blob: ad240084676f017339c83584093273cd9146664c [file] [log] [blame]
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
caryclark@google.comb45a1b42012-05-18 20:50:33 +00007#include "Simplify.h"
caryclark@google.comfa0588f2012-04-26 21:01:06 +00008
9#undef SkASSERT
10#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
11
caryclark@google.com15fa1382012-05-07 20:49:36 +000012// Terminology:
13// A Path contains one of more Contours
14// A Contour is made up of Segment array
caryclark@google.comb45a1b42012-05-18 20:50:33 +000015// A Segment is described by a Verb and a Point array with 2, 3, or 4 points
16// A Verb is one of Line, Quad(ratic), or Cubic
caryclark@google.com15fa1382012-05-07 20:49:36 +000017// A Segment contains a Span array
18// A Span is describes a portion of a Segment using starting and ending T
19// T values range from 0 to 1, where 0 is the first Point in the Segment
caryclark@google.com47580692012-07-23 12:14:49 +000020// An Edge is a Segment generated from a Span
caryclark@google.com15fa1382012-05-07 20:49:36 +000021
caryclark@google.comfa0588f2012-04-26 21:01:06 +000022// FIXME: remove once debugging is complete
caryclark@google.com47580692012-07-23 12:14:49 +000023#ifdef SK_DEBUG
24int gDebugMaxWindSum = SK_MaxS32;
25int gDebugMaxWindValue = SK_MaxS32;
26#endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +000027
caryclark@google.com47580692012-07-23 12:14:49 +000028#define DEBUG_UNUSED 0 // set to expose unused functions
caryclark@google.comfa0588f2012-04-26 21:01:06 +000029
caryclark@google.com47580692012-07-23 12:14:49 +000030#if 0 // set to 1 for multiple thread -- no debugging
31
32const bool gRunTestsInOneThread = false;
33
34#define DEBUG_ACTIVE_SPANS 0
caryclark@google.comfa0588f2012-04-26 21:01:06 +000035#define DEBUG_ADD_INTERSECTING_TS 0
caryclark@google.com47580692012-07-23 12:14:49 +000036#define DEBUG_ADD_T_PAIR 0
caryclark@google.com47580692012-07-23 12:14:49 +000037#define DEBUG_CONCIDENT 0
caryclark@google.com8dcf1142012-07-02 20:27:02 +000038#define DEBUG_CROSS 0
caryclark@google.comfa0588f2012-04-26 21:01:06 +000039#define DEBUG_DUMP 0
caryclark@google.com8dcf1142012-07-02 20:27:02 +000040#define DEBUG_MARK_DONE 0
caryclark@google.com47580692012-07-23 12:14:49 +000041#define DEBUG_PATH_CONSTRUCTION 0
42#define DEBUG_SORT 0
caryclark@google.comafe56de2012-07-24 18:11:03 +000043#define DEBUG_WIND_BUMP 0
caryclark@google.com47580692012-07-23 12:14:49 +000044#define DEBUG_WINDING 0
caryclark@google.comfa0588f2012-04-26 21:01:06 +000045
46#else
47
caryclark@google.com47580692012-07-23 12:14:49 +000048const bool gRunTestsInOneThread = true;
caryclark@google.comfa0588f2012-04-26 21:01:06 +000049
caryclark@google.comafe56de2012-07-24 18:11:03 +000050#define DEBUG_ACTIVE_SPANS 1
caryclark@google.com65f9f0a2012-05-23 18:09:25 +000051#define DEBUG_ADD_INTERSECTING_TS 0
caryclark@google.come21cb182012-07-23 21:26:31 +000052#define DEBUG_ADD_T_PAIR 0
caryclark@google.com18063442012-07-25 12:05:18 +000053#define DEBUG_CONCIDENT 01
caryclark@google.come21cb182012-07-23 21:26:31 +000054#define DEBUG_CROSS 1
caryclark@google.comfa0588f2012-04-26 21:01:06 +000055#define DEBUG_DUMP 1
caryclark@google.com47580692012-07-23 12:14:49 +000056#define DEBUG_MARK_DONE 1
caryclark@google.com65f9f0a2012-05-23 18:09:25 +000057#define DEBUG_PATH_CONSTRUCTION 1
caryclark@google.com47580692012-07-23 12:14:49 +000058#define DEBUG_SORT 1
caryclark@google.comafe56de2012-07-24 18:11:03 +000059#define DEBUG_WIND_BUMP 0
caryclark@google.com47580692012-07-23 12:14:49 +000060#define DEBUG_WINDING 1
caryclark@google.comfa0588f2012-04-26 21:01:06 +000061
62#endif
63
caryclark@google.com47580692012-07-23 12:14:49 +000064#if (DEBUG_ACTIVE_SPANS || DEBUG_CONCIDENT) && !DEBUG_DUMP
caryclark@google.com027de222012-07-12 12:52:50 +000065#undef DEBUG_DUMP
66#define DEBUG_DUMP 1
67#endif
68
caryclark@google.comfa0588f2012-04-26 21:01:06 +000069#if DEBUG_DUMP
70static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
caryclark@google.com65f9f0a2012-05-23 18:09:25 +000071// static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
caryclark@google.comfa0588f2012-04-26 21:01:06 +000072static int gContourID;
73static int gSegmentID;
74#endif
75
caryclark@google.com8dcf1142012-07-02 20:27:02 +000076#ifndef DEBUG_TEST
77#define DEBUG_TEST 0
78#endif
79
caryclark@google.comfa0588f2012-04-26 21:01:06 +000080static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
81 Intersections& intersections) {
82 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
83 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
84 return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]);
85}
86
87static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
88 Intersections& intersections) {
89 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
90 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
91 intersect(aQuad, bLine, intersections);
92 return intersections.fUsed;
93}
94
95static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3],
96 Intersections& intersections) {
97 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
98 {a[3].fX, a[3].fY}};
99 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
100 return intersect(aCubic, bLine, intersections.fT[0], intersections.fT[1]);
101}
102
103static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
104 Intersections& intersections) {
105 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
106 const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}};
107 intersect(aQuad, bQuad, intersections);
108 return intersections.fUsed;
109}
110
111static int CubicIntersect(const SkPoint a[4], const SkPoint b[4],
112 Intersections& intersections) {
113 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
114 {a[3].fX, a[3].fY}};
115 const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY},
116 {b[3].fX, b[3].fY}};
117 intersect(aCubic, bCubic, intersections);
118 return intersections.fUsed;
119}
120
121static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
122 SkScalar y, bool flipped, Intersections& intersections) {
123 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
124 return horizontalIntersect(aLine, left, right, y, flipped, intersections);
125}
126
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000127static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
128 SkScalar y, bool flipped, Intersections& intersections) {
129 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
130 return horizontalIntersect(aQuad, left, right, y, flipped, intersections);
131}
132
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000133static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
134 SkScalar y, bool flipped, Intersections& intersections) {
135 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
136 {a[3].fX, a[3].fY}};
137 return horizontalIntersect(aCubic, left, right, y, flipped, intersections);
138}
139
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000140static int VLineIntersect(const SkPoint a[2], SkScalar top, SkScalar bottom,
141 SkScalar x, bool flipped, Intersections& intersections) {
142 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
143 return verticalIntersect(aLine, top, bottom, x, flipped, intersections);
144}
145
146static int VQuadIntersect(const SkPoint a[3], SkScalar top, SkScalar bottom,
147 SkScalar x, bool flipped, Intersections& intersections) {
148 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
149 return verticalIntersect(aQuad, top, bottom, x, flipped, intersections);
150}
151
152static int VCubicIntersect(const SkPoint a[4], SkScalar top, SkScalar bottom,
153 SkScalar x, bool flipped, Intersections& intersections) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000154 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
155 {a[3].fX, a[3].fY}};
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000156 return verticalIntersect(aCubic, top, bottom, x, flipped, intersections);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000157}
158
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000159static int (* const VSegmentIntersect[])(const SkPoint [], SkScalar ,
160 SkScalar , SkScalar , bool , Intersections& ) = {
161 NULL,
162 VLineIntersect,
163 VQuadIntersect,
164 VCubicIntersect
165};
166
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000167static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
168 const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
169 double x, y;
170 xy_at_t(line, t, x, y);
171 out->fX = SkDoubleToScalar(x);
172 out->fY = SkDoubleToScalar(y);
173}
174
175static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
176 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
177 double x, y;
178 xy_at_t(quad, t, x, y);
179 out->fX = SkDoubleToScalar(x);
180 out->fY = SkDoubleToScalar(y);
181}
182
183static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
184 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
185 {a[3].fX, a[3].fY}};
186 double x, y;
187 xy_at_t(cubic, t, x, y);
188 out->fX = SkDoubleToScalar(x);
189 out->fY = SkDoubleToScalar(y);
190}
191
192static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = {
193 NULL,
194 LineXYAtT,
195 QuadXYAtT,
196 CubicXYAtT
197};
198
199static SkScalar LineXAtT(const SkPoint a[2], double t) {
200 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
201 double x;
202 xy_at_t(aLine, t, x, *(double*) 0);
203 return SkDoubleToScalar(x);
204}
205
206static SkScalar QuadXAtT(const SkPoint a[3], double t) {
207 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
208 double x;
209 xy_at_t(quad, t, x, *(double*) 0);
210 return SkDoubleToScalar(x);
211}
212
213static SkScalar CubicXAtT(const SkPoint a[4], double t) {
214 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
215 {a[3].fX, a[3].fY}};
216 double x;
217 xy_at_t(cubic, t, x, *(double*) 0);
218 return SkDoubleToScalar(x);
219}
220
221static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = {
222 NULL,
223 LineXAtT,
224 QuadXAtT,
225 CubicXAtT
226};
227
228static SkScalar LineYAtT(const SkPoint a[2], double t) {
229 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
230 double y;
231 xy_at_t(aLine, t, *(double*) 0, y);
232 return SkDoubleToScalar(y);
233}
234
235static SkScalar QuadYAtT(const SkPoint a[3], double t) {
236 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
237 double y;
238 xy_at_t(quad, t, *(double*) 0, y);
239 return SkDoubleToScalar(y);
240}
241
242static SkScalar CubicYAtT(const SkPoint a[4], double t) {
243 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
244 {a[3].fX, a[3].fY}};
245 double y;
246 xy_at_t(cubic, t, *(double*) 0, y);
247 return SkDoubleToScalar(y);
248}
249
250static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = {
251 NULL,
252 LineYAtT,
253 QuadYAtT,
254 CubicYAtT
255};
256
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000257static SkScalar LineDXAtT(const SkPoint a[2], double ) {
258 return a[1].fX - a[0].fX;
259}
260
261static SkScalar QuadDXAtT(const SkPoint a[3], double t) {
262 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
263 double x;
264 dxdy_at_t(quad, t, x, *(double*) 0);
265 return SkDoubleToScalar(x);
266}
267
268static SkScalar CubicDXAtT(const SkPoint a[4], double t) {
269 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
270 {a[3].fX, a[3].fY}};
271 double x;
272 dxdy_at_t(cubic, t, x, *(double*) 0);
273 return SkDoubleToScalar(x);
274}
275
276static SkScalar (* const SegmentDXAtT[])(const SkPoint [], double ) = {
277 NULL,
278 LineDXAtT,
279 QuadDXAtT,
280 CubicDXAtT
281};
282
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000283static void LineSubDivide(const SkPoint a[2], double startT, double endT,
284 SkPoint sub[2]) {
285 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
286 _Line dst;
287 sub_divide(aLine, startT, endT, dst);
288 sub[0].fX = SkDoubleToScalar(dst[0].x);
289 sub[0].fY = SkDoubleToScalar(dst[0].y);
290 sub[1].fX = SkDoubleToScalar(dst[1].x);
291 sub[1].fY = SkDoubleToScalar(dst[1].y);
292}
293
294static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
295 SkPoint sub[3]) {
296 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
297 {a[2].fX, a[2].fY}};
298 Quadratic dst;
299 sub_divide(aQuad, startT, endT, dst);
300 sub[0].fX = SkDoubleToScalar(dst[0].x);
301 sub[0].fY = SkDoubleToScalar(dst[0].y);
302 sub[1].fX = SkDoubleToScalar(dst[1].x);
303 sub[1].fY = SkDoubleToScalar(dst[1].y);
304 sub[2].fX = SkDoubleToScalar(dst[2].x);
305 sub[2].fY = SkDoubleToScalar(dst[2].y);
306}
307
308static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
309 SkPoint sub[4]) {
310 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
311 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
312 Cubic dst;
313 sub_divide(aCubic, startT, endT, dst);
314 sub[0].fX = SkDoubleToScalar(dst[0].x);
315 sub[0].fY = SkDoubleToScalar(dst[0].y);
316 sub[1].fX = SkDoubleToScalar(dst[1].x);
317 sub[1].fY = SkDoubleToScalar(dst[1].y);
318 sub[2].fX = SkDoubleToScalar(dst[2].x);
319 sub[2].fY = SkDoubleToScalar(dst[2].y);
320 sub[3].fX = SkDoubleToScalar(dst[3].x);
321 sub[3].fY = SkDoubleToScalar(dst[3].y);
322}
323
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000324static void (* const SegmentSubDivide[])(const SkPoint [], double , double ,
325 SkPoint []) = {
326 NULL,
327 LineSubDivide,
328 QuadSubDivide,
329 CubicSubDivide
330};
331
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000332#if DEBUG_UNUSED
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000333static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
334 SkRect& bounds) {
335 SkPoint dst[3];
336 QuadSubDivide(a, startT, endT, dst);
337 bounds.fLeft = bounds.fRight = dst[0].fX;
338 bounds.fTop = bounds.fBottom = dst[0].fY;
339 for (int index = 1; index < 3; ++index) {
340 bounds.growToInclude(dst[index].fX, dst[index].fY);
341 }
342}
343
344static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
345 SkRect& bounds) {
346 SkPoint dst[4];
347 CubicSubDivide(a, startT, endT, dst);
348 bounds.fLeft = bounds.fRight = dst[0].fX;
349 bounds.fTop = bounds.fBottom = dst[0].fY;
350 for (int index = 1; index < 4; ++index) {
351 bounds.growToInclude(dst[index].fX, dst[index].fY);
352 }
353}
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000354#endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000355
caryclark@google.com15fa1382012-05-07 20:49:36 +0000356static SkPath::Verb QuadReduceOrder(const SkPoint a[3],
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000357 SkTDArray<SkPoint>& reducePts) {
358 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
359 {a[2].fX, a[2].fY}};
360 Quadratic dst;
361 int order = reduceOrder(aQuad, dst);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000362 if (order == 3) {
363 return SkPath::kQuad_Verb;
364 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000365 for (int index = 0; index < order; ++index) {
366 SkPoint* pt = reducePts.append();
367 pt->fX = SkDoubleToScalar(dst[index].x);
368 pt->fY = SkDoubleToScalar(dst[index].y);
369 }
370 return (SkPath::Verb) (order - 1);
371}
372
373static SkPath::Verb CubicReduceOrder(const SkPoint a[4],
374 SkTDArray<SkPoint>& reducePts) {
375 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
376 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
377 Cubic dst;
378 int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000379 if (order == 4) {
380 return SkPath::kCubic_Verb;
381 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000382 for (int index = 0; index < order; ++index) {
383 SkPoint* pt = reducePts.append();
384 pt->fX = SkDoubleToScalar(dst[index].x);
385 pt->fY = SkDoubleToScalar(dst[index].y);
386 }
387 return (SkPath::Verb) (order - 1);
388}
389
caryclark@google.com15fa1382012-05-07 20:49:36 +0000390static bool QuadIsLinear(const SkPoint a[3]) {
391 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
392 {a[2].fX, a[2].fY}};
393 return isLinear(aQuad, 0, 2);
394}
395
396static bool CubicIsLinear(const SkPoint a[4]) {
397 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
398 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
399 return isLinear(aCubic, 0, 3);
400}
401
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000402static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) {
403 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
404 double x[2];
405 xy_at_t(aLine, startT, x[0], *(double*) 0);
caryclark@google.com495f8e42012-05-31 13:13:11 +0000406 xy_at_t(aLine, endT, x[1], *(double*) 0);
407 return SkMinScalar((float) x[0], (float) x[1]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000408}
409
410static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) {
411 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
412 {a[2].fX, a[2].fY}};
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000413 return (float) leftMostT(aQuad, startT, endT);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000414}
415
416static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) {
417 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
418 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000419 return (float) leftMostT(aCubic, startT, endT);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000420}
421
422static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = {
423 NULL,
424 LineLeftMost,
425 QuadLeftMost,
426 CubicLeftMost
427};
428
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000429#if DEBUG_UNUSED
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000430static bool IsCoincident(const SkPoint a[2], const SkPoint& above,
431 const SkPoint& below) {
432 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
433 const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}};
434 return implicit_matches_ulps(aLine, bLine, 32);
435}
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000436#endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000437
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000438class Segment;
439
caryclark@google.com15fa1382012-05-07 20:49:36 +0000440// sorting angles
441// given angles of {dx dy ddx ddy dddx dddy} sort them
442class Angle {
443public:
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000444 // FIXME: this is bogus for quads and cubics
445 // if the quads and cubics' line from end pt to ctrl pt are coincident,
446 // there's no obvious way to determine the curve ordering from the
447 // derivatives alone. In particular, if one quadratic's coincident tangent
448 // is longer than the other curve, the final control point can place the
449 // longer curve on either side of the shorter one.
