Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1 | .. _advanced: |
| 2 | |
| 3 | Advanced topics |
| 4 | ############### |
| 5 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 6 | For brevity, the rest of this chapter assumes that the following two lines are |
| 7 | present: |
| 8 | |
| 9 | .. code-block:: cpp |
| 10 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 11 | #include <pybind11/pybind11.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 12 | |
Wenzel Jakob | 10e62e1 | 2015-10-15 22:46:07 +0200 | [diff] [blame] | 13 | namespace py = pybind11; |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 14 | |
Wenzel Jakob | de3ad07 | 2016-02-02 11:38:21 +0100 | [diff] [blame] | 15 | Exporting constants and mutable objects |
| 16 | ======================================= |
| 17 | |
| 18 | To expose a C++ constant, use the ``attr`` function to register it in a module |
| 19 | as shown below. The ``int_`` class is one of many small wrapper objects defined |
| 20 | in ``pybind11/pytypes.h``. General objects (including integers) can also be |
| 21 | converted using the function ``cast``. |
| 22 | |
| 23 | .. code-block:: cpp |
| 24 | |
| 25 | PYBIND11_PLUGIN(example) { |
| 26 | py::module m("example", "pybind11 example plugin"); |
| 27 | m.attr("MY_CONSTANT") = py::int_(123); |
| 28 | m.attr("MY_CONSTANT_2") = py::cast(new MyObject()); |
| 29 | } |
| 30 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 31 | Operator overloading |
| 32 | ==================== |
| 33 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 34 | Suppose that we're given the following ``Vector2`` class with a vector addition |
| 35 | and scalar multiplication operation, all implemented using overloaded operators |
| 36 | in C++. |
| 37 | |
| 38 | .. code-block:: cpp |
| 39 | |
| 40 | class Vector2 { |
| 41 | public: |
| 42 | Vector2(float x, float y) : x(x), y(y) { } |
| 43 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 44 | Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); } |
| 45 | Vector2 operator*(float value) const { return Vector2(x * value, y * value); } |
| 46 | Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; } |
| 47 | Vector2& operator*=(float v) { x *= v; y *= v; return *this; } |
| 48 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 49 | friend Vector2 operator*(float f, const Vector2 &v) { |
| 50 | return Vector2(f * v.x, f * v.y); |
| 51 | } |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 52 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 53 | std::string toString() const { |
| 54 | return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; |
| 55 | } |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 56 | private: |
| 57 | float x, y; |
| 58 | }; |
| 59 | |
| 60 | The following snippet shows how the above operators can be conveniently exposed |
| 61 | to Python. |
| 62 | |
| 63 | .. code-block:: cpp |
| 64 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 65 | #include <pybind11/operators.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 66 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 67 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 68 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 69 | |
| 70 | py::class_<Vector2>(m, "Vector2") |
| 71 | .def(py::init<float, float>()) |
| 72 | .def(py::self + py::self) |
| 73 | .def(py::self += py::self) |
| 74 | .def(py::self *= float()) |
| 75 | .def(float() * py::self) |
| 76 | .def("__repr__", &Vector2::toString); |
| 77 | |
| 78 | return m.ptr(); |
| 79 | } |
| 80 | |
| 81 | Note that a line like |
| 82 | |
| 83 | .. code-block:: cpp |
| 84 | |
| 85 | .def(py::self * float()) |
| 86 | |
| 87 | is really just short hand notation for |
| 88 | |
| 89 | .. code-block:: cpp |
| 90 | |
| 91 | .def("__mul__", [](const Vector2 &a, float b) { |
| 92 | return a * b; |
| 93 | }) |
| 94 | |
| 95 | This can be useful for exposing additional operators that don't exist on the |
| 96 | C++ side, or to perform other types of customization. |
| 97 | |
| 98 | .. note:: |
| 99 | |
| 100 | To use the more convenient ``py::self`` notation, the additional |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 101 | header file :file:`pybind11/operators.h` must be included. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 102 | |
| 103 | .. seealso:: |
| 104 | |
| 105 | The file :file:`example/example3.cpp` contains a complete example that |
| 106 | demonstrates how to work with overloaded operators in more detail. |
| 107 | |
| 108 | Callbacks and passing anonymous functions |
| 109 | ========================================= |
| 110 | |
| 111 | The C++11 standard brought lambda functions and the generic polymorphic |
| 112 | function wrapper ``std::function<>`` to the C++ programming language, which |
| 113 | enable powerful new ways of working with functions. Lambda functions come in |
| 114 | two flavors: stateless lambda function resemble classic function pointers that |
| 115 | link to an anonymous piece of code, while stateful lambda functions |
| 116 | additionally depend on captured variables that are stored in an anonymous |
| 117 | *lambda closure object*. |
| 118 | |
| 119 | Here is a simple example of a C++ function that takes an arbitrary function |
| 120 | (stateful or stateless) with signature ``int -> int`` as an argument and runs |
| 121 | it with the value 10. |
| 122 | |
| 123 | .. code-block:: cpp |
| 124 | |
| 125 | int func_arg(const std::function<int(int)> &f) { |
| 126 | return f(10); |
| 127 | } |
| 128 | |
| 129 | The example below is more involved: it takes a function of signature ``int -> int`` |
| 130 | and returns another function of the same kind. The return value is a stateful |
| 131 | lambda function, which stores the value ``f`` in the capture object and adds 1 to |
| 132 | its return value upon execution. |
| 133 | |
| 134 | .. code-block:: cpp |
| 135 | |
| 136 | std::function<int(int)> func_ret(const std::function<int(int)> &f) { |
| 137 | return [f](int i) { |
| 138 | return f(i) + 1; |
| 139 | }; |
| 140 | } |
| 141 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 142 | After including the extra header file :file:`pybind11/functional.h`, it is almost |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 143 | trivial to generate binding code for both of these functions. |
| 144 | |
| 145 | .. code-block:: cpp |
| 146 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 147 | #include <pybind11/functional.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 148 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 149 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 150 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 151 | |
| 152 | m.def("func_arg", &func_arg); |
| 153 | m.def("func_ret", &func_ret); |
| 154 | |
| 155 | return m.ptr(); |
| 156 | } |
| 157 | |
| 158 | The following interactive session shows how to call them from Python. |
| 159 | |
| 160 | .. code-block:: python |
| 161 | |
| 162 | $ python |
| 163 | >>> import example |
| 164 | >>> def square(i): |
| 165 | ... return i * i |
| 166 | ... |
| 167 | >>> example.func_arg(square) |
| 168 | 100L |
| 169 | >>> square_plus_1 = example.func_ret(square) |
| 170 | >>> square_plus_1(4) |
| 171 | 17L |
| 172 | >>> |
| 173 | |
| 174 | .. note:: |
| 175 | |
| 176 | This functionality is very useful when generating bindings for callbacks in |
| 177 | C++ libraries (e.g. a graphical user interface library). |
| 178 | |
| 179 | The file :file:`example/example5.cpp` contains a complete example that |
| 180 | demonstrates how to work with callbacks and anonymous functions in more detail. |
| 181 | |
Wenzel Jakob | a4175d6 | 2015-11-17 08:30:34 +0100 | [diff] [blame] | 182 | .. warning:: |
| 183 | |
| 184 | Keep in mind that passing a function from C++ to Python (or vice versa) |
| 185 | will instantiate a piece of wrapper code that translates function |
| 186 | invocations between the two languages. Copying the same function back and |
| 187 | forth between Python and C++ many times in a row will cause these wrappers |
| 188 | to accumulate, which can decrease performance. |
| 189 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 190 | Overriding virtual functions in Python |
| 191 | ====================================== |
| 192 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 193 | Suppose that a C++ class or interface has a virtual function that we'd like to |
| 194 | to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is |
| 195 | given as a specific example of how one would do this with traditional C++ |
| 196 | code). |
| 197 | |
| 198 | .. code-block:: cpp |
| 199 | |
| 200 | class Animal { |
| 201 | public: |
| 202 | virtual ~Animal() { } |
| 203 | virtual std::string go(int n_times) = 0; |
| 204 | }; |
| 205 | |
| 206 | class Dog : public Animal { |
| 207 | public: |
| 208 | std::string go(int n_times) { |
| 209 | std::string result; |
| 210 | for (int i=0; i<n_times; ++i) |
| 211 | result += "woof! "; |
| 212 | return result; |
| 213 | } |
| 214 | }; |
| 215 | |
| 216 | Let's also suppose that we are given a plain function which calls the |
| 217 | function ``go()`` on an arbitrary ``Animal`` instance. |
| 218 | |
| 219 | .. code-block:: cpp |
| 220 | |
| 221 | std::string call_go(Animal *animal) { |
| 222 | return animal->go(3); |
| 223 | } |
| 224 | |
| 225 | Normally, the binding code for these classes would look as follows: |
| 226 | |
| 227 | .. code-block:: cpp |
| 228 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 229 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 230 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 231 | |
