blob: 444b32d8d6eef9fec722723705cc8aa854671f6c [file] [log] [blame]
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
caryclark@google.comb45a1b42012-05-18 20:50:33 +00007#include "Simplify.h"
caryclark@google.comfa0588f2012-04-26 21:01:06 +00008
9#undef SkASSERT
10#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
11
caryclark@google.com15fa1382012-05-07 20:49:36 +000012// Terminology:
13// A Path contains one of more Contours
14// A Contour is made up of Segment array
caryclark@google.comb45a1b42012-05-18 20:50:33 +000015// A Segment is described by a Verb and a Point array with 2, 3, or 4 points
16// A Verb is one of Line, Quad(ratic), or Cubic
caryclark@google.com15fa1382012-05-07 20:49:36 +000017// A Segment contains a Span array
18// A Span is describes a portion of a Segment using starting and ending T
19// T values range from 0 to 1, where 0 is the first Point in the Segment
20
caryclark@google.comfa0588f2012-04-26 21:01:06 +000021// FIXME: remove once debugging is complete
22#if 0 // set to 1 for no debugging whatsoever
23
24//const bool gxRunTestsInOneThread = false;
25
26#define DEBUG_ADD_INTERSECTING_TS 0
27#define DEBUG_BRIDGE 0
28#define DEBUG_DUMP 0
29
30#else
31
32//const bool gRunTestsInOneThread = true;
33
34#define DEBUG_ADD_INTERSECTING_TS 1
35#define DEBUG_BRIDGE 1
36#define DEBUG_DUMP 1
37
38#endif
39
40#if DEBUG_DUMP
41static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
42static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
43static int gContourID;
44static int gSegmentID;
45#endif
46
47static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
48 Intersections& intersections) {
49 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
50 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
51 return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]);
52}
53
54static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
55 Intersections& intersections) {
56 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
57 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
58 intersect(aQuad, bLine, intersections);
59 return intersections.fUsed;
60}
61
62static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3],
63 Intersections& intersections) {
64 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
65 {a[3].fX, a[3].fY}};
66 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
67 return intersect(aCubic, bLine, intersections.fT[0], intersections.fT[1]);
68}
69
70static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
71 Intersections& intersections) {
72 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
73 const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}};
74 intersect(aQuad, bQuad, intersections);
75 return intersections.fUsed;
76}
77
78static int CubicIntersect(const SkPoint a[4], const SkPoint b[4],
79 Intersections& intersections) {
80 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
81 {a[3].fX, a[3].fY}};
82 const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY},
83 {b[3].fX, b[3].fY}};
84 intersect(aCubic, bCubic, intersections);
85 return intersections.fUsed;
86}
87
88static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
89 SkScalar y, bool flipped, Intersections& intersections) {
90 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
91 return horizontalIntersect(aLine, left, right, y, flipped, intersections);
92}
93
94static int VLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
95 SkScalar y, bool flipped, Intersections& intersections) {
96 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
97 return verticalIntersect(aLine, left, right, y, flipped, intersections);
98}
99
100static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
101 SkScalar y, bool flipped, Intersections& intersections) {
102 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
103 return horizontalIntersect(aQuad, left, right, y, flipped, intersections);
104}
105
106static int VQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
107 SkScalar y, bool flipped, Intersections& intersections) {
108 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
109 return verticalIntersect(aQuad, left, right, y, flipped, intersections);
110}
111
112static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
113 SkScalar y, bool flipped, Intersections& intersections) {
114 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
115 {a[3].fX, a[3].fY}};
116 return horizontalIntersect(aCubic, left, right, y, flipped, intersections);
117}
118
119static int VCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
120 SkScalar y, bool flipped, Intersections& intersections) {
121 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
122 {a[3].fX, a[3].fY}};
123 return verticalIntersect(aCubic, left, right, y, flipped, intersections);
124}
125
126static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
127 const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
128 double x, y;
129 xy_at_t(line, t, x, y);
130 out->fX = SkDoubleToScalar(x);
131 out->fY = SkDoubleToScalar(y);
132}
133
134static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
135 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
136 double x, y;
137 xy_at_t(quad, t, x, y);
138 out->fX = SkDoubleToScalar(x);
139 out->fY = SkDoubleToScalar(y);
140}
141
142static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
143 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
144 {a[3].fX, a[3].fY}};
145 double x, y;
146 xy_at_t(cubic, t, x, y);
147 out->fX = SkDoubleToScalar(x);
148 out->fY = SkDoubleToScalar(y);
149}
150
151static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = {
152 NULL,
153 LineXYAtT,
154 QuadXYAtT,
155 CubicXYAtT
156};
157
158static SkScalar LineXAtT(const SkPoint a[2], double t) {
159 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
160 double x;
161 xy_at_t(aLine, t, x, *(double*) 0);
162 return SkDoubleToScalar(x);
163}
164
165static SkScalar QuadXAtT(const SkPoint a[3], double t) {
166 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
167 double x;
168 xy_at_t(quad, t, x, *(double*) 0);
169 return SkDoubleToScalar(x);
170}
171
172static SkScalar CubicXAtT(const SkPoint a[4], double t) {
173 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
174 {a[3].fX, a[3].fY}};
175 double x;
176 xy_at_t(cubic, t, x, *(double*) 0);
177 return SkDoubleToScalar(x);
178}
179
180static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = {
181 NULL,
182 LineXAtT,
183 QuadXAtT,
184 CubicXAtT
185};
186
187static SkScalar LineYAtT(const SkPoint a[2], double t) {
188 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
189 double y;
190 xy_at_t(aLine, t, *(double*) 0, y);
191 return SkDoubleToScalar(y);
192}
193
194static SkScalar QuadYAtT(const SkPoint a[3], double t) {
195 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
196 double y;
197 xy_at_t(quad, t, *(double*) 0, y);
198 return SkDoubleToScalar(y);
199}
200
