blob: 00e43f9724639d20527c087148931c68f8aa4265 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
105 The file :file:`example/example3.cpp` contains a complete example that
106 demonstrates how to work with overloaded operators in more detail.
107
108Callbacks and passing anonymous functions
109=========================================
110
111The C++11 standard brought lambda functions and the generic polymorphic
112function wrapper ``std::function<>`` to the C++ programming language, which
113enable powerful new ways of working with functions. Lambda functions come in
114two flavors: stateless lambda function resemble classic function pointers that
115link to an anonymous piece of code, while stateful lambda functions
116additionally depend on captured variables that are stored in an anonymous
117*lambda closure object*.
118
119Here is a simple example of a C++ function that takes an arbitrary function
120(stateful or stateless) with signature ``int -> int`` as an argument and runs
121it with the value 10.
122
123.. code-block:: cpp
124
125 int func_arg(const std::function<int(int)> &f) {
126 return f(10);
127 }
128
129The example below is more involved: it takes a function of signature ``int -> int``
130and returns another function of the same kind. The return value is a stateful
131lambda function, which stores the value ``f`` in the capture object and adds 1 to
132its return value upon execution.
133
134.. code-block:: cpp
135
136 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
137 return [f](int i) {
138 return f(i) + 1;
139 };
140 }
141
Brad Harmon835fc062016-06-16 13:19:15 -0500142This example demonstrates using python named parameters in C++ callbacks which
143requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
144methods of classes:
145
146.. code-block:: cpp
147
148 py::cpp_function func_cpp() {
149 return py::cpp_function([](int i) { return i+1; },
150 py::arg("number"));
151 }
152
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200153After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500154trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200155
156.. code-block:: cpp
157
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200158 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200160 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200161 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200162
163 m.def("func_arg", &func_arg);
164 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500165 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 return m.ptr();
168 }
169
170The following interactive session shows how to call them from Python.
171
Wenzel Jakob99279f72016-06-03 11:19:29 +0200172.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200173
174 $ python
175 >>> import example
176 >>> def square(i):
177 ... return i * i
178 ...
179 >>> example.func_arg(square)
180 100L
181 >>> square_plus_1 = example.func_ret(square)
182 >>> square_plus_1(4)
183 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500184 >>> plus_1 = func_cpp()
185 >>> plus_1(number=43)
186 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200187
188.. note::
189
190 This functionality is very useful when generating bindings for callbacks in
191 C++ libraries (e.g. a graphical user interface library).
192
193 The file :file:`example/example5.cpp` contains a complete example that
194 demonstrates how to work with callbacks and anonymous functions in more detail.
195
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100196.. warning::
197
198 Keep in mind that passing a function from C++ to Python (or vice versa)
199 will instantiate a piece of wrapper code that translates function
200 invocations between the two languages. Copying the same function back and
201 forth between Python and C++ many times in a row will cause these wrappers
202 to accumulate, which can decrease performance.
203
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200204Overriding virtual functions in Python
205======================================
206
Wenzel Jakob93296692015-10-13 23:21:54 +0200207Suppose that a C++ class or interface has a virtual function that we'd like to
208to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
209given as a specific example of how one would do this with traditional C++
210code).
211
212.. code-block:: cpp
213
214 class Animal {
215 public:
216 virtual ~Animal() { }
217 virtual std::string go(int n_times) = 0;
218 };
219
220 class Dog : public Animal {
221 public:
222 std::string go(int n_times) {
223 std::string result;
224 for (int i=0; i<n_times; ++i)
225 result += "woof! ";
226 return result;
227 }
228 };
229
230Let's also suppose that we are given a plain function which calls the
231function ``go()`` on an arbitrary ``Animal`` instance.
232
233.. code-block:: cpp
234
235 std::string call_go(Animal *animal) {
236 return animal->go(3);
237 }
238
239Normally, the binding code for these classes would look as follows:
240
241.. code-block:: cpp
242
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200243 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200244 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200245
246 py::class_<Animal> animal(m, "Animal");
247 animal
248 .def("go", &Animal::go);
249
250 py::class_<Dog>(m, "Dog", animal)
251 .def(py::init<>());
252
253 m.def("call_go", &call_go);
254
255 return m.ptr();
256 }
257
258However, these bindings are impossible to extend: ``Animal`` is not
259constructible, and we clearly require some kind of "trampoline" that
260redirects virtual calls back to Python.
261
262Defining a new type of ``Animal`` from within Python is possible but requires a
263helper class that is defined as follows:
264
265.. code-block:: cpp
266
267 class PyAnimal : public Animal {
268 public:
269 /* Inherit the constructors */
270 using Animal::Animal;
271
272 /* Trampoline (need one for each virtual function) */
273 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200274 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200275 std::string, /* Return type */
276 Animal, /* Parent class */
277 go, /* Name of function */
278 n_times /* Argument(s) */
279 );
280 }
281 };
282
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200283The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
284functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200285a default implementation.
286
287There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
288:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
289after the *Name of the function* slot. This is useful when the C++ and Python
290versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
291
292The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200293
294.. code-block:: cpp
295 :emphasize-lines: 4,6,7
296
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200297 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200298 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200299
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200300 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200301 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200302 .def(py::init<>())
303 .def("go", &Animal::go);
304
305 py::class_<Dog>(m, "Dog", animal)
306 .def(py::init<>());
307
308 m.def("call_go", &call_go);
309
310 return m.ptr();
311 }
312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313Importantly, pybind11 is made aware of the trampoline trampoline helper class
314by specifying it as the *third* template argument to :class:`class_`. The
315second argument with the unique pointer is simply the default holder type used
316by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200317
318The Python session below shows how to override ``Animal::go`` and invoke it via
319a virtual method call.