| 232 | py::class_<Animal> animal(m, "Animal"); |
| 233 | animal |
| 234 | .def("go", &Animal::go); |
| 235 | |
| 236 | py::class_<Dog>(m, "Dog", animal) |
| 237 | .def(py::init<>()); |
| 238 | |
| 239 | m.def("call_go", &call_go); |
| 240 | |
| 241 | return m.ptr(); |
| 242 | } |
| 243 | |
| 244 | However, these bindings are impossible to extend: ``Animal`` is not |
| 245 | constructible, and we clearly require some kind of "trampoline" that |
| 246 | redirects virtual calls back to Python. |
| 247 | |
| 248 | Defining a new type of ``Animal`` from within Python is possible but requires a |
| 249 | helper class that is defined as follows: |
| 250 | |
| 251 | .. code-block:: cpp |
| 252 | |
| 253 | class PyAnimal : public Animal { |
| 254 | public: |
| 255 | /* Inherit the constructors */ |
| 256 | using Animal::Animal; |
| 257 | |
| 258 | /* Trampoline (need one for each virtual function) */ |
| 259 | std::string go(int n_times) { |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 260 | PYBIND11_OVERLOAD_PURE( |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 261 | std::string, /* Return type */ |
| 262 | Animal, /* Parent class */ |
| 263 | go, /* Name of function */ |
| 264 | n_times /* Argument(s) */ |
| 265 | ); |
| 266 | } |
| 267 | }; |
| 268 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 269 | The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual |
| 270 | functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 271 | a default implementation. The binding code also needs a few minor adaptations |
| 272 | (highlighted): |
| 273 | |
| 274 | .. code-block:: cpp |
| 275 | :emphasize-lines: 4,6,7 |
| 276 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 277 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 278 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 279 | |
| 280 | py::class_<PyAnimal> animal(m, "Animal"); |
| 281 | animal |
| 282 | .alias<Animal>() |
| 283 | .def(py::init<>()) |
| 284 | .def("go", &Animal::go); |
| 285 | |
| 286 | py::class_<Dog>(m, "Dog", animal) |
| 287 | .def(py::init<>()); |
| 288 | |
| 289 | m.def("call_go", &call_go); |
| 290 | |
| 291 | return m.ptr(); |
| 292 | } |
| 293 | |
| 294 | Importantly, the trampoline helper class is used as the template argument to |
| 295 | :class:`class_`, and a call to :func:`class_::alias` informs the binding |
| 296 | generator that this is merely an alias for the underlying type ``Animal``. |
| 297 | Following this, we are able to define a constructor as usual. |
| 298 | |
| 299 | The Python session below shows how to override ``Animal::go`` and invoke it via |
| 300 | a virtual method call. |
| 301 | |
Wenzel Jakob | de3ad07 | 2016-02-02 11:38:21 +0100 | [diff] [blame] | 302 | .. code-block:: python |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 303 | |
| 304 | >>> from example import * |
| 305 | >>> d = Dog() |
| 306 | >>> call_go(d) |
| 307 | u'woof! woof! woof! ' |
| 308 | >>> class Cat(Animal): |
| 309 | ... def go(self, n_times): |
| 310 | ... return "meow! " * n_times |
| 311 | ... |
| 312 | >>> c = Cat() |
| 313 | >>> call_go(c) |
| 314 | u'meow! meow! meow! ' |
| 315 | |
| 316 | .. seealso:: |
| 317 | |
| 318 | The file :file:`example/example12.cpp` contains a complete example that |
| 319 | demonstrates how to override virtual functions using pybind11 in more |
| 320 | detail. |
| 321 | |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 322 | |
| 323 | Global Interpreter Lock (GIL) |
| 324 | ============================= |
| 325 | |
| 326 | The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be |
| 327 | used to acquire and release the global interpreter lock in the body of a C++ |
| 328 | function call. In this way, long-running C++ code can be parallelized using |
| 329 | multiple Python threads. Taking the previous section as an example, this could |
| 330 | be realized as follows (important changes highlighted): |
| 331 | |
| 332 | .. code-block:: cpp |
| 333 | :emphasize-lines: 8,9,33,34 |
| 334 | |
| 335 | class PyAnimal : public Animal { |
| 336 | public: |
| 337 | /* Inherit the constructors */ |
| 338 | using Animal::Animal; |
| 339 | |
| 340 | /* Trampoline (need one for each virtual function) */ |
| 341 | std::string go(int n_times) { |
| 342 | /* Acquire GIL before calling Python code */ |
Wenzel Jakob | a4caa85 | 2015-12-14 12:39:02 +0100 | [diff] [blame] | 343 | py::gil_scoped_acquire acquire; |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 344 | |
| 345 | PYBIND11_OVERLOAD_PURE( |
| 346 | std::string, /* Return type */ |
| 347 | Animal, /* Parent class */ |
| 348 | go, /* Name of function */ |
| 349 | n_times /* Argument(s) */ |
| 350 | ); |
| 351 | } |
| 352 | }; |
| 353 | |
| 354 | PYBIND11_PLUGIN(example) { |
| 355 | py::module m("example", "pybind11 example plugin"); |
| 356 | |
| 357 | py::class_<PyAnimal> animal(m, "Animal"); |
| 358 | animal |
| 359 | .alias<Animal>() |
| 360 | .def(py::init<>()) |
| 361 | .def("go", &Animal::go); |
| 362 | |
| 363 | py::class_<Dog>(m, "Dog", animal) |
| 364 | .def(py::init<>()); |
| 365 | |
| 366 | m.def("call_go", [](Animal *animal) -> std::string { |
| 367 | /* Release GIL before calling into (potentially long-running) C++ code */ |
Wenzel Jakob | a4caa85 | 2015-12-14 12:39:02 +0100 | [diff] [blame] | 368 | py::gil_scoped_release release; |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 369 | return call_go(animal); |
| 370 | }); |
| 371 | |
| 372 | return m.ptr(); |
| 373 | } |
| 374 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 375 | Passing STL data structures |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 376 | =========================== |
| 377 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 378 | When including the additional header file :file:`pybind11/stl.h`, conversions |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 379 | between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>`` |
| 380 | and the Python ``list``, ``set`` and ``dict`` data structures are automatically |
| 381 | enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported |
| 382 | out of the box with just the core :file:`pybind11/pybind11.h` header. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 383 | |
| 384 | .. note:: |
| 385 | |
Wenzel Jakob | 44db04f | 2015-12-14 12:40:45 +0100 | [diff] [blame] | 386 | Arbitrary nesting of any of these types is supported. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 387 | |
| 388 | .. seealso:: |
| 389 | |
| 390 | The file :file:`example/example2.cpp` contains a complete example that |
| 391 | demonstrates how to pass STL data types in more detail. |
| 392 | |
Wenzel Jakob | b282595 | 2016-04-13 23:33:00 +0200 | [diff] [blame] | 393 | Binding sequence data types, iterators, the slicing protocol, etc. |
| 394 | ================================================================== |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 395 | |
| 396 | Please refer to the supplemental example for details. |
| 397 | |
| 398 | .. seealso:: |
| 399 | |
| 400 | The file :file:`example/example6.cpp` contains a complete example that |
| 401 | shows how to bind a sequence data type, including length queries |
| 402 | (``__len__``), iterators (``__iter__``), the slicing protocol and other |
| 403 | kinds of useful operations. |
| 404 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 405 | Return value policies |
| 406 | ===================== |
| 407 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 408 | Python and C++ use wildly different ways of managing the memory and lifetime of |
| 409 | objects managed by them. This can lead to issues when creating bindings for |
| 410 | functions that return a non-trivial type. Just by looking at the type |
| 411 | information, it is not clear whether Python should take charge of the returned |
| 412 | value and eventually free its resources, or if this is handled on the C++ side. |
| 413 | For this reason, pybind11 provides a several `return value policy` annotations |
| 414 | that can be passed to the :func:`module::def` and :func:`class_::def` |
Wenzel Jakob | 61d67f0 | 2015-12-14 12:53:06 +0100 | [diff] [blame] | 415 | functions. The default policy is :enum:`return_value_policy::automatic`. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 416 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 417 | .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}| |
| 418 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 419 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 420 | | Return value policy | Description | |
| 421 | +==================================================+============================================================================+ |
| 422 | | :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy | |
| 423 | | | :enum:`return_value_policy::take_ownership` when the return value is a | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 424 | | | pointer. Otherwise, it uses :enum:`return_value::move` or | |
| 425 | | | :enum:`return_value::copy` for rvalue and lvalue references, respectively. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 426 | | | See below for a description of what all of these different policies do. | |
| 427 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 428 | | :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 429 | | | return value is a pointer. You probably won't need to use this. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 430 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 431 | | :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take | |