201static SkScalar CubicYAtT(const SkPoint a[4], double t) {
202 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
203 {a[3].fX, a[3].fY}};
204 double y;
205 xy_at_t(cubic, t, *(double*) 0, y);
206 return SkDoubleToScalar(y);
207}
208
209static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = {
210 NULL,
211 LineYAtT,
212 QuadYAtT,
213 CubicYAtT
214};
215
216static void LineSubDivide(const SkPoint a[2], double startT, double endT,
217 SkPoint sub[2]) {
218 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
219 _Line dst;
220 sub_divide(aLine, startT, endT, dst);
221 sub[0].fX = SkDoubleToScalar(dst[0].x);
222 sub[0].fY = SkDoubleToScalar(dst[0].y);
223 sub[1].fX = SkDoubleToScalar(dst[1].x);
224 sub[1].fY = SkDoubleToScalar(dst[1].y);
225}
226
227static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
228 SkPoint sub[3]) {
229 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
230 {a[2].fX, a[2].fY}};
231 Quadratic dst;
232 sub_divide(aQuad, startT, endT, dst);
233 sub[0].fX = SkDoubleToScalar(dst[0].x);
234 sub[0].fY = SkDoubleToScalar(dst[0].y);
235 sub[1].fX = SkDoubleToScalar(dst[1].x);
236 sub[1].fY = SkDoubleToScalar(dst[1].y);
237 sub[2].fX = SkDoubleToScalar(dst[2].x);
238 sub[2].fY = SkDoubleToScalar(dst[2].y);
239}
240
241static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
242 SkPoint sub[4]) {
243 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
244 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
245 Cubic dst;
246 sub_divide(aCubic, startT, endT, dst);
247 sub[0].fX = SkDoubleToScalar(dst[0].x);
248 sub[0].fY = SkDoubleToScalar(dst[0].y);
249 sub[1].fX = SkDoubleToScalar(dst[1].x);
250 sub[1].fY = SkDoubleToScalar(dst[1].y);
251 sub[2].fX = SkDoubleToScalar(dst[2].x);
252 sub[2].fY = SkDoubleToScalar(dst[2].y);
253 sub[3].fX = SkDoubleToScalar(dst[3].x);
254 sub[3].fY = SkDoubleToScalar(dst[3].y);
255}
256
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000257static void (* const SegmentSubDivide[])(const SkPoint [], double , double ,
258 SkPoint []) = {
259 NULL,
260 LineSubDivide,
261 QuadSubDivide,
262 CubicSubDivide
263};
264
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000265static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
266 SkRect& bounds) {
267 SkPoint dst[3];
268 QuadSubDivide(a, startT, endT, dst);
269 bounds.fLeft = bounds.fRight = dst[0].fX;
270 bounds.fTop = bounds.fBottom = dst[0].fY;
271 for (int index = 1; index < 3; ++index) {
272 bounds.growToInclude(dst[index].fX, dst[index].fY);
273 }
274}
275
276static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
277 SkRect& bounds) {
278 SkPoint dst[4];
279 CubicSubDivide(a, startT, endT, dst);
280 bounds.fLeft = bounds.fRight = dst[0].fX;
281 bounds.fTop = bounds.fBottom = dst[0].fY;
282 for (int index = 1; index < 4; ++index) {
283 bounds.growToInclude(dst[index].fX, dst[index].fY);
284 }
285}
286
caryclark@google.com15fa1382012-05-07 20:49:36 +0000287static SkPath::Verb QuadReduceOrder(const SkPoint a[3],
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000288 SkTDArray<SkPoint>& reducePts) {
289 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
290 {a[2].fX, a[2].fY}};
291 Quadratic dst;
292 int order = reduceOrder(aQuad, dst);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000293 if (order == 3) {
294 return SkPath::kQuad_Verb;
295 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000296 for (int index = 0; index < order; ++index) {
297 SkPoint* pt = reducePts.append();
298 pt->fX = SkDoubleToScalar(dst[index].x);
299 pt->fY = SkDoubleToScalar(dst[index].y);
300 }
301 return (SkPath::Verb) (order - 1);
302}
303
304static SkPath::Verb CubicReduceOrder(const SkPoint a[4],
305 SkTDArray<SkPoint>& reducePts) {
306 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
307 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
308 Cubic dst;
309 int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000310 if (order == 4) {
311 return SkPath::kCubic_Verb;
312 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000313 for (int index = 0; index < order; ++index) {
314 SkPoint* pt = reducePts.append();
315 pt->fX = SkDoubleToScalar(dst[index].x);
316 pt->fY = SkDoubleToScalar(dst[index].y);
317 }
318 return (SkPath::Verb) (order - 1);
319}
320
caryclark@google.com15fa1382012-05-07 20:49:36 +0000321static bool QuadIsLinear(const SkPoint a[3]) {
322 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
323 {a[2].fX, a[2].fY}};
324 return isLinear(aQuad, 0, 2);
325}
326
327static bool CubicIsLinear(const SkPoint a[4]) {
328 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
329 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
330 return isLinear(aCubic, 0, 3);
331}
332
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000333static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) {
334 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
335 double x[2];
336 xy_at_t(aLine, startT, x[0], *(double*) 0);
337 xy_at_t(aLine, endT, x[0], *(double*) 0);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000338 return startT < endT ? (float) startT : (float) endT;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000339}
340
341static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) {
342 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
343 {a[2].fX, a[2].fY}};
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000344 return (float) leftMostT(aQuad, startT, endT);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000345}
346
347static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) {
348 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
349 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000350 return (float) leftMostT(aCubic, startT, endT);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000351}
352
353static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = {
354 NULL,
355 LineLeftMost,
356 QuadLeftMost,
357 CubicLeftMost
358};
359
360static bool IsCoincident(const SkPoint a[2], const SkPoint& above,
361 const SkPoint& below) {
362 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
363 const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}};
364 return implicit_matches_ulps(aLine, bLine, 32);
365}
366
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000367class Segment;
368
caryclark@google.com15fa1382012-05-07 20:49:36 +0000369// sorting angles
370// given angles of {dx dy ddx ddy dddx dddy} sort them
371class Angle {
372public:
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000373 // FIXME: this is bogus for quads and cubics
374 // if the quads and cubics' line from end pt to ctrl pt are coincident,
375 // there's no obvious way to determine the curve ordering from the
376 // derivatives alone. In particular, if one quadratic's coincident tangent
377 // is longer than the other curve, the final control point can place the
378 // longer curve on either side of the shorter one.