320
Wenzel Jakob99279f72016-06-03 11:19:29 +0200321.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200322
323 >>> from example import *
324 >>> d = Dog()
325 >>> call_go(d)
326 u'woof! woof! woof! '
327 >>> class Cat(Animal):
328 ... def go(self, n_times):
329 ... return "meow! " * n_times
330 ...
331 >>> c = Cat()
332 >>> call_go(c)
333 u'meow! meow! meow! '
334
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200335Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200336
Wenzel Jakob93296692015-10-13 23:21:54 +0200337.. seealso::
338
339 The file :file:`example/example12.cpp` contains a complete example that
340 demonstrates how to override virtual functions using pybind11 in more
341 detail.
342
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100343
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200344.. _macro_notes:
345
346General notes regarding convenience macros
347==========================================
348
349pybind11 provides a few convenience macros such as
350:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
351``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
352in the preprocessor (which has no concept of types), they *will* get confused
353by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
354T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
355the beginnning of the next parameter. Use a ``typedef`` to bind the template to
356another name and use it in the macro to avoid this problem.
357
358
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100359Global Interpreter Lock (GIL)
360=============================
361
362The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
363used to acquire and release the global interpreter lock in the body of a C++
364function call. In this way, long-running C++ code can be parallelized using
365multiple Python threads. Taking the previous section as an example, this could
366be realized as follows (important changes highlighted):
367
368.. code-block:: cpp
369 :emphasize-lines: 8,9,33,34
370
371 class PyAnimal : public Animal {
372 public:
373 /* Inherit the constructors */
374 using Animal::Animal;
375
376 /* Trampoline (need one for each virtual function) */
377 std::string go(int n_times) {
378 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100379 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100380
381 PYBIND11_OVERLOAD_PURE(
382 std::string, /* Return type */
383 Animal, /* Parent class */
384 go, /* Name of function */
385 n_times /* Argument(s) */
386 );
387 }
388 };
389
390 PYBIND11_PLUGIN(example) {
391 py::module m("example", "pybind11 example plugin");
392
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200393 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100394 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100395 .def(py::init<>())
396 .def("go", &Animal::go);
397
398 py::class_<Dog>(m, "Dog", animal)
399 .def(py::init<>());
400
401 m.def("call_go", [](Animal *animal) -> std::string {
402 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100403 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100404 return call_go(animal);
405 });
406
407 return m.ptr();
408 }
409
Wenzel Jakob93296692015-10-13 23:21:54 +0200410Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200411===========================
412
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200413When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200414between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
415and the Python ``list``, ``set`` and ``dict`` data structures are automatically
416enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
417out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200418
419.. note::
420
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100421 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200422
423.. seealso::
424
425 The file :file:`example/example2.cpp` contains a complete example that
426 demonstrates how to pass STL data types in more detail.
427
Wenzel Jakobb2825952016-04-13 23:33:00 +0200428Binding sequence data types, iterators, the slicing protocol, etc.
429==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200430
431Please refer to the supplemental example for details.
432
433.. seealso::
434
435 The file :file:`example/example6.cpp` contains a complete example that
436 shows how to bind a sequence data type, including length queries
437 (``__len__``), iterators (``__iter__``), the slicing protocol and other
438 kinds of useful operations.
439
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200440Return value policies
441=====================
442
Wenzel Jakob93296692015-10-13 23:21:54 +0200443Python and C++ use wildly different ways of managing the memory and lifetime of
444objects managed by them. This can lead to issues when creating bindings for
445functions that return a non-trivial type. Just by looking at the type
446information, it is not clear whether Python should take charge of the returned
447value and eventually free its resources, or if this is handled on the C++ side.
448For this reason, pybind11 provides a several `return value policy` annotations
449that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100450functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200451
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200452.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
453
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200454+--------------------------------------------------+----------------------------------------------------------------------------+
455| Return value policy | Description |
456+==================================================+============================================================================+
457| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
458| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200459| | pointer. Otherwise, it uses :enum:`return_value::move` or |
460| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200461| | See below for a description of what all of these different policies do. |
462+--------------------------------------------------+----------------------------------------------------------------------------+
463| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200464| | return value is a pointer. You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200465+--------------------------------------------------+----------------------------------------------------------------------------+
466| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
467| | ownership. Python will call the destructor and delete operator when the |
468| | object's reference count reaches zero. Undefined behavior ensues when the |
469| | C++ side does the same.. |
470+--------------------------------------------------+----------------------------------------------------------------------------+
471| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
472| | This policy is comparably safe because the lifetimes of the two instances |
473| | are decoupled. |
474+--------------------------------------------------+----------------------------------------------------------------------------+
475| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
476| | that will be owned by Python. This policy is comparably safe because the |
477| | lifetimes of the two instances (move source and destination) are decoupled.|
478+--------------------------------------------------+----------------------------------------------------------------------------+
479| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
480| | responsible for managing the object's lifetime and deallocating it when |
481| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200482| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200483+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200484| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
485| | object without taking ownership similar to the above |
486| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
487| | the function or property's implicit ``this`` argument (called the *parent*)|
488| | is considered to be the the owner of the return value (the *child*). |
489| | pybind11 then couples the lifetime of the parent to the child via a |
490| | reference relationship that ensures that the parent cannot be garbage |
491| | collected while Python is still using the child. More advanced variations |
492| | of this scheme are also possible using combinations of |
493| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
494| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200495+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200496
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200497The following example snippet shows a use case of the
Wenzel Jakob93296692015-10-13 23:21:54 +0200498:enum:`return_value_policy::reference_internal` policy.
