptr1 = (double *) buf1.ptr,
1005 *ptr2 = (double *) buf2.ptr,
1006 *ptr3 = (double *) buf3.ptr;
1007
1008 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1009 ptr3[idx] = ptr1[idx] + ptr2[idx];
1010
1011 return result;
1012 }
1013
1014 PYBIND11_PLUGIN(test) {
1015 py::module m("test");
1016 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1017 return m.ptr();
1018 }
1019
Wenzel Jakob93296692015-10-13 23:21:54 +02001020.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001021
Wenzel Jakob93296692015-10-13 23:21:54 +02001022 The file :file:`example/example10.cpp` contains a complete example that
1023 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001024
Wenzel Jakob93296692015-10-13 23:21:54 +02001025Functions taking Python objects as arguments
1026============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001027
Wenzel Jakob93296692015-10-13 23:21:54 +02001028pybind11 exposes all major Python types using thin C++ wrapper classes. These
1029wrapper classes can also be used as parameters of functions in bindings, which
1030makes it possible to directly work with native Python types on the C++ side.
1031For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001032
Wenzel Jakob93296692015-10-13 23:21:54 +02001033.. code-block:: cpp
1034
1035 void print_dict(py::dict dict) {
1036 /* Easily interact with Python types */
1037 for (auto item : dict)
1038 std::cout << "key=" << item.first << ", "
1039 << "value=" << item.second << std::endl;
1040 }
1041
1042Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001043:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001044:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1045:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1046:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001047
Wenzel Jakob436b7312015-10-20 01:04:30 +02001048In this kind of mixed code, it is often necessary to convert arbitrary C++
1049types to Python, which can be done using :func:`cast`:
1050
1051.. code-block:: cpp
1052
1053 MyClass *cls = ..;
1054 py::object obj = py::cast(cls);
1055
1056The reverse direction uses the following syntax:
1057
1058.. code-block:: cpp
1059
1060 py::object obj = ...;
1061 MyClass *cls = obj.cast<MyClass *>();
1062
1063When conversion fails, both directions throw the exception :class:`cast_error`.
1064
Wenzel Jakob93296692015-10-13 23:21:54 +02001065.. seealso::
1066
1067 The file :file:`example/example2.cpp` contains a complete example that
1068 demonstrates passing native Python types in more detail.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001069
1070Default arguments revisited
1071===========================
1072
1073The section on :ref:`default_args` previously discussed basic usage of default
1074arguments using pybind11. One noteworthy aspect of their implementation is that
1075default arguments are converted to Python objects right at declaration time.
1076Consider the following example:
1077
1078.. code-block:: cpp
1079
1080 py::class_<MyClass>("MyClass")
1081 .def("myFunction", py::arg("arg") = SomeType(123));
1082
1083In this case, pybind11 must already be set up to deal with values of the type
1084``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1085exception will be thrown.
1086
1087Another aspect worth highlighting is that the "preview" of the default argument
1088in the function signature is generated using the object's ``__repr__`` method.
1089If not available, the signature may not be very helpful, e.g.:
1090
1091.. code-block:: python
1092
1093 FUNCTIONS
1094 ...
1095 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001096 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001097 ...
1098
1099The first way of addressing this is by defining ``SomeType.__repr__``.
1100Alternatively, it is possible to specify the human-readable preview of the
1101default argument manually using the ``arg_t`` notation:
1102
1103.. code-block:: cpp
1104
1105 py::class_<MyClass>("MyClass")
1106 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1107
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001108Sometimes it may be necessary to pass a null pointer value as a default
1109argument. In this case, remember to cast it to the underlying type in question,
1110like so:
1111
1112.. code-block:: cpp
1113
1114 py::class_<MyClass>("MyClass")
1115 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1116
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001117Partitioning code over multiple extension modules
1118=================================================
1119
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001120It's straightforward to split binding code over multiple extension modules,
1121while referencing types that are declared elsewhere. Everything "just" works
1122without any special precautions. One exception to this rule occurs when
1123extending a type declared in another extension module. Recall the basic example
1124from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001125
1126.. code-block:: cpp
1127
1128 py::class_<Pet> pet(m, "Pet");
1129 pet.def(py::init<const std::string &>())
1130 .def_readwrite("name", &Pet::name);
1131
1132 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1133 .def(py::init<const std::string &>())
1134 .def("bark", &Dog::bark);
1135
1136Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1137whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1138course that the variable ``pet`` is not available anymore though it is needed
1139to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1140However, it can be acquired as follows:
1141
1142.. code-block:: cpp
1143
1144 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1145
1146 py::class_<Dog>(m, "Dog", pet)
1147 .def(py::init<const std::string &>())
1148 .def("bark", &Dog::bark);
1149
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001150Alternatively, we can rely on the ``base`` tag, which performs an automated
1151lookup of the corresponding Python type. However, this also requires invoking
1152the ``import`` function once to ensure that the pybind11 binding code of the
1153module ``basic`` has been executed.