450 // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
451 // may provide some help, but nothing has been figured out yet.
caryclark@google.com15fa1382012-05-07 20:49:36 +0000452 bool operator<(const Angle& rh) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000453 if ((fDy < 0) ^ (rh.fDy < 0)) {
454 return fDy < 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000455 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000456 if (fDy == 0 && rh.fDy == 0 && fDx != rh.fDx) {
457 return fDx < rh.fDx;
458 }
459 SkScalar cmp = fDx * rh.fDy - rh.fDx * fDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000460 if (cmp) {
461 return cmp < 0;
462 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000463 if ((fDDy < 0) ^ (rh.fDDy < 0)) {
464 return fDDy < 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000465 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000466 if (fDDy == 0 && rh.fDDy == 0 && fDDx != rh.fDDx) {
467 return fDDx < rh.fDDx;
468 }
469 cmp = fDDx * rh.fDDy - rh.fDDx * fDDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000470 if (cmp) {
471 return cmp < 0;
472 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000473 if ((fDDDy < 0) ^ (rh.fDDDy < 0)) {
474 return fDDDy < 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000475 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000476 if (fDDDy == 0 && rh.fDDDy == 0) {
477 return fDDDx < rh.fDDDx;
478 }
479 return fDDDx * rh.fDDDy < rh.fDDDx * fDDDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000480 }
caryclark@google.com47580692012-07-23 12:14:49 +0000481
482 double dx() const {
483 return fDx;
484 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000485
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000486 int end() const {
487 return fEnd;
488 }
489
caryclark@google.comafe56de2012-07-24 18:11:03 +0000490 bool firstBump(int contourWinding, int sumWinding) const {
491 return sign() * sumWinding > 0;
492 }
493
caryclark@google.com88f7d0c2012-06-07 21:09:20 +0000494 bool isHorizontal() const {
495 return fDy == 0 && fDDy == 0 && fDDDy == 0;
496 }
497
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000498 // since all angles share a point, this needs to know which point
499 // is the common origin, i.e., whether the center is at pts[0] or pts[verb]
500 // practically, this should only be called by addAngle
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000501 void set(const SkPoint* pts, SkPath::Verb verb, const Segment* segment,
caryclark@google.coma3f05fa2012-06-01 17:44:28 +0000502 int start, int end) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000503 SkASSERT(start != end);
504 fSegment = segment;
505 fStart = start;
506 fEnd = end;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000507 fDx = pts[1].fX - pts[0].fX; // b - a
508 fDy = pts[1].fY - pts[0].fY;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000509 if (verb == SkPath::kLine_Verb) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000510 fDDx = fDDy = fDDDx = fDDDy = 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000511 return;
512 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000513 fDDx = pts[2].fX - pts[1].fX - fDx; // a - 2b + c
514 fDDy = pts[2].fY - pts[1].fY - fDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000515 if (verb == SkPath::kQuad_Verb) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000516 fDDDx = fDDDy = 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000517 return;
518 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000519 fDDDx = pts[3].fX + 3 * (pts[1].fX - pts[2].fX) - pts[0].fX;
520 fDDDy = pts[3].fY + 3 * (pts[1].fY - pts[2].fY) - pts[0].fY;
521 }
522
523 // noncoincident quads/cubics may have the same initial angle
524 // as lines, so must sort by derivatives as well
525 // if flatness turns out to be a reasonable way to sort, use the below:
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000526 void setFlat(const SkPoint* pts, SkPath::Verb verb, Segment* segment,
caryclark@google.coma3f05fa2012-06-01 17:44:28 +0000527 int start, int end) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000528 fSegment = segment;
529 fStart = start;
530 fEnd = end;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000531 fDx = pts[1].fX - pts[0].fX; // b - a
532 fDy = pts[1].fY - pts[0].fY;
533 if (verb == SkPath::kLine_Verb) {
534 fDDx = fDDy = fDDDx = fDDDy = 0;
535 return;
536 }
537 if (verb == SkPath::kQuad_Verb) {
538 int uplsX = FloatAsInt(pts[2].fX - pts[1].fY - fDx);
539 int uplsY = FloatAsInt(pts[2].fY - pts[1].fY - fDy);
540 int larger = std::max(abs(uplsX), abs(uplsY));
541 int shift = 0;
542 double flatT;
543 SkPoint ddPt; // FIXME: get rid of copy (change fDD_ to point)
544 LineParameters implicitLine;
545 _Line tangent = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}};
546 implicitLine.lineEndPoints(tangent);
547 implicitLine.normalize();
548 while (larger > UlpsEpsilon * 1024) {
549 larger >>= 2;
550 ++shift;
551 flatT = 0.5 / (1 << shift);
552 QuadXYAtT(pts, flatT, &ddPt);
553 _Point _pt = {ddPt.fX, ddPt.fY};
554 double distance = implicitLine.pointDistance(_pt);
555 if (approximately_zero(distance)) {
556 SkDebugf("%s ulps too small %1.9g\n", __FUNCTION__, distance);
557 break;
558 }
559 }
560 flatT = 0.5 / (1 << shift);
561 QuadXYAtT(pts, flatT, &ddPt);
562 fDDx = ddPt.fX - pts[0].fX;
563 fDDy = ddPt.fY - pts[0].fY;
564 SkASSERT(fDDx != 0 || fDDy != 0);
565 fDDDx = fDDDy = 0;
566 return;
567 }
568 SkASSERT(0); // FIXME: add cubic case
569 }
570
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000571 Segment* segment() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000572 return const_cast<Segment*>(fSegment);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000573 }
574
575 int sign() const {
caryclark@google.com495f8e42012-05-31 13:13:11 +0000576 return SkSign32(fStart - fEnd);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000577 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +0000578
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000579 int start() const {
580 return fStart;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000581 }
582
583private:
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000584 SkScalar fDx;
585 SkScalar fDy;
586 SkScalar fDDx;
587 SkScalar fDDy;
588 SkScalar fDDDx;
589 SkScalar fDDDy;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000590 const Segment* fSegment;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000591 int fStart;
592 int fEnd;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000593};
594
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000595static void sortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
596 int angleCount = angles.count();
597 int angleIndex;
598 angleList.setReserve(angleCount);
599 for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
600 *angleList.append() = &angles[angleIndex];
601 }
602 QSort<Angle>(angleList.begin(), angleList.end() - 1);
603}
604
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000605// Bounds, unlike Rect, does not consider a line to be empty.
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000606struct Bounds : public SkRect {
607 static bool Intersects(const Bounds& a, const Bounds& b) {
608 return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
609 a.fTop <= b.fBottom && b.fTop <= a.fBottom;
610 }
611
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000612 void add(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
613 if (left < fLeft) {
614 fLeft = left;
615 }
616 if (top < fTop) {
617 fTop = top;
618 }
619 if (right > fRight) {
620 fRight = right;
621 }
622 if (bottom > fBottom) {
623 fBottom = bottom;
624 }
625 }
626
627 void add(const Bounds& toAdd) {
628 add(toAdd.fLeft, toAdd.fTop, toAdd.fRight, toAdd.fBottom);
629 }
630
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000631 bool isEmpty() {
632 return fLeft > fRight || fTop > fBottom
633 || fLeft == fRight && fTop == fBottom
634 || isnan(fLeft) || isnan(fRight)
635 || isnan(fTop) || isnan(fBottom);
636 }
637
638 void setCubicBounds(const SkPoint a[4]) {
639 _Rect dRect;
640 Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
641 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
642 dRect.setBounds(cubic);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000643 set((float) dRect.left, (float) dRect.top, (float) dRect.right,
644 (float) dRect.bottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000645 }
646
647 void setQuadBounds(const SkPoint a[3]) {
648 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
649 {a[2].fX, a[2].fY}};
650 _Rect dRect;
651 dRect.setBounds(quad);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000652 set((float) dRect.left, (float) dRect.top, (float) dRect.right,
653 (float) dRect.bottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000654 }
655};
656
caryclark@google.com15fa1382012-05-07 20:49:36 +0000657struct Span {
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000658 Segment* fOther;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000659 mutable SkPoint const* fPt; // lazily computed as needed
660 double fT;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000661 double fOtherT; // value at fOther[fOtherIndex].fT
662 int fOtherIndex; // can't be used during intersection
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000663 int fWindSum; // accumulated from contours surrounding this one
664 int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000665 bool fDone; // if set, this span to next higher T has been processed
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000666};
667
668class Segment {
669public:
670 Segment() {
671#if DEBUG_DUMP
672 fID = ++gSegmentID;
673#endif
674 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000675
caryclark@google.com9764cc62012-07-12 19:29:45 +0000676 bool activeAngle(int index, int& done, SkTDArray<Angle>& angles) const {
677 if (activeAngleInner(index, done, angles)) {
678 return true;
679 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000680 double referenceT = fTs[index].fT;
681 int lesser = index;
682 while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
caryclark@google.com9764cc62012-07-12 19:29:45 +0000683 if (activeAngleOther(lesser, done, angles)) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000684 return true;
685 }
686 }
687 do {
caryclark@google.com9764cc62012-07-12 19:29:45 +0000688 if (activeAngleOther(index, done, angles)) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000689 return true;
690 }
691 } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
692 return false;
693 }
694
caryclark@google.com9764cc62012-07-12 19:29:45 +0000695 bool activeAngleOther(int index, int& done, SkTDArray<Angle>& angles) const {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000696 Span* span = &fTs[index];
697 Segment* other = span->fOther;
698 int oIndex = span->fOtherIndex;
caryclark@google.com9764cc62012-07-12 19:29:45 +0000699 return other->activeAngleInner(oIndex, done, angles);
700 }
701
702 bool activeAngleInner(int index, int& done, SkTDArray<Angle>& angles) const {
703 int next = nextSpan(index, 1);
704 if (next > 0) {
caryclark@google.com9764cc62012-07-12 19:29:45 +0000705 const Span& upSpan = fTs[index];
caryclark@google.com210acaf2012-07-12 21:05:13 +0000706 if (upSpan.fWindValue) {
707 addAngle(angles, index, next);
708 if (upSpan.fDone) {
709 done++;
710 } else if (upSpan.fWindSum != SK_MinS32) {
711 return true;
712 }
caryclark@google.com9764cc62012-07-12 19:29:45 +0000713 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000714 }
caryclark@google.com9764cc62012-07-12 19:29:45 +0000715 int prev = nextSpan(index, -1);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000716 // edge leading into junction
caryclark@google.com9764cc62012-07-12 19:29:45 +0000717 if (prev >= 0) {
caryclark@google.com9764cc62012-07-12 19:29:45 +0000718 const Span& downSpan = fTs[prev];
caryclark@google.com210acaf2012-07-12 21:05:13 +0000719 if (downSpan.fWindValue) {
720 addAngle(angles, index, prev);
721 if (downSpan.fDone) {
722 done++;
723 } else if (downSpan.fWindSum != SK_MinS32) {
724 return true;
725 }
caryclark@google.com9764cc62012-07-12 19:29:45 +0000726 }
727 }
728 return false;
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000729 }
730
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000731 SkScalar activeTop() const {
732 SkASSERT(!done());
733 int count = fTs.count();
734 SkScalar result = SK_ScalarMax;
735 bool lastDone = true;
736 for (int index = 0; index < count; ++index) {
737 bool done = fTs[index].fDone;
738 if (!done || !lastDone) {
739 SkScalar y = yAtT(index);
740 if (result > y) {
741 result = y;
742 }
743 }
744 lastDone = done;
745 }
746 SkASSERT(result < SK_ScalarMax);
747 return result;
748 }
749
750 void addAngle(SkTDArray<Angle>& angles, int start, int end) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000751 SkASSERT(start != end);
752 SkPoint edge[4];
753 (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
754 Angle* angle = angles.append();
caryclark@google.coma3f05fa2012-06-01 17:44:28 +0000755 angle->set(edge, fVerb, this, start, end);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000756 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000757
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000758 void addCubic(const SkPoint pts[4]) {
759 init(pts, SkPath::kCubic_Verb);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000760 fBounds.setCubicBounds(pts);
761 }
762
caryclark@google.com88f7d0c2012-06-07 21:09:20 +0000763 // FIXME: this needs to defer add for aligned consecutive line segments
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000764 SkPoint addCurveTo(int start, int end, SkPath& path, bool active) {
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000765 SkPoint edge[4];
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000766 // OPTIMIZE? if not active, skip remainder and return xy_at_t(end)
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000767 (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000768 if (active) {
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000769 #if DEBUG_PATH_CONSTRUCTION
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000770 SkDebugf("%s %s (%1.9g,%1.9g)", __FUNCTION__,
771 kLVerbStr[fVerb], edge[1].fX, edge[1].fY);
772 if (fVerb > 1) {
773 SkDebugf(" (%1.9g,%1.9g)", edge[2].fX, edge[2].fY);
774 }
775 if (fVerb > 2) {
776 SkDebugf(" (%1.9g,%1.9g)", edge[3].fX, edge[3].fY);
777 }
778 SkDebugf("\n");
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000779 #endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000780 switch (fVerb) {
781 case SkPath::kLine_Verb:
782 path.lineTo(edge[1].fX, edge[1].fY);
783 break;
784 case SkPath::kQuad_Verb:
785 path.quadTo(edge[1].fX, edge[1].fY, edge[2].fX, edge[2].fY);
786 break;
787 case SkPath::kCubic_Verb:
788 path.cubicTo(edge[1].fX, edge[1].fY, edge[2].fX, edge[2].fY,
789 edge[3].fX, edge[3].fY);
790 break;
791 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000792 }
caryclark@google.com88f7d0c2012-06-07 21:09:20 +0000793 return edge[fVerb];
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000794 }
795
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000796 void addLine(const SkPoint pts[2]) {
797 init(pts, SkPath::kLine_Verb);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000798 fBounds.set(pts, 2);
799 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000800
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000801 const SkPoint& addMoveTo(int tIndex, SkPath& path, bool active) {
802 const SkPoint& pt = xyAtT(tIndex);
803 if (active) {
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000804 #if DEBUG_PATH_CONSTRUCTION
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000805 SkDebugf("%s (%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY);
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000806 #endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000807 path.moveTo(pt.fX, pt.fY);
808 }
caryclark@google.com88f7d0c2012-06-07 21:09:20 +0000809 return pt;
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000810 }
811
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000812 // add 2 to edge or out of range values to get T extremes
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000813 void addOtherT(int index, double otherT, int otherIndex) {
814 Span& span = fTs[index];
815 span.fOtherT = otherT;
816 span.fOtherIndex = otherIndex;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000817 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000818
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000819 void addQuad(const SkPoint pts[3]) {
820 init(pts, SkPath::kQuad_Verb);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000821 fBounds.setQuadBounds(pts);
822 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000823
824 // Defer all coincident edge processing until
825 // after normal intersections have been computed
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000826
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000827// no need to be tricky; insert in normal T order
828// resolve overlapping ts when considering coincidence later
829
830 // add non-coincident intersection. Resulting edges are sorted in T.
831 int addT(double newT, Segment* other) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000832 // FIXME: in the pathological case where there is a ton of intercepts,
833 // binary search?
834 int insertedAt = -1;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000835 size_t tCount = fTs.count();
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000836 for (size_t index = 0; index < tCount; ++index) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000837 // OPTIMIZATION: if there are three or more identical Ts, then
838 // the fourth and following could be further insertion-sorted so
839 // that all the edges are clockwise or counterclockwise.
840 // This could later limit segment tests to the two adjacent
841 // neighbors, although it doesn't help with determining which
842 // circular direction to go in.
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000843 if (newT < fTs[index].fT) {
844 insertedAt = index;
845 break;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000846 }
847 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000848 Span* span;
849 if (insertedAt >= 0) {
850 span = fTs.insert(insertedAt);
851 } else {
852 insertedAt = tCount;
853 span = fTs.append();
854 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000855 span->fT = newT;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000856 span->fOther = other;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +0000857 span->fPt = NULL;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000858 span->fWindSum = SK_MinS32;
859 span->fWindValue = 1;
860 if ((span->fDone = newT == 1)) {
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000861 ++fDoneSpans;
862 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000863 return insertedAt;
864 }
865
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000866 // set spans from start to end to decrement by one
867 // note this walks other backwards
868 // FIMXE: there's probably an edge case that can be constructed where
869 // two span in one segment are separated by float epsilon on one span but
870 // not the other, if one segment is very small. For this
871 // case the counts asserted below may or may not be enough to separate the
872 // spans. Even if the counts work out, what if the spanw aren't correctly
873 // sorted? It feels better in such a case to match the span's other span
874 // pointer since both coincident segments must contain the same spans.