499
500.. code-block:: cpp
501
502 class Example {
503 public:
504 Internal &get_internal() { return internal; }
505 private:
506 Internal internal;
507 };
508
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200509 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200510 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200511
512 py::class_<Example>(m, "Example")
513 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200514 .def("get_internal", &Example::get_internal, "Return the internal data",
515 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200516
517 return m.ptr();
518 }
519
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200520.. warning::
521
522 Code with invalid call policies might access unitialized memory or free
523 data structures multiple times, which can lead to hard-to-debug
524 non-determinism and segmentation faults, hence it is worth spending the
525 time to understand all the different options in the table above.
526
527.. note::
528
529 The next section on :ref:`call_policies` discusses *call policies* that can be
530 specified *in addition* to a return value policy from the list above. Call
531 policies indicate reference relationships that can involve both return values
532 and parameters of functions.
533
534.. note::
535
536 As an alternative to elaborate call policies and lifetime management logic,
537 consider using smart pointers (see the section on :ref:`smart_pointers` for
538 details). Smart pointers can tell whether an object is still referenced from
539 C++ or Python, which generally eliminates the kinds of inconsistencies that
540 can lead to crashes or undefined behavior. For functions returning smart
541 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100542
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200543.. _call_policies:
544
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100545Additional call policies
546========================
547
548In addition to the above return value policies, further `call policies` can be
549specified to indicate dependencies between parameters. There is currently just
550one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
551argument with index ``Patient`` should be kept alive at least until the
552argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200553indices start at one, while zero refers to the return value. For methods, index
554one refers to the implicit ``this`` pointer, while regular arguments begin at
555index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100556
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200557Consider the following example: the binding code for a list append operation
558that ties the lifetime of the newly added element to the underlying container
559might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100560
561.. code-block:: cpp
562
563 py::class_<List>(m, "List")
564 .def("append", &List::append, py::keep_alive<1, 2>());
565
566.. note::
567
568 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
569 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
570 0) policies from Boost.Python.
571
Wenzel Jakob61587162016-01-18 22:38:52 +0100572.. seealso::
573
574 The file :file:`example/example13.cpp` contains a complete example that
575 demonstrates using :class:`keep_alive` in more detail.
576
Wenzel Jakob93296692015-10-13 23:21:54 +0200577Implicit type conversions
578=========================
579
580Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200581that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200582could be a fixed and an arbitrary precision number type).
583
584.. code-block:: cpp
585
586 py::class_<A>(m, "A")
587 /// ... members ...
588
589 py::class_<B>(m, "B")
590 .def(py::init<A>())
591 /// ... members ...
592
593 m.def("func",
594 [](const B &) { /* .... */ }
595 );
596
597To invoke the function ``func`` using a variable ``a`` containing an ``A``
598instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
599will automatically apply an implicit type conversion, which makes it possible
600to directly write ``func(a)``.
601
602In this situation (i.e. where ``B`` has a constructor that converts from
603``A``), the following statement enables similar implicit conversions on the
604Python side:
605
606.. code-block:: cpp
607
608 py::implicitly_convertible<A, B>();
609
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200610Unique pointers
611===============
612
613Given a class ``Example`` with Python bindings, it's possible to return
614instances wrapped in C++11 unique pointers, like so
615
616.. code-block:: cpp
617
618 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
619
620.. code-block:: cpp
621
622 m.def("create_example", &create_example);
623
624In other words, there is nothing special that needs to be done. While returning
625unique pointers in this way is allowed, it is *illegal* to use them as function
626arguments. For instance, the following function signature cannot be processed
627by pybind11.
628
629.. code-block:: cpp
630
631 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
632
633The above signature would imply that Python needs to give up ownership of an
634object that is passed to this function, which is generally not possible (for
635instance, the object might be referenced elsewhere).
636
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200637.. _smart_pointers:
638
Wenzel Jakob93296692015-10-13 23:21:54 +0200639Smart pointers
640==============
641
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200642This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200643types with internal reference counting. For the simpler C++11 unique pointers,
644refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200645
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200646The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200647template type, which denotes a special *holder* type that is used to manage
648references to the object. When wrapping a type named ``Type``, the default
649value of this template parameter is ``std::unique_ptr<Type>``, which means that
650the object is deallocated when Python's reference count goes to zero.
651
Wenzel Jakob1853b652015-10-18 15:38:50 +0200652It is possible to switch to other types of reference counting wrappers or smart
653pointers, which is useful in codebases that rely on them. For instance, the
654following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200655
656.. code-block:: cpp
657
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100658 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100659
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100660Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200661
Wenzel Jakob1853b652015-10-18 15:38:50 +0200662To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100663argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200664be declared at the top level before any binding code:
665
666.. code-block:: cpp
667
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200668 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200669
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100670.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100671
672 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
673 placeholder name that is used as a template parameter of the second
674 argument. Thus, feel free to use any identifier, but use it consistently on
675 both sides; also, don't use the name of a type that already exists in your
676 codebase.
677
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100678One potential stumbling block when using holder types is that they need to be
679applied consistently. Can you guess what's broken about the following binding
680code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100681
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100682.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100683
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100684 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100685
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100686 class Parent {
687 public:
688 Parent() : child(std::make_shared<Child>()) { }
689 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
690 private:
691 std::shared_ptr<Child> child;
692 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100693
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100694 PYBIND11_PLUGIN(example) {
695 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100696
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100697 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
698
699 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
700 .def(py::init<>())
701 .def("get_child", &Parent::get_child);
702
703 return m.ptr();
704 }
705
706The following Python code will cause undefined behavior (and likely a
707segmentation fault).