| 432 | | | ownership. Python will call the destructor and delete operator when the | |
| 433 | | | object's reference count reaches zero. Undefined behavior ensues when the | |
| 434 | | | C++ side does the same.. | |
| 435 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 436 | | :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. | |
| 437 | | | This policy is comparably safe because the lifetimes of the two instances | |
| 438 | | | are decoupled. | |
| 439 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 440 | | :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance | |
| 441 | | | that will be owned by Python. This policy is comparably safe because the | |
| 442 | | | lifetimes of the two instances (move source and destination) are decoupled.| |
| 443 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 444 | | :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is | |
| 445 | | | responsible for managing the object's lifetime and deallocating it when | |
| 446 | | | it is no longer used. Warning: undefined behavior will ensue when the C++ | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 447 | | | side deletes an object that is still referenced and used by Python. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 448 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 449 | | :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the | |
| 450 | | | object without taking ownership similar to the above | |
| 451 | | | :enum:`return_value_policy::reference` policy. In contrast to that policy, | |
| 452 | | | the function or property's implicit ``this`` argument (called the *parent*)| |
| 453 | | | is considered to be the the owner of the return value (the *child*). | |
| 454 | | | pybind11 then couples the lifetime of the parent to the child via a | |
| 455 | | | reference relationship that ensures that the parent cannot be garbage | |
| 456 | | | collected while Python is still using the child. More advanced variations | |
| 457 | | | of this scheme are also possible using combinations of | |
| 458 | | | :enum:`return_value_policy::reference` and the :class:`keep_alive` call | |
| 459 | | | policy described next. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 460 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 461 | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 462 | The following example snippet shows a use case of the |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 463 | :enum:`return_value_policy::reference_internal` policy. |
| 464 | |
| 465 | .. code-block:: cpp |
| 466 | |
| 467 | class Example { |
| 468 | public: |
| 469 | Internal &get_internal() { return internal; } |
| 470 | private: |
| 471 | Internal internal; |
| 472 | }; |
| 473 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 474 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 475 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 476 | |
| 477 | py::class_<Example>(m, "Example") |
| 478 | .def(py::init<>()) |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 479 | .def("get_internal", &Example::get_internal, "Return the internal data", |
| 480 | py::return_value_policy::reference_internal); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 481 | |
| 482 | return m.ptr(); |
| 483 | } |
| 484 | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 485 | .. warning:: |
| 486 | |
| 487 | Code with invalid call policies might access unitialized memory or free |
| 488 | data structures multiple times, which can lead to hard-to-debug |
| 489 | non-determinism and segmentation faults, hence it is worth spending the |
| 490 | time to understand all the different options in the table above. |
| 491 | |
| 492 | .. note:: |
| 493 | |
| 494 | The next section on :ref:`call_policies` discusses *call policies* that can be |
| 495 | specified *in addition* to a return value policy from the list above. Call |
| 496 | policies indicate reference relationships that can involve both return values |
| 497 | and parameters of functions. |
| 498 | |
| 499 | .. note:: |
| 500 | |
| 501 | As an alternative to elaborate call policies and lifetime management logic, |
| 502 | consider using smart pointers (see the section on :ref:`smart_pointers` for |
| 503 | details). Smart pointers can tell whether an object is still referenced from |
| 504 | C++ or Python, which generally eliminates the kinds of inconsistencies that |
| 505 | can lead to crashes or undefined behavior. For functions returning smart |
| 506 | pointers, it is not necessary to specify a return value policy. |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 507 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 508 | .. _call_policies: |
| 509 | |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 510 | Additional call policies |
| 511 | ======================== |
| 512 | |
| 513 | In addition to the above return value policies, further `call policies` can be |
| 514 | specified to indicate dependencies between parameters. There is currently just |
| 515 | one policy named ``keep_alive<Nurse, Patient>``, which indicates that the |
| 516 | argument with index ``Patient`` should be kept alive at least until the |
| 517 | argument with index ``Nurse`` is freed by the garbage collector; argument |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 518 | indices start at one, while zero refers to the return value. For methods, index |
| 519 | one refers to the implicit ``this`` pointer, while regular arguments begin at |
| 520 | index two. Arbitrarily many call policies can be specified. |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 521 | |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 522 | Consider the following example: the binding code for a list append operation |
| 523 | that ties the lifetime of the newly added element to the underlying container |
| 524 | might be declared as follows: |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 525 | |
| 526 | .. code-block:: cpp |
| 527 | |
| 528 | py::class_<List>(m, "List") |
| 529 | .def("append", &List::append, py::keep_alive<1, 2>()); |
| 530 | |
| 531 | .. note:: |
| 532 | |
| 533 | ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse, |
| 534 | Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient == |
| 535 | 0) policies from Boost.Python. |
| 536 | |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 537 | .. seealso:: |
| 538 | |
| 539 | The file :file:`example/example13.cpp` contains a complete example that |
| 540 | demonstrates using :class:`keep_alive` in more detail. |
| 541 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 542 | Implicit type conversions |
| 543 | ========================= |
| 544 | |
| 545 | Suppose that instances of two types ``A`` and ``B`` are used in a project, and |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 546 | that an ``A`` can easily be converted into an instance of type ``B`` (examples of this |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 547 | could be a fixed and an arbitrary precision number type). |
| 548 | |
| 549 | .. code-block:: cpp |
| 550 | |
| 551 | py::class_<A>(m, "A") |
| 552 | /// ... members ... |
| 553 | |
| 554 | py::class_<B>(m, "B") |
| 555 | .def(py::init<A>()) |
| 556 | /// ... members ... |
| 557 | |
| 558 | m.def("func", |
| 559 | [](const B &) { /* .... */ } |
| 560 | ); |
| 561 | |
| 562 | To invoke the function ``func`` using a variable ``a`` containing an ``A`` |
| 563 | instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++ |
| 564 | will automatically apply an implicit type conversion, which makes it possible |
| 565 | to directly write ``func(a)``. |
| 566 | |
| 567 | In this situation (i.e. where ``B`` has a constructor that converts from |
| 568 | ``A``), the following statement enables similar implicit conversions on the |
| 569 | Python side: |
| 570 | |
| 571 | .. code-block:: cpp |
| 572 | |
| 573 | py::implicitly_convertible<A, B>(); |
| 574 | |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 575 | Unique pointers |
| 576 | =============== |
| 577 | |
| 578 | Given a class ``Example`` with Python bindings, it's possible to return |
| 579 | instances wrapped in C++11 unique pointers, like so |
| 580 | |
| 581 | .. code-block:: cpp |
| 582 | |
| 583 | std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); } |
| 584 | |
| 585 | .. code-block:: cpp |
| 586 | |
| 587 | m.def("create_example", &create_example); |
| 588 | |
| 589 | In other words, there is nothing special that needs to be done. While returning |
| 590 | unique pointers in this way is allowed, it is *illegal* to use them as function |
| 591 | arguments. For instance, the following function signature cannot be processed |
| 592 | by pybind11. |
| 593 | |
| 594 | .. code-block:: cpp |
| 595 | |
| 596 | void do_something_with_example(std::unique_ptr<Example> ex) { ... } |
| 597 | |
| 598 | The above signature would imply that Python needs to give up ownership of an |
| 599 | object that is passed to this function, which is generally not possible (for |
| 600 | instance, the object might be referenced elsewhere). |
| 601 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 602 | .. _smart_pointers: |
| 603 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 604 | Smart pointers |
| 605 | ============== |
| 606 | |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 607 | This section explains how to pass values that are wrapped in "smart" pointer |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 608 | types with internal reference counting. For the simpler C++11 unique pointers, |