379 // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
380 // may provide some help, but nothing has been figured out yet.
caryclark@google.com15fa1382012-05-07 20:49:36 +0000381 bool operator<(const Angle& rh) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000382 if ((fDy < 0) ^ (rh.fDy < 0)) {
383 return fDy < 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000384 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000385 if (fDy == 0 && rh.fDy == 0 && fDx != rh.fDx) {
386 return fDx < rh.fDx;
387 }
388 SkScalar cmp = fDx * rh.fDy - rh.fDx * fDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000389 if (cmp) {
390 return cmp < 0;
391 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000392 if ((fDDy < 0) ^ (rh.fDDy < 0)) {
393 return fDDy < 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000394 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000395 if (fDDy == 0 && rh.fDDy == 0 && fDDx != rh.fDDx) {
396 return fDDx < rh.fDDx;
397 }
398 cmp = fDDx * rh.fDDy - rh.fDDx * fDDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000399 if (cmp) {
400 return cmp < 0;
401 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000402 if ((fDDDy < 0) ^ (rh.fDDDy < 0)) {
403 return fDDDy < 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000404 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000405 if (fDDDy == 0 && rh.fDDDy == 0) {
406 return fDDDx < rh.fDDDx;
407 }
408 return fDDDx * rh.fDDDy < rh.fDDDx * fDDDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000409 }
410
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000411 int end() const {
412 return fEnd;
413 }
414
415 // since all angles share a point, this needs to know which point
416 // is the common origin, i.e., whether the center is at pts[0] or pts[verb]
417 // practically, this should only be called by addAngle
418 void set(const SkPoint* pts, SkPath::Verb verb, const Segment* segment,
419 int start, int end, bool coincident) {
420 SkASSERT(start != end);
421 fSegment = segment;
422 fStart = start;
423 fEnd = end;
424 fCoincident = coincident;
425 fDx = pts[1].fX - pts[0].fX; // b - a
426 fDy = pts[1].fY - pts[0].fY;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000427 if (verb == SkPath::kLine_Verb) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000428 fDDx = fDDy = fDDDx = fDDDy = 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000429 return;
430 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000431 fDDx = pts[2].fX - pts[1].fX - fDx; // a - 2b + c
432 fDDy = pts[2].fY - pts[1].fY - fDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000433 if (verb == SkPath::kQuad_Verb) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000434 fDDDx = fDDDy = 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000435 return;
436 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000437 fDDDx = pts[3].fX + 3 * (pts[1].fX - pts[2].fX) - pts[0].fX;
438 fDDDy = pts[3].fY + 3 * (pts[1].fY - pts[2].fY) - pts[0].fY;
439 }
440
441 // noncoincident quads/cubics may have the same initial angle
442 // as lines, so must sort by derivatives as well
443 // if flatness turns out to be a reasonable way to sort, use the below:
444 void setFlat(const SkPoint* pts, SkPath::Verb verb, const Segment* segment,
445 int start, int end, bool coincident) {
446 fSegment = segment;
447 fStart = start;
448 fEnd = end;
449 fCoincident = coincident;
450 fDx = pts[1].fX - pts[0].fX; // b - a
451 fDy = pts[1].fY - pts[0].fY;
452 if (verb == SkPath::kLine_Verb) {
453 fDDx = fDDy = fDDDx = fDDDy = 0;
454 return;
455 }
456 if (verb == SkPath::kQuad_Verb) {
457 int uplsX = FloatAsInt(pts[2].fX - pts[1].fY - fDx);
458 int uplsY = FloatAsInt(pts[2].fY - pts[1].fY - fDy);
459 int larger = std::max(abs(uplsX), abs(uplsY));
460 int shift = 0;
461 double flatT;
462 SkPoint ddPt; // FIXME: get rid of copy (change fDD_ to point)
463 LineParameters implicitLine;
464 _Line tangent = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}};
465 implicitLine.lineEndPoints(tangent);
466 implicitLine.normalize();
467 while (larger > UlpsEpsilon * 1024) {
468 larger >>= 2;
469 ++shift;
470 flatT = 0.5 / (1 << shift);
471 QuadXYAtT(pts, flatT, &ddPt);
472 _Point _pt = {ddPt.fX, ddPt.fY};
473 double distance = implicitLine.pointDistance(_pt);
474 if (approximately_zero(distance)) {
475 SkDebugf("%s ulps too small %1.9g\n", __FUNCTION__, distance);
476 break;
477 }
478 }
479 flatT = 0.5 / (1 << shift);
480 QuadXYAtT(pts, flatT, &ddPt);
481 fDDx = ddPt.fX - pts[0].fX;
482 fDDy = ddPt.fY - pts[0].fY;
483 SkASSERT(fDDx != 0 || fDDy != 0);
484 fDDDx = fDDDy = 0;
485 return;
486 }
487 SkASSERT(0); // FIXME: add cubic case
488 }
489
490 const Segment* segment() const {
491 return fSegment;
492 }
493
494 int sign() const {
495 int result = fStart - fEnd >> 31 | 1;
496 SkASSERT(result == fStart < fEnd ? -1 : 1);
497 return result;
498 }
499
500 int start() const {
501 return fStart;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000502 }
503
504private:
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000505 SkScalar fDx;
506 SkScalar fDy;
507 SkScalar fDDx;
508 SkScalar fDDy;
509 SkScalar fDDDx;
510 SkScalar fDDDy;
511 const Segment* fSegment;
512 int fStart;
513 int fEnd;
514 bool fCoincident;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000515};
516
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000517static void sortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
518 int angleCount = angles.count();
519 int angleIndex;
520 angleList.setReserve(angleCount);
521 for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
522 *angleList.append() = &angles[angleIndex];
523 }
524 QSort<Angle>(angleList.begin(), angleList.end() - 1);
525}
526
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000527// Bounds, unlike Rect, does not consider a vertical line to be empty.