708
709.. code-block:: python
710
711 from example import Parent
712 print(Parent().get_child())
713
714The problem is that ``Parent::get_child()`` returns a pointer to an instance of
715``Child``, but the fact that this instance is already managed by
716``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
717pybind11 will create a second independent ``std::shared_ptr<...>`` that also
718claims ownership of the pointer. In the end, the object will be freed **twice**
719since these shared pointers have no way of knowing about each other.
720
721There are two ways to resolve this issue:
722
7231. For types that are managed by a smart pointer class, never use raw pointers
724 in function arguments or return values. In other words: always consistently
725 wrap pointers into their designated holder types (such as
726 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
727 should be modified as follows:
728
729.. code-block:: cpp
730
731 std::shared_ptr<Child> get_child() { return child; }
732
7332. Adjust the definition of ``Child`` by specifying
734 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
735 base class. This adds a small bit of information to ``Child`` that allows
736 pybind11 to realize that there is already an existing
737 ``std::shared_ptr<...>`` and communicate with it. In this case, the
738 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100739
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100740.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
741
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100742.. code-block:: cpp
743
744 class Child : public std::enable_shared_from_this<Child> { };
745
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200746
747Please take a look at the :ref:`macro_notes` before using this feature.
748
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100749.. seealso::
750
751 The file :file:`example/example8.cpp` contains a complete example that
752 demonstrates how to work with custom reference-counting holder types in
753 more detail.
754
Wenzel Jakob93296692015-10-13 23:21:54 +0200755.. _custom_constructors:
756
757Custom constructors
758===================
759
760The syntax for binding constructors was previously introduced, but it only
761works when a constructor with the given parameters actually exists on the C++
762side. To extend this to more general cases, let's take a look at what actually
763happens under the hood: the following statement
764
765.. code-block:: cpp
766
767 py::class_<Example>(m, "Example")
768 .def(py::init<int>());
769
770is short hand notation for
771
772.. code-block:: cpp
773
774 py::class_<Example>(m, "Example")
775 .def("__init__",
776 [](Example &instance, int arg) {
777 new (&instance) Example(arg);
778 }
779 );
780
781In other words, :func:`init` creates an anonymous function that invokes an
782in-place constructor. Memory allocation etc. is already take care of beforehand
783within pybind11.
784
785Catching and throwing exceptions
786================================
787
788When C++ code invoked from Python throws an ``std::exception``, it is
789automatically converted into a Python ``Exception``. pybind11 defines multiple
790special exception classes that will map to different types of Python
791exceptions:
792
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200793.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
794
Wenzel Jakob978e3762016-04-07 18:00:41 +0200795+--------------------------------------+------------------------------+
796| C++ exception type | Python exception type |
797+======================================+==============================+
798| :class:`std::exception` | ``RuntimeError`` |
799+--------------------------------------+------------------------------+
800| :class:`std::bad_alloc` | ``MemoryError`` |
801+--------------------------------------+------------------------------+
802| :class:`std::domain_error` | ``ValueError`` |
803+--------------------------------------+------------------------------+
804| :class:`std::invalid_argument` | ``ValueError`` |
805+--------------------------------------+------------------------------+
806| :class:`std::length_error` | ``ValueError`` |
807+--------------------------------------+------------------------------+
808| :class:`std::out_of_range` | ``ValueError`` |
809+--------------------------------------+------------------------------+
810| :class:`std::range_error` | ``ValueError`` |
811+--------------------------------------+------------------------------+
812| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
813| | implement custom iterators) |
814+--------------------------------------+------------------------------+
815| :class:`pybind11::index_error` | ``IndexError`` (used to |
816| | indicate out of bounds |
817| | accesses in ``__getitem__``, |
818| | ``__setitem__``, etc.) |
819+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400820| :class:`pybind11::value_error` | ``ValueError`` (used to |
821| | indicate wrong value passed |
822| | in ``container.remove(...)`` |
823+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200824| :class:`pybind11::error_already_set` | Indicates that the Python |
825| | exception flag has already |
826| | been initialized |
827+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200828
829When a Python function invoked from C++ throws an exception, it is converted
830into a C++ exception of type :class:`error_already_set` whose string payload
831contains a textual summary.
832
833There is also a special exception :class:`cast_error` that is thrown by
834:func:`handle::call` when the input arguments cannot be converted to Python
835objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200836
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200837.. _opaque:
838
839Treating STL data structures as opaque objects
840==============================================
841
842pybind11 heavily relies on a template matching mechanism to convert parameters
843and return values that are constructed from STL data types such as vectors,
844linked lists, hash tables, etc. This even works in a recursive manner, for
845instance to deal with lists of hash maps of pairs of elementary and custom
846types, etc.
847
848However, a fundamental limitation of this approach is that internal conversions
849between Python and C++ types involve a copy operation that prevents
850pass-by-reference semantics. What does this mean?