| 609 | refer to the previous section. |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 610 | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 611 | The binding generator for classes, :class:`class_`, takes an optional second |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 612 | template type, which denotes a special *holder* type that is used to manage |
| 613 | references to the object. When wrapping a type named ``Type``, the default |
| 614 | value of this template parameter is ``std::unique_ptr<Type>``, which means that |
| 615 | the object is deallocated when Python's reference count goes to zero. |
| 616 | |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 617 | It is possible to switch to other types of reference counting wrappers or smart |
| 618 | pointers, which is useful in codebases that rely on them. For instance, the |
| 619 | following snippet causes ``std::shared_ptr`` to be used instead. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 620 | |
| 621 | .. code-block:: cpp |
| 622 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 623 | py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example"); |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 624 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 625 | Note that any particular class can only be associated with a single holder type. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 626 | |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 627 | To enable transparent conversions for functions that take shared pointers as an |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 628 | argument or that return them, a macro invocation similar to the following must |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 629 | be declared at the top level before any binding code: |
| 630 | |
| 631 | .. code-block:: cpp |
| 632 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 633 | PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>); |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 634 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 635 | .. note:: |
Wenzel Jakob | 61d67f0 | 2015-12-14 12:53:06 +0100 | [diff] [blame] | 636 | |
| 637 | The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a |
| 638 | placeholder name that is used as a template parameter of the second |
| 639 | argument. Thus, feel free to use any identifier, but use it consistently on |
| 640 | both sides; also, don't use the name of a type that already exists in your |
| 641 | codebase. |
| 642 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 643 | One potential stumbling block when using holder types is that they need to be |
| 644 | applied consistently. Can you guess what's broken about the following binding |
| 645 | code? |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 646 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 647 | .. code-block:: cpp |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 648 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 649 | class Child { }; |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 650 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 651 | class Parent { |
| 652 | public: |
| 653 | Parent() : child(std::make_shared<Child>()) { } |
| 654 | Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */ |
| 655 | private: |
| 656 | std::shared_ptr<Child> child; |
| 657 | }; |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 658 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 659 | PYBIND11_PLUGIN(example) { |
| 660 | py::module m("example"); |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 661 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 662 | py::class_<Child, std::shared_ptr<Child>>(m, "Child"); |
| 663 | |
| 664 | py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent") |
| 665 | .def(py::init<>()) |
| 666 | .def("get_child", &Parent::get_child); |
| 667 | |
| 668 | return m.ptr(); |
| 669 | } |
| 670 | |
| 671 | The following Python code will cause undefined behavior (and likely a |
| 672 | segmentation fault). |
| 673 | |
| 674 | .. code-block:: python |
| 675 | |
| 676 | from example import Parent |
| 677 | print(Parent().get_child()) |
| 678 | |
| 679 | The problem is that ``Parent::get_child()`` returns a pointer to an instance of |
| 680 | ``Child``, but the fact that this instance is already managed by |
| 681 | ``std::shared_ptr<...>`` is lost when passing raw pointers. In this case, |
| 682 | pybind11 will create a second independent ``std::shared_ptr<...>`` that also |
| 683 | claims ownership of the pointer. In the end, the object will be freed **twice** |
| 684 | since these shared pointers have no way of knowing about each other. |
| 685 | |
| 686 | There are two ways to resolve this issue: |
| 687 | |
| 688 | 1. For types that are managed by a smart pointer class, never use raw pointers |
| 689 | in function arguments or return values. In other words: always consistently |
| 690 | wrap pointers into their designated holder types (such as |
| 691 | ``std::shared_ptr<...>``). In this case, the signature of ``get_child()`` |
| 692 | should be modified as follows: |
| 693 | |
| 694 | .. code-block:: cpp |
| 695 | |
| 696 | std::shared_ptr<Child> get_child() { return child; } |
| 697 | |
| 698 | 2. Adjust the definition of ``Child`` by specifying |
| 699 | ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a |
| 700 | base class. This adds a small bit of information to ``Child`` that allows |
| 701 | pybind11 to realize that there is already an existing |
| 702 | ``std::shared_ptr<...>`` and communicate with it. In this case, the |
| 703 | declaration of ``Child`` should look as follows: |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 704 | |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 705 | .. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this |
| 706 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 707 | .. code-block:: cpp |
| 708 | |
| 709 | class Child : public std::enable_shared_from_this<Child> { }; |
| 710 | |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 711 | .. seealso:: |
| 712 | |
| 713 | The file :file:`example/example8.cpp` contains a complete example that |
| 714 | demonstrates how to work with custom reference-counting holder types in |
| 715 | more detail. |
| 716 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 717 | .. _custom_constructors: |
| 718 | |
| 719 | Custom constructors |
| 720 | =================== |
| 721 | |
| 722 | The syntax for binding constructors was previously introduced, but it only |
| 723 | works when a constructor with the given parameters actually exists on the C++ |
| 724 | side. To extend this to more general cases, let's take a look at what actually |
| 725 | happens under the hood: the following statement |
| 726 | |
| 727 | .. code-block:: cpp |
| 728 | |
| 729 | py::class_<Example>(m, "Example") |
| 730 | .def(py::init<int>()); |
| 731 | |
| 732 | is short hand notation for |
| 733 | |
| 734 | .. code-block:: cpp |
| 735 | |
| 736 | py::class_<Example>(m, "Example") |
| 737 | .def("__init__", |
| 738 | [](Example &instance, int arg) { |
| 739 | new (&instance) Example(arg); |
| 740 | } |
| 741 | ); |
| 742 | |
| 743 | In other words, :func:`init` creates an anonymous function that invokes an |
| 744 | in-place constructor. Memory allocation etc. is already take care of beforehand |
| 745 | within pybind11. |
| 746 | |
| 747 | Catching and throwing exceptions |
| 748 | ================================ |
| 749 | |
| 750 | When C++ code invoked from Python throws an ``std::exception``, it is |
| 751 | automatically converted into a Python ``Exception``. pybind11 defines multiple |
| 752 | special exception classes that will map to different types of Python |
| 753 | exceptions: |
| 754 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 755 | .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}| |
| 756 | |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 757 | +--------------------------------------+------------------------------+ |
| 758 | | C++ exception type | Python exception type | |
| 759 | +======================================+==============================+ |
| 760 | | :class:`std::exception` | ``RuntimeError`` | |
| 761 | +--------------------------------------+------------------------------+ |
| 762 | | :class:`std::bad_alloc` | ``MemoryError`` | |
| 763 | +--------------------------------------+------------------------------+ |
| 764 | | :class:`std::domain_error` | ``ValueError`` | |
| 765 | +--------------------------------------+------------------------------+ |
| 766 | | :class:`std::invalid_argument` | ``ValueError`` | |
| 767 | +--------------------------------------+------------------------------+ |
| 768 | | :class:`std::length_error` | ``ValueError`` | |
| 769 | +--------------------------------------+------------------------------+ |
| 770 | | :class:`std::out_of_range` | ``ValueError`` | |
| 771 | +--------------------------------------+------------------------------+ |
| 772 | | :class:`std::range_error` | ``ValueError`` | |
| 773 | +--------------------------------------+------------------------------+ |
| 774 | | :class:`pybind11::stop_iteration` | ``StopIteration`` (used to | |
| 775 | | | implement custom iterators) | |
| 776 | +--------------------------------------+------------------------------+ |
| 777 | | :class:`pybind11::index_error` | ``IndexError`` (used to | |
| 778 | | | indicate out of bounds | |