875 void addTCancel(double startT, double endT, Segment& other,
876 double oStartT, double oEndT) {
877 SkASSERT(endT - startT >= FLT_EPSILON);
878 SkASSERT(oEndT - oStartT >= FLT_EPSILON);
879 int index = 0;
880 while (startT - fTs[index].fT >= FLT_EPSILON) {
881 ++index;
882 }
caryclark@google.comb9738012012-07-03 19:53:30 +0000883 int oIndex = other.fTs.count();
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000884 while (other.fTs[--oIndex].fT - oEndT > -FLT_EPSILON)
885 ;
886 Span* test = &fTs[index];
887 Span* oTest = &other.fTs[oIndex];
caryclark@google.com18063442012-07-25 12:05:18 +0000888 SkTDArray<double> outsideTs;
889 SkTDArray<double> oOutsideTs;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000890 do {
891 bool decrement = test->fWindValue && oTest->fWindValue;
892 Span* end = test;
caryclark@google.com18063442012-07-25 12:05:18 +0000893 double startT = end->fT;
894 double oStartT = oTest->fT;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000895 do {
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000896 if (decrement) {
caryclark@google.com18063442012-07-25 12:05:18 +0000897 decrementSpan(end);
898 } else {
899 TrackOutside(outsideTs, end->fT, oStartT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000900 }
901 end = &fTs[++index];
902 } while (end->fT - test->fT < FLT_EPSILON);
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000903 Span* oTestStart = oTest;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000904 do {
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000905 if (decrement) {
caryclark@google.com18063442012-07-25 12:05:18 +0000906 other.decrementSpan(oTestStart);
907 } else {
908 TrackOutside(oOutsideTs, oTestStart->fT, startT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000909 }
910 if (!oIndex) {
911 break;
912 }
913 oTestStart = &other.fTs[--oIndex];
914 } while (oTest->fT - oTestStart->fT < FLT_EPSILON);
915 test = end;
916 oTest = oTestStart;
917 } while (test->fT < endT - FLT_EPSILON);
918 SkASSERT(!oIndex || oTest->fT <= oStartT - FLT_EPSILON);
caryclark@google.com18063442012-07-25 12:05:18 +0000919 // FIXME: determine if canceled edges need outside ts added
920 if (false && !done() && outsideTs.count()) {
921 addTOutsides(outsideTs, other, oEndT);
922 }
923 if (false && !other.done() && oOutsideTs.count()) {
924 other.addTOutsides(oOutsideTs, *this, endT);
925 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000926 }
927
928 // set spans from start to end to increment the greater by one and decrement
929 // the lesser
930 void addTCoincident(double startT, double endT, Segment& other,
931 double oStartT, double oEndT) {
932 SkASSERT(endT - startT >= FLT_EPSILON);
933 SkASSERT(oEndT - oStartT >= FLT_EPSILON);
934 int index = 0;
935 while (startT - fTs[index].fT >= FLT_EPSILON) {
936 ++index;
937 }
938 int oIndex = 0;
939 while (oStartT - other.fTs[oIndex].fT >= FLT_EPSILON) {
940 ++oIndex;
941 }
942 Span* test = &fTs[index];
943 Span* oTest = &other.fTs[oIndex];
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000944 SkTDArray<double> outsideTs;
945 SkTDArray<double> oOutsideTs;
946 do {
caryclark@google.comb9738012012-07-03 19:53:30 +0000947 bool transfer = test->fWindValue && oTest->fWindValue;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000948 bool decrementOther = test->fWindValue >= oTest->fWindValue;
949 Span* end = test;
950 double startT = end->fT;
951 double oStartT = oTest->fT;
952 do {
caryclark@google.comb9738012012-07-03 19:53:30 +0000953 if (transfer) {
954 if (decrementOther) {
caryclark@google.com47580692012-07-23 12:14:49 +0000955 SkASSERT(abs(end->fWindValue) < gDebugMaxWindValue);
caryclark@google.comb9738012012-07-03 19:53:30 +0000956 ++(end->fWindValue);
caryclark@google.com18063442012-07-25 12:05:18 +0000957 } else if (decrementSpan(end)) {
958 TrackOutside(outsideTs, end->fT, oStartT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000959 }
960 }
961 end = &fTs[++index];
962 } while (end->fT - test->fT < FLT_EPSILON);
963 Span* oEnd = oTest;
964 do {
caryclark@google.comb9738012012-07-03 19:53:30 +0000965 if (transfer) {
caryclark@google.com18063442012-07-25 12:05:18 +0000966 if (!decrementOther) {
caryclark@google.com47580692012-07-23 12:14:49 +0000967 SkASSERT(abs(oEnd->fWindValue) < gDebugMaxWindValue);
caryclark@google.comb9738012012-07-03 19:53:30 +0000968 ++(oEnd->fWindValue);
caryclark@google.com18063442012-07-25 12:05:18 +0000969 } else if (other.decrementSpan(oEnd)) {
970 TrackOutside(oOutsideTs, oEnd->fT, startT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000971 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000972 }
973 oEnd = &other.fTs[++oIndex];
974 } while (oEnd->fT - oTest->fT < FLT_EPSILON);
975 test = end;
976 oTest = oEnd;
977 } while (test->fT < endT - FLT_EPSILON);
978 SkASSERT(oTest->fT < oEndT + FLT_EPSILON);
979 SkASSERT(oTest->fT > oEndT - FLT_EPSILON);
980 if (!done() && outsideTs.count()) {
caryclark@google.comb9738012012-07-03 19:53:30 +0000981 addTOutsides(outsideTs, other, oEndT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000982 }
983 if (!other.done() && oOutsideTs.count()) {
caryclark@google.comb9738012012-07-03 19:53:30 +0000984 other.addTOutsides(oOutsideTs, *this, endT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000985 }
986 }
caryclark@google.com47580692012-07-23 12:14:49 +0000987
caryclark@google.comb9738012012-07-03 19:53:30 +0000988 void addTOutsides(const SkTDArray<double>& outsideTs, Segment& other,
caryclark@google.com47580692012-07-23 12:14:49 +0000989 double oEnd) {
990 // walk this to outsideTs[0]
991 // walk other to outsideTs[1]
992 // if either is > 0, add a pointer to the other, copying adjacent winding
993 int tIndex = -1;
994 int tCount = fTs.count();
995 int oIndex = -1;
996 int oCount = other.fTs.count();
997 double tStart = outsideTs[0];
998 double oStart = outsideTs[1];
999 Span* tSpan;
1000 Span* oSpan;
1001 do {
1002 tSpan = &fTs[++tIndex];
1003 if (tStart - tSpan->fT < FLT_EPSILON) {
1004 break;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001005 }
caryclark@google.com47580692012-07-23 12:14:49 +00001006 } while (tIndex < tCount);
1007 do {
1008 oSpan = &other.fTs[++oIndex];
1009 if (oStart - oSpan->fT < FLT_EPSILON) {
1010 break;
1011 }
1012 } while (oIndex < oCount);
1013 if (tIndex > 0 || oIndex > 0) {
1014 addTPair(tStart, other, oStart);
1015 // note: counts for fT, other.fT are one greater
1016 } else {
1017 --tCount;
1018 --oCount;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001019 }
caryclark@google.com47580692012-07-23 12:14:49 +00001020 tStart = fTs[tIndex].fT;
1021 oStart = other.fTs[oIndex].fT;
1022 do {
1023 do {
1024 tSpan = &fTs[++tIndex];
1025 } while (tSpan->fT - tStart < FLT_EPSILON && tIndex < tCount);
1026 tStart = fTs[tIndex].fT;
1027 do {
1028 oSpan = &other.fTs[++oIndex];
1029 } while (oSpan->fT - oStart < FLT_EPSILON && oIndex < oCount);
1030 oStart = other.fTs[oIndex].fT;
1031 if (tStart == 1 && oStart == 1) {
1032 break;
1033 }
1034 addTPair(tStart, other, oStart);
1035 ++tCount;
1036 ++oCount;
1037 } while (tStart < 1 && oStart < 1 && oEnd - oSpan->fT >= FLT_EPSILON);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001038 }
1039
caryclark@google.com47580692012-07-23 12:14:49 +00001040 void addTPair(double t, Segment& other, double otherT) {
1041#if DEBUG_ADD_T_PAIR
1042 SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n",
1043 __FUNCTION__, fID, t, other.fID, otherT);
1044#endif
caryclark@google.comb9738012012-07-03 19:53:30 +00001045 int insertedAt = addT(t, &other);
1046 int otherInsertedAt = other.addT(otherT, this);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001047 addOtherT(insertedAt, otherT, otherInsertedAt);
caryclark@google.comb9738012012-07-03 19:53:30 +00001048 other.addOtherT(otherInsertedAt, t, insertedAt);
caryclark@google.com47580692012-07-23 12:14:49 +00001049 Span& newSpan = fTs[insertedAt];
1050 if (insertedAt > 0) {
1051 const Span& lastSpan = fTs[insertedAt - 1];
1052 if (t - lastSpan.fT < FLT_EPSILON) {
1053 int tWind = lastSpan.fWindValue;
1054 newSpan.fWindValue = tWind;
1055 if (!tWind) {
1056 newSpan.fDone = true;
1057 ++fDoneSpans;
1058 }
1059 }
1060 }
1061 int oIndex = newSpan.fOtherIndex;
1062 if (oIndex > 0) {
1063 const Span& lastOther = other.fTs[oIndex - 1];
1064 if (otherT - lastOther.fT < FLT_EPSILON) {
1065 int oWind = lastOther.fWindValue;
1066 Span& otherSpan = other.fTs[oIndex];
1067 otherSpan.fWindValue = oWind;
1068 if (!oWind) {
1069 otherSpan.fDone = true;
1070 ++(other.fDoneSpans);
1071 }
1072 }
1073 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001074 }
1075
1076 void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001077 // add edge leading into junction
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001078 if (fTs[SkMin32(end, start)].fWindValue > 0) {
1079 addAngle(angles, end, start);
1080 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001081 // add edge leading away from junction
caryclark@google.com495f8e42012-05-31 13:13:11 +00001082 int step = SkSign32(end - start);
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001083 int tIndex = nextSpan(end, step);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001084 if (tIndex >= 0 && fTs[SkMin32(end, tIndex)].fWindValue > 0) {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001085 addAngle(angles, end, tIndex);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001086 }
1087 }
caryclark@google.com47580692012-07-23 12:14:49 +00001088
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001089 const Bounds& bounds() const {
1090 return fBounds;
1091 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001092
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001093 void buildAngles(int index, SkTDArray<Angle>& angles) const {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001094 double referenceT = fTs[index].fT;
1095 int lesser = index;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001096 while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001097 buildAnglesInner(lesser, angles);
1098 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001099 do {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001100 buildAnglesInner(index, angles);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001101 } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001102 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001103
1104 void buildAnglesInner(int index, SkTDArray<Angle>& angles) const {
1105 Span* span = &fTs[index];
1106 Segment* other = span->fOther;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001107 // if there is only one live crossing, and no coincidence, continue
1108 // in the same direction
1109 // if there is coincidence, the only choice may be to reverse direction
1110 // find edge on either side of intersection
1111 int oIndex = span->fOtherIndex;
1112 // if done == -1, prior span has already been processed
1113 int step = 1;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001114 int next = other->nextSpan(oIndex, step);
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001115 if (next < 0) {
1116 step = -step;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001117 next = other->nextSpan(oIndex, step);
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001118 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001119 // add candidate into and away from junction
1120 other->addTwoAngles(next, oIndex, angles);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001121 }
1122
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001123 bool cancels(const Segment& other) const {
caryclark@google.comb9738012012-07-03 19:53:30 +00001124 SkASSERT(fVerb == SkPath::kLine_Verb);
1125 SkASSERT(other.fVerb == SkPath::kLine_Verb);
1126 SkPoint dxy = fPts[0] - fPts[1];
1127 SkPoint odxy = other.fPts[0] - other.fPts[1];
1128 return dxy.fX * odxy.fX < 0 || dxy.fY * odxy.fY < 0;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001129 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001130
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001131 // figure out if the segment's ascending T goes clockwise or not
1132 // not enough context to write this as shown
1133 // instead, add all segments meeting at the top
1134 // sort them using buildAngleList
1135 // find the first in the sort
1136 // see if ascendingT goes to top
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00001137 bool clockwise(int /* tIndex */) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001138 SkASSERT(0); // incomplete
1139 return false;
1140 }
1141
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001142 int crossedSpan(const SkPoint& basePt, SkScalar& bestY, double& hitT) const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001143 int bestT = -1;
1144 SkScalar top = bounds().fTop;
1145 SkScalar bottom = bounds().fBottom;
caryclark@google.com210acaf2012-07-12 21:05:13 +00001146 int end = 0;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001147 do {
caryclark@google.com210acaf2012-07-12 21:05:13 +00001148 int start = end;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001149 end = nextSpan(start, 1);
caryclark@google.com47580692012-07-23 12:14:49 +00001150 if (fTs[start].fWindValue == 0) {
1151 continue;
1152 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001153 SkPoint edge[4];
1154 // OPTIMIZE: wrap this so that if start==0 end==fTCount-1 we can
1155 // work with the original data directly
1156 (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001157 // intersect ray starting at basePt with edge
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001158 Intersections intersections;
1159 int pts = (*VSegmentIntersect[fVerb])(edge, top, bottom, basePt.fX,
1160 false, intersections);
1161 if (pts == 0) {
1162 continue;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001163 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001164 if (pts > 1 && fVerb == SkPath::kLine_Verb) {
1165 // if the intersection is edge on, wait for another one
1166 continue;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001167 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001168 SkASSERT(pts == 1); // FIXME: more code required to disambiguate
1169 SkPoint pt;
1170 double foundT = intersections.fT[0][0];
1171 (*SegmentXYAtT[fVerb])(fPts, foundT, &pt);
1172 if (bestY < pt.fY) {
1173 bestY = pt.fY;
1174 bestT = foundT < 1 ? start : end;
caryclark@google.com47580692012-07-23 12:14:49 +00001175 hitT = fTs[start].fT + (fTs[end].fT - fTs[start].fT) * foundT;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001176 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001177 } while (fTs[end].fT != 1);
1178 return bestT;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001179 }
caryclark@google.com18063442012-07-25 12:05:18 +00001180
1181 bool decrementSpan(Span* span) {
1182 SkASSERT(span->fWindValue > 0);
1183 if (--(span->fWindValue) == 0) {
1184 span->fDone = true;
1185 ++fDoneSpans;
1186 return true;
1187 }
1188 return false;
1189 }
1190
caryclark@google.com15fa1382012-05-07 20:49:36 +00001191 bool done() const {
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001192 SkASSERT(fDoneSpans <= fTs.count());
1193 return fDoneSpans == fTs.count();
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001194 }
1195
caryclark@google.com47580692012-07-23 12:14:49 +00001196 bool done(const Angle& angle) const {
1197 int start = angle.start();
1198 int end = angle.end();
1199 const Span& mSpan = fTs[SkMin32(start, end)];
1200 return mSpan.fDone;
1201 }
1202
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001203 // so the span needs to contain the pairing info found here
1204 // this should include the winding computed for the edge, and
1205 // what edge it connects to, and whether it is discarded
1206 // (maybe discarded == abs(winding) > 1) ?
1207 // only need derivatives for duration of sorting, add a new struct
1208 // for pairings, remove extra spans that have zero length and
1209 // reference an unused other
1210 // for coincident, the last span on the other may be marked done
1211 // (always?)
1212
1213 // if loop is exhausted, contour may be closed.
1214 // FIXME: pass in close point so we can check for closure
1215
1216 // given a segment, and a sense of where 'inside' is, return the next
1217 // segment. If this segment has an intersection, or ends in multiple
1218 // segments, find the mate that continues the outside.
1219 // note that if there are multiples, but no coincidence, we can limit
1220 // choices to connections in the correct direction
1221
1222 // mark found segments as done
1223
caryclark@google.com15fa1382012-05-07 20:49:36 +00001224 // start is the index of the beginning T of this edge
1225 // it is guaranteed to have an end which describes a non-zero length (?)