851
852Suppose we bind the following function
853
854.. code-block:: cpp
855
856 void append_1(std::vector<int> &v) {
857 v.push_back(1);
858 }
859
860and call it from Python, the following happens:
861
Wenzel Jakob99279f72016-06-03 11:19:29 +0200862.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200863
864 >>> v = [5, 6]
865 >>> append_1(v)
866 >>> print(v)
867 [5, 6]
868
869As you can see, when passing STL data structures by reference, modifications
870are not propagated back the Python side. A similar situation arises when
871exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
872functions:
873
874.. code-block:: cpp
875
876 /* ... definition ... */
877
878 class MyClass {
879 std::vector<int> contents;
880 };
881
882 /* ... binding code ... */
883
884 py::class_<MyClass>(m, "MyClass")
885 .def(py::init<>)
886 .def_readwrite("contents", &MyClass::contents);
887
888In this case, properties can be read and written in their entirety. However, an
889``append`` operaton involving such a list type has no effect:
890
Wenzel Jakob99279f72016-06-03 11:19:29 +0200891.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200892
893 >>> m = MyClass()
894 >>> m.contents = [5, 6]
895 >>> print(m.contents)
896 [5, 6]
897 >>> m.contents.append(7)
898 >>> print(m.contents)
899 [5, 6]
900
901To deal with both of the above situations, pybind11 provides a macro named
902``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
903machinery of types, thus rendering them *opaque*. The contents of opaque
904objects are never inspected or extracted, hence they can be passed by
905reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
906the declaration
907
908.. code-block:: cpp
909
910 PYBIND11_MAKE_OPAQUE(std::vector<int>);
911
912before any binding code (e.g. invocations to ``class_::def()``, etc.). This
913macro must be specified at the top level, since instantiates a partial template
914overload. If your binding code consists of multiple compilation units, it must
915be present in every file preceding any usage of ``std::vector<int>``. Opaque
916types must also have a corresponding ``class_`` declaration to associate them
917with a name in Python, and to define a set of available operations:
918
919.. code-block:: cpp
920
921 py::class_<std::vector<int>>(m, "IntVector")
922 .def(py::init<>())
923 .def("clear", &std::vector<int>::clear)
924 .def("pop_back", &std::vector<int>::pop_back)
925 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
926 .def("__iter__", [](std::vector<int> &v) {
927 return py::make_iterator(v.begin(), v.end());
928 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
929 // ....
930
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200931Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200932
933.. seealso::
934
935 The file :file:`example/example14.cpp` contains a complete example that
936 demonstrates how to create and expose opaque types using pybind11 in more
937 detail.
938
939.. _eigen:
940
941Transparent conversion of dense and sparse Eigen data types
942===========================================================
943
944Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
945its popularity and widespread adoption, pybind11 provides transparent
946conversion support between Eigen and Scientific Python linear algebra data types.
947
948Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +0100949pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200950
9511. Static and dynamic Eigen dense vectors and matrices to instances of
952 ``numpy.ndarray`` (and vice versa).
953
9541. Eigen sparse vectors and matrices to instances of
955 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
956
957This makes it possible to bind most kinds of functions that rely on these types.
958One major caveat are functions that take Eigen matrices *by reference* and modify
959them somehow, in which case the information won't be propagated to the caller.
960
961.. code-block:: cpp
962
963 /* The Python bindings of this function won't replicate
964 the intended effect of modifying the function argument */
965 void scale_by_2(Eigen::Vector3f &v) {
966 v *= 2;
967 }
968
969To see why this is, refer to the section on :ref:`opaque` (although that
970section specifically covers STL data types, the underlying issue is the same).
971The next two sections discuss an efficient alternative for exposing the
972underlying native Eigen types as opaque objects in a way that still integrates
973with NumPy and SciPy.
974
975.. [#f1] http://eigen.tuxfamily.org
976
977.. seealso::
978
979 The file :file:`example/eigen.cpp` contains a complete example that
980 shows how to pass Eigen sparse and dense data types in more detail.
981
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200982Buffer protocol
983===============
984
985Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200986data between plugin libraries. Types can expose a buffer view [#f2]_, which
987provides fast direct access to the raw internal data representation. Suppose we
988want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200989
990.. code-block:: cpp
991
992 class Matrix {
993 public:
994 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
995 m_data = new float[rows*cols];
996 }
997 float *data() { return m_data; }
998 size_t rows() const { return m_rows; }
999 size_t cols() const { return m_cols; }
1000 private:
1001 size_t m_rows, m_cols;
1002 float *m_data;
1003 };
1004
1005The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001006making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001007completely avoid copy operations with Python expressions like
1008``np.array(matrix_instance, copy = False)``.
1009
1010.. code-block:: cpp
1011
1012 py::class_<Matrix>(m, "Matrix")
1013 .def_buffer([](Matrix &m) -> py::buffer_info {
1014 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001015 m.data(), /* Pointer to buffer */
1016 sizeof(float), /* Size of one scalar */
1017 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
1018 2, /* Number of dimensions */
1019 { m.rows(), m.cols() }, /* Buffer dimensions */
1020 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001021 sizeof(float) }
1022 );
1023 });
1024
1025The snippet above binds a lambda function, which can create ``py::buffer_info``
1026description records on demand describing a given matrix. The contents of
1027``py::buffer_info`` mirror the Python buffer protocol specification.