| 779 | | | accesses in ``__getitem__``, | |
| 780 | | | ``__setitem__``, etc.) | |
| 781 | +--------------------------------------+------------------------------+ |
Sergey Lyskov | a95bde1 | 2016-05-08 19:31:55 -0400 | [diff] [blame] | 782 | | :class:`pybind11::value_error` | ``ValueError`` (used to | |
| 783 | | | indicate wrong value passed | |
| 784 | | | in ``container.remove(...)`` | |
| 785 | +--------------------------------------+------------------------------+ |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 786 | | :class:`pybind11::error_already_set` | Indicates that the Python | |
| 787 | | | exception flag has already | |
| 788 | | | been initialized | |
| 789 | +--------------------------------------+------------------------------+ |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 790 | |
| 791 | When a Python function invoked from C++ throws an exception, it is converted |
| 792 | into a C++ exception of type :class:`error_already_set` whose string payload |
| 793 | contains a textual summary. |
| 794 | |
| 795 | There is also a special exception :class:`cast_error` that is thrown by |
| 796 | :func:`handle::call` when the input arguments cannot be converted to Python |
| 797 | objects. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 798 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 799 | .. _opaque: |
| 800 | |
| 801 | Treating STL data structures as opaque objects |
| 802 | ============================================== |
| 803 | |
| 804 | pybind11 heavily relies on a template matching mechanism to convert parameters |
| 805 | and return values that are constructed from STL data types such as vectors, |
| 806 | linked lists, hash tables, etc. This even works in a recursive manner, for |
| 807 | instance to deal with lists of hash maps of pairs of elementary and custom |
| 808 | types, etc. |
| 809 | |
| 810 | However, a fundamental limitation of this approach is that internal conversions |
| 811 | between Python and C++ types involve a copy operation that prevents |
| 812 | pass-by-reference semantics. What does this mean? |
| 813 | |
| 814 | Suppose we bind the following function |
| 815 | |
| 816 | .. code-block:: cpp |
| 817 | |
| 818 | void append_1(std::vector<int> &v) { |
| 819 | v.push_back(1); |
| 820 | } |
| 821 | |
| 822 | and call it from Python, the following happens: |
| 823 | |
| 824 | .. code-block:: python |
| 825 | |
| 826 | >>> v = [5, 6] |
| 827 | >>> append_1(v) |
| 828 | >>> print(v) |
| 829 | [5, 6] |
| 830 | |
| 831 | As you can see, when passing STL data structures by reference, modifications |
| 832 | are not propagated back the Python side. A similar situation arises when |
| 833 | exposing STL data structures using the ``def_readwrite`` or ``def_readonly`` |
| 834 | functions: |
| 835 | |
| 836 | .. code-block:: cpp |
| 837 | |
| 838 | /* ... definition ... */ |
| 839 | |
| 840 | class MyClass { |
| 841 | std::vector<int> contents; |
| 842 | }; |
| 843 | |
| 844 | /* ... binding code ... */ |
| 845 | |
| 846 | py::class_<MyClass>(m, "MyClass") |
| 847 | .def(py::init<>) |
| 848 | .def_readwrite("contents", &MyClass::contents); |
| 849 | |
| 850 | In this case, properties can be read and written in their entirety. However, an |
| 851 | ``append`` operaton involving such a list type has no effect: |
| 852 | |
| 853 | .. code-block:: python |
| 854 | |
| 855 | >>> m = MyClass() |
| 856 | >>> m.contents = [5, 6] |
| 857 | >>> print(m.contents) |
| 858 | [5, 6] |
| 859 | >>> m.contents.append(7) |
| 860 | >>> print(m.contents) |
| 861 | [5, 6] |
| 862 | |
| 863 | To deal with both of the above situations, pybind11 provides a macro named |
| 864 | ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion |
| 865 | machinery of types, thus rendering them *opaque*. The contents of opaque |
| 866 | objects are never inspected or extracted, hence they can be passed by |
| 867 | reference. For instance, to turn ``std::vector<int>`` into an opaque type, add |
| 868 | the declaration |
| 869 | |
| 870 | .. code-block:: cpp |
| 871 | |
| 872 | PYBIND11_MAKE_OPAQUE(std::vector<int>); |
| 873 | |
| 874 | before any binding code (e.g. invocations to ``class_::def()``, etc.). This |
| 875 | macro must be specified at the top level, since instantiates a partial template |
| 876 | overload. If your binding code consists of multiple compilation units, it must |
| 877 | be present in every file preceding any usage of ``std::vector<int>``. Opaque |
| 878 | types must also have a corresponding ``class_`` declaration to associate them |
| 879 | with a name in Python, and to define a set of available operations: |
| 880 | |
| 881 | .. code-block:: cpp |
| 882 | |
| 883 | py::class_<std::vector<int>>(m, "IntVector") |
| 884 | .def(py::init<>()) |
| 885 | .def("clear", &std::vector<int>::clear) |
| 886 | .def("pop_back", &std::vector<int>::pop_back) |
| 887 | .def("__len__", [](const std::vector<int> &v) { return v.size(); }) |
| 888 | .def("__iter__", [](std::vector<int> &v) { |
| 889 | return py::make_iterator(v.begin(), v.end()); |
| 890 | }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */ |
| 891 | // .... |
| 892 | |
| 893 | |
| 894 | .. seealso:: |
| 895 | |
| 896 | The file :file:`example/example14.cpp` contains a complete example that |
| 897 | demonstrates how to create and expose opaque types using pybind11 in more |
| 898 | detail. |
| 899 | |
| 900 | .. _eigen: |
| 901 | |
| 902 | Transparent conversion of dense and sparse Eigen data types |
| 903 | =========================================================== |
| 904 | |
| 905 | Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to |
| 906 | its popularity and widespread adoption, pybind11 provides transparent |
| 907 | conversion support between Eigen and Scientific Python linear algebra data types. |
| 908 | |
| 909 | Specifically, when including the optional header file :file:`pybind11/eigen.h`, |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 910 | pybind11 will automatically and transparently convert |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 911 | |
| 912 | 1. Static and dynamic Eigen dense vectors and matrices to instances of |
| 913 | ``numpy.ndarray`` (and vice versa). |
| 914 | |
| 915 | 1. Eigen sparse vectors and matrices to instances of |
| 916 | ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa). |
| 917 | |
| 918 | This makes it possible to bind most kinds of functions that rely on these types. |
| 919 | One major caveat are functions that take Eigen matrices *by reference* and modify |
| 920 | them somehow, in which case the information won't be propagated to the caller. |
| 921 | |
| 922 | .. code-block:: cpp |
| 923 | |
| 924 | /* The Python bindings of this function won't replicate |
| 925 | the intended effect of modifying the function argument */ |
| 926 | void scale_by_2(Eigen::Vector3f &v) { |
| 927 | v *= 2; |
| 928 | } |
| 929 | |
| 930 | To see why this is, refer to the section on :ref:`opaque` (although that |
| 931 | section specifically covers STL data types, the underlying issue is the same). |
| 932 | The next two sections discuss an efficient alternative for exposing the |
| 933 | underlying native Eigen types as opaque objects in a way that still integrates |
| 934 | with NumPy and SciPy. |
| 935 | |
| 936 | .. [#f1] http://eigen.tuxfamily.org |
| 937 | |
| 938 | .. seealso:: |
| 939 | |
| 940 | The file :file:`example/eigen.cpp` contains a complete example that |
| 941 | shows how to pass Eigen sparse and dense data types in more detail. |
| 942 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 943 | Buffer protocol |
| 944 | =============== |
| 945 | |
| 946 | Python supports an extremely general and convenient approach for exchanging |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 947 | data between plugin libraries. Types can expose a buffer view [#f2]_, which |
| 948 | provides fast direct access to the raw internal data representation. Suppose we |
| 949 | want to bind the following simplistic Matrix class: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 950 | |
| 951 | .. code-block:: cpp |
| 952 | |
| 953 | class Matrix { |
| 954 | public: |
| 955 | Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) { |
| 956 | m_data = new float[rows*cols]; |
| 957 | } |
| 958 | float *data() { return m_data; } |
| 959 | size_t rows() const { return m_rows; } |
| 960 | size_t cols() const { return m_cols; } |
| 961 | private: |
| 962 | size_t m_rows, m_cols; |
| 963 | float *m_data; |
| 964 | }; |
| 965 | |
| 966 | The following binding code exposes the ``Matrix`` contents as a buffer object, |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 967 | making it possible to cast Matrices into NumPy arrays. It is even possible to |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 968 | completely avoid copy operations with Python expressions like |
| 969 | ``np.array(matrix_instance, copy = False)``. |
| 970 | |
| 971 | .. code-block:: cpp |
| 972 | |
| 973 | py::class_<Matrix>(m, "Matrix") |
| 974 | .def_buffer([](Matrix &m) -> py::buffer_info { |
| 975 | return py::buffer_info( |
Wenzel Jakob | 876eeab | 2016-05-04 22:22:48 +0200 | [diff] [blame] | 976 | m.data(), /* Pointer to buffer */ |
| 977 | sizeof(float), /* Size of one scalar */ |
| 978 | py::format_descriptor<float>::value, /* Python struct-style format descriptor */ |
| 979 | 2, /* Number of dimensions */ |
| 980 | { m.rows(), m.cols() }, /* Buffer dimensions */ |
| 981 | { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */ |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 982 | sizeof(float) } |