1226 // winding -1 means ccw, 1 means cw
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001227 // firstFind allows coincident edges to be treated differently
caryclark@google.com5c286d32012-07-13 11:57:28 +00001228 Segment* findNext(SkTDArray<Span*>& chase, int winding,
caryclark@google.comafe56de2012-07-24 18:11:03 +00001229 int contourWinding, bool firstFind, bool active,
caryclark@google.com0e08a192012-07-13 21:07:52 +00001230 const int startIndex, const int endIndex, int& nextStart,
caryclark@google.comafe56de2012-07-24 18:11:03 +00001231 int& nextEnd, int& spanWinding) {
1232 int flipped = 1;
caryclark@google.come21cb182012-07-23 21:26:31 +00001233 int sumWinding = winding + spanWinding;
1234 if (sumWinding == 0) {
1235 sumWinding = spanWinding;
1236 }
caryclark@google.comafe56de2012-07-24 18:11:03 +00001237 bool insideContour = contourWinding && contourWinding * sumWinding < 0;
1238 if (insideContour) {
1239 sumWinding = contourWinding;
1240 }
1241
caryclark@google.come21cb182012-07-23 21:26:31 +00001242 #if DEBUG_WINDING
1243 SkDebugf("%s winding=%d contourWinding=%d spanWinding=%d sumWinding=%d\n",
1244 __FUNCTION__, winding, contourWinding, spanWinding, sumWinding);
1245 #endif
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001246 SkASSERT(startIndex != endIndex);
caryclark@google.com15fa1382012-05-07 20:49:36 +00001247 int count = fTs.count();
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001248 SkASSERT(startIndex < endIndex ? startIndex < count - 1
1249 : startIndex > 0);
caryclark@google.com495f8e42012-05-31 13:13:11 +00001250 int step = SkSign32(endIndex - startIndex);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001251 int end = nextSpan(startIndex, step);
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001252 SkASSERT(end >= 0);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001253 Span* endSpan = &fTs[end];
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001254 Segment* other;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001255 if (isSimple(end)) {
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001256 // mark the smaller of startIndex, endIndex done, and all adjacent
1257 // spans with the same T value (but not 'other' spans)
caryclark@google.come21cb182012-07-23 21:26:31 +00001258 markDone(SkMin32(startIndex, endIndex), sumWinding);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001259 other = endSpan->fOther;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001260 nextStart = endSpan->fOtherIndex;
caryclark@google.com18063442012-07-25 12:05:18 +00001261 double startT = other->fTs[nextStart].fT;
1262 nextEnd = nextStart;
1263 do {
1264 nextEnd += step;
1265 } while (fabs(startT - other->fTs[nextEnd].fT) < FLT_EPSILON);
caryclark@google.com495f8e42012-05-31 13:13:11 +00001266 SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
caryclark@google.com15fa1382012-05-07 20:49:36 +00001267 return other;
1268 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001269 // more than one viable candidate -- measure angles to find best
caryclark@google.com15fa1382012-05-07 20:49:36 +00001270 SkTDArray<Angle> angles;
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001271 SkASSERT(startIndex - endIndex != 0);
1272 SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001273 addTwoAngles(startIndex, end, angles);
1274 buildAngles(end, angles);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001275 SkTDArray<Angle*> sorted;
1276 sortAngles(angles, sorted);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001277 int angleCount = angles.count();
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001278 int firstIndex = findStartingEdge(sorted, startIndex, end);
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001279 SkASSERT(firstIndex >= 0);
caryclark@google.com47580692012-07-23 12:14:49 +00001280 #if DEBUG_SORT
caryclark@google.come21cb182012-07-23 21:26:31 +00001281 debugShowSort(sorted, firstIndex, contourWinding, sumWinding);
caryclark@google.com47580692012-07-23 12:14:49 +00001282 #endif
caryclark@google.comafe56de2012-07-24 18:11:03 +00001283 bool doBump = sorted[firstIndex]->firstBump(contourWinding, sumWinding);
caryclark@google.com0e08a192012-07-13 21:07:52 +00001284 #if DEBUG_WINDING
caryclark@google.comafe56de2012-07-24 18:11:03 +00001285 SkDebugf("%s sumWinding=%d sign=%d (%sbump)\n", __FUNCTION__,
1286 sumWinding, sorted[firstIndex]->sign(), doBump ? "" : "no ");
caryclark@google.com0e08a192012-07-13 21:07:52 +00001287 #endif
caryclark@google.comafe56de2012-07-24 18:11:03 +00001288 bool innerSwap = active && (doBump || insideContour);
caryclark@google.come21cb182012-07-23 21:26:31 +00001289 int startWinding = sumWinding;
1290 // SkASSERT(SkSign32(sumWinding) == SkSign32(winding) || winding == 0);
caryclark@google.comafe56de2012-07-24 18:11:03 +00001291 if (doBump || insideContour) {
caryclark@google.com18063442012-07-25 12:05:18 +00001292 sumWinding -= windBump(sorted[firstIndex]);
caryclark@google.com0e08a192012-07-13 21:07:52 +00001293 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001294 int nextIndex = firstIndex + 1;
1295 int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
1296 const Angle* foundAngle = NULL;
caryclark@google.com47580692012-07-23 12:14:49 +00001297 bool foundDone = false;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001298 // iterate through the angle, and compute everyone's winding
1299 bool firstEdge = true;
caryclark@google.comafe56de2012-07-24 18:11:03 +00001300 bool flopped = false;
1301 Segment* nextSegment;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001302 do {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001303 if (nextIndex == angleCount) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001304 nextIndex = 0;
1305 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001306 const Angle* nextAngle = sorted[nextIndex];
caryclark@google.come21cb182012-07-23 21:26:31 +00001307 int maxWinding = sumWinding;
caryclark@google.comafe56de2012-07-24 18:11:03 +00001308 nextSegment = nextAngle->segment();
1309 sumWinding -= nextSegment->windBump(nextAngle);
caryclark@google.come21cb182012-07-23 21:26:31 +00001310 SkASSERT(abs(sumWinding) <= gDebugMaxWindSum);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001311 #if DEBUG_WINDING
caryclark@google.come21cb182012-07-23 21:26:31 +00001312 SkDebugf("%s maxWinding=%d sumWinding=%d sign=%d\n", __FUNCTION__,
1313 maxWinding, sumWinding, nextAngle->sign());
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001314 #endif
caryclark@google.come21cb182012-07-23 21:26:31 +00001315 if (maxWinding * sumWinding < 0) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001316 flipped = -flipped;
caryclark@google.comafe56de2012-07-24 18:11:03 +00001317 flopped = true;
caryclark@google.com47580692012-07-23 12:14:49 +00001318 #if DEBUG_WINDING
caryclark@google.come21cb182012-07-23 21:26:31 +00001319 SkDebugf("flipped sign %d %d\n", maxWinding, sumWinding);
caryclark@google.com47580692012-07-23 12:14:49 +00001320 #endif
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001321 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001322 firstEdge = false;
caryclark@google.come21cb182012-07-23 21:26:31 +00001323 if (!sumWinding) {
caryclark@google.com5c286d32012-07-13 11:57:28 +00001324 if (!active) {
caryclark@google.com47580692012-07-23 12:14:49 +00001325 markDone(SkMin32(startIndex, endIndex), startWinding);
1326 nextSegment->markWinding(SkMin32(nextAngle->start(),
1327 nextAngle->end()), maxWinding);
caryclark@google.com0e08a192012-07-13 21:07:52 +00001328 #if DEBUG_WINDING
caryclark@google.com5c286d32012-07-13 11:57:28 +00001329 SkDebugf("%s inactive\n", __FUNCTION__);
caryclark@google.com0e08a192012-07-13 21:07:52 +00001330 #endif
caryclark@google.com5c286d32012-07-13 11:57:28 +00001331 return NULL;
1332 }
caryclark@google.com47580692012-07-23 12:14:49 +00001333 if (!foundAngle || foundDone) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001334 foundAngle = nextAngle;
caryclark@google.com47580692012-07-23 12:14:49 +00001335 foundDone = nextSegment->done(*nextAngle);
caryclark@google.comafe56de2012-07-24 18:11:03 +00001336 if (!flopped && maxWinding * startWinding < 0) {
caryclark@google.com47580692012-07-23 12:14:49 +00001337 flipped = -flipped;
1338 #if DEBUG_WINDING
caryclark@google.come21cb182012-07-23 21:26:31 +00001339 SkDebugf("flopped sign %d %d\n", maxWinding, startWinding);
caryclark@google.com47580692012-07-23 12:14:49 +00001340 #endif
1341 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001342 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001343 continue;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001344 }
caryclark@google.com0e08a192012-07-13 21:07:52 +00001345 if (!maxWinding && innerSwap && !foundAngle) {
1346 foundAngle = nextAngle;
1347 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001348 if (nextSegment->done()) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001349 continue;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001350 }
1351 // if the winding is non-zero, nextAngle does not connect to
1352 // current chain. If we haven't done so already, mark the angle
1353 // as done, record the winding value, and mark connected unambiguous
1354 // segments as well.
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001355 if (nextSegment->windSum(nextAngle) == SK_MinS32) {
caryclark@google.come21cb182012-07-23 21:26:31 +00001356 if (abs(maxWinding) < abs(sumWinding)) {
1357 maxWinding = sumWinding;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001358 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001359 Span* last;
caryclark@google.com0e08a192012-07-13 21:07:52 +00001360 if (foundAngle || innerSwap) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001361 last = nextSegment->markAndChaseWinding(nextAngle, maxWinding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001362 } else {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001363 last = nextSegment->markAndChaseDone(nextAngle, maxWinding);
1364 }
1365 if (last) {
1366 *chase.append() = last;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001367 }
caryclark@google.com495f8e42012-05-31 13:13:11 +00001368 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001369 } while (++nextIndex != lastIndex);
caryclark@google.com47580692012-07-23 12:14:49 +00001370 SkASSERT(sorted[firstIndex]->segment() == this);
1371 markDone(SkMin32(startIndex, endIndex), startWinding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001372 if (!foundAngle) {
1373 return NULL;
1374 }
1375 nextStart = foundAngle->start();
1376 nextEnd = foundAngle->end();
caryclark@google.comafe56de2012-07-24 18:11:03 +00001377 nextSegment = foundAngle->segment();
1378 spanWinding = SkSign32(spanWinding) * flipped * nextSegment->windValue(
1379 SkMin32(nextStart, nextEnd));
1380 #if DEBUG_WINDING
1381 SkDebugf("%s spanWinding=%d\n", __FUNCTION__, spanWinding);
1382 #endif
1383 return nextSegment;
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001384 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001385
1386 int findStartingEdge(SkTDArray<Angle*>& sorted, int start, int end) {
1387 int angleCount = sorted.count();
1388 int firstIndex = -1;
1389 for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
1390 const Angle* angle = sorted[angleIndex];
1391 if (angle->segment() == this && angle->start() == end &&
1392 angle->end() == start) {
1393 firstIndex = angleIndex;
1394 break;
1395 }
1396 }
1397 return firstIndex;
1398 }
1399
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001400 // FIXME: this is tricky code; needs its own unit test
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00001401 void findTooCloseToCall(int /* winding */ ) { // FIXME: winding should be considered
caryclark@google.com15fa1382012-05-07 20:49:36 +00001402 int count = fTs.count();
1403 if (count < 3) { // require t=0, x, 1 at minimum
1404 return;
1405 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001406 int matchIndex = 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001407 int moCount;
1408 Span* match;
1409 Segment* mOther;
1410 do {
1411 match = &fTs[matchIndex];
1412 mOther = match->fOther;
1413 moCount = mOther->fTs.count();
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001414 if (moCount >= 3) {
1415 break;
1416 }
1417 if (++matchIndex >= count) {
1418 return;
1419 }
1420 } while (true); // require t=0, x, 1 at minimum
caryclark@google.com15fa1382012-05-07 20:49:36 +00001421 // OPTIMIZATION: defer matchPt until qualifying toCount is found?
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001422 const SkPoint* matchPt = &xyAtT(match);
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001423 // look for a pair of nearby T values that map to the same (x,y) value
1424 // if found, see if the pair of other segments share a common point. If
1425 // so, the span from here to there is coincident.
caryclark@google.com15fa1382012-05-07 20:49:36 +00001426 for (int index = matchIndex + 1; index < count; ++index) {
1427 Span* test = &fTs[index];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001428 if (test->fDone) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001429 continue;
1430 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001431 Segment* tOther = test->fOther;
1432 int toCount = tOther->fTs.count();
1433 if (toCount < 3) { // require t=0, x, 1 at minimum
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001434 continue;
1435 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001436 const SkPoint* testPt = &xyAtT(test);
1437 if (*matchPt != *testPt) {
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001438 matchIndex = index;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001439 moCount = toCount;
1440 match = test;
1441 mOther = tOther;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001442 matchPt = testPt;
1443 continue;
1444 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001445 int moStart = -1;
1446 int moEnd = -1;
1447 double moStartT, moEndT;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001448 for (int moIndex = 0; moIndex < moCount; ++moIndex) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00001449 Span& moSpan = mOther->fTs[moIndex];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001450 if (moSpan.fDone) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001451 continue;
1452 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001453 if (moSpan.fOther == this) {
1454 if (moSpan.fOtherT == match->fT) {
1455 moStart = moIndex;
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001456 moStartT = moSpan.fT;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001457 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001458 continue;
1459 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001460 if (moSpan.fOther == tOther) {
1461 SkASSERT(moEnd == -1);
1462 moEnd = moIndex;
1463 moEndT = moSpan.fT;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001464 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001465 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001466 if (moStart < 0 || moEnd < 0) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001467 continue;
1468 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001469 // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test
1470 if (moStartT == moEndT) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001471 continue;
1472 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001473 int toStart = -1;
1474 int toEnd = -1;
1475 double toStartT, toEndT;
1476 for (int toIndex = 0; toIndex < toCount; ++toIndex) {
1477 Span& toSpan = tOther->fTs[toIndex];
1478 if (toSpan.fOther == this) {
1479 if (toSpan.fOtherT == test->fT) {
1480 toStart = toIndex;
1481 toStartT = toSpan.fT;
1482 }
1483 continue;
1484 }
1485 if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) {
1486 SkASSERT(toEnd == -1);
1487 toEnd = toIndex;
1488 toEndT = toSpan.fT;
1489 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001490 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001491 // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test
1492 if (toStart <= 0 || toEnd <= 0) {
1493 continue;
1494 }
1495 if (toStartT == toEndT) {
1496 continue;
1497 }
1498 // test to see if the segment between there and here is linear
1499 if (!mOther->isLinear(moStart, moEnd)
1500 || !tOther->isLinear(toStart, toEnd)) {
1501 continue;
1502 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001503 // FIXME: defer implementation until the rest works
1504 // this may share code with regular coincident detection
1505 SkASSERT(0);
1506 #if 0
1507 if (flipped) {
1508 mOther->addTCancel(moStart, moEnd, tOther, tStart, tEnd);
1509 } else {
1510 mOther->addTCoincident(moStart, moEnd, tOther, tStart, tEnd);
1511 }
1512 #endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001513 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001514 }
1515
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001516 // OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
1517 // and use more concise logic like the old edge walker code?
1518 // FIXME: this needs to deal with coincident edges
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001519 Segment* findTop(int& tIndex, int& endIndex) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001520 // iterate through T intersections and return topmost
1521 // topmost tangent from y-min to first pt is closer to horizontal
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001522 SkASSERT(!done());
1523 int firstT;
1524 int lastT;
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001525 SkPoint topPt;
1526 topPt.fY = SK_ScalarMax;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001527 int count = fTs.count();
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001528 // see if either end is not done since we want smaller Y of the pair
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001529 bool lastDone = true;
1530 for (int index = 0; index < count; ++index) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00001531 const Span& span = fTs[index];
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001532 if (!span.fDone || !lastDone) {
1533 const SkPoint& intercept = xyAtT(&span);
1534 if (topPt.fY > intercept.fY || (topPt.fY == intercept.fY
1535 && topPt.fX > intercept.fX)) {
1536 topPt = intercept;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001537 firstT = lastT = index;
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001538 } else if (topPt == intercept) {
1539 lastT = index;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001540 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001541 }
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001542 lastDone = span.fDone;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001543 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001544 // sort the edges to find the leftmost
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001545 int step = 1;
1546 int end = nextSpan(firstT, step);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001547 if (end == -1) {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001548 step = -1;
1549 end = nextSpan(firstT, step);
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00001550 SkASSERT(end != -1);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001551 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001552 // if the topmost T is not on end, or is three-way or more, find left
1553 // look for left-ness from tLeft to firstT (matching y of other)
1554 SkTDArray<Angle> angles;
1555 SkASSERT(firstT - end != 0);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001556 addTwoAngles(end, firstT, angles);
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001557 buildAngles(firstT, angles);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001558 SkTDArray<Angle*> sorted;
1559 sortAngles(angles, sorted);
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001560 // skip edges that have already been processed
1561 firstT = -1;
1562 Segment* leftSegment;
1563 do {
1564 const Angle* angle = sorted[++firstT];
1565 leftSegment = angle->segment();
1566 tIndex = angle->end();
1567 endIndex = angle->start();
1568 } while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001569 return leftSegment;
1570 }
1571
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001572 // FIXME: not crazy about this
1573 // when the intersections are performed, the other index is into an
1574 // incomplete array. as the array grows, the indices become incorrect
1575 // while the following fixes the indices up again, it isn't smart about
1576 // skipping segments whose indices are already correct
1577 // assuming we leave the code that wrote the index in the first place
1578 void fixOtherTIndex() {
1579 int iCount = fTs.count();
1580 for (int i = 0; i < iCount; ++i) {
1581 Span& iSpan = fTs[i];
1582 double oT = iSpan.fOtherT;
1583 Segment* other = iSpan.fOther;
1584 int oCount = other->fTs.count();
1585 for (int o = 0; o < oCount; ++o) {
1586 Span& oSpan = other->fTs[o];
1587 if (oT == oSpan.fT && this == oSpan.fOther) {
1588 iSpan.fOtherIndex = o;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001589 break;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001590 }
1591 }
1592 }
1593 }
1594
caryclark@google.com495f8e42012-05-31 13:13:11 +00001595 // OPTIMIZATION: uses tail recursion. Unwise?