1028
1029.. code-block:: cpp
1030
1031 struct buffer_info {
1032 void *ptr;
1033 size_t itemsize;
1034 std::string format;
1035 int ndim;
1036 std::vector<size_t> shape;
1037 std::vector<size_t> strides;
1038 };
1039
1040To create a C++ function that can take a Python buffer object as an argument,
1041simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1042in a great variety of configurations, hence some safety checks are usually
1043necessary in the function body. Below, you can see an basic example on how to
1044define a custom constructor for the Eigen double precision matrix
1045(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001046buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001047
1048.. code-block:: cpp
1049
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001050 /* Bind MatrixXd (or some other Eigen type) to Python */
1051 typedef Eigen::MatrixXd Matrix;
1052
1053 typedef Matrix::Scalar Scalar;
1054 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1055
1056 py::class_<Matrix>(m, "Matrix")
1057 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001058 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001059
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001060 /* Request a buffer descriptor from Python */
1061 py::buffer_info info = b.request();
1062
1063 /* Some sanity checks ... */
Wenzel Jakobe7628532016-05-05 10:04:44 +02001064 if (info.format != py::format_descriptor<Scalar>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001065 throw std::runtime_error("Incompatible format: expected a double array!");
1066
1067 if (info.ndim != 2)
1068 throw std::runtime_error("Incompatible buffer dimension!");
1069
Wenzel Jakobe7628532016-05-05 10:04:44 +02001070 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001071 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1072 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001073
1074 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001075 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001076
1077 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001078 });
1079
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001080For reference, the ``def_buffer()`` call for this Eigen data type should look
1081as follows:
1082
1083.. code-block:: cpp
1084
1085 .def_buffer([](Matrix &m) -> py::buffer_info {
1086 return py::buffer_info(
1087 m.data(), /* Pointer to buffer */
1088 sizeof(Scalar), /* Size of one scalar */
1089 /* Python struct-style format descriptor */
1090 py::format_descriptor<Scalar>::value,
1091 /* Number of dimensions */
1092 2,
1093 /* Buffer dimensions */
1094 { (size_t) m.rows(),
1095 (size_t) m.cols() },
1096 /* Strides (in bytes) for each index */
1097 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1098 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1099 );
1100 })
1101
1102For a much easier approach of binding Eigen types (although with some
1103limitations), refer to the section on :ref:`eigen`.
1104
Wenzel Jakob93296692015-10-13 23:21:54 +02001105.. seealso::
1106
1107 The file :file:`example/example7.cpp` contains a complete example that
1108 demonstrates using the buffer protocol with pybind11 in more detail.
1109
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001110.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001111
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001112NumPy support
1113=============
1114
1115By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1116restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001117type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001118
1119In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001120array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001121template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001122NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001123
1124.. code-block:: cpp
1125
Wenzel Jakob93296692015-10-13 23:21:54 +02001126 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001127
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001128When it is invoked with a different type (e.g. an integer or a list of
1129integers), the binding code will attempt to cast the input into a NumPy array
1130of the requested type. Note that this feature requires the
1131:file:``pybind11/numpy.h`` header to be included.
1132
1133Data in NumPy arrays is not guaranteed to packed in a dense manner;
1134furthermore, entries can be separated by arbitrary column and row strides.
1135Sometimes, it can be useful to require a function to only accept dense arrays
1136using either the C (row-major) or Fortran (column-major) ordering. This can be
1137accomplished via a second template argument with values ``py::array::c_style``
1138or ``py::array::f_style``.
1139
1140.. code-block:: cpp
1141
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001142 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001143
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001144The ``py::array::forcecast`` argument is the default value of the second
1145template paramenter, and it ensures that non-conforming arguments are converted
1146into an array satisfying the specified requirements instead of trying the next
1147function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001148
1149Vectorizing functions
1150=====================
1151
1152Suppose we want to bind a function with the following signature to Python so
1153that it can process arbitrary NumPy array arguments (vectors, matrices, general
1154N-D arrays) in addition to its normal arguments:
1155
1156.. code-block:: cpp
1157
1158 double my_func(int x, float y, double z);
1159
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001160After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001161
1162.. code-block:: cpp
1163
1164 m.def("vectorized_func", py::vectorize(my_func));
1165
1166Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001167each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001168solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1169entirely on the C++ side and can be crunched down into a tight, optimized loop
1170by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001171``numpy.dtype.float64``.
1172
Wenzel Jakob99279f72016-06-03 11:19:29 +02001173.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001174
1175 >>> x = np.array([[1, 3],[5, 7]])
1176 >>> y = np.array([[2, 4],[6, 8]])
1177 >>> z = 3
1178 >>> result = vectorized_func(x, y, z)
1179
1180The scalar argument ``z`` is transparently replicated 4 times. The input
1181arrays ``x`` and ``y`` are automatically converted into the right types (they
1182are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1183``numpy.dtype.float32``, respectively)
1184
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001185Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001186because it makes little sense to wrap it in a NumPy array. For instance,
1187suppose the function signature was
1188
1189.. code-block:: cpp
1190
1191 double my_func(int x, float y, my_custom_type *z);
1192
1193This can be done with a stateful Lambda closure:
1194
1195.. code-block:: cpp
1196
1197 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1198 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001199 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001200 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1201 return py::vectorize(stateful_closure)(x, y);
1202 }
1203 );
1204
Wenzel Jakob61587162016-01-18 22:38:52 +01001205In cases where the computation is too complicated to be reduced to
1206``vectorize``, it will be necessary to create and access the buffer contents
1207manually. The following snippet contains a complete example that shows how this
1208works (the code is somewhat contrived, since it could have been done more
1209simply using ``vectorize``).