| 983 | ); |
| 984 | }); |
| 985 | |
| 986 | The snippet above binds a lambda function, which can create ``py::buffer_info`` |
| 987 | description records on demand describing a given matrix. The contents of |
| 988 | ``py::buffer_info`` mirror the Python buffer protocol specification. |
| 989 | |
| 990 | .. code-block:: cpp |
| 991 | |
| 992 | struct buffer_info { |
| 993 | void *ptr; |
| 994 | size_t itemsize; |
| 995 | std::string format; |
| 996 | int ndim; |
| 997 | std::vector<size_t> shape; |
| 998 | std::vector<size_t> strides; |
| 999 | }; |
| 1000 | |
| 1001 | To create a C++ function that can take a Python buffer object as an argument, |
| 1002 | simply use the type ``py::buffer`` as one of its arguments. Buffers can exist |
| 1003 | in a great variety of configurations, hence some safety checks are usually |
| 1004 | necessary in the function body. Below, you can see an basic example on how to |
| 1005 | define a custom constructor for the Eigen double precision matrix |
| 1006 | (``Eigen::MatrixXd``) type, which supports initialization from compatible |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1007 | buffer objects (e.g. a NumPy matrix). |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1008 | |
| 1009 | .. code-block:: cpp |
| 1010 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1011 | /* Bind MatrixXd (or some other Eigen type) to Python */ |
| 1012 | typedef Eigen::MatrixXd Matrix; |
| 1013 | |
| 1014 | typedef Matrix::Scalar Scalar; |
| 1015 | constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit; |
| 1016 | |
| 1017 | py::class_<Matrix>(m, "Matrix") |
| 1018 | .def("__init__", [](Matrix &m, py::buffer b) { |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1019 | typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides; |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1020 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1021 | /* Request a buffer descriptor from Python */ |
| 1022 | py::buffer_info info = b.request(); |
| 1023 | |
| 1024 | /* Some sanity checks ... */ |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1025 | if (info.format != py::format_descriptor<Scalar>::value) |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1026 | throw std::runtime_error("Incompatible format: expected a double array!"); |
| 1027 | |
| 1028 | if (info.ndim != 2) |
| 1029 | throw std::runtime_error("Incompatible buffer dimension!"); |
| 1030 | |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1031 | auto strides = Strides( |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1032 | info.strides[rowMajor ? 0 : 1] / sizeof(Scalar), |
| 1033 | info.strides[rowMajor ? 1 : 0] / sizeof(Scalar)); |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1034 | |
| 1035 | auto map = Eigen::Map<Matrix, 0, Strides>( |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1036 | static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides); |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1037 | |
| 1038 | new (&m) Matrix(map); |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1039 | }); |
| 1040 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1041 | For reference, the ``def_buffer()`` call for this Eigen data type should look |
| 1042 | as follows: |
| 1043 | |
| 1044 | .. code-block:: cpp |
| 1045 | |
| 1046 | .def_buffer([](Matrix &m) -> py::buffer_info { |
| 1047 | return py::buffer_info( |
| 1048 | m.data(), /* Pointer to buffer */ |
| 1049 | sizeof(Scalar), /* Size of one scalar */ |
| 1050 | /* Python struct-style format descriptor */ |
| 1051 | py::format_descriptor<Scalar>::value, |
| 1052 | /* Number of dimensions */ |
| 1053 | 2, |
| 1054 | /* Buffer dimensions */ |
| 1055 | { (size_t) m.rows(), |
| 1056 | (size_t) m.cols() }, |
| 1057 | /* Strides (in bytes) for each index */ |
| 1058 | { sizeof(Scalar) * (rowMajor ? m.cols() : 1), |
| 1059 | sizeof(Scalar) * (rowMajor ? 1 : m.rows()) } |
| 1060 | ); |
| 1061 | }) |
| 1062 | |
| 1063 | For a much easier approach of binding Eigen types (although with some |
| 1064 | limitations), refer to the section on :ref:`eigen`. |
| 1065 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1066 | .. seealso:: |
| 1067 | |
| 1068 | The file :file:`example/example7.cpp` contains a complete example that |
| 1069 | demonstrates using the buffer protocol with pybind11 in more detail. |
| 1070 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1071 | .. [#f2] http://docs.python.org/3/c-api/buffer.html |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1072 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1073 | NumPy support |
| 1074 | ============= |
| 1075 | |
| 1076 | By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can |
| 1077 | restrict the function so that it only accepts NumPy arrays (rather than any |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1078 | type of Python object satisfying the buffer protocol). |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1079 | |
| 1080 | In many situations, we want to define a function which only accepts a NumPy |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1081 | array of a certain data type. This is possible via the ``py::array_t<T>`` |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1082 | template. For instance, the following function requires the argument to be a |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1083 | NumPy array containing double precision values. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1084 | |
| 1085 | .. code-block:: cpp |
| 1086 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1087 | void f(py::array_t<double> array); |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1088 | |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1089 | When it is invoked with a different type (e.g. an integer or a list of |
| 1090 | integers), the binding code will attempt to cast the input into a NumPy array |
| 1091 | of the requested type. Note that this feature requires the |
| 1092 | :file:``pybind11/numpy.h`` header to be included. |
| 1093 | |
| 1094 | Data in NumPy arrays is not guaranteed to packed in a dense manner; |
| 1095 | furthermore, entries can be separated by arbitrary column and row strides. |
| 1096 | Sometimes, it can be useful to require a function to only accept dense arrays |
| 1097 | using either the C (row-major) or Fortran (column-major) ordering. This can be |
| 1098 | accomplished via a second template argument with values ``py::array::c_style`` |
| 1099 | or ``py::array::f_style``. |
| 1100 | |
| 1101 | .. code-block:: cpp |
| 1102 | |
Wenzel Jakob | b47a9de | 2016-05-19 16:02:09 +0200 | [diff] [blame] | 1103 | void f(py::array_t<double, py::array::c_style | py::array::forcecast> array); |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1104 | |
Wenzel Jakob | b47a9de | 2016-05-19 16:02:09 +0200 | [diff] [blame] | 1105 | The ``py::array::forcecast`` argument is the default value of the second |
| 1106 | template paramenter, and it ensures that non-conforming arguments are converted |
| 1107 | into an array satisfying the specified requirements instead of trying the next |
| 1108 | function overload. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1109 | |
| 1110 | Vectorizing functions |
| 1111 | ===================== |
| 1112 | |
| 1113 | Suppose we want to bind a function with the following signature to Python so |
| 1114 | that it can process arbitrary NumPy array arguments (vectors, matrices, general |
| 1115 | N-D arrays) in addition to its normal arguments: |
| 1116 | |
| 1117 | .. code-block:: cpp |
| 1118 | |
| 1119 | double my_func(int x, float y, double z); |
| 1120 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 1121 | After including the ``pybind11/numpy.h`` header, this is extremely simple: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1122 | |
| 1123 | .. code-block:: cpp |
| 1124 | |
| 1125 | m.def("vectorized_func", py::vectorize(my_func)); |
| 1126 | |
| 1127 | Invoking the function like below causes 4 calls to be made to ``my_func`` with |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1128 | each of the array elements. The significant advantage of this compared to |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1129 | solutions like ``numpy.vectorize()`` is that the loop over the elements runs |
| 1130 | entirely on the C++ side and can be crunched down into a tight, optimized loop |
| 1131 | by the compiler. The result is returned as a NumPy array of type |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1132 | ``numpy.dtype.float64``. |
| 1133 | |
| 1134 | .. code-block:: python |
| 1135 | |
| 1136 | >>> x = np.array([[1, 3],[5, 7]]) |
| 1137 | >>> y = np.array([[2, 4],[6, 8]]) |
| 1138 | >>> z = 3 |
| 1139 | >>> result = vectorized_func(x, y, z) |
| 1140 | |
| 1141 | The scalar argument ``z`` is transparently replicated 4 times. The input |
| 1142 | arrays ``x`` and ``y`` are automatically converted into the right types (they |
| 1143 | are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and |
| 1144 | ``numpy.dtype.float32``, respectively) |
| 1145 | |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1146 | Sometimes we might want to explicitly exclude an argument from the vectorization |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1147 | because it makes little sense to wrap it in a NumPy array. For instance, |
| 1148 | suppose the function signature was |
| 1149 | |
| 1150 | .. code-block:: cpp |
| 1151 | |
| 1152 | double my_func(int x, float y, my_custom_type *z); |
| 1153 | |