528struct Bounds : public SkRect {
529 static bool Intersects(const Bounds& a, const Bounds& b) {
530 return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
531 a.fTop <= b.fBottom && b.fTop <= a.fBottom;
532 }
533
534 bool isEmpty() {
535 return fLeft > fRight || fTop > fBottom
536 || fLeft == fRight && fTop == fBottom
537 || isnan(fLeft) || isnan(fRight)
538 || isnan(fTop) || isnan(fBottom);
539 }
540
541 void setCubicBounds(const SkPoint a[4]) {
542 _Rect dRect;
543 Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
544 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
545 dRect.setBounds(cubic);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000546 set((float) dRect.left, (float) dRect.top, (float) dRect.right,
547 (float) dRect.bottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000548 }
549
550 void setQuadBounds(const SkPoint a[3]) {
551 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
552 {a[2].fX, a[2].fY}};
553 _Rect dRect;
554 dRect.setBounds(quad);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000555 set((float) dRect.left, (float) dRect.top, (float) dRect.right,
556 (float) dRect.bottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000557 }
558};
559
caryclark@google.com15fa1382012-05-07 20:49:36 +0000560struct Span {
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000561 double fT;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000562 Segment* fOther;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000563 double fOtherT; // value at fOther[fOtherIndex].fT
564 int fOtherIndex; // can't be used during intersection
caryclark@google.com15fa1382012-05-07 20:49:36 +0000565 int fWinding; // accumulated from contours surrounding this one
566 // OPTIMIZATION: done needs only 2 bits (values are -1, 0, 1)
567 int fDone; // set when t to t+fDone is processed
568 // OPTIMIZATION: done needs only 2 bits (values are -1, 0, 1)
569 int fCoincident; // -1 start of coincidence, 0 no coincidence, 1 end
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000570};
571
572class Segment {
573public:
574 Segment() {
575#if DEBUG_DUMP
576 fID = ++gSegmentID;
577#endif
578 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000579
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000580 void addAngle(SkTDArray<Angle>& angles, int start, int end,
581 bool coincident) const {
582 SkASSERT(start != end);
583 SkPoint edge[4];
584 (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
585 Angle* angle = angles.append();
586 angle->set(edge, fVerb, this, start, end, coincident);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000587 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000588
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000589 void addCubic(const SkPoint pts[4]) {
590 init(pts, SkPath::kCubic_Verb);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000591 fBounds.setCubicBounds(pts);
592 }
593
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000594 void addLine(const SkPoint pts[2]) {
595 init(pts, SkPath::kLine_Verb);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000596 fBounds.set(pts, 2);
597 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000598
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000599 // add 2 to edge or out of range values to get T extremes
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000600 void addOtherT(int index, double otherT, int otherIndex) {
601 Span& span = fTs[index];
602 span.fOtherT = otherT;
603 span.fOtherIndex = otherIndex;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000604 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000605
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000606 void addQuad(const SkPoint pts[3]) {
607 init(pts, SkPath::kQuad_Verb);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000608 fBounds.setQuadBounds(pts);
609 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000610
caryclark@google.com15fa1382012-05-07 20:49:36 +0000611 int addT(double newT, Segment& other, int coincident) {
612 // FIXME: in the pathological case where there is a ton of intercepts,
613 // binary search?
614 int insertedAt = -1;
615 Span* span;
616 size_t tCount = fTs.count();
617 double delta;
618 for (size_t idx2 = 0; idx2 < tCount; ++idx2) {
619 // OPTIMIZATION: if there are three or more identical Ts, then
620 // the fourth and following could be further insertion-sorted so
621 // that all the edges are clockwise or counterclockwise.
622 // This could later limit segment tests to the two adjacent
623 // neighbors, although it doesn't help with determining which
624 // circular direction to go in.
625 if (newT <= fTs[idx2].fT) {
626 insertedAt = idx2;
627 span = fTs.insert(idx2);
628 goto finish;
629 }
630 }
631 insertedAt = tCount;
632 span = fTs.append();
633finish:
634 span->fT = newT;
635 span->fOther = &other;
636 span->fWinding = 1;
637 span->fDone = 0;
638 span->fCoincident = coincident;
639 fCoincident |= coincident;
640 return insertedAt;
641 }
642
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000643 void addTwoAngles(int start, int end, const SkPoint& endLoc,
644 const Span* endSpan, bool startCo, SkTDArray<Angle>& angles) const {
645 // add edge leading into junction
646 addAngle(angles, end, start, startCo);
647 // add edge leading away from junction
648 bool coincident;
649 int step = start < end ? 1 : -1;
650 int tIndex = nextSpan(end, step, endLoc, endSpan, NULL, coincident);
651 if (tIndex >= 0) {
652 lastSpan(tIndex, step, endLoc, endSpan, coincident);
653 addAngle(angles, end, tIndex, coincident);
654 }
655 }
656
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000657 const Bounds& bounds() const {
658 return fBounds;
659 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000660
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000661 void buildAngles(int index, int last, int step, const SkPoint& loc,
662 SkTDArray<Angle>& angles) const {
663 SkASSERT(index - last != 0);
664 SkASSERT((index - last < 0) ^ (step < 0));
665 int end = last + step;
666 do {
667 Span* span = &fTs[index];
668 Segment* other = span->fOther;
669 if (other->fDone) {
670 continue;
671 }
672 // if there is only one live crossing, and no coincidence, continue
673 // in the same direction
674 // if there is coincidence, the only choice may be to reverse direction
675 // find edge on either side of intersection
676 int oIndex = span->fOtherIndex;
677 Span* otherSpan = &other->fTs[oIndex];
678 SkASSERT(otherSpan->fOther == this);
679 // if done == -1, prior span has already been processed
680 bool otherCo;
681 int localStep = step;
682 int next = other->nextSpan(oIndex, localStep, loc, otherSpan,
683 NULL, otherCo);
684 if (next < 0) {
685 localStep = -step;
686 next = other->nextSpan(oIndex, localStep, loc, otherSpan,
687 NULL, otherCo);
688 }
689 other->lastSpan(next, localStep, loc, otherSpan, otherCo);
690 // add candidate into and away from junction
691 other->addTwoAngles(next, oIndex, loc, span, otherCo, angles);
692
693 } while ((index += step) != end);
694 }
695
696 // figure out if the segment's ascending T goes clockwise or not
697 // not enough context to write this as shown
698 // instead, add all segments meeting at the top
699 // sort them using buildAngleList
700 // find the first in the sort
701 // see if ascendingT goes to top
702 bool clockwise(int tIndex) const {
703 SkASSERT(0); // incomplete
704 return false;
705 }
706
caryclark@google.com15fa1382012-05-07 20:49:36 +0000707 bool done() const {
708 return fDone;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000709 }
710
caryclark@google.com15fa1382012-05-07 20:49:36 +0000711 int findCoincidentEnd(int start) const {
712 int tCount = fTs.count();
713 SkASSERT(start < tCount);
714 const Span& span = fTs[start];
715 SkASSERT(span.fCoincident);
716 for (int index = start + 1; index < tCount; ++index) {
717 const Span& match = fTs[index];
718 if (match.fOther == span.fOther) {
719 SkASSERT(match.fCoincident);
720 return index;
721 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000722 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000723 SkASSERT(0); // should never get here
724 return -1;
725 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000726
caryclark@google.com15fa1382012-05-07 20:49:36 +0000727 // start is the index of the beginning T of this edge
728 // it is guaranteed to have an end which describes a non-zero length (?)