1154
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001155.. code-block:: cpp
1156
1157 py::module::import("basic");
1158
1159 py::class_<Dog>(m, "Dog", py::base<Pet>())
1160 .def(py::init<const std::string &>())
1161 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001162
Wenzel Jakob978e3762016-04-07 18:00:41 +02001163Naturally, both methods will fail when there are cyclic dependencies.
1164
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001165Note that compiling code which has its default symbol visibility set to
1166*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1167ability to access types defined in another extension module. Workarounds
1168include changing the global symbol visibility (not recommended, because it will
1169lead unnecessarily large binaries) or manually exporting types that are
1170accessed by multiple extension modules:
1171
1172.. code-block:: cpp
1173
1174 #ifdef _WIN32
1175 # define EXPORT_TYPE __declspec(dllexport)
1176 #else
1177 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1178 #endif
1179
1180 class EXPORT_TYPE Dog : public Animal {
1181 ...
1182 };
1183
1184
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001185Treating STL data structures as opaque objects
1186==============================================
1187
1188pybind11 heavily relies on a template matching mechanism to convert parameters
1189and return values that are constructed from STL data types such as vectors,
1190linked lists, hash tables, etc. This even works in a recursive manner, for
1191instance to deal with lists of hash maps of pairs of elementary and custom
1192types, etc.
1193
Wenzel Jakob08712282016-04-22 16:52:15 +02001194However, a fundamental limitation of this approach is that internal conversions
1195between Python and C++ types involve a copy operation that prevents
Wenzel Jakob978e3762016-04-07 18:00:41 +02001196pass-by-reference semantics. What does this mean?
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001197
1198Suppose we bind the following function
1199
1200.. code-block:: cpp
1201
1202 void append_1(std::vector<int> &v) {
1203 v.push_back(1);
1204 }
1205
Wenzel Jakob06f56ee2016-04-28 16:25:24 +02001206and call it from Python, the following happens:
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001207
1208.. code-block:: python
1209
1210 >>> v = [5, 6]
1211 >>> append_1(v)
1212 >>> print(v)
1213 [5, 6]
1214
1215As you can see, when passing STL data structures by reference, modifications
Wenzel Jakob08712282016-04-22 16:52:15 +02001216are not propagated back the Python side. A similar situation arises when
1217exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1218functions:
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001219
Wenzel Jakob08712282016-04-22 16:52:15 +02001220.. code-block:: cpp
1221
1222 /* ... definition ... */
1223
1224 class MyClass {
1225 std::vector<int> contents;
1226 };
1227
1228 /* ... binding code ... */
1229
1230 py::class_<MyClass>(m, "MyClass")
1231 .def(py::init<>)
1232 .def_readwrite("contents", &MyClass::contents);
1233
1234In this case, properties can be read and written in their entirety. However, an
1235``append`` operaton involving such a list type has no effect:
1236
1237.. code-block:: python
1238
1239 >>> m = MyClass()
1240 >>> m.contents = [5, 6]
1241 >>> print(m.contents)
1242 [5, 6]
1243 >>> m.contents.append(7)
1244 >>> print(m.contents)
1245 [5, 6]
1246
Wenzel Jakob06f56ee2016-04-28 16:25:24 +02001247To deal with both of the above situations, pybind11 provides a macro named
1248``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
1249machinery of types, thus rendering them *opaque*. The contents of opaque
1250objects are never inspected or extracted, hence they can be passed by
1251reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
1252the declaration
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001253
1254.. code-block:: cpp
1255
Wenzel Jakob06f56ee2016-04-28 16:25:24 +02001256 PYBIND11_MAKE_OPAQUE(std::vector<int>);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001257
Wenzel Jakob06f56ee2016-04-28 16:25:24 +02001258before any binding code (e.g. invocations to ``class_::def()``, etc). This
1259macro must be specified at the top level, since instantiates a partial template
1260overload. If your binding code consists of multiple compilation units, it must
1261be present in every file preceding any usage of ``std::vector<int>``. Opaque
1262types must also have a corresponding ``class_`` declaration to associate them
1263with a name in Python, and to define a set of available operations:
1264
1265.. code-block:: cpp
1266
1267 py::class_<std::vector<int>>(m, "IntVector")
1268 .def(py::init<>())
1269 .def("clear", &std::vector<int>::clear)
1270 .def("pop_back", &std::vector<int>::pop_back)
1271 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
1272 .def("__iter__", [](std::vector<int> &v) {
1273 return py::make_iterator(v.begin(), v.end());
1274 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
1275 // ....