1210
1211.. code-block:: cpp
1212
1213 #include <pybind11/pybind11.h>
1214 #include <pybind11/numpy.h>
1215
1216 namespace py = pybind11;
1217
1218 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1219 auto buf1 = input1.request(), buf2 = input2.request();
1220
1221 if (buf1.ndim != 1 || buf2.ndim != 1)
1222 throw std::runtime_error("Number of dimensions must be one");
1223
1224 if (buf1.shape[0] != buf2.shape[0])
1225 throw std::runtime_error("Input shapes must match");
1226
1227 auto result = py::array(py::buffer_info(
1228 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1229 sizeof(double), /* Size of one item */
Nils Wernerf7048f22016-05-19 11:17:17 +02001230 py::format_descriptor<double>::value(), /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001231 buf1.ndim, /* How many dimensions? */
1232 { buf1.shape[0] }, /* Number of elements for each dimension */
1233 { sizeof(double) } /* Strides for each dimension */
1234 ));
1235
1236 auto buf3 = result.request();
1237
1238 double *ptr1 = (double *) buf1.ptr,
1239 *ptr2 = (double *) buf2.ptr,
1240 *ptr3 = (double *) buf3.ptr;
1241
1242 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1243 ptr3[idx] = ptr1[idx] + ptr2[idx];
1244
1245 return result;
1246 }
1247
1248 PYBIND11_PLUGIN(test) {
1249 py::module m("test");
1250 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1251 return m.ptr();
1252 }
1253
Wenzel Jakob93296692015-10-13 23:21:54 +02001254.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001255
Wenzel Jakob93296692015-10-13 23:21:54 +02001256 The file :file:`example/example10.cpp` contains a complete example that
1257 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001258
Wenzel Jakob93296692015-10-13 23:21:54 +02001259Functions taking Python objects as arguments
1260============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001261
Wenzel Jakob93296692015-10-13 23:21:54 +02001262pybind11 exposes all major Python types using thin C++ wrapper classes. These
1263wrapper classes can also be used as parameters of functions in bindings, which
1264makes it possible to directly work with native Python types on the C++ side.
1265For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001266
Wenzel Jakob93296692015-10-13 23:21:54 +02001267.. code-block:: cpp
1268
1269 void print_dict(py::dict dict) {
1270 /* Easily interact with Python types */
1271 for (auto item : dict)
1272 std::cout << "key=" << item.first << ", "
1273 << "value=" << item.second << std::endl;
1274 }
1275
1276Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001277:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001278:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1279:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1280:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001281
Wenzel Jakob436b7312015-10-20 01:04:30 +02001282In this kind of mixed code, it is often necessary to convert arbitrary C++
1283types to Python, which can be done using :func:`cast`:
1284
1285.. code-block:: cpp
1286
1287 MyClass *cls = ..;
1288 py::object obj = py::cast(cls);
1289
1290The reverse direction uses the following syntax:
1291
1292.. code-block:: cpp
1293
1294 py::object obj = ...;
1295 MyClass *cls = obj.cast<MyClass *>();
1296
1297When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001298It is also possible to call python functions via ``operator()``.
1299
1300.. code-block:: cpp
1301
1302 py::function f = <...>;
1303 py::object result_py = f(1234, "hello", some_instance);
1304 MyClass &result = result_py.cast<MyClass>();
1305
1306The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1307supply arbitrary argument and keyword lists, although these cannot be mixed
1308with other parameters.
1309
1310.. code-block:: cpp
1311
1312 py::function f = <...>;
1313 py::tuple args = py::make_tuple(1234);
1314 py::dict kwargs;
1315 kwargs["y"] = py::cast(5678);
1316 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001317
Wenzel Jakob93296692015-10-13 23:21:54 +02001318.. seealso::
1319
1320 The file :file:`example/example2.cpp` contains a complete example that
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001321 demonstrates passing native Python types in more detail. The file
1322 :file:`example/example11.cpp` discusses usage of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001323
1324Default arguments revisited
1325===========================
1326
1327The section on :ref:`default_args` previously discussed basic usage of default
1328arguments using pybind11. One noteworthy aspect of their implementation is that
1329default arguments are converted to Python objects right at declaration time.
1330Consider the following example:
1331
1332.. code-block:: cpp
1333
1334 py::class_<MyClass>("MyClass")
1335 .def("myFunction", py::arg("arg") = SomeType(123));
1336
1337In this case, pybind11 must already be set up to deal with values of the type
1338``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1339exception will be thrown.
1340
1341Another aspect worth highlighting is that the "preview" of the default argument
1342in the function signature is generated using the object's ``__repr__`` method.
1343If not available, the signature may not be very helpful, e.g.:
1344
Wenzel Jakob99279f72016-06-03 11:19:29 +02001345.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001346
1347 FUNCTIONS
1348 ...
1349 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001350 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001351 ...
1352
1353The first way of addressing this is by defining ``SomeType.__repr__``.
1354Alternatively, it is possible to specify the human-readable preview of the
1355default argument manually using the ``arg_t`` notation:
1356
1357.. code-block:: cpp
1358
1359 py::class_<MyClass>("MyClass")
1360 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1361
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001362Sometimes it may be necessary to pass a null pointer value as a default
1363argument. In this case, remember to cast it to the underlying type in question,
1364like so:
1365
1366.. code-block:: cpp
1367
1368 py::class_<MyClass>("MyClass")
1369 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1370
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001371Binding functions that accept arbitrary numbers of arguments and keywords arguments
1372===================================================================================
1373
1374Python provides a useful mechanism to define functions that accept arbitrary
1375numbers of arguments and keyword arguments:
1376
1377.. code-block:: cpp
1378
1379 def generic(*args, **kwargs):
1380 # .. do something with args and kwargs
1381
1382Such functions can also be created using pybind11:
1383
1384.. code-block:: cpp
1385
1386 void generic(py::args args, py::kwargs kwargs) {
1387 /// .. do something with args
1388 if (kwargs)
1389 /// .. do something with kwargs
1390 }
1391
1392 /// Binding code
1393 m.def("generic", &generic);
1394
1395(See ``example/example11.cpp``). The class ``py::args`` derives from
1396``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note that the
1397``kwargs`` argument is invalid if no keyword arguments were actually provided.
1398Please refer to the other examples for details on how to iterate over these,
1399and on how to cast their entries into C++ objects.