729 // winding -1 means ccw, 1 means cw
730 // step is in/out -1 or 1
731 // spanIndex is returned
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000732 Segment* findNext(int start, int winding, int& step, int& spanIndex) const {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000733 SkASSERT(step == 1 || step == -1);
734 int count = fTs.count();
735 SkASSERT(step > 0 ? start < count - 1 : start > 0);
736 Span* startSpan = &fTs[start];
737 // FIXME:
738 // since Ts can be stepped either way, done markers must be careful
739 // not to assume that segment was only ascending in T. This shouldn't
740 // be a problem unless pathologically a segment can be partially
741 // ascending and partially descending -- maybe quads/cubic can do this?
742 startSpan->fDone = step;
743 SkPoint startLoc; // OPTIMIZATION: store this in the t span?
744 xyAtT(startSpan->fT, &startLoc);
745 SkPoint endLoc;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000746 bool startCo;
747 int end = nextSpan(start, step, startLoc, startSpan, &endLoc, startCo);
caryclark@google.com15fa1382012-05-07 20:49:36 +0000748
749 // if we hit the end looking for span end, is that always an error?
750 SkASSERT(step > 0 ? end + 1 < count : end - 1 >= 0);
751
752 // preflight for coincidence -- if present, it may change winding
753 // considerations and whether reversed edges can be followed
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000754 int last = lastSpan(end, step, startLoc, startSpan, startCo);
caryclark@google.com15fa1382012-05-07 20:49:36 +0000755
756 // Discard opposing direction candidates if no coincidence was found.
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000757 Span* endSpan = &fTs[end];
caryclark@google.com15fa1382012-05-07 20:49:36 +0000758 int candidateCount = abs(last - end);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000759 Segment* other;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000760 if (candidateCount == 1) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000761 SkASSERT(!startCo);
caryclark@google.com15fa1382012-05-07 20:49:36 +0000762 // move in winding direction until edge in correct direction
763 // balance wrong direction edges before finding correct one
764 // this requres that the intersection is angularly sorted
765 // for a single intersection, special case -- choose the opposite
766 // edge that steps the same
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000767 other = endSpan->fOther;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000768 SkASSERT(!other->fDone);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000769 spanIndex = endSpan->fOtherIndex;
770 SkASSERT(step < 0 ? spanIndex > 0
771 : spanIndex < other->fTs.count() - 1);
caryclark@google.com15fa1382012-05-07 20:49:36 +0000772 return other;
773 }
774
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000775 // more than one viable candidate -- measure angles to find best
caryclark@google.com15fa1382012-05-07 20:49:36 +0000776 SkTDArray<Angle> angles;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000777 SkASSERT(end - start != 0);
778 SkASSERT((end - start < 0) ^ (step < 0));
779 addTwoAngles(start, end, endLoc, endSpan, startCo, angles);
780 buildAngles(end, last, step, endLoc, angles);
781 SkTDArray<Angle*> sorted;
782 sortAngles(angles, sorted);
783 // find the starting edge
784 int startIndex = -1;
785 int angleCount = angles.count();
786 int angleIndex;
787 const Angle* angle;
788 for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
789 angle = sorted[angleIndex];
790 if (angle->segment() == this && angle->start() == end &&
791 angle->end() == start) {
792 startIndex = angleIndex;
793 break;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000794 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000795 }
796 SkASSERT(startIndex >= 0);
797 winding += angle->sign();
798 int nextIndex = startIndex;
799 const Angle* nextAngle;
800 do {
801 if (++nextIndex == angleCount) {
802 nextIndex = 0;
803 }
804 SkASSERT(nextIndex != startIndex); // should never wrap around
805 nextAngle = sorted[nextIndex];
806 // OPTIMIZATION: Figure out all connections, given the initial
807 // winding info (e.g., accumulate winding in span for reuse)
808 winding -= nextAngle->sign();
809 } while (winding);
810 // FIXME: get rid of cast
811 return const_cast<Segment*>(nextAngle->segment());
812
813 // so the span needs to contain the pairing info found here
814 // this should include the winding computed for the edge, and
815 // what edge it connects to, and whether it is discarded
816 // (maybe discarded == abs(winding) > 1) ?
817 // only need derivatives for duration of sorting, add a new struct
818 // for pairings, remove extra spans that have zero length and
819 // reference an unused other
820 // for coincident, the last span on the other may be marked done
821 // (always?)
822
caryclark@google.com15fa1382012-05-07 20:49:36 +0000823 // if loop is exhausted, contour may be closed.
824 // FIXME: pass in close point so we can check for closure
825
826 // given a segment, and a sense of where 'inside' is, return the next
827 // segment. If this segment has an intersection, or ends in multiple
828 // segments, find the mate that continues the outside.
829 // note that if there are multiples, but no coincidence, we can limit
830 // choices to connections in the correct direction
831
832 // mark found segments as done
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000833 }
834
835 void findTooCloseToCall(int winding) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000836 int count = fTs.count();
837 if (count < 3) { // require t=0, x, 1 at minimum
838 return;
839 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000840 int matchIndex = 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000841 int moCount;
842 Span* match;
843 Segment* mOther;
844 do {
845 match = &fTs[matchIndex];
846 mOther = match->fOther;
847 moCount = mOther->fTs.count();
848 } while (moCount >= 3 || ++matchIndex < count - 1); // require t=0, x, 1 at minimum
849 SkPoint matchPt;
850 // OPTIMIZATION: defer matchPt until qualifying toCount is found?