1276
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001277
1278.. seealso::
1279
1280 The file :file:`example/example14.cpp` contains a complete example that
Wenzel Jakob08712282016-04-22 16:52:15 +02001281 demonstrates how to create and expose opaque types using pybind11 in more
1282 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001283
1284Pickling support
1285================
1286
1287Python's ``pickle`` module provides a powerful facility to serialize and
1288de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001289unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001290Suppose the class in question has the following signature:
1291
1292.. code-block:: cpp
1293
1294 class Pickleable {
1295 public:
1296 Pickleable(const std::string &value) : m_value(value) { }
1297 const std::string &value() const { return m_value; }
1298
1299 void setExtra(int extra) { m_extra = extra; }
1300 int extra() const { return m_extra; }
1301 private:
1302 std::string m_value;
1303 int m_extra = 0;
1304 };
1305
1306The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f2]_
1307looks as follows:
1308
1309.. code-block:: cpp
1310
1311 py::class_<Pickleable>(m, "Pickleable")
1312 .def(py::init<std::string>())
1313 .def("value", &Pickleable::value)
1314 .def("extra", &Pickleable::extra)
1315 .def("setExtra", &Pickleable::setExtra)
1316 .def("__getstate__", [](const Pickleable &p) {
1317 /* Return a tuple that fully encodes the state of the object */
1318 return py::make_tuple(p.value(), p.extra());
1319 })
1320 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1321 if (t.size() != 2)
1322 throw std::runtime_error("Invalid state!");
1323
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001324 /* Invoke the in-place constructor. Note that this is needed even
1325 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001326 new (&p) Pickleable(t[0].cast<std::string>());
1327
1328 /* Assign any additional state */
1329 p.setExtra(t[1].cast<int>());
1330 });
1331
1332An instance can now be pickled as follows:
1333
1334.. code-block:: python
1335
1336 try:
1337 import cPickle as pickle # Use cPickle on Python 2.7
1338 except ImportError:
1339 import pickle
1340
1341 p = Pickleable("test_value")
1342 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001343 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001344
Wenzel Jakob81e09752016-04-30 23:13:03 +02001345Note that only the cPickle module is supported on Python 2.7. The second
1346argument to ``dumps`` is also crucial: it selects the pickle protocol version
13472, since the older version 1 is not supported. Newer versions are also fine—for
1348instance, specify ``-1`` to always use the latest available version. Beware:
1349failure to follow these instructions will cause important pybind11 memory
1350allocation routines to be skipped during unpickling, which will likely lead to
1351memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001352
1353.. seealso::
1354
1355 The file :file:`example/example15.cpp` contains a complete example that
1356 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1357
1358.. [#f2] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001359
1360Generating documentation using Sphinx
1361=====================================
1362
1363Sphinx [#f3]_ has the ability to inspect the signatures and documentation
1364strings in pybind11-based extension modules to automatically generate beautiful
1365documentation in a variety formats. The pbtest repository [#f4]_ contains a
1366simple example repository which uses this approach.
1367
1368There are two potential gotchas when using this approach: first, make sure that
1369the resulting strings do not contain any :kbd:`TAB` characters, which break the
1370docstring parsing routines. You may want to use C++11 raw string literals,
1371which are convenient for multi-line comments. Conveniently, any excess
1372indentation will be automatically be removed by Sphinx. However, for this to
1373work, it is important that all lines are indented consistently, i.e.:
1374
1375.. code-block:: cpp
1376
1377 // ok
1378 m.def("foo", &foo, R"mydelimiter(
1379 The foo function
1380
1381 Parameters
1382 ----------
1383 )mydelimiter");
1384
1385 // *not ok*
1386 m.def("foo", &foo, R"mydelimiter(The foo function
1387
1388 Parameters
1389 ----------
1390 )mydelimiter");
1391
1392.. [#f3] http://www.sphinx-doc.org
1393.. [#f4] http://github.com/pybind/pbtest
1394