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001596 Span* innerChaseDone(int index, int step, int winding) {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001597 int end = nextSpan(index, step);
caryclark@google.com9764cc62012-07-12 19:29:45 +00001598 SkASSERT(end >= 0);
1599 if (multipleSpans(end)) {
1600 return &fTs[end];
caryclark@google.com495f8e42012-05-31 13:13:11 +00001601 }
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001602 const Span& endSpan = fTs[end];
1603 Segment* other = endSpan.fOther;
1604 index = endSpan.fOtherIndex;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001605 int otherEnd = other->nextSpan(index, step);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001606 Span* last = other->innerChaseDone(index, step, winding);
caryclark@google.com495f8e42012-05-31 13:13:11 +00001607 other->markDone(SkMin32(index, otherEnd), winding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001608 return last;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001609 }
1610
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001611 Span* innerChaseWinding(int index, int step, int winding) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001612 int end = nextSpan(index, step);
caryclark@google.com9764cc62012-07-12 19:29:45 +00001613 SkASSERT(end >= 0);
1614 if (multipleSpans(end)) {
1615 return &fTs[end];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001616 }
1617 const Span& endSpan = fTs[end];
1618 Segment* other = endSpan.fOther;
1619 index = endSpan.fOtherIndex;
1620 int otherEnd = other->nextSpan(index, step);
1621 int min = SkMin32(index, otherEnd);
1622 if (other->fTs[min].fWindSum != SK_MinS32) {
caryclark@google.com0e08a192012-07-13 21:07:52 +00001623 SkASSERT(other->fTs[min].fWindSum == winding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001624 return NULL;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001625 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001626 Span* last = other->innerChaseWinding(index, step, winding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001627 other->markWinding(min, winding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001628 return last;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001629 }
1630
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001631 void init(const SkPoint pts[], SkPath::Verb verb) {
1632 fPts = pts;
1633 fVerb = verb;
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001634 fDoneSpans = 0;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001635 }
1636
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001637 bool intersected() const {
1638 return fTs.count() > 0;
1639 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001640
1641 bool isLinear(int start, int end) const {
1642 if (fVerb == SkPath::kLine_Verb) {
1643 return true;
1644 }
1645 if (fVerb == SkPath::kQuad_Verb) {
1646 SkPoint qPart[3];
1647 QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart);
1648 return QuadIsLinear(qPart);
1649 } else {
1650 SkASSERT(fVerb == SkPath::kCubic_Verb);
1651 SkPoint cPart[4];
1652 CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart);
1653 return CubicIsLinear(cPart);
1654 }
1655 }
caryclark@google.comb9738012012-07-03 19:53:30 +00001656
1657 // OPTIMIZE: successive calls could start were the last leaves off
1658 // or calls could specialize to walk forwards or backwards
1659 bool isMissing(double startT) const {
1660 size_t tCount = fTs.count();
1661 for (size_t index = 0; index < tCount; ++index) {
1662 if (fabs(startT - fTs[index].fT) < FLT_EPSILON) {
1663 return false;
1664 }
1665 }
1666 return true;
1667 }
1668
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001669 bool isSimple(int end) const {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001670 int count = fTs.count();
1671 if (count == 2) {
1672 return true;
1673 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001674 double t = fTs[end].fT;
1675 if (t < FLT_EPSILON) {
1676 return fTs[1].fT >= FLT_EPSILON;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001677 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001678 if (t > 1 - FLT_EPSILON) {
1679 return fTs[count - 2].fT <= 1 - FLT_EPSILON;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001680 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001681 return false;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001682 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001683
1684 bool isHorizontal() const {
1685 return fBounds.fTop == fBounds.fBottom;
1686 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001687
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001688 bool isVertical() const {
1689 return fBounds.fLeft == fBounds.fRight;
1690 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001691
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001692 SkScalar leftMost(int start, int end) const {
1693 return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT);
1694 }
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001695
caryclark@google.com495f8e42012-05-31 13:13:11 +00001696 // this span is excluded by the winding rule -- chase the ends
1697 // as long as they are unambiguous to mark connections as done
1698 // and give them the same winding value
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001699 Span* markAndChaseDone(const Angle* angle, int winding) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001700 int index = angle->start();
1701 int endIndex = angle->end();
1702 int step = SkSign32(endIndex - index);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001703 Span* last = innerChaseDone(index, step, winding);
caryclark@google.com495f8e42012-05-31 13:13:11 +00001704 markDone(SkMin32(index, endIndex), winding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001705 return last;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001706 }
1707
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001708 Span* markAndChaseWinding(const Angle* angle, int winding) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001709 int index = angle->start();
1710 int endIndex = angle->end();
1711 int min = SkMin32(index, endIndex);
1712 int step = SkSign32(endIndex - index);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001713 Span* last = innerChaseWinding(index, step, winding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001714 markWinding(min, winding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001715 return last;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001716 }
1717
caryclark@google.com495f8e42012-05-31 13:13:11 +00001718 // FIXME: this should also mark spans with equal (x,y)
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001719 // This may be called when the segment is already marked done. While this
1720 // wastes time, it shouldn't do any more than spin through the T spans.
1721 // OPTIMIZATION: abort on first done found (assuming that this code is
1722 // always called to mark segments done).
caryclark@google.com495f8e42012-05-31 13:13:11 +00001723 void markDone(int index, int winding) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001724 // SkASSERT(!done());
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001725 double referenceT = fTs[index].fT;
1726 int lesser = index;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001727 while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001728 Span& span = fTs[lesser];
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001729 if (span.fDone) {
1730 continue;
1731 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001732 #if DEBUG_MARK_DONE
1733 const SkPoint& pt = xyAtT(&span);
1734 SkDebugf("%s segment=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
1735 __FUNCTION__, fID, lesser, span.fT, pt.fX, pt.fY, winding);
1736 #endif
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001737 span.fDone = true;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001738 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
caryclark@google.com47580692012-07-23 12:14:49 +00001739 SkASSERT(abs(winding) <= gDebugMaxWindSum);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001740 span.fWindSum = winding;
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00001741 fDoneSpans++;
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001742 }
1743 do {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001744 Span& span = fTs[index];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001745 // SkASSERT(!span.fDone);
1746 if (span.fDone) {
1747 continue;
1748 }
1749 #if DEBUG_MARK_DONE
1750 const SkPoint& pt = xyAtT(&span);
1751 SkDebugf("%s segment=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
1752 __FUNCTION__, fID, index, span.fT, pt.fX, pt.fY, winding);
1753 #endif
1754 span.fDone = true;
1755 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
caryclark@google.com47580692012-07-23 12:14:49 +00001756 SkASSERT(abs(winding) <= gDebugMaxWindSum);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001757 span.fWindSum = winding;
1758 fDoneSpans++;
1759 } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
1760 }
1761
1762 void markWinding(int index, int winding) {
caryclark@google.comafe56de2012-07-24 18:11:03 +00001763 // SkASSERT(!done());
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001764 double referenceT = fTs[index].fT;
1765 int lesser = index;
1766 while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
1767 Span& span = fTs[lesser];
1768 if (span.fDone) {
1769 continue;
1770 }
caryclark@google.com47580692012-07-23 12:14:49 +00001771 // SkASSERT(span.fWindValue == 1 || winding == 0);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001772 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
1773 #if DEBUG_MARK_DONE
1774 const SkPoint& pt = xyAtT(&span);
1775 SkDebugf("%s segment=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
1776 __FUNCTION__, fID, lesser, span.fT, pt.fX, pt.fY, winding);
1777 #endif
caryclark@google.com47580692012-07-23 12:14:49 +00001778 SkASSERT(abs(winding) <= gDebugMaxWindSum);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001779 span.fWindSum = winding;
1780 }
1781 do {
1782 Span& span = fTs[index];
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001783 // SkASSERT(!span.fDone || span.fCoincident);
1784 if (span.fDone) {
1785 continue;
1786 }
caryclark@google.com47580692012-07-23 12:14:49 +00001787 // SkASSERT(span.fWindValue == 1 || winding == 0);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001788 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
1789 #if DEBUG_MARK_DONE
1790 const SkPoint& pt = xyAtT(&span);
1791 SkDebugf("%s segment=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
1792 __FUNCTION__, fID, index, span.fT, pt.fX, pt.fY, winding);
1793 #endif
caryclark@google.com47580692012-07-23 12:14:49 +00001794 SkASSERT(abs(winding) <= gDebugMaxWindSum);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001795 span.fWindSum = winding;
1796 } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001797 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001798
caryclark@google.com9764cc62012-07-12 19:29:45 +00001799 // return span if when chasing, two or more radiating spans are not done
1800 // OPTIMIZATION: ? multiple spans is detected when there is only one valid
1801 // candidate and the remaining spans have windValue == 0 (canceled by
1802 // coincidence). The coincident edges could either be removed altogether,
1803 // or this code could be more complicated in detecting this case. Worth it?
1804 bool multipleSpans(int end) const {
1805 return end > 0 && end < fTs.count() - 1;
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001806 }
1807
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001808 // This has callers for two different situations: one establishes the end
1809 // of the current span, and one establishes the beginning of the next span
1810 // (thus the name). When this is looking for the end of the current span,
1811 // coincidence is found when the beginning Ts contain -step and the end
1812 // contains step. When it is looking for the beginning of the next, the
1813 // first Ts found can be ignored and the last Ts should contain -step.
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001814 // OPTIMIZATION: probably should split into two functions
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001815 int nextSpan(int from, int step) const {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001816 const Span& fromSpan = fTs[from];
caryclark@google.com495f8e42012-05-31 13:13:11 +00001817 int count = fTs.count();
1818 int to = from;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001819 while (step > 0 ? ++to < count : --to >= 0) {
1820 const Span& span = fTs[to];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001821 if ((step > 0 ? span.fT - fromSpan.fT : fromSpan.fT - span.fT) < FLT_EPSILON) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001822 continue;
1823 }
caryclark@google.com495f8e42012-05-31 13:13:11 +00001824 return to;
1825 }
1826 return -1;
1827 }
1828
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001829 const SkPoint* pts() const {
1830 return fPts;
1831 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001832
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001833 void reset() {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001834 init(NULL, (SkPath::Verb) -1);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001835 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
1836 fTs.reset();
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001837 }
1838
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001839 // OPTIMIZATION: mark as debugging only if used solely by tests
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001840 const Span& span(int tIndex) const {
1841 return fTs[tIndex];
1842 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001843
1844 int spanSign(int startIndex, int endIndex) const {
1845 return startIndex < endIndex ? -fTs[startIndex].fWindValue :
1846 fTs[endIndex].fWindValue;
1847 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001848
1849 // OPTIMIZATION: mark as debugging only if used solely by tests
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001850 double t(int tIndex) const {
1851 return fTs[tIndex].fT;
1852 }
caryclark@google.com18063442012-07-25 12:05:18 +00001853
1854 static void TrackOutside(SkTDArray<double>& outsideTs, double end,
1855 double start) {
1856 int outCount = outsideTs.count();
1857 if (outCount == 0 || end - outsideTs[outCount - 2] >= FLT_EPSILON) {
1858 *outsideTs.append() = end;
1859 *outsideTs.append() = start;
1860 }
1861 }
1862
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001863 void updatePts(const SkPoint pts[]) {
1864 fPts = pts;
1865 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001866
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001867 SkPath::Verb verb() const {
1868 return fVerb;
1869 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001870
caryclark@google.comafe56de2012-07-24 18:11:03 +00001871 int windBump(const Angle* angle) const {
1872 SkASSERT(angle->segment() == this);
1873 const Span& span = fTs[SkMin32(angle->start(), angle->end())];
1874 int result = angle->sign() * span.fWindValue;
1875#if DEBUG_WIND_BUMP
1876 SkDebugf("%s bump=%d\n", __FUNCTION__, result);
1877#endif
1878 return result;
1879 }
1880
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001881 int windSum(int tIndex) const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001882 return fTs[tIndex].fWindSum;
1883 }
caryclark@google.com495f8e42012-05-31 13:13:11 +00001884
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001885 int windSum(const Angle* angle) const {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001886 int start = angle->start();
1887 int end = angle->end();
1888 int index = SkMin32(start, end);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001889 return windSum(index);
caryclark@google.com495f8e42012-05-31 13:13:11 +00001890 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001891
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001892 int windValue(int tIndex) const {
1893 return fTs[tIndex].fWindValue;
1894 }
1895
1896 int windValue(const Angle* angle) const {
1897 int start = angle->start();
1898 int end = angle->end();
1899 int index = SkMin32(start, end);
1900 return windValue(index);
1901 }
1902
1903 SkScalar xAtT(const Span* span) const {
1904 return xyAtT(span).fX;
1905 }
1906
1907 const SkPoint& xyAtT(int index) const {
1908 return xyAtT(&fTs[index]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001909 }
1910
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001911 const SkPoint& xyAtT(const Span* span) const {
1912 if (!span->fPt) {
1913 if (span->fT == 0) {
1914 span->fPt = &fPts[0];
1915 } else if (span->fT == 1) {
1916 span->fPt = &fPts[fVerb];
1917 } else {
1918 SkPoint* pt = fIntersections.append();
1919 (*SegmentXYAtT[fVerb])(fPts, span->fT, pt);
1920 span->fPt = pt;
1921 }
1922 }
1923 return *span->fPt;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001924 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001925
1926 SkScalar yAtT(int index) const {
1927 return yAtT(&fTs[index]);
1928 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001929
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001930 SkScalar yAtT(const Span* span) const {
1931 return xyAtT(span).fY;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001932 }
1933
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001934#if DEBUG_DUMP
1935 void dump() const {
1936 const char className[] = "Segment";
1937 const int tab = 4;
1938 for (int i = 0; i < fTs.count(); ++i) {
1939 SkPoint out;
1940 (*SegmentXYAtT[fVerb])(fPts, t(i), &out);
1941 SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d"
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001942 " otherT=%1.9g windSum=%d\n",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001943 tab + sizeof(className), className, fID,
1944 kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY,
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001945 fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001946 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001947 SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001948 tab + sizeof(className), className, fID,
caryclark@google.com15fa1382012-05-07 20:49:36 +00001949 fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001950 }
1951#endif
1952
caryclark@google.com47580692012-07-23 12:14:49 +00001953#if DEBUG_CONCIDENT
1954 void debugShowTs() {
1955 SkDebugf("%s %d", __FUNCTION__, fID);
1956 for (int i = 0; i < fTs.count(); ++i) {
1957 SkDebugf(" [o=%d %1.9g (%1.9g,%1.9g) w=%d]", fTs[i].fOther->fID,
1958 fTs[i].fT, xAtT(&fTs[i]), yAtT(&fTs[i]), fTs[i].fWindValue);
1959 }
1960 SkDebugf("\n");
1961 }
1962#endif
1963
caryclark@google.com027de222012-07-12 12:52:50 +00001964#if DEBUG_ACTIVE_SPANS
1965 void debugShowActiveSpans(int contourID, int segmentIndex) {
1966 if (done()) {
1967 return;
1968 }
1969 for (int i = 0; i < fTs.count(); ++i) {
1970 if (fTs[i].fDone) {
1971 continue;
1972 }
1973 SkDebugf("%s contour=%d segment=%d (%d)", __FUNCTION__, contourID,
1974 segmentIndex, fID);
1975 SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
1976 for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
1977 SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
1978 }
1979 const Span* span = &fTs[i];
1980 SkDebugf(") fT=%d (%1.9g) (%1.9g,%1.9g)", i, fTs[i].fT,
1981 xAtT(span), yAtT(i));
1982 const Segment* other = fTs[i].fOther;
1983 SkDebugf(" other=%d otherT=%1.9g otherIndex=%d", other->fID,
1984 fTs[i].fOtherT, fTs[i].fOtherIndex);
1985 SkDebugf(" windSum=%d windValue=%d\n", fTs[i].fWindSum,
1986 fTs[i].fWindValue);
1987 }
1988 }
1989#endif
1990
caryclark@google.com47580692012-07-23 12:14:49 +00001991#if DEBUG_SORT
caryclark@google.come21cb182012-07-23 21:26:31 +00001992 void debugShowSort(const SkTDArray<Angle*>& angles, int first,
1993 int contourWinding, int sumWinding) {
caryclark@google.comafe56de2012-07-24 18:11:03 +00001994 SkASSERT(angles[first]->segment() == this);
1995 bool doBump = angles[first]->firstBump(contourWinding, sumWinding);
1996 bool insideContour = contourWinding && contourWinding * sumWinding < 0;
1997 int windSum = insideContour ? contourWinding : sumWinding;
1998 int lastSum = windSum;
1999 if (insideContour || doBump) {
2000 windSum -= windBump(angles[first]);
2001 } else {
2002 lastSum += windBump(angles[first]);
caryclark@google.com47580692012-07-23 12:14:49 +00002003 }
caryclark@google.comafe56de2012-07-24 18:11:03 +00002004 int index = first;
2005 bool firstTime = true;
caryclark@google.com47580692012-07-23 12:14:49 +00002006 do {
2007 const Angle& angle = *angles[index];
2008 const Segment& segment = *angle.segment();
2009 int start = angle.start();
2010 int end = angle.end();
2011 const Span& sSpan = segment.fTs[start];
2012 const Span& eSpan = segment.fTs[end];
2013 const Span& mSpan = segment.fTs[SkMin32(start, end)];
caryclark@google.comafe56de2012-07-24 18:11:03 +00002014 if (firstTime) {
2015 firstTime = false;
2016 } else {
2017 lastSum = windSum;
2018 windSum -= segment.windBump(&angle);
2019 }
caryclark@google.com47580692012-07-23 12:14:49 +00002020 SkDebugf("%s [%d] id=%d start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)"
2021 " sign=%d windValue=%d winding: %d->%d (max=%d) done=%d\n",
2022 __FUNCTION__, index, segment.fID, start, segment.xAtT(&sSpan),
2023 segment.yAtT(&sSpan), end, segment.xAtT(&eSpan),