851 xyAtT(match->fT, &matchPt);
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000852 // look for a pair of nearby T values that map to the same (x,y) value
853 // if found, see if the pair of other segments share a common point. If
854 // so, the span from here to there is coincident.
caryclark@google.com15fa1382012-05-07 20:49:36 +0000855 for (int index = matchIndex + 1; index < count; ++index) {
856 Span* test = &fTs[index];
857 Segment* tOther = test->fOther;
858 int toCount = tOther->fTs.count();
859 if (toCount < 3) { // require t=0, x, 1 at minimum
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000860 continue;
861 }
862 SkPoint testPt;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000863 xyAtT(test->fT, &testPt);
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000864 if (matchPt != testPt) {
865 matchIndex = index;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000866 moCount = toCount;
867 match = test;
868 mOther = tOther;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000869 matchPt = testPt;
870 continue;
871 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000872 int moStart = -1; // FIXME: initialization is debugging only
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000873 for (int moIndex = 0; moIndex < moCount; ++moIndex) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000874 Span& moSpan = mOther->fTs[moIndex];
875 if (moSpan.fOther == this) {
876 if (moSpan.fOtherT == match->fT) {
877 moStart = moIndex;
878 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000879 continue;
880 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000881 if (moSpan.fOther != tOther) {
882 continue;
883 }
884 int toStart = -1;
885 int toIndex; // FIXME: initialization is debugging only
886 bool found = false;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000887 for (toIndex = 0; toIndex < toCount; ++toIndex) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000888 Span& toSpan = tOther->fTs[toIndex];
889 if (toSpan.fOther == this) {
890 if (toSpan.fOtherT == test->fT) {
891 toStart = toIndex;
892 }
893 continue;
894 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000895 if (toSpan.fOther == mOther && toSpan.fOtherT == moSpan.fT) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000896 found = true;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000897 break;
898 }
899 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000900 if (!found) {
901 continue;
902 }
903 SkASSERT(moStart >= 0);
904 SkASSERT(toStart >= 0);
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000905 // test to see if the segment between there and here is linear
caryclark@google.com15fa1382012-05-07 20:49:36 +0000906 if (!mOther->isLinear(moStart, moIndex)
907 || !tOther->isLinear(toStart, toIndex)) {
908 continue;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000909 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000910 mOther->fTs[moStart].fCoincident = -1;
911 tOther->fTs[toStart].fCoincident = -1;
912 mOther->fTs[moIndex].fCoincident = 1;
913 tOther->fTs[toIndex].fCoincident = 1;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000914 }
915 nextStart:
916 ;
917 }
918 }
919
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000920 // find the adjacent T that is leftmost, with a point != base
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000921 int findLefty(int tIndex, const SkPoint& base) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000922 int bestTIndex = -1;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000923 SkPoint test;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000924 SkScalar bestX = FLT_MAX;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000925 int testTIndex = tIndex;
926 while (--testTIndex >= 0) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000927 xyAtT(fTs[testTIndex].fT, &test);
928 if (test == base) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000929 continue;
930 }
931 bestX = test.fX;
932 bestTIndex = testTIndex;
933 break;
934 }
935 int count = fTs.count();
936 testTIndex = tIndex;
937 while (++testTIndex < count) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000938 xyAtT(fTs[testTIndex].fT, &test);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000939 if (test == base) {
940 continue;
941 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000942 if (bestX > test.fX) {
943 bestTIndex = testTIndex;
944 }
945 break;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000946 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000947 SkASSERT(bestTIndex != -1);
948 return bestTIndex;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000949 }
950
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000951 // OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
952 // and use more concise logic like the old edge walker code?
953 // FIXME: this needs to deal with coincident edges
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000954 const Segment* findTop(int& tIndex, int& direction) const {
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000955 // iterate through T intersections and return topmost
956 // topmost tangent from y-min to first pt is closer to horizontal
957 int firstT = 0;
958 int lastT = 0;
959 SkScalar topY = fPts[0].fY;
960 int count = fTs.count();
961 int index;
962 for (index = 1; index < count; ++index) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000963 const Span& span = fTs[index];
964 double t = span.fT;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000965 SkScalar yIntercept = t == 1 ? fPts[fVerb].fY : yAtT(t);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000966 if (topY > yIntercept) {
967 topY = yIntercept;
968 firstT = lastT = index;
969 } else if (topY == yIntercept) {
970 lastT = index;
971 }
972 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000973 // if there's only a pair of segments, go with the endpoint chosen above
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000974 if (firstT == lastT) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000975 tIndex = firstT;
976 return this;
977 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000978 // sort the edges to find the leftmost
979 SkPoint startLoc; // OPTIMIZATION: store this in the t span?
980 const Span* startSpan = &fTs[firstT];
981 xyAtT(startSpan->fT, &startLoc);
982 SkPoint endLoc;
983 bool nextCo;
984 int end = nextSpan(firstT, 1, startLoc, startSpan, &endLoc, nextCo);
985 if (end == -1) {
986 end = nextSpan(firstT, -1, startLoc, startSpan, &endLoc, nextCo);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000987 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000988 // if the topmost T is not on end, or is three-way or more, find left
989 // look for left-ness from tLeft to firstT (matching y of other)
990 SkTDArray<Angle> angles;
991 SkASSERT(firstT - end != 0);
992 addTwoAngles(end, firstT, endLoc, &fTs[firstT], nextCo, angles);
993 buildAngles(firstT, lastT, 1, startLoc, angles);
994 SkTDArray<Angle*> sorted;
995 sortAngles(angles, sorted);
996 const Segment* leftSegment = sorted[0]->segment();
997 tIndex = sorted[0]->end();
998 direction = sorted[0]->start() - tIndex;
999 SkASSERT(direction);
1000 direction = direction < 0 ? -1 : 1;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001001 return leftSegment;
1002 }
1003
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001004 // FIXME: not crazy about this
1005 // when the intersections are performed, the other index is into an
1006 // incomplete array. as the array grows, the indices become incorrect
1007 // while the following fixes the indices up again, it isn't smart about
1008 // skipping segments whose indices are already correct
1009 // assuming we leave the code that wrote the index in the first place
1010 void fixOtherTIndex() {
1011 int iCount = fTs.count();
1012 for (int i = 0; i < iCount; ++i) {
1013 Span& iSpan = fTs[i];
1014 double oT = iSpan.fOtherT;
1015 Segment* other = iSpan.fOther;
1016 int oCount = other->fTs.count();
1017 for (int o = 0; o < oCount; ++o) {
1018 Span& oSpan = other->fTs[o];
1019 if (oT == oSpan.fT && this == oSpan.fOther) {
1020 iSpan.fOtherIndex = o;
1021 }
1022 }
1023 }
1024 }
