blob: b77bb2e4ae965525d9a30ff41a86bdcd10df835d [file] [log] [blame]
Brian Osman7c979f52019-02-12 13:27:51 -05001/*
2* Copyright 2019 Google LLC
3*
4* Use of this source code is governed by a BSD-style license that can be
5* found in the LICENSE file.
6*/
7
8#ifndef SkCurve_DEFINED
9#define SkCurve_DEFINED
10
Brian Osman125daa42019-02-20 12:25:20 -050011#include "SkColor.h"
Brian Osmanbdcdf1a2019-03-04 10:55:22 -050012#include "SkParticleData.h"
Brian Osman7c979f52019-02-12 13:27:51 -050013#include "SkScalar.h"
Brian Osman8b6283f2019-02-14 16:55:21 -050014#include "SkTArray.h"
Brian Osman7c979f52019-02-12 13:27:51 -050015
16class SkFieldVisitor;
Brian Osman7c979f52019-02-12 13:27:51 -050017
Brian Osmane12e4992019-02-19 15:39:18 -050018/**
19 * SkCurve implements a keyframed 1D function, useful for animating values over time. This pattern
20 * is common in digital content creation tools. An SkCurve might represent rotation, scale, opacity,
21 * or any other scalar quantity.
22 *
23 * An SkCurve has a logical domain of [0, 1], and is made of one or more SkCurveSegments.
24 * Each segment describes the behavior of the curve in some sub-domain. For an SkCurve with N
25 * segments, there are (N - 1) intermediate x-values that subdivide the domain. The first and last
26 * x-values are implicitly 0 and 1:
27 *
28 * 0 ... x[0] ... x[1] ... ... 1
29 * Segment_0 Segment_1 ... Segment_N-1
30 *
31 * Each segment describes a function over [0, 1] - x-values are re-normalized to the segment's
32 * domain when being evaluated. The segments are cubic polynomials, defined by four values (fMin).
33 * These are the values at x=0 and x=1, as well as control points at x=1/3 and x=2/3.
34 *
35 * For segments with fConstant == true, only the first value is used (fMin[0]).
36 *
37 * Each segment has two additional features for creating interesting (and varied) animation:
38 * - A segment can be ranged. Ranged segments have two sets of coefficients, and a random value
Brian Osmand0c1bd42019-03-06 16:56:58 -050039 * taken from the particle's SkRandom is used to lerp betwen them. Typically, the SkRandom is
40 * in the same state at each call, so this value is stable. That causes a ranged SkCurve to
41 * produce a single smooth cubic function somewhere within the range defined by fMin and fMax.
Brian Osmane12e4992019-02-19 15:39:18 -050042 * - A segment can be bidirectional. In that case, after a value is computed, it will be negated
43 * 50% of the time.
44 */
45
Brian Osman34d13312019-02-27 11:19:19 -050046enum SkCurveSegmentType {
47 kConstant_SegmentType,
48 kLinear_SegmentType,
49 kCubic_SegmentType,
50};
51
Brian Osman8b6283f2019-02-14 16:55:21 -050052struct SkCurveSegment {
Brian Osman1b20cd82019-02-25 14:15:02 -050053 SkScalar eval(SkScalar x, SkScalar t, bool negate) const;
Brian Osman8b6283f2019-02-14 16:55:21 -050054 void visitFields(SkFieldVisitor* v);
55
56 void setConstant(SkScalar c) {
Brian Osman34d13312019-02-27 11:19:19 -050057 fType = kConstant_SegmentType;
58 fRanged = false;
Brian Osman8b6283f2019-02-14 16:55:21 -050059 fMin[0] = c;
60 }
61
62 SkScalar fMin[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
63 SkScalar fMax[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
64
Brian Osman34d13312019-02-27 11:19:19 -050065 int fType = kConstant_SegmentType;
Brian Osman8b6283f2019-02-14 16:55:21 -050066 bool fRanged = false;
67 bool fBidirectional = false;
68};
Brian Osman7c979f52019-02-12 13:27:51 -050069
70struct SkCurve {
71 SkCurve(SkScalar c = 0.0f) {
Brian Osman8b6283f2019-02-14 16:55:21 -050072 fSegments.push_back().setConstant(c);
Brian Osman7c979f52019-02-12 13:27:51 -050073 }
74
Brian Osmanbdcdf1a2019-03-04 10:55:22 -050075 SkScalar eval(const SkParticleUpdateParams& params, SkParticleState& ps) const;
Brian Osman7c979f52019-02-12 13:27:51 -050076 void visitFields(SkFieldVisitor* v);
Brian Osmane12e4992019-02-19 15:39:18 -050077
Brian Osmanbdcdf1a2019-03-04 10:55:22 -050078 // Parameters that determine our x-value during evaluation
79 SkParticleValue fInput;
80
Brian Osmane12e4992019-02-19 15:39:18 -050081 // It should always be true that (fXValues.count() + 1) == fSegments.count()
Brian Osman8b6283f2019-02-14 16:55:21 -050082 SkTArray<SkScalar, true> fXValues;
83 SkTArray<SkCurveSegment, true> fSegments;
Brian Osman7c979f52019-02-12 13:27:51 -050084};
85
Brian Osman125daa42019-02-20 12:25:20 -050086/**
87 * SkColorCurve is similar to SkCurve, but keyframes 4D values - specifically colors. Because
88 * negative colors rarely make sense, SkColorCurves do not support bidirectional segments, but
89 * support all other features (including cubic interpolation).
90 */
91
92struct SkColorCurveSegment {
93 SkColorCurveSegment() {
94 for (int i = 0; i < 4; ++i) {
95 fMin[i] = { 1.0f, 1.0f, 1.0f, 1.0f };
96 fMax[i] = { 1.0f, 1.0f, 1.0f, 1.0f };
97 }
98 }
99
Brian Osmanbdcdf1a2019-03-04 10:55:22 -0500100 SkColor4f eval(SkScalar x, SkScalar t) const;
Brian Osman125daa42019-02-20 12:25:20 -0500101 void visitFields(SkFieldVisitor* v);
102
103 void setConstant(SkColor4f c) {
Brian Osman34d13312019-02-27 11:19:19 -0500104 fType = kConstant_SegmentType;
Brian Osman125daa42019-02-20 12:25:20 -0500105 fRanged = false;
106 fMin[0] = c;
107 }
108
109 SkColor4f fMin[4];
110 SkColor4f fMax[4];
111
Brian Osman34d13312019-02-27 11:19:19 -0500112 int fType = kConstant_SegmentType;
Brian Osman125daa42019-02-20 12:25:20 -0500113 bool fRanged = false;
114};
115
116struct SkColorCurve {
117 SkColorCurve(SkColor4f c = { 1.0f, 1.0f, 1.0f, 1.0f }) {
118 fSegments.push_back().setConstant(c);
119 }
120
Brian Osmanbdcdf1a2019-03-04 10:55:22 -0500121 SkColor4f eval(const SkParticleUpdateParams& params, SkParticleState& ps) const;
Brian Osman125daa42019-02-20 12:25:20 -0500122 void visitFields(SkFieldVisitor* v);
123
Brian Osmanbdcdf1a2019-03-04 10:55:22 -0500124 SkParticleValue fInput;
Brian Osman125daa42019-02-20 12:25:20 -0500125 SkTArray<SkScalar, true> fXValues;
126 SkTArray<SkColorCurveSegment, true> fSegments;
127};
128
Brian Osman7c979f52019-02-12 13:27:51 -0500129#endif // SkCurve_DEFINED