2024 segment.yAtT(&eSpan), angle.sign(), mSpan.fWindValue,
2025 lastSum, windSum, abs(lastSum) > abs(windSum) ? lastSum :
2026 windSum, mSpan.fDone);
2027 ++index;
2028 if (index == angles.count()) {
2029 index = 0;
2030 }
2031 } while (index != first);
2032 }
2033#endif
2034
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002035private:
2036 const SkPoint* fPts;
2037 SkPath::Verb fVerb;
2038 Bounds fBounds;
caryclark@google.com15fa1382012-05-07 20:49:36 +00002039 SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002040 // OPTIMIZATION:if intersections array is a pointer, the it could only
2041 // be allocated as needed instead of always initialized -- though maybe
2042 // the initialization is lightweight enough that it hardly matters
2043 mutable SkTDArray<SkPoint> fIntersections;
caryclark@google.comaf46cff2012-05-22 21:12:00 +00002044 int fDoneSpans; // used for quick check that segment is finished
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002045#if DEBUG_DUMP
2046 int fID;
2047#endif
2048};
2049
caryclark@google.comb9738012012-07-03 19:53:30 +00002050class Contour;
2051
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002052struct Coincidence {
caryclark@google.comb9738012012-07-03 19:53:30 +00002053 Contour* fContours[2];
2054 int fSegments[2];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002055 double fTs[2][2];
2056};
2057
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002058class Contour {
2059public:
2060 Contour() {
2061 reset();
2062#if DEBUG_DUMP
2063 fID = ++gContourID;
2064#endif
2065 }
2066
2067 bool operator<(const Contour& rh) const {
2068 return fBounds.fTop == rh.fBounds.fTop
2069 ? fBounds.fLeft < rh.fBounds.fLeft
2070 : fBounds.fTop < rh.fBounds.fTop;
2071 }
2072
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002073 void addCoincident(int index, Contour* other, int otherIndex,
2074 const Intersections& ts, bool swap) {
2075 Coincidence& coincidence = *fCoincidences.append();
caryclark@google.comb9738012012-07-03 19:53:30 +00002076 coincidence.fContours[0] = this;
2077 coincidence.fContours[1] = other;
2078 coincidence.fSegments[0] = index;
2079 coincidence.fSegments[1] = otherIndex;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002080 coincidence.fTs[swap][0] = ts.fT[0][0];
2081 coincidence.fTs[swap][1] = ts.fT[0][1];
2082 coincidence.fTs[!swap][0] = ts.fT[1][0];
2083 coincidence.fTs[!swap][1] = ts.fT[1][1];
2084 }
2085
2086 void addCross(const Contour* crosser) {
2087#ifdef DEBUG_CROSS
2088 for (int index = 0; index < fCrosses.count(); ++index) {
2089 SkASSERT(fCrosses[index] != crosser);
2090 }
2091#endif
2092 *fCrosses.append() = crosser;
2093 }
2094
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002095 void addCubic(const SkPoint pts[4]) {
2096 fSegments.push_back().addCubic(pts);
2097 fContainsCurves = true;
2098 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002099
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002100 int addLine(const SkPoint pts[2]) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002101 fSegments.push_back().addLine(pts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002102 return fSegments.count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002103 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002104
2105 void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) {
2106 fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex);
2107 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002108
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002109 int addQuad(const SkPoint pts[3]) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002110 fSegments.push_back().addQuad(pts);
2111 fContainsCurves = true;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002112 return fSegments.count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002113 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002114
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002115 int addT(int segIndex, double newT, Contour* other, int otherIndex) {
2116 containsIntercepts();
2117 return fSegments[segIndex].addT(newT, &other->fSegments[otherIndex]);
2118 }
2119
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002120 const Bounds& bounds() const {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002121 return fBounds;
2122 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002123
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002124 void complete() {
2125 setBounds();
2126 fContainsIntercepts = false;
2127 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002128
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002129 void containsIntercepts() {
2130 fContainsIntercepts = true;
2131 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002132
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002133 const Segment* crossedSegment(const SkPoint& basePt, SkScalar& bestY,
2134 int &tIndex, double& hitT) {
2135 int segmentCount = fSegments.count();
2136 const Segment* bestSegment = NULL;
2137 for (int test = 0; test < segmentCount; ++test) {
2138 Segment* testSegment = &fSegments[test];
2139 const SkRect& bounds = testSegment->bounds();
2140 if (bounds.fTop < bestY) {
2141 continue;
2142 }
2143 if (bounds.fTop > basePt.fY) {
2144 continue;
2145 }
2146 if (bounds.fLeft > basePt.fX) {
2147 continue;
2148 }
2149 if (bounds.fRight < basePt.fX) {
2150 continue;
2151 }
2152 double testHitT;
2153 int testT = testSegment->crossedSpan(basePt, bestY, testHitT);
2154 if (testT >= 0) {
2155 bestSegment = testSegment;
2156 tIndex = testT;
2157 hitT = testHitT;
2158 }
2159 }
2160 return bestSegment;
2161 }
2162
2163 bool crosses(const Contour* crosser) const {
2164 if (this == crosser) {
2165 return true;
2166 }
2167 for (int index = 0; index < fCrosses.count(); ++index) {
2168 if (fCrosses[index] == crosser) {
2169 return true;
2170 }
2171 }
2172 return false;
2173 }
2174
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002175 void findTooCloseToCall(int winding) {
2176 int segmentCount = fSegments.count();
2177 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
2178 fSegments[sIndex].findTooCloseToCall(winding);
2179 }
2180 }
2181
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002182 void fixOtherTIndex() {
2183 int segmentCount = fSegments.count();
2184 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
2185 fSegments[sIndex].fixOtherTIndex();
2186 }
2187 }
2188
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002189 void reset() {
2190 fSegments.reset();
2191 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
caryclark@google.com15fa1382012-05-07 20:49:36 +00002192 fContainsCurves = fContainsIntercepts = false;
caryclark@google.com66ca2fb2012-07-03 14:30:08 +00002193 fWindingSum = SK_MinS32;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002194 }
caryclark@google.comb9738012012-07-03 19:53:30 +00002195
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002196 void resolveCoincidence(int winding) {
2197 int count = fCoincidences.count();
2198 for (int index = 0; index < count; ++index) {
2199 Coincidence& coincidence = fCoincidences[index];
caryclark@google.comb9738012012-07-03 19:53:30 +00002200 Contour* thisContour = coincidence.fContours[0];
2201 Contour* otherContour = coincidence.fContours[1];
2202 int thisIndex = coincidence.fSegments[0];
2203 int otherIndex = coincidence.fSegments[1];
2204 Segment& thisOne = thisContour->fSegments[thisIndex];
2205 Segment& other = otherContour->fSegments[otherIndex];
caryclark@google.com47580692012-07-23 12:14:49 +00002206 #if DEBUG_CONCIDENT
2207 thisOne.debugShowTs();
2208 other.debugShowTs();
2209 #endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002210 double startT = coincidence.fTs[0][0];
2211 double endT = coincidence.fTs[0][1];
2212 if (startT > endT) {
2213 SkTSwap<double>(startT, endT);
2214 }
2215 SkASSERT(endT - startT >= FLT_EPSILON);
2216 double oStartT = coincidence.fTs[1][0];
2217 double oEndT = coincidence.fTs[1][1];
2218 if (oStartT > oEndT) {
2219 SkTSwap<double>(oStartT, oEndT);
2220 }
2221 SkASSERT(oEndT - oStartT >= FLT_EPSILON);
caryclark@google.comb9738012012-07-03 19:53:30 +00002222 if (winding > 0 || thisOne.cancels(other)) {
2223 // make sure startT and endT have t entries
2224 if (thisOne.isMissing(startT) || other.isMissing(oEndT)) {
2225 thisOne.addTPair(startT, other, oEndT);
2226 }
2227 if (thisOne.isMissing(endT) || other.isMissing(oStartT)) {
2228 other.addTPair(oStartT, thisOne, endT);
2229 }
2230 thisOne.addTCancel(startT, endT, other, oStartT, oEndT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002231 } else {
caryclark@google.comb9738012012-07-03 19:53:30 +00002232 if (thisOne.isMissing(startT) || other.isMissing(oStartT)) {
2233 thisOne.addTPair(startT, other, oStartT);
2234 }
2235 if (thisOne.isMissing(endT) || other.isMissing(oEndT)) {
2236 other.addTPair(oEndT, thisOne, endT);
2237 }
2238 thisOne.addTCoincident(startT, endT, other, oStartT, oEndT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002239 }
caryclark@google.com47580692012-07-23 12:14:49 +00002240 #if DEBUG_CONCIDENT
2241 thisOne.debugShowTs();
2242 other.debugShowTs();
2243 #endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002244 }
2245 }
2246
2247 const SkTArray<Segment>& segments() {
2248 return fSegments;
2249 }
2250
2251 void setWinding(int winding) {
caryclark@google.come21cb182012-07-23 21:26:31 +00002252 SkASSERT(fWindingSum < 0 || fWindingSum == winding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002253 fWindingSum = winding;
2254 }
2255
caryclark@google.com15fa1382012-05-07 20:49:36 +00002256 // OPTIMIZATION: feel pretty uneasy about this. It seems like once again
2257 // we need to sort and walk edges in y, but that on the surface opens the
2258 // same can of worms as before. But then, this is a rough sort based on
2259 // segments' top, and not a true sort, so it could be ameniable to regular
2260 // sorting instead of linear searching. Still feel like I'm missing something
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002261 Segment* topSegment(SkScalar& bestY) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00002262 int segmentCount = fSegments.count();
2263 SkASSERT(segmentCount > 0);
2264 int best = -1;
2265 Segment* bestSegment = NULL;
2266 while (++best < segmentCount) {
2267 Segment* testSegment = &fSegments[best];
2268 if (testSegment->done()) {
2269 continue;
2270 }
2271 bestSegment = testSegment;
2272 break;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002273 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00002274 if (!bestSegment) {
2275 return NULL;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002276 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002277 SkScalar bestTop = bestSegment->activeTop();
caryclark@google.com15fa1382012-05-07 20:49:36 +00002278 for (int test = best + 1; test < segmentCount; ++test) {
2279 Segment* testSegment = &fSegments[test];
2280 if (testSegment->done()) {
2281 continue;
2282 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002283 if (testSegment->bounds().fTop > bestTop) {
2284 continue;
2285 }
2286 SkScalar testTop = testSegment->activeTop();
caryclark@google.com15fa1382012-05-07 20:49:36 +00002287 if (bestTop > testTop) {
2288 bestTop = testTop;
2289 bestSegment = testSegment;
2290 }
2291 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002292 bestY = bestTop;
caryclark@google.com15fa1382012-05-07 20:49:36 +00002293 return bestSegment;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002294 }
2295
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002296 int updateSegment(int index, const SkPoint* pts) {
2297 Segment& segment = fSegments[index];
2298 segment.updatePts(pts);
2299 return segment.verb() + 1;
2300 }
2301
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00002302 int windSum() {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002303 if (fWindingSum >= 0) {
2304 return fWindingSum;
2305 }
2306 // check peers
2307 int count = fCrosses.count();
2308 for (int index = 0; index < count; ++index) {
2309 const Contour* crosser = fCrosses[index];
2310 if (0 <= crosser->fWindingSum) {
2311 fWindingSum = crosser->fWindingSum;
2312 break;
2313 }
2314 }
2315 return fWindingSum;
2316 }
2317
2318#if DEBUG_TEST
2319 SkTArray<Segment>& debugSegments() {
2320 return fSegments;
2321 }
2322#endif
2323
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002324#if DEBUG_DUMP
2325 void dump() {
2326 int i;
2327 const char className[] = "Contour";
2328 const int tab = 4;
2329 SkDebugf("%s %p (contour=%d)\n", className, this, fID);
2330 for (i = 0; i < fSegments.count(); ++i) {
2331 SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className),
2332 className, i);
2333 fSegments[i].dump();
2334 }
2335 SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n",
2336 tab + sizeof(className), className,
2337 fBounds.fLeft, fBounds.fTop,
2338 fBounds.fRight, fBounds.fBottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002339 SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
2340 className, fContainsIntercepts);
2341 SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className),
2342 className, fContainsCurves);
2343 }
2344#endif
2345
caryclark@google.com027de222012-07-12 12:52:50 +00002346#if DEBUG_ACTIVE_SPANS
2347 void debugShowActiveSpans() {
2348 for (int index = 0; index < fSegments.count(); ++index) {
2349 fSegments[index].debugShowActiveSpans(fID, index);
2350 }
2351 }
2352#endif
2353
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002354protected:
2355 void setBounds() {
2356 int count = fSegments.count();
2357 if (count == 0) {
2358 SkDebugf("%s empty contour\n", __FUNCTION__);
2359 SkASSERT(0);
2360 // FIXME: delete empty contour?
2361 return;
2362 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002363 fBounds = fSegments.front().bounds();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002364 for (int index = 1; index < count; ++index) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002365 fBounds.add(fSegments[index].bounds());
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002366 }
2367 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002368
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002369private:
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002370 SkTArray<Segment> fSegments;
2371 SkTDArray<Coincidence> fCoincidences;
2372 SkTDArray<const Contour*> fCrosses;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002373 Bounds fBounds;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002374 bool fContainsIntercepts;
2375 bool fContainsCurves;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002376 int fWindingSum; // initial winding number outside
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002377#if DEBUG_DUMP
2378 int fID;
2379#endif
2380};
2381
2382class EdgeBuilder {
2383public:
2384
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002385EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours)
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002386 : fPath(path)
2387 , fCurrentContour(NULL)
2388 , fContours(contours)
2389{
2390#if DEBUG_DUMP
2391 gContourID = 0;
2392 gSegmentID = 0;
2393#endif
2394 walk();
2395}
2396
2397protected:
2398
2399void complete() {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002400 if (fCurrentContour && fCurrentContour->segments().count()) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002401 fCurrentContour->complete();
2402 fCurrentContour = NULL;
2403 }
2404}
2405
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002406void walk() {
2407 // FIXME:remove once we can access path pts directly
2408 SkPath::RawIter iter(fPath); // FIXME: access path directly when allowed
2409 SkPoint pts[4];
2410 SkPath::Verb verb;
2411 do {
2412 verb = iter.next(pts);
2413 *fPathVerbs.append() = verb;
2414 if (verb == SkPath::kMove_Verb) {
2415 *fPathPts.append() = pts[0];
2416 } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) {
2417 fPathPts.append(verb, &pts[1]);
2418 }
2419 } while (verb != SkPath::kDone_Verb);
2420 // FIXME: end of section to remove once path pts are accessed directly
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002421
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002422 SkPath::Verb reducedVerb;
2423 uint8_t* verbPtr = fPathVerbs.begin();
2424 const SkPoint* pointsPtr = fPathPts.begin();
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002425 const SkPoint* finalCurveStart = NULL;
2426 const SkPoint* finalCurveEnd = NULL;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002427 while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) {
2428 switch (verb) {
2429 case SkPath::kMove_Verb:
2430 complete();
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002431 if (!fCurrentContour) {
2432 fCurrentContour = fContours.push_back_n(1);
2433 finalCurveEnd = pointsPtr++;
2434 *fExtra.append() = -1; // start new contour
2435 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002436 continue;
2437 case SkPath::kLine_Verb:
2438 // skip degenerate points
2439 if (pointsPtr[-1].fX != pointsPtr[0].fX
2440 || pointsPtr[-1].fY != pointsPtr[0].fY) {
2441 fCurrentContour->addLine(&pointsPtr[-1]);
2442 }
2443 break;
2444 case SkPath::kQuad_Verb:
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002445
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002446 reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts);
2447 if (reducedVerb == 0) {
2448 break; // skip degenerate points
2449 }
2450 if (reducedVerb == 1) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002451 *fExtra.append() =
2452 fCurrentContour->addLine(fReducePts.end() - 2);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002453 break;
2454 }
2455 fCurrentContour->addQuad(&pointsPtr[-1]);
2456 break;
2457 case SkPath::kCubic_Verb:
2458 reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts);
2459 if (reducedVerb == 0) {
2460 break; // skip degenerate points
2461 }
2462 if (reducedVerb == 1) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002463 *fExtra.append() =
2464 fCurrentContour->addLine(fReducePts.end() - 2);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002465 break;
2466 }
2467 if (reducedVerb == 2) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002468 *fExtra.append() =
2469 fCurrentContour->addQuad(fReducePts.end() - 3);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002470 break;
2471 }
2472 fCurrentContour->addCubic(&pointsPtr[-1]);
2473 break;
2474 case SkPath::kClose_Verb:
2475 SkASSERT(fCurrentContour);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002476 if (finalCurveStart && finalCurveEnd
2477 && *finalCurveStart != *finalCurveEnd) {
2478 *fReducePts.append() = *finalCurveStart;
2479 *fReducePts.append() = *finalCurveEnd;
2480 *fExtra.append() =
2481 fCurrentContour->addLine(fReducePts.end() - 2);
2482 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002483 complete();
2484 continue;
2485 default:
2486 SkDEBUGFAIL("bad verb");
2487 return;
2488 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002489 finalCurveStart = &pointsPtr[verb - 1];
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002490 pointsPtr += verb;
2491 SkASSERT(fCurrentContour);
2492 }
2493 complete();
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002494 if (fCurrentContour && !fCurrentContour->segments().count()) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002495 fContours.pop_back();
2496 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002497 // correct pointers in contours since fReducePts may have moved as it grew
2498 int cIndex = 0;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002499 int extraCount = fExtra.count();
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002500 SkASSERT(extraCount == 0 || fExtra[0] == -1);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002501 int eIndex = 0;
2502 int rIndex = 0;
2503 while (++eIndex < extraCount) {
2504 int offset = fExtra[eIndex];
2505 if (offset < 0) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002506 ++cIndex;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002507 continue;
2508 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002509 fCurrentContour = &fContours[cIndex];
2510 rIndex += fCurrentContour->updateSegment(offset - 1,
2511 &fReducePts[rIndex]);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002512 }
2513 fExtra.reset(); // we're done with this
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002514}
2515
2516private:
2517 const SkPath& fPath;
2518 SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002519 SkTDArray<uint8_t> fPathVerbs; // FIXME: remove
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002520 Contour* fCurrentContour;
2521 SkTArray<Contour>& fContours;
2522 SkTDArray<SkPoint> fReducePts; // segments created on the fly
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002523 SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002524};
2525
2526class Work {
2527public:
2528 enum SegmentType {
2529 kHorizontalLine_Segment = -1,
2530 kVerticalLine_Segment = 0,
2531 kLine_Segment = SkPath::kLine_Verb,
2532 kQuad_Segment = SkPath::kQuad_Verb,
2533 kCubic_Segment = SkPath::kCubic_Verb,
2534 };
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002535
2536 void addCoincident(Work& other, const Intersections& ts, bool swap) {
2537 fContour->addCoincident(fIndex, other.fContour, other.fIndex, ts, swap);
2538 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002539
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002540 // FIXME: does it make sense to write otherIndex now if we're going to
2541 // fix it up later?