1025
1026 void init(const SkPoint pts[], SkPath::Verb verb) {
1027 fPts = pts;
1028 fVerb = verb;
1029 fDone = false;
1030 fCoincident = 0;
1031 }
1032
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001033 bool intersected() const {
1034 return fTs.count() > 0;
1035 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001036
1037 bool isLinear(int start, int end) const {
1038 if (fVerb == SkPath::kLine_Verb) {
1039 return true;
1040 }
1041 if (fVerb == SkPath::kQuad_Verb) {
1042 SkPoint qPart[3];
1043 QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart);
1044 return QuadIsLinear(qPart);
1045 } else {
1046 SkASSERT(fVerb == SkPath::kCubic_Verb);
1047 SkPoint cPart[4];
1048 CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart);
1049 return CubicIsLinear(cPart);
1050 }
1051 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001052
1053 bool isHorizontal() const {
1054 return fBounds.fTop == fBounds.fBottom;
1055 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001056
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001057 bool isVertical() const {
1058 return fBounds.fLeft == fBounds.fRight;
1059 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001060
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001061 int lastSpan(int end, int step, const SkPoint& startLoc,
1062 const Span* startSpan, bool& coincident) const {
caryclark@google.com15fa1382012-05-07 20:49:36 +00001063 int last = end;
1064 int count = fTs.count();
caryclark@google.com15fa1382012-05-07 20:49:36 +00001065 SkPoint lastLoc;
1066 do {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001067 end = last;
1068 if (fTs[end].fCoincident == -step) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00001069 coincident = true;
1070 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001071 if (step > 0 ? ++last >= count : --last < 0) {
1072 return end;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001073 }
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +00001074 const Span& lastSpan = fTs[last];
1075 if (lastSpan.fDone == -step) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001076 return end;
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +00001077 }
1078 if (lastSpan.fT == startSpan->fT) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00001079 continue;
1080 }
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +00001081 xyAtT(lastSpan.fT, &lastLoc);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001082 } while (startLoc == lastLoc);
1083 return end;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001084 }
1085
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001086 SkScalar leftMost(int start, int end) const {
1087 return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT);
1088 }
1089
caryclark@google.com15fa1382012-05-07 20:49:36 +00001090 int nextSpan(int from, int step, const SkPoint& fromLoc,
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001091 const Span* fromSpan, SkPoint* toLoc, bool& coincident) const {
1092 coincident = false;
1093 if (fDone) {
1094 return -1;
1095 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001096 int count = fTs.count();
1097 int to = from;
1098 while (step > 0 ? ++to < count : --to >= 0) {
1099 Span* span = &fTs[to];
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001100 if (span->fCoincident == step) {
1101 coincident = true;
1102 }
1103 if (fromSpan->fT == span->fT) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00001104 continue;
1105 }
1106 SkPoint loc;
1107 xyAtT(span->fT, &loc);
1108 if (fromLoc == loc) {
1109 continue;
1110 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001111 if (span->fDone == -step) {
1112 return -1;
1113 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001114 if (toLoc) {
1115 *toLoc = loc;
1116 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001117 return to;
1118 }
1119 return -1;
1120 }
1121
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001122 const SkPoint* pts() const {
1123 return fPts;
1124 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001125
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001126 void reset() {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001127 init(NULL, (SkPath::Verb) -1);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001128 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
1129 fTs.reset();
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001130 }
1131
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001132 // OPTIMIZATION: remove this function if it's never called
1133 double t(int tIndex) const {
1134 return fTs[tIndex].fT;
1135 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001136
1137 void updatePts(const SkPoint pts[]) {
1138 fPts = pts;
1139 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001140
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001141 SkPath::Verb verb() const {
1142 return fVerb;
1143 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001144
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001145 SkScalar xAtT(double t) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001146 SkASSERT(t >= 0 && t <= 1);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001147 return (*SegmentXAtT[fVerb])(fPts, t);
1148 }
1149
1150 void xyAtT(double t, SkPoint* pt) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001151 SkASSERT(t >= 0 && t <= 1);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001152 (*SegmentXYAtT[fVerb])(fPts, t, pt);
1153 }
1154
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001155 SkScalar yAtT(double t) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001156 SkASSERT(t >= 0 && t <= 1);
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001157 return (*SegmentYAtT[fVerb])(fPts, t);
1158 }
1159
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001160#if DEBUG_DUMP
1161 void dump() const {
1162 const char className[] = "Segment";
1163 const int tab = 4;
1164 for (int i = 0; i < fTs.count(); ++i) {
1165 SkPoint out;
1166 (*SegmentXYAtT[fVerb])(fPts, t(i), &out);
1167 SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d"
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001168 " otherT=%1.9g winding=%d\n",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001169 tab + sizeof(className), className, fID,
1170 kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY,
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001171 fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWinding);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001172 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001173 SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001174 tab + sizeof(className), className, fID,
caryclark@google.com15fa1382012-05-07 20:49:36 +00001175 fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001176 }
1177#endif
1178
1179private:
1180 const SkPoint* fPts;
1181 SkPath::Verb fVerb;
1182 Bounds fBounds;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001183 SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
1184 // FIXME: coincident only needs two bits (-1, 0, 1)
1185 int fCoincident; // non-zero if some coincident span inside
1186 bool fDone;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001187#if DEBUG_DUMP
1188 int fID;
1189#endif
1190};
1191
1192class Contour {
1193public:
1194 Contour() {
1195 reset();
1196#if DEBUG_DUMP
1197 fID = ++gContourID;
1198#endif
1199 }
1200
1201 bool operator<(const Contour& rh) const {
1202 return fBounds.fTop == rh.fBounds.fTop
1203 ? fBounds.fLeft < rh.fBounds.fLeft
1204 : fBounds.fTop < rh.fBounds.fTop;
1205 }
1206
1207 void addCubic(const SkPoint pts[4]) {
1208 fSegments.push_back().addCubic(pts);
1209 fContainsCurves = true;
1210 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001211
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001212 int addLine(const SkPoint pts[2]) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001213 fSegments.push_back().addLine(pts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001214 return fSegments.count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001215 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001216