1400
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001401Partitioning code over multiple extension modules
1402=================================================
1403
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001404It's straightforward to split binding code over multiple extension modules,
1405while referencing types that are declared elsewhere. Everything "just" works
1406without any special precautions. One exception to this rule occurs when
1407extending a type declared in another extension module. Recall the basic example
1408from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001409
1410.. code-block:: cpp
1411
1412 py::class_<Pet> pet(m, "Pet");
1413 pet.def(py::init<const std::string &>())
1414 .def_readwrite("name", &Pet::name);
1415
1416 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1417 .def(py::init<const std::string &>())
1418 .def("bark", &Dog::bark);
1419
1420Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1421whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1422course that the variable ``pet`` is not available anymore though it is needed
1423to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1424However, it can be acquired as follows:
1425
1426.. code-block:: cpp
1427
1428 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1429
1430 py::class_<Dog>(m, "Dog", pet)
1431 .def(py::init<const std::string &>())
1432 .def("bark", &Dog::bark);
1433
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001434Alternatively, we can rely on the ``base`` tag, which performs an automated
1435lookup of the corresponding Python type. However, this also requires invoking
1436the ``import`` function once to ensure that the pybind11 binding code of the
1437module ``basic`` has been executed.
1438
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001439.. code-block:: cpp
1440
1441 py::module::import("basic");
1442
1443 py::class_<Dog>(m, "Dog", py::base<Pet>())
1444 .def(py::init<const std::string &>())
1445 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001446
Wenzel Jakob978e3762016-04-07 18:00:41 +02001447Naturally, both methods will fail when there are cyclic dependencies.
1448
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001449Note that compiling code which has its default symbol visibility set to
1450*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1451ability to access types defined in another extension module. Workarounds
1452include changing the global symbol visibility (not recommended, because it will
1453lead unnecessarily large binaries) or manually exporting types that are
1454accessed by multiple extension modules:
1455
1456.. code-block:: cpp
1457
1458 #ifdef _WIN32
1459 # define EXPORT_TYPE __declspec(dllexport)
1460 #else
1461 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1462 #endif
1463
1464 class EXPORT_TYPE Dog : public Animal {
1465 ...
1466 };
1467
1468
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001469Pickling support
1470================
1471
1472Python's ``pickle`` module provides a powerful facility to serialize and
1473de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001474unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001475Suppose the class in question has the following signature:
1476
1477.. code-block:: cpp
1478
1479 class Pickleable {
1480 public:
1481 Pickleable(const std::string &value) : m_value(value) { }
1482 const std::string &value() const { return m_value; }
1483
1484 void setExtra(int extra) { m_extra = extra; }
1485 int extra() const { return m_extra; }
1486 private:
1487 std::string m_value;
1488 int m_extra = 0;
1489 };
1490
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001491The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001492looks as follows:
1493
1494.. code-block:: cpp
1495
1496 py::class_<Pickleable>(m, "Pickleable")
1497 .def(py::init<std::string>())
1498 .def("value", &Pickleable::value)
1499 .def("extra", &Pickleable::extra)
1500 .def("setExtra", &Pickleable::setExtra)
1501 .def("__getstate__", [](const Pickleable &p) {
1502 /* Return a tuple that fully encodes the state of the object */
1503 return py::make_tuple(p.value(), p.extra());
1504 })
1505 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1506 if (t.size() != 2)
1507 throw std::runtime_error("Invalid state!");
1508
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001509 /* Invoke the in-place constructor. Note that this is needed even
1510 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001511 new (&p) Pickleable(t[0].cast<std::string>());
1512
1513 /* Assign any additional state */
1514 p.setExtra(t[1].cast<int>());
1515 });
1516
1517An instance can now be pickled as follows:
1518
1519.. code-block:: python
1520
1521 try:
1522 import cPickle as pickle # Use cPickle on Python 2.7
1523 except ImportError:
1524 import pickle
1525
1526 p = Pickleable("test_value")
1527 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001528 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001529
Wenzel Jakob81e09752016-04-30 23:13:03 +02001530Note that only the cPickle module is supported on Python 2.7. The second
1531argument to ``dumps`` is also crucial: it selects the pickle protocol version
15322, since the older version 1 is not supported. Newer versions are also fine—for
1533instance, specify ``-1`` to always use the latest available version. Beware:
1534failure to follow these instructions will cause important pybind11 memory
1535allocation routines to be skipped during unpickling, which will likely lead to
1536memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001537
1538.. seealso::
1539
1540 The file :file:`example/example15.cpp` contains a complete example that
1541 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1542
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001543.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001544
1545Generating documentation using Sphinx
1546=====================================
1547
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001548Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001549strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001550documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001551simple example repository which uses this approach.
1552
1553There are two potential gotchas when using this approach: first, make sure that
1554the resulting strings do not contain any :kbd:`TAB` characters, which break the
1555docstring parsing routines. You may want to use C++11 raw string literals,
1556which are convenient for multi-line comments. Conveniently, any excess
1557indentation will be automatically be removed by Sphinx. However, for this to
1558work, it is important that all lines are indented consistently, i.e.:
1559
1560.. code-block:: cpp
1561
1562 // ok
1563 m.def("foo", &foo, R"mydelimiter(
1564 The foo function
1565
1566 Parameters
1567 ----------
1568 )mydelimiter");
1569
1570 // *not ok*
1571 m.def("foo", &foo, R"mydelimiter(The foo function
1572
1573 Parameters
1574 ----------
1575 )mydelimiter");
1576
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001577.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001578.. [#f5] http://github.com/pybind/python_example