2542 void addOtherT(int index, double otherT, int otherIndex) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002543 fContour->addOtherT(fIndex, index, otherT, otherIndex);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002544 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002545
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002546 // Avoid collapsing t values that are close to the same since
2547 // we walk ts to describe consecutive intersections. Since a pair of ts can
2548 // be nearly equal, any problems caused by this should be taken care
2549 // of later.
2550 // On the edge or out of range values are negative; add 2 to get end
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002551 int addT(double newT, const Work& other) {
2552 return fContour->addT(fIndex, newT, other.fContour, other.fIndex);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002553 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002554
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002555 bool advance() {
2556 return ++fIndex < fLast;
2557 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002558
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002559 SkScalar bottom() const {
2560 return bounds().fBottom;
2561 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002562
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002563 const Bounds& bounds() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002564 return fContour->segments()[fIndex].bounds();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002565 }
2566
2567 const SkPoint* cubic() const {
2568 return fCubic;
2569 }
2570
2571 void init(Contour* contour) {
2572 fContour = contour;
2573 fIndex = 0;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002574 fLast = contour->segments().count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002575 }
caryclark@google.com66ca2fb2012-07-03 14:30:08 +00002576
2577 bool isAdjacent(const Work& next) {
2578 return fContour == next.fContour && fIndex + 1 == next.fIndex;
2579 }
2580
2581 bool isFirstLast(const Work& next) {
2582 return fContour == next.fContour && fIndex == 0
2583 && next.fIndex == fLast - 1;
2584 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002585
2586 SkScalar left() const {
2587 return bounds().fLeft;
2588 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002589
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002590 void promoteToCubic() {
2591 fCubic[0] = pts()[0];
2592 fCubic[2] = pts()[1];
2593 fCubic[3] = pts()[2];
2594 fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3;
2595 fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3;
2596 fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3;
2597 fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3;
2598 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002599
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002600 const SkPoint* pts() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002601 return fContour->segments()[fIndex].pts();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002602 }
2603
2604 SkScalar right() const {
2605 return bounds().fRight;
2606 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002607
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002608 ptrdiff_t segmentIndex() const {
2609 return fIndex;
2610 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002611
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002612 SegmentType segmentType() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002613 const Segment& segment = fContour->segments()[fIndex];
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002614 SegmentType type = (SegmentType) segment.verb();
2615 if (type != kLine_Segment) {
2616 return type;
2617 }
2618 if (segment.isHorizontal()) {
2619 return kHorizontalLine_Segment;
2620 }
2621 if (segment.isVertical()) {
2622 return kVerticalLine_Segment;
2623 }
2624 return kLine_Segment;
2625 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002626
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002627 bool startAfter(const Work& after) {
2628 fIndex = after.fIndex;
2629 return advance();
2630 }
2631
2632 SkScalar top() const {
2633 return bounds().fTop;
2634 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002635
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002636 SkPath::Verb verb() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002637 return fContour->segments()[fIndex].verb();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002638 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002639
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002640 SkScalar x() const {
2641 return bounds().fLeft;
2642 }
2643
2644 bool xFlipped() const {
2645 return x() != pts()[0].fX;
2646 }
2647
2648 SkScalar y() const {
2649 return bounds().fTop;
2650 }
2651
2652 bool yFlipped() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002653 return y() != pts()[0].fY;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002654 }
2655
2656protected:
2657 Contour* fContour;
2658 SkPoint fCubic[4];
2659 int fIndex;
2660 int fLast;
2661};
2662
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00002663#if DEBUG_ADD_INTERSECTING_TS
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002664static void debugShowLineIntersection(int pts, const Work& wt,
2665 const Work& wn, const double wtTs[2], const double wnTs[2]) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002666 if (!pts) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002667 SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g %1.9g,%1.9g)\n",
2668 __FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY,
2669 wt.pts()[1].fX, wt.pts()[1].fY, wn.pts()[0].fX, wn.pts()[0].fY,
2670 wn.pts()[1].fX, wn.pts()[1].fY);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002671 return;
2672 }
2673 SkPoint wtOutPt, wnOutPt;
2674 LineXYAtT(wt.pts(), wtTs[0], &wtOutPt);
2675 LineXYAtT(wn.pts(), wnTs[0], &wnOutPt);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002676 SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002677 __FUNCTION__,
2678 wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY,
2679 wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY);
2680 if (pts == 2) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002681 SkDebugf(" wtTs[1]=%g", wtTs[1]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002682 }
caryclark@google.comb9738012012-07-03 19:53:30 +00002683 SkDebugf(" wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002684 wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY,
2685 wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY);
2686 if (pts == 2) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002687 SkDebugf(" wnTs[1]=%g", wnTs[1]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002688 }
caryclark@google.comb9738012012-07-03 19:53:30 +00002689 SkDebugf("\n");
2690}
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00002691#else
2692static void debugShowLineIntersection(int , const Work& ,
2693 const Work& , const double [2], const double [2]) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002694}
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00002695#endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002696
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00002697static bool addIntersectTs(Contour* test, Contour* next) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002698
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002699 if (test != next) {
2700 if (test->bounds().fBottom < next->bounds().fTop) {
2701 return false;
2702 }
2703 if (!Bounds::Intersects(test->bounds(), next->bounds())) {
2704 return true;
2705 }
2706 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002707 Work wt;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002708 wt.init(test);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002709 bool foundCommonContour = test == next;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002710 do {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002711 Work wn;
2712 wn.init(next);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002713 if (test == next && !wn.startAfter(wt)) {
2714 continue;
2715 }
2716 do {
2717 if (!Bounds::Intersects(wt.bounds(), wn.bounds())) {
2718 continue;
2719 }
2720 int pts;
2721 Intersections ts;
2722 bool swap = false;
2723 switch (wt.segmentType()) {
2724 case Work::kHorizontalLine_Segment:
2725 swap = true;
2726 switch (wn.segmentType()) {
2727 case Work::kHorizontalLine_Segment:
2728 case Work::kVerticalLine_Segment:
2729 case Work::kLine_Segment: {
2730 pts = HLineIntersect(wn.pts(), wt.left(),
2731 wt.right(), wt.y(), wt.xFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002732 debugShowLineIntersection(pts, wt, wn,
2733 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002734 break;
2735 }
2736 case Work::kQuad_Segment: {
2737 pts = HQuadIntersect(wn.pts(), wt.left(),
2738 wt.right(), wt.y(), wt.xFlipped(), ts);
2739 break;
2740 }
2741 case Work::kCubic_Segment: {
2742 pts = HCubicIntersect(wn.pts(), wt.left(),
2743 wt.right(), wt.y(), wt.xFlipped(), ts);
2744 break;
2745 }
2746 default:
2747 SkASSERT(0);
2748 }
2749 break;
2750 case Work::kVerticalLine_Segment:
2751 swap = true;
2752 switch (wn.segmentType()) {
2753 case Work::kHorizontalLine_Segment:
2754 case Work::kVerticalLine_Segment:
2755 case Work::kLine_Segment: {
2756 pts = VLineIntersect(wn.pts(), wt.top(),
2757 wt.bottom(), wt.x(), wt.yFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002758 debugShowLineIntersection(pts, wt, wn,
2759 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002760 break;
2761 }
2762 case Work::kQuad_Segment: {
2763 pts = VQuadIntersect(wn.pts(), wt.top(),
2764 wt.bottom(), wt.x(), wt.yFlipped(), ts);
2765 break;
2766 }
2767 case Work::kCubic_Segment: {
2768 pts = VCubicIntersect(wn.pts(), wt.top(),
2769 wt.bottom(), wt.x(), wt.yFlipped(), ts);
2770 break;
2771 }
2772 default:
2773 SkASSERT(0);
2774 }
2775 break;
2776 case Work::kLine_Segment:
2777 switch (wn.segmentType()) {
2778 case Work::kHorizontalLine_Segment:
2779 pts = HLineIntersect(wt.pts(), wn.left(),
2780 wn.right(), wn.y(), wn.xFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002781 debugShowLineIntersection(pts, wt, wn,
2782 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002783 break;
2784 case Work::kVerticalLine_Segment:
2785 pts = VLineIntersect(wt.pts(), wn.top(),
2786 wn.bottom(), wn.x(), wn.yFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002787 debugShowLineIntersection(pts, wt, wn,
2788 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002789 break;
2790 case Work::kLine_Segment: {
2791 pts = LineIntersect(wt.pts(), wn.pts(), ts);
2792 debugShowLineIntersection(pts, wt, wn,
2793 ts.fT[1], ts.fT[0]);
2794 break;
2795 }
2796 case Work::kQuad_Segment: {
2797 swap = true;
2798 pts = QuadLineIntersect(wn.pts(), wt.pts(), ts);
2799 break;
2800 }
2801 case Work::kCubic_Segment: {
2802 swap = true;
2803 pts = CubicLineIntersect(wn.pts(), wt.pts(), ts);
2804 break;
2805 }
2806 default:
2807 SkASSERT(0);
2808 }
2809 break;
2810 case Work::kQuad_Segment:
2811 switch (wn.segmentType()) {
2812 case Work::kHorizontalLine_Segment:
2813 pts = HQuadIntersect(wt.pts(), wn.left(),
2814 wn.right(), wn.y(), wn.xFlipped(), ts);
2815 break;
2816 case Work::kVerticalLine_Segment:
2817 pts = VQuadIntersect(wt.pts(), wn.top(),
2818 wn.bottom(), wn.x(), wn.yFlipped(), ts);
2819 break;
2820 case Work::kLine_Segment: {
2821 pts = QuadLineIntersect(wt.pts(), wn.pts(), ts);
2822 break;
2823 }
2824 case Work::kQuad_Segment: {
2825 pts = QuadIntersect(wt.pts(), wn.pts(), ts);
2826 break;
2827 }
2828 case Work::kCubic_Segment: {
2829 wt.promoteToCubic();
2830 pts = CubicIntersect(wt.cubic(), wn.pts(), ts);
2831 break;
2832 }
2833 default:
2834 SkASSERT(0);
2835 }
2836 break;
2837 case Work::kCubic_Segment:
2838 switch (wn.segmentType()) {
2839 case Work::kHorizontalLine_Segment:
2840 pts = HCubicIntersect(wt.pts(), wn.left(),
2841 wn.right(), wn.y(), wn.xFlipped(), ts);
2842 break;
2843 case Work::kVerticalLine_Segment:
2844 pts = VCubicIntersect(wt.pts(), wn.top(),
2845 wn.bottom(), wn.x(), wn.yFlipped(), ts);
2846 break;
2847 case Work::kLine_Segment: {
2848 pts = CubicLineIntersect(wt.pts(), wn.pts(), ts);
2849 break;
2850 }
2851 case Work::kQuad_Segment: {
2852 wn.promoteToCubic();
2853 pts = CubicIntersect(wt.pts(), wn.cubic(), ts);
2854 break;
2855 }
2856 case Work::kCubic_Segment: {
2857 pts = CubicIntersect(wt.pts(), wn.pts(), ts);
2858 break;
2859 }
2860 default:
2861 SkASSERT(0);
2862 }
2863 break;
2864 default:
2865 SkASSERT(0);
2866 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002867 if (!foundCommonContour && pts > 0) {
2868 test->addCross(next);
2869 next->addCross(test);
2870 foundCommonContour = true;
2871 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002872 // in addition to recording T values, record matching segment
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002873 if (pts == 2 && wn.segmentType() <= Work::kLine_Segment
2874 && wt.segmentType() <= Work::kLine_Segment) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002875 wt.addCoincident(wn, ts, swap);
2876 continue;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002877 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00002878 for (int pt = 0; pt < pts; ++pt) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002879 SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
2880 SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002881 int testTAt = wt.addT(ts.fT[swap][pt], wn);
2882 int nextTAt = wn.addT(ts.fT[!swap][pt], wt);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002883 wt.addOtherT(testTAt, ts.fT[!swap][pt], nextTAt);
2884 wn.addOtherT(nextTAt, ts.fT[swap][pt], testTAt);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002885 }
2886 } while (wn.advance());
2887 } while (wt.advance());
2888 return true;
2889}
2890
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002891// resolve any coincident pairs found while intersecting, and
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002892// see if coincidence is formed by clipping non-concident segments
2893static void coincidenceCheck(SkTDArray<Contour*>& contourList, int winding) {
2894 int contourCount = contourList.count();
caryclark@google.comf25edfe2012-06-01 18:20:10 +00002895 for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002896 Contour* contour = contourList[cIndex];
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00002897 contour->findTooCloseToCall(winding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002898 }
2899 for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
2900 Contour* contour = contourList[cIndex];
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00002901 contour->resolveCoincidence(winding);
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002902 }
2903}
2904
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002905// project a ray from the top of the contour up and see if it hits anything
2906// note: when we compute line intersections, we keep track of whether
2907// two contours touch, so we need only look at contours not touching this one.