| 1154 | This can be done with a stateful Lambda closure: |
| 1155 | |
| 1156 | .. code-block:: cpp |
| 1157 | |
| 1158 | // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) |
| 1159 | m.def("vectorized_func", |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1160 | [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) { |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1161 | auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); }; |
| 1162 | return py::vectorize(stateful_closure)(x, y); |
| 1163 | } |
| 1164 | ); |
| 1165 | |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1166 | In cases where the computation is too complicated to be reduced to |
| 1167 | ``vectorize``, it will be necessary to create and access the buffer contents |
| 1168 | manually. The following snippet contains a complete example that shows how this |
| 1169 | works (the code is somewhat contrived, since it could have been done more |
| 1170 | simply using ``vectorize``). |
| 1171 | |
| 1172 | .. code-block:: cpp |
| 1173 | |
| 1174 | #include <pybind11/pybind11.h> |
| 1175 | #include <pybind11/numpy.h> |
| 1176 | |
| 1177 | namespace py = pybind11; |
| 1178 | |
| 1179 | py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) { |
| 1180 | auto buf1 = input1.request(), buf2 = input2.request(); |
| 1181 | |
| 1182 | if (buf1.ndim != 1 || buf2.ndim != 1) |
| 1183 | throw std::runtime_error("Number of dimensions must be one"); |
| 1184 | |
| 1185 | if (buf1.shape[0] != buf2.shape[0]) |
| 1186 | throw std::runtime_error("Input shapes must match"); |
| 1187 | |
| 1188 | auto result = py::array(py::buffer_info( |
| 1189 | nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */ |
| 1190 | sizeof(double), /* Size of one item */ |
Nils Werner | f7048f2 | 2016-05-19 11:17:17 +0200 | [diff] [blame] | 1191 | py::format_descriptor<double>::value(), /* Buffer format */ |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1192 | buf1.ndim, /* How many dimensions? */ |
| 1193 | { buf1.shape[0] }, /* Number of elements for each dimension */ |
| 1194 | { sizeof(double) } /* Strides for each dimension */ |
| 1195 | )); |
| 1196 | |
| 1197 | auto buf3 = result.request(); |
| 1198 | |
| 1199 | double *ptr1 = (double *) buf1.ptr, |
| 1200 | *ptr2 = (double *) buf2.ptr, |
| 1201 | *ptr3 = (double *) buf3.ptr; |
| 1202 | |
| 1203 | for (size_t idx = 0; idx < buf1.shape[0]; idx++) |
| 1204 | ptr3[idx] = ptr1[idx] + ptr2[idx]; |
| 1205 | |
| 1206 | return result; |
| 1207 | } |
| 1208 | |
| 1209 | PYBIND11_PLUGIN(test) { |
| 1210 | py::module m("test"); |
| 1211 | m.def("add_arrays", &add_arrays, "Add two NumPy arrays"); |
| 1212 | return m.ptr(); |
| 1213 | } |
| 1214 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1215 | .. seealso:: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1216 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1217 | The file :file:`example/example10.cpp` contains a complete example that |
| 1218 | demonstrates using :func:`vectorize` in more detail. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1219 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1220 | Functions taking Python objects as arguments |
| 1221 | ============================================ |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1222 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1223 | pybind11 exposes all major Python types using thin C++ wrapper classes. These |
| 1224 | wrapper classes can also be used as parameters of functions in bindings, which |
| 1225 | makes it possible to directly work with native Python types on the C++ side. |
| 1226 | For instance, the following statement iterates over a Python ``dict``: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1227 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1228 | .. code-block:: cpp |
| 1229 | |
| 1230 | void print_dict(py::dict dict) { |
| 1231 | /* Easily interact with Python types */ |
| 1232 | for (auto item : dict) |
| 1233 | std::cout << "key=" << item.first << ", " |
| 1234 | << "value=" << item.second << std::endl; |
| 1235 | } |
| 1236 | |
| 1237 | Available types include :class:`handle`, :class:`object`, :class:`bool_`, |
Wenzel Jakob | 27e8e10 | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1238 | :class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`, |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 1239 | :class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`, |
| 1240 | :class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`, |
| 1241 | :class:`array`, and :class:`array_t`. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1242 | |
Wenzel Jakob | 436b731 | 2015-10-20 01:04:30 +0200 | [diff] [blame] | 1243 | In this kind of mixed code, it is often necessary to convert arbitrary C++ |
| 1244 | types to Python, which can be done using :func:`cast`: |
| 1245 | |
| 1246 | .. code-block:: cpp |
| 1247 | |
| 1248 | MyClass *cls = ..; |
| 1249 | py::object obj = py::cast(cls); |
| 1250 | |
| 1251 | The reverse direction uses the following syntax: |
| 1252 | |
| 1253 | .. code-block:: cpp |
| 1254 | |
| 1255 | py::object obj = ...; |
| 1256 | MyClass *cls = obj.cast<MyClass *>(); |
| 1257 | |
| 1258 | When conversion fails, both directions throw the exception :class:`cast_error`. |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1259 | It is also possible to call python functions via ``operator()``. |
| 1260 | |
| 1261 | .. code-block:: cpp |
| 1262 | |
| 1263 | py::function f = <...>; |
| 1264 | py::object result_py = f(1234, "hello", some_instance); |
| 1265 | MyClass &result = result_py.cast<MyClass>(); |
| 1266 | |
| 1267 | The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to |
| 1268 | supply arbitrary argument and keyword lists, although these cannot be mixed |
| 1269 | with other parameters. |
| 1270 | |
| 1271 | .. code-block:: cpp |
| 1272 | |
| 1273 | py::function f = <...>; |
| 1274 | py::tuple args = py::make_tuple(1234); |
| 1275 | py::dict kwargs; |
| 1276 | kwargs["y"] = py::cast(5678); |
| 1277 | py::object result = f(*args, **kwargs); |
Wenzel Jakob | 436b731 | 2015-10-20 01:04:30 +0200 | [diff] [blame] | 1278 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1279 | .. seealso:: |
| 1280 | |
| 1281 | The file :file:`example/example2.cpp` contains a complete example that |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1282 | demonstrates passing native Python types in more detail. The file |
| 1283 | :file:`example/example11.cpp` discusses usage of ``args`` and ``kwargs``. |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1284 | |
| 1285 | Default arguments revisited |
| 1286 | =========================== |
| 1287 | |
| 1288 | The section on :ref:`default_args` previously discussed basic usage of default |
| 1289 | arguments using pybind11. One noteworthy aspect of their implementation is that |
| 1290 | default arguments are converted to Python objects right at declaration time. |
| 1291 | Consider the following example: |
| 1292 | |
| 1293 | .. code-block:: cpp |
| 1294 | |
| 1295 | py::class_<MyClass>("MyClass") |
| 1296 | .def("myFunction", py::arg("arg") = SomeType(123)); |
| 1297 | |
| 1298 | In this case, pybind11 must already be set up to deal with values of the type |
| 1299 | ``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an |
| 1300 | exception will be thrown. |
| 1301 | |
| 1302 | Another aspect worth highlighting is that the "preview" of the default argument |
| 1303 | in the function signature is generated using the object's ``__repr__`` method. |
| 1304 | If not available, the signature may not be very helpful, e.g.: |
| 1305 | |
| 1306 | .. code-block:: python |
| 1307 | |
| 1308 | FUNCTIONS |
| 1309 | ... |
| 1310 | | myFunction(...) |
Wenzel Jakob | 48548ea | 2016-01-17 22:36:44 +0100 | [diff] [blame] | 1311 | | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1312 | ... |
| 1313 | |
| 1314 | The first way of addressing this is by defining ``SomeType.__repr__``. |
| 1315 | Alternatively, it is possible to specify the human-readable preview of the |
| 1316 | default argument manually using the ``arg_t`` notation: |
| 1317 | |
| 1318 | .. code-block:: cpp |
| 1319 | |
| 1320 | py::class_<MyClass>("MyClass") |
| 1321 | .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)")); |
| 1322 | |
Wenzel Jakob | c769fce | 2016-03-03 12:03:30 +0100 | [diff] [blame] | 1323 | Sometimes it may be necessary to pass a null pointer value as a default |
| 1324 | argument. In this case, remember to cast it to the underlying type in question, |
| 1325 | like so: |
| 1326 | |
| 1327 | .. code-block:: cpp |
| 1328 | |
| 1329 | py::class_<MyClass>("MyClass") |
| 1330 | .def("myFunction", py::arg("arg") = (SomeType *) nullptr); |
| 1331 | |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1332 | Binding functions that accept arbitrary numbers of arguments and keywords arguments |
| 1333 | =================================================================================== |
| 1334 | |
| 1335 | Python provides a useful mechanism to define functions that accept arbitrary |
| 1336 | numbers of arguments and keyword arguments: |
| 1337 | |
| 1338 | .. code-block:: cpp |
| 1339 | |
| 1340 | def generic(*args, **kwargs): |
| 1341 | # .. do something with args and kwargs |
| 1342 | |
| 1343 | Such functions can also be created using pybind11: |
| 1344 | |
| 1345 | .. code-block:: cpp |
| 1346 | |
| 1347 | void generic(py::args args, py::kwargs kwargs) { |
| 1348 | /// .. do something with args |
| 1349 | if (kwargs) |
| 1350 | /// .. do something with kwargs |
| 1351 | } |
| 1352 | |