2908// OPTIMIZATION: sort contourList vertically to avoid linear walk
2909static int innerContourCheck(SkTDArray<Contour*>& contourList,
2910 Contour* baseContour, const SkPoint& basePt) {
2911 int contourCount = contourList.count();
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002912 SkScalar bestY = SK_ScalarMin;
caryclark@google.com47580692012-07-23 12:14:49 +00002913 const Segment* test = NULL;
2914 int tIndex;
2915 double tHit;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002916 for (int cTest = 0; cTest < contourCount; ++cTest) {
2917 Contour* contour = contourList[cTest];
2918 if (basePt.fY < contour->bounds().fTop) {
2919 continue;
2920 }
2921 if (bestY > contour->bounds().fBottom) {
2922 continue;
2923 }
2924 if (baseContour->crosses(contour)) {
2925 continue;
2926 }
caryclark@google.com47580692012-07-23 12:14:49 +00002927 const Segment* next = contour->crossedSegment(basePt, bestY, tIndex, tHit);
2928 if (next) {
2929 test = next;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002930 }
caryclark@google.com47580692012-07-23 12:14:49 +00002931 }
2932 if (!test) {
2933 baseContour->setWinding(0);
2934 return 0;
2935 }
2936 int winding, windValue;
2937 // If the ray hit the end of a span, we need to construct the wheel of
2938 // angles to find the span closest to the ray -- even if there are just
2939 // two spokes on the wheel.
caryclark@google.come21cb182012-07-23 21:26:31 +00002940 if (fabs(tHit - test->t(tIndex)) < FLT_EPSILON) {
caryclark@google.com47580692012-07-23 12:14:49 +00002941 SkTDArray<Angle> angles;
2942 int end = test->nextSpan(tIndex, 1);
2943 if (end < 0) {
2944 end = test->nextSpan(tIndex, -1);
2945 }
2946 test->addTwoAngles(end, tIndex, angles);
2947 test->buildAngles(tIndex, angles);
2948 SkTDArray<Angle*> sorted;
2949 // OPTIMIZATION: call a sort that, if base point is the leftmost,
2950 // returns the first counterclockwise hour before 6 o'clock,
2951 // or if the base point is rightmost, returns the first clockwise
2952 // hour after 6 o'clock
2953 sortAngles(angles, sorted);
2954#if DEBUG_SORT
caryclark@google.come21cb182012-07-23 21:26:31 +00002955 sorted[0]->segment()->debugShowSort(sorted, 0, 0, 0);
caryclark@google.com47580692012-07-23 12:14:49 +00002956#endif
2957 // walk the sorted angle fan to find the lowest angle
2958 // above the base point. Currently, the first angle in the sorted array
2959 // is 12 noon or an earlier hour (the next counterclockwise)
2960 int count = sorted.count();
2961 int left = -1;
2962 int right = -1;
2963 for (int index = 0; index < count; ++index) {
2964 double indexDx = sorted[index]->dx();
2965 if (indexDx < 0) {
2966 left = index;
2967 } else if (indexDx > 0) {
2968 right = index;
2969 break;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002970 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002971 }
caryclark@google.com47580692012-07-23 12:14:49 +00002972 SkASSERT(left >= 0 || right >= 0);
2973 if (left < 0) {
2974 left = right;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002975 }
caryclark@google.com47580692012-07-23 12:14:49 +00002976 const Angle* angle = sorted[left];
2977 test = angle->segment();
2978 winding = test->windSum(angle);
caryclark@google.come21cb182012-07-23 21:26:31 +00002979 SkASSERT(winding != SK_MinS32);
caryclark@google.com47580692012-07-23 12:14:49 +00002980 windValue = test->windValue(angle);
2981 #if 0
caryclark@google.comafe56de2012-07-24 18:11:03 +00002982 if (angle->firstBump(0, winding)) {
2983 winding -= test->windBump(angle);
caryclark@google.com47580692012-07-23 12:14:49 +00002984 }
2985 #endif
2986#if DEBUG_WINDING
2987 SkDebugf("%s angle winding=%d windValue=%d\n", __FUNCTION__, winding,
2988 windValue);
2989#endif
2990 } else {
2991 winding = test->windSum(tIndex);
caryclark@google.come21cb182012-07-23 21:26:31 +00002992 SkASSERT(winding != SK_MinS32);
caryclark@google.com47580692012-07-23 12:14:49 +00002993 windValue = test->windValue(tIndex);
2994#if DEBUG_WINDING
2995 SkDebugf("%s single winding=%d windValue=%d\n", __FUNCTION__, winding,
2996 windValue);
2997#endif
2998 }
2999 // see if a + change in T results in a +/- change in X (compute x'(T))
3000 SkScalar dx = (*SegmentDXAtT[test->verb()])(test->pts(), tHit);
3001#if DEBUG_WINDING
3002 SkDebugf("%s dx=%1.9g\n", __FUNCTION__, dx);
3003#endif
3004 SkASSERT(dx != 0);
3005 if (winding * dx > 0) { // if same signs, result is negative
3006 winding += dx > 0 ? -windValue : windValue;
3007#if DEBUG_WINDING
3008 SkDebugf("%s final winding=%d\n", __FUNCTION__, winding);
3009#endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003010 }
3011 baseContour->setWinding(winding);
3012 return winding;
3013}
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003014
3015// OPTIMIZATION: not crazy about linear search here to find top active y.
3016// seems like we should break down and do the sort, or maybe sort each
3017// contours' segments?
3018// Once the segment array is built, there's no reason I can think of not to
3019// sort it in Y. hmmm
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003020// FIXME: return the contour found to pass to inner contour check
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003021static Segment* findTopContour(SkTDArray<Contour*>& contourList,
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003022 Contour*& topContour) {
3023 int contourCount = contourList.count();
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003024 int cIndex = 0;
3025 Segment* topStart;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003026 SkScalar bestY = SK_ScalarMax;
3027 Contour* contour;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003028 do {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003029 contour = contourList[cIndex];
3030 topStart = contour->topSegment(bestY);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003031 } while (!topStart && ++cIndex < contourCount);
3032 if (!topStart) {
3033 return NULL;
3034 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003035 topContour = contour;
3036 while (++cIndex < contourCount) {
3037 contour = contourList[cIndex];
3038 if (bestY < contour->bounds().fTop) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003039 continue;
3040 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003041 SkScalar testY = SK_ScalarMax;
3042 Segment* test = contour->topSegment(testY);
3043 if (!test || bestY <= testY) {
3044 continue;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003045 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003046 topContour = contour;
3047 topStart = test;
3048 bestY = testY;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003049 }
3050 return topStart;
3051}
3052
caryclark@google.come21cb182012-07-23 21:26:31 +00003053static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex,
3054 int contourWinding) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003055 while (chase.count()) {
caryclark@google.com9764cc62012-07-12 19:29:45 +00003056 Span* span = chase[chase.count() - 1];
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003057 const Span& backPtr = span->fOther->span(span->fOtherIndex);
3058 Segment* segment = backPtr.fOther;
3059 tIndex = backPtr.fOtherIndex;
caryclark@google.com9764cc62012-07-12 19:29:45 +00003060 SkTDArray<Angle> angles;
3061 int done = 0;
3062 if (segment->activeAngle(tIndex, done, angles)) {
3063 Angle* last = angles.end() - 1;
3064 tIndex = last->start();
3065 endIndex = last->end();
3066 return last->segment();
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003067 }
caryclark@google.com9764cc62012-07-12 19:29:45 +00003068 if (done == angles.count()) {
3069 chase.pop(&span);
3070 continue;
3071 }
3072 SkTDArray<Angle*> sorted;
3073 sortAngles(angles, sorted);
3074 // find first angle, initialize winding to computed fWindSum
3075 int firstIndex = -1;
3076 const Angle* angle;
caryclark@google.come21cb182012-07-23 21:26:31 +00003077 int spanWinding;
caryclark@google.com9764cc62012-07-12 19:29:45 +00003078 do {
3079 angle = sorted[++firstIndex];
caryclark@google.come21cb182012-07-23 21:26:31 +00003080 spanWinding = angle->segment()->windSum(angle);
3081 } while (spanWinding == SK_MinS32);
caryclark@google.com47580692012-07-23 12:14:49 +00003082 #if DEBUG_SORT
caryclark@google.come21cb182012-07-23 21:26:31 +00003083 angle->segment()->debugShowSort(sorted, firstIndex, contourWinding,
3084 spanWinding);
caryclark@google.com47580692012-07-23 12:14:49 +00003085 #endif
caryclark@google.comafe56de2012-07-24 18:11:03 +00003086 if (angle->firstBump(contourWinding, spanWinding)) {
3087 spanWinding -= angle->segment()->windBump(angle);
caryclark@google.com9764cc62012-07-12 19:29:45 +00003088 }
caryclark@google.com9764cc62012-07-12 19:29:45 +00003089 // we care about first sign and whether wind sum indicates this
3090 // edge is inside or outside. Maybe need to pass span winding
3091 // or first winding or something into this function?
3092 // advance to first undone angle, then return it and winding
3093 // (to set whether edges are active or not)
3094 int nextIndex = firstIndex + 1;
3095 int angleCount = sorted.count();
3096 int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
3097 do {
3098 SkASSERT(nextIndex != firstIndex);
3099 if (nextIndex == angleCount) {
3100 nextIndex = 0;
3101 }
3102 const Angle* angle = sorted[nextIndex];
3103 segment = angle->segment();
caryclark@google.come21cb182012-07-23 21:26:31 +00003104 int maxWinding = spanWinding;
caryclark@google.comafe56de2012-07-24 18:11:03 +00003105 spanWinding -= segment->windBump(angle);
caryclark@google.come21cb182012-07-23 21:26:31 +00003106 if (maxWinding * spanWinding < 0) {
3107 SkDebugf("%s flipped sign %d %d\n", __FUNCTION__, maxWinding, spanWinding);
caryclark@google.com9764cc62012-07-12 19:29:45 +00003108 }
3109 tIndex = angle->start();
3110 endIndex = angle->end();
3111 int lesser = SkMin32(tIndex, endIndex);
3112 const Span& nextSpan = segment->span(lesser);
3113 if (!nextSpan.fDone) {
3114 // FIXME: this be wrong. assign startWinding if edge is in
3115 // same direction. If the direction is opposite, winding to
3116 // assign is flipped sign or +/- 1?
caryclark@google.come21cb182012-07-23 21:26:31 +00003117 if (abs(maxWinding) < abs(spanWinding)) {
3118 maxWinding = spanWinding;
caryclark@google.com9764cc62012-07-12 19:29:45 +00003119 }
3120 segment->markWinding(lesser, maxWinding);
3121 break;
3122 }
3123 } while (++nextIndex != lastIndex);
3124 return segment;
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003125 }
3126 return NULL;
3127}
3128
caryclark@google.com027de222012-07-12 12:52:50 +00003129#if DEBUG_ACTIVE_SPANS
3130static void debugShowActiveSpans(SkTDArray<Contour*>& contourList) {
3131 for (int index = 0; index < contourList.count(); ++ index) {
3132 contourList[index]->debugShowActiveSpans();
3133 }
3134}
3135#endif
3136
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003137// Each segment may have an inside or an outside. Segments contained within
3138// winding may have insides on either side, and form a contour that should be
3139// ignored. Segments that are coincident with opposing direction segments may
3140// have outsides on either side, and should also disappear.
3141// 'Normal' segments will have one inside and one outside. Subsequent connections
3142// when winding should follow the intersection direction. If more than one edge
3143// is an option, choose first edge that continues the inside.
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003144 // since we start with leftmost top edge, we'll traverse through a
3145 // smaller angle counterclockwise to get to the next edge.
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003146static void bridge(SkTDArray<Contour*>& contourList, SkPath& simple) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003147 bool firstContour = true;
caryclark@google.com15fa1382012-05-07 20:49:36 +00003148 do {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003149 Contour* topContour;
3150 Segment* topStart = findTopContour(contourList, topContour);
caryclark@google.com15fa1382012-05-07 20:49:36 +00003151 if (!topStart) {
3152 break;
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003153 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00003154 // Start at the top. Above the top is outside, below is inside.
caryclark@google.com495f8e42012-05-31 13:13:11 +00003155 // follow edges to intersection by changing the index by direction.
3156 int index, endIndex;
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00003157 Segment* current = topStart->findTop(index, endIndex);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003158 int contourWinding;
3159 if (firstContour) {
3160 contourWinding = 0;
3161 firstContour = false;
3162 } else {
3163 const SkPoint& topPoint = current->xyAtT(endIndex);
3164 contourWinding = innerContourCheck(contourList, topContour, topPoint);
3165#if DEBUG_WINDING
3166 SkDebugf("%s contourWinding=%d\n", __FUNCTION__, contourWinding);
3167#endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003168 }
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00003169 SkPoint lastPt;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003170 bool firstTime = true;
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003171 int winding = contourWinding;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003172 int spanWinding = current->spanSign(index, endIndex);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003173 // int firstWinding = contourWinding + spanWinding;
3174 // FIXME: needs work. While it works in limited situations, it does
3175 // not always compute winding correctly. Active should be removed and instead
3176 // the initial winding should be correctly passed in so that if the
3177 // inner contour is wound the same way, it never finds an accumulated
3178 // winding of zero. Inside 'find next', we need to look for transitions
3179 // other than zero when resolving sorted angles.
3180 SkTDArray<Span*> chaseArray;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003181 do {
caryclark@google.come21cb182012-07-23 21:26:31 +00003182 bool active = winding * spanWinding <= 0
3183 && abs(winding) <= abs(spanWinding);
caryclark@google.com0e08a192012-07-13 21:07:52 +00003184 #if DEBUG_WINDING
caryclark@google.come21cb182012-07-23 21:26:31 +00003185 if (abs(winding) > abs(spanWinding) && winding * spanWinding < 0) {
caryclark@google.comafe56de2012-07-24 18:11:03 +00003186 SkDebugf("%s *** unexpected active?\n", __FUNCTION__);
caryclark@google.com0e08a192012-07-13 21:07:52 +00003187 }
caryclark@google.come21cb182012-07-23 21:26:31 +00003188 SkDebugf("%s active=%s winding=%d spanWinding=%d\n",
3189 __FUNCTION__, active ? "true" : "false",
3190 winding, spanWinding);
caryclark@google.com0e08a192012-07-13 21:07:52 +00003191 #endif
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003192 const SkPoint* firstPt = NULL;
3193 do {
3194 SkASSERT(!current->done());
caryclark@google.comafe56de2012-07-24 18:11:03 +00003195 int nextStart, nextEnd;
caryclark@google.come21cb182012-07-23 21:26:31 +00003196 Segment* next = current->findNext(chaseArray, winding,
caryclark@google.comafe56de2012-07-24 18:11:03 +00003197 contourWinding, firstTime, active, index, endIndex,
3198 nextStart, nextEnd, spanWinding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003199 if (!next) {
3200 break;
3201 }
3202 if (!firstPt) {
3203 firstPt = &current->addMoveTo(index, simple, active);
3204 }
3205 lastPt = current->addCurveTo(index, endIndex, simple, active);
3206 current = next;
3207 index = nextStart;
3208 endIndex = nextEnd;
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003209 firstTime = false;
3210 } while (*firstPt != lastPt && (active || !current->done()));
3211 if (firstPt && active) {
3212 #if DEBUG_PATH_CONSTRUCTION
3213 SkDebugf("%s close\n", __FUNCTION__);
3214 #endif
3215 simple.close();
3216 }
caryclark@google.come21cb182012-07-23 21:26:31 +00003217 current = findChase(chaseArray, index, endIndex, contourWinding);
caryclark@google.com0e08a192012-07-13 21:07:52 +00003218 #if DEBUG_ACTIVE_SPANS
caryclark@google.com027de222012-07-12 12:52:50 +00003219 debugShowActiveSpans(contourList);
caryclark@google.com0e08a192012-07-13 21:07:52 +00003220 #endif
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003221 if (!current) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00003222 break;
3223 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003224 int lesser = SkMin32(index, endIndex);
3225 spanWinding = current->windSum(lesser);
3226 int spanValue = current->windValue(lesser);
3227 SkASSERT(spanWinding != SK_MinS32);
3228 int spanSign = current->spanSign(index, endIndex);
3229 #if DEBUG_WINDING
3230 SkDebugf("%s spanWinding=%d spanSign=%d winding=%d spanValue=%d\n",
3231 __FUNCTION__, spanWinding, spanSign, winding, spanValue);
3232 #endif
3233 if (spanWinding * spanSign < 0) {
3234 #if DEBUG_WINDING
3235 SkDebugf("%s spanWinding * spanSign < 0\n", __FUNCTION__);
3236 #endif
caryclark@google.com9764cc62012-07-12 19:29:45 +00003237 // SkTSwap<int>(index, endIndex);
caryclark@google.com495f8e42012-05-31 13:13:11 +00003238 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003239 if (abs(spanWinding) > spanValue) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003240 winding = spanWinding;
3241 spanWinding = spanValue * SkSign32(spanWinding);
3242 winding -= spanWinding;
caryclark@google.com0e08a192012-07-13 21:07:52 +00003243 #if DEBUG_WINDING
3244 SkDebugf("%s spanWinding=%d winding=%d\n", __FUNCTION__,
3245 spanWinding, winding);
3246 #endif
3247 } else {
3248 #if DEBUG_WINDING
3249 SkDebugf("%s ->0 contourWinding=%d winding=%d\n", __FUNCTION__,
3250 contourWinding, winding);
3251 #endif
3252 winding = 0;
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003253 }
3254 } while (true);
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003255 } while (true);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003256}
3257
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003258static void fixOtherTIndex(SkTDArray<Contour*>& contourList) {
3259 int contourCount = contourList.count();
3260 for (int cTest = 0; cTest < contourCount; ++cTest) {
3261 Contour* contour = contourList[cTest];
3262 contour->fixOtherTIndex();
3263 }
3264}
3265
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003266static void makeContourList(SkTArray<Contour>& contours,
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003267 SkTDArray<Contour*>& list) {
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003268 int count = contours.count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003269 if (count == 0) {
3270 return;
3271 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003272 for (int index = 0; index < count; ++index) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003273 *list.append() = &contours[index];
3274 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003275 QSort<Contour>(list.begin(), list.end() - 1);
3276}
3277
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00003278void simplifyx(const SkPath& path, SkPath& simple) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003279 // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003280 int winding = (path.getFillType() & 1) ? 1 : -1;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003281 simple.reset();
3282 simple.setFillType(SkPath::kEvenOdd_FillType);
3283
3284 // turn path into list of segments
3285 SkTArray<Contour> contours;
3286 // FIXME: add self-intersecting cubics' T values to segment
3287 EdgeBuilder builder(path, contours);
3288 SkTDArray<Contour*> contourList;
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003289 makeContourList(contours, contourList);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003290 Contour** currentPtr = contourList.begin();
3291 if (!currentPtr) {
3292 return;
3293 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003294 Contour** listEnd = contourList.end();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003295 // find all intersections between segments
3296 do {
3297 Contour** nextPtr = currentPtr;
3298 Contour* current = *currentPtr++;
3299 Contour* next;
3300 do {
3301 next = *nextPtr++;
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00003302 } while (addIntersectTs(current, next) && nextPtr != listEnd);
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003303 } while (currentPtr != listEnd);
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003304 // eat through coincident edges
3305 coincidenceCheck(contourList, winding);
caryclark@google.com66ca2fb2012-07-03 14:30:08 +00003306 fixOtherTIndex(contourList);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003307 // construct closed contours
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003308 bridge(contourList, simple);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003309}
3310