| 1353 | /// Binding code |
| 1354 | m.def("generic", &generic); |
| 1355 | |
| 1356 | (See ``example/example11.cpp``). The class ``py::args`` derives from |
| 1357 | ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note that the |
| 1358 | ``kwargs`` argument is invalid if no keyword arguments were actually provided. |
| 1359 | Please refer to the other examples for details on how to iterate over these, |
| 1360 | and on how to cast their entries into C++ objects. |
| 1361 | |
Wenzel Jakob | 2dfbade | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1362 | Partitioning code over multiple extension modules |
| 1363 | ================================================= |
| 1364 | |
Wenzel Jakob | 90d2f5e | 2016-04-11 14:30:11 +0200 | [diff] [blame] | 1365 | It's straightforward to split binding code over multiple extension modules, |
| 1366 | while referencing types that are declared elsewhere. Everything "just" works |
| 1367 | without any special precautions. One exception to this rule occurs when |
| 1368 | extending a type declared in another extension module. Recall the basic example |
| 1369 | from Section :ref:`inheritance`. |
Wenzel Jakob | 2dfbade | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1370 | |
| 1371 | .. code-block:: cpp |
| 1372 | |
| 1373 | py::class_<Pet> pet(m, "Pet"); |
| 1374 | pet.def(py::init<const std::string &>()) |
| 1375 | .def_readwrite("name", &Pet::name); |
| 1376 | |
| 1377 | py::class_<Dog>(m, "Dog", pet /* <- specify parent */) |
| 1378 | .def(py::init<const std::string &>()) |
| 1379 | .def("bark", &Dog::bark); |
| 1380 | |
| 1381 | Suppose now that ``Pet`` bindings are defined in a module named ``basic``, |
| 1382 | whereas the ``Dog`` bindings are defined somewhere else. The challenge is of |
| 1383 | course that the variable ``pet`` is not available anymore though it is needed |
| 1384 | to indicate the inheritance relationship to the constructor of ``class_<Dog>``. |
| 1385 | However, it can be acquired as follows: |
| 1386 | |
| 1387 | .. code-block:: cpp |
| 1388 | |
| 1389 | py::object pet = (py::object) py::module::import("basic").attr("Pet"); |
| 1390 | |
| 1391 | py::class_<Dog>(m, "Dog", pet) |
| 1392 | .def(py::init<const std::string &>()) |
| 1393 | .def("bark", &Dog::bark); |
| 1394 | |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1395 | Alternatively, we can rely on the ``base`` tag, which performs an automated |
| 1396 | lookup of the corresponding Python type. However, this also requires invoking |
| 1397 | the ``import`` function once to ensure that the pybind11 binding code of the |
| 1398 | module ``basic`` has been executed. |
| 1399 | |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1400 | .. code-block:: cpp |
| 1401 | |
| 1402 | py::module::import("basic"); |
| 1403 | |
| 1404 | py::class_<Dog>(m, "Dog", py::base<Pet>()) |
| 1405 | .def(py::init<const std::string &>()) |
| 1406 | .def("bark", &Dog::bark); |
Wenzel Jakob | eda978e | 2016-03-15 15:05:40 +0100 | [diff] [blame] | 1407 | |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1408 | Naturally, both methods will fail when there are cyclic dependencies. |
| 1409 | |
Wenzel Jakob | 90d2f5e | 2016-04-11 14:30:11 +0200 | [diff] [blame] | 1410 | Note that compiling code which has its default symbol visibility set to |
| 1411 | *hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the |
| 1412 | ability to access types defined in another extension module. Workarounds |
| 1413 | include changing the global symbol visibility (not recommended, because it will |
| 1414 | lead unnecessarily large binaries) or manually exporting types that are |
| 1415 | accessed by multiple extension modules: |
| 1416 | |
| 1417 | .. code-block:: cpp |
| 1418 | |
| 1419 | #ifdef _WIN32 |
| 1420 | # define EXPORT_TYPE __declspec(dllexport) |
| 1421 | #else |
| 1422 | # define EXPORT_TYPE __attribute__ ((visibility("default"))) |
| 1423 | #endif |
| 1424 | |
| 1425 | class EXPORT_TYPE Dog : public Animal { |
| 1426 | ... |
| 1427 | }; |
| 1428 | |
| 1429 | |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1430 | Pickling support |
| 1431 | ================ |
| 1432 | |
| 1433 | Python's ``pickle`` module provides a powerful facility to serialize and |
| 1434 | de-serialize a Python object graph into a binary data stream. To pickle and |
Wenzel Jakob | 3d0e6ff | 2016-04-13 11:48:10 +0200 | [diff] [blame] | 1435 | unpickle C++ classes using pybind11, two additional functions must be provided. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1436 | Suppose the class in question has the following signature: |
| 1437 | |
| 1438 | .. code-block:: cpp |
| 1439 | |
| 1440 | class Pickleable { |
| 1441 | public: |
| 1442 | Pickleable(const std::string &value) : m_value(value) { } |
| 1443 | const std::string &value() const { return m_value; } |
| 1444 | |
| 1445 | void setExtra(int extra) { m_extra = extra; } |
| 1446 | int extra() const { return m_extra; } |
| 1447 | private: |
| 1448 | std::string m_value; |
| 1449 | int m_extra = 0; |
| 1450 | }; |
| 1451 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1452 | The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_ |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1453 | looks as follows: |
| 1454 | |
| 1455 | .. code-block:: cpp |
| 1456 | |
| 1457 | py::class_<Pickleable>(m, "Pickleable") |
| 1458 | .def(py::init<std::string>()) |
| 1459 | .def("value", &Pickleable::value) |
| 1460 | .def("extra", &Pickleable::extra) |
| 1461 | .def("setExtra", &Pickleable::setExtra) |
| 1462 | .def("__getstate__", [](const Pickleable &p) { |
| 1463 | /* Return a tuple that fully encodes the state of the object */ |
| 1464 | return py::make_tuple(p.value(), p.extra()); |
| 1465 | }) |
| 1466 | .def("__setstate__", [](Pickleable &p, py::tuple t) { |
| 1467 | if (t.size() != 2) |
| 1468 | throw std::runtime_error("Invalid state!"); |
| 1469 | |
Wenzel Jakob | d40885a | 2016-04-13 13:30:05 +0200 | [diff] [blame] | 1470 | /* Invoke the in-place constructor. Note that this is needed even |
| 1471 | when the object just has a trivial default constructor */ |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1472 | new (&p) Pickleable(t[0].cast<std::string>()); |
| 1473 | |
| 1474 | /* Assign any additional state */ |
| 1475 | p.setExtra(t[1].cast<int>()); |
| 1476 | }); |
| 1477 | |
| 1478 | An instance can now be pickled as follows: |
| 1479 | |
| 1480 | .. code-block:: python |
| 1481 | |
| 1482 | try: |
| 1483 | import cPickle as pickle # Use cPickle on Python 2.7 |
| 1484 | except ImportError: |
| 1485 | import pickle |
| 1486 | |
| 1487 | p = Pickleable("test_value") |
| 1488 | p.setExtra(15) |
Wenzel Jakob | 81e0975 | 2016-04-30 23:13:03 +0200 | [diff] [blame] | 1489 | data = pickle.dumps(p, 2) |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1490 | |
Wenzel Jakob | 81e0975 | 2016-04-30 23:13:03 +0200 | [diff] [blame] | 1491 | Note that only the cPickle module is supported on Python 2.7. The second |
| 1492 | argument to ``dumps`` is also crucial: it selects the pickle protocol version |
| 1493 | 2, since the older version 1 is not supported. Newer versions are also fineāfor |
| 1494 | instance, specify ``-1`` to always use the latest available version. Beware: |
| 1495 | failure to follow these instructions will cause important pybind11 memory |
| 1496 | allocation routines to be skipped during unpickling, which will likely lead to |
| 1497 | memory corruption and/or segmentation faults. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1498 | |
| 1499 | .. seealso:: |
| 1500 | |
| 1501 | The file :file:`example/example15.cpp` contains a complete example that |
| 1502 | demonstrates how to pickle and unpickle types using pybind11 in more detail. |
| 1503 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1504 | .. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 1505 | |
| 1506 | Generating documentation using Sphinx |
| 1507 | ===================================== |
| 1508 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1509 | Sphinx [#f4]_ has the ability to inspect the signatures and documentation |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 1510 | strings in pybind11-based extension modules to automatically generate beautiful |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1511 | documentation in a variety formats. The pbtest repository [#f5]_ contains a |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 1512 | simple example repository which uses this approach. |
| 1513 | |
| 1514 | There are two potential gotchas when using this approach: first, make sure that |
| 1515 | the resulting strings do not contain any :kbd:`TAB` characters, which break the |
| 1516 | docstring parsing routines. You may want to use C++11 raw string literals, |
| 1517 | which are convenient for multi-line comments. Conveniently, any excess |
| 1518 | indentation will be automatically be removed by Sphinx. However, for this to |
| 1519 | work, it is important that all lines are indented consistently, i.e.: |
| 1520 | |
| 1521 | .. code-block:: cpp |
| 1522 | |
| 1523 | // ok |
| 1524 | m.def("foo", &foo, R"mydelimiter( |
| 1525 | The foo function |
| 1526 | |
| 1527 | Parameters |
| 1528 | ---------- |
| 1529 | )mydelimiter"); |
| 1530 | |
| 1531 | // *not ok* |
| 1532 | m.def("foo", &foo, R"mydelimiter(The foo function |
| 1533 | |
| 1534 | Parameters |
| 1535 | ---------- |
| 1536 | )mydelimiter"); |
| 1537 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1538 | .. [#f4] http://www.sphinx-doc.org |
| 1539 | .. [#f5] http://github.com/pybind/pbtest |