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001217 int addQuad(const SkPoint pts[3]) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001218 fSegments.push_back().addQuad(pts);
1219 fContainsCurves = true;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001220 return fSegments.count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001221 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001222
1223 const Bounds& bounds() const {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001224 return fBounds;
1225 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001226
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001227 void complete() {
1228 setBounds();
1229 fContainsIntercepts = false;
1230 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001231
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001232 void containsIntercepts() {
1233 fContainsIntercepts = true;
1234 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001235
1236 void findTooCloseToCall(int winding) {
1237 int segmentCount = fSegments.count();
1238 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
1239 fSegments[sIndex].findTooCloseToCall(winding);
1240 }
1241 }
1242
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001243 void fixOtherTIndex() {
1244 int segmentCount = fSegments.count();
1245 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
1246 fSegments[sIndex].fixOtherTIndex();
1247 }
1248 }
1249
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001250 void reset() {
1251 fSegments.reset();
1252 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
caryclark@google.com15fa1382012-05-07 20:49:36 +00001253 fContainsCurves = fContainsIntercepts = false;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001254 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001255
1256 // OPTIMIZATION: feel pretty uneasy about this. It seems like once again
1257 // we need to sort and walk edges in y, but that on the surface opens the
1258 // same can of worms as before. But then, this is a rough sort based on
1259 // segments' top, and not a true sort, so it could be ameniable to regular
1260 // sorting instead of linear searching. Still feel like I'm missing something
1261 Segment* topSegment() {
1262 int segmentCount = fSegments.count();
1263 SkASSERT(segmentCount > 0);
1264 int best = -1;
1265 Segment* bestSegment = NULL;
1266 while (++best < segmentCount) {
1267 Segment* testSegment = &fSegments[best];
1268 if (testSegment->done()) {
1269 continue;
1270 }
1271 bestSegment = testSegment;
1272 break;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001273 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001274 if (!bestSegment) {
1275 return NULL;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001276 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001277 SkScalar bestTop = bestSegment->bounds().fTop;
1278 for (int test = best + 1; test < segmentCount; ++test) {
1279 Segment* testSegment = &fSegments[test];
1280 if (testSegment->done()) {
1281 continue;
1282 }
1283 SkScalar testTop = testSegment->bounds().fTop;
1284 if (bestTop > testTop) {
1285 bestTop = testTop;
1286 bestSegment = testSegment;
1287 }
1288 }
1289 return bestSegment;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001290 }
1291
1292#if DEBUG_DUMP
1293 void dump() {
1294 int i;
1295 const char className[] = "Contour";
1296 const int tab = 4;
1297 SkDebugf("%s %p (contour=%d)\n", className, this, fID);
1298 for (i = 0; i < fSegments.count(); ++i) {
1299 SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className),
1300 className, i);
1301 fSegments[i].dump();
1302 }
1303 SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n",
1304 tab + sizeof(className), className,
1305 fBounds.fLeft, fBounds.fTop,
1306 fBounds.fRight, fBounds.fBottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001307 SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
1308 className, fContainsIntercepts);
1309 SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className),
1310 className, fContainsCurves);
1311 }
1312#endif
1313
1314protected:
1315 void setBounds() {
1316 int count = fSegments.count();
1317 if (count == 0) {
1318 SkDebugf("%s empty contour\n", __FUNCTION__);
1319 SkASSERT(0);
1320 // FIXME: delete empty contour?
1321 return;
1322 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001323 fBounds = fSegments.front().bounds();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001324 for (int index = 1; index < count; ++index) {
1325 fBounds.growToInclude(fSegments[index].bounds());
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001326 }
1327 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001328
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001329public:
1330 SkTArray<Segment> fSegments; // not worth accessor functions?
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001331
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001332private:
1333 Bounds fBounds;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001334 bool fContainsIntercepts;
1335 bool fContainsCurves;
1336#if DEBUG_DUMP
1337 int fID;
1338#endif
1339};
1340
1341class EdgeBuilder {
1342public:
1343
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001344EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours)
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001345 : fPath(path)
1346 , fCurrentContour(NULL)
1347 , fContours(contours)
1348{
1349#if DEBUG_DUMP
1350 gContourID = 0;
1351 gSegmentID = 0;
1352#endif
1353 walk();
1354}
1355
1356protected:
1357
1358void complete() {
1359 if (fCurrentContour && fCurrentContour->fSegments.count()) {
1360 fCurrentContour->complete();
1361 fCurrentContour = NULL;
1362 }
1363}
1364
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001365void walk() {
1366 // FIXME:remove once we can access path pts directly
1367 SkPath::RawIter iter(fPath); // FIXME: access path directly when allowed
1368 SkPoint pts[4];
1369 SkPath::Verb verb;
1370 do {
1371 verb = iter.next(pts);
1372 *fPathVerbs.append() = verb;
1373 if (verb == SkPath::kMove_Verb) {
1374 *fPathPts.append() = pts[0];
1375 } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) {
1376 fPathPts.append(verb, &pts[1]);
1377 }
1378 } while (verb != SkPath::kDone_Verb);
1379 // FIXME: end of section to remove once path pts are accessed directly
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001380
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001381 SkPath::Verb reducedVerb;
1382 uint8_t* verbPtr = fPathVerbs.begin();
1383 const SkPoint* pointsPtr = fPathPts.begin();
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001384 const SkPoint* finalCurveStart = NULL;
1385 const SkPoint* finalCurveEnd = NULL;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001386 while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) {
1387 switch (verb) {
1388 case SkPath::kMove_Verb:
1389 complete();
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001390 if (!fCurrentContour) {
1391 fCurrentContour = fContours.push_back_n(1);
1392 finalCurveEnd = pointsPtr++;
1393 *fExtra.append() = -1; // start new contour
1394 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001395 continue;
1396 case SkPath::kLine_Verb:
1397 // skip degenerate points
1398 if (pointsPtr[-1].fX != pointsPtr[0].fX
1399 || pointsPtr[-1].fY != pointsPtr[0].fY) {
1400 fCurrentContour->addLine(&pointsPtr[-1]);
1401 }
1402 break;
1403 case SkPath::kQuad_Verb:
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001404
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001405 reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts);
1406 if (reducedVerb == 0) {
1407 break; // skip degenerate points
1408 }
1409 if (reducedVerb == 1) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001410 *fExtra.append() =
1411 fCurrentContour->addLine(fReducePts.end() - 2);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001412 break;
1413 }
1414 fCurrentContour->addQuad(&pointsPtr[-1]);
1415 break;
1416 case SkPath::kCubic_Verb:
1417 reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts);
1418 if (reducedVerb == 0) {
1419 break; // skip degenerate points
1420 }
1421 if (reducedVerb == 1) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001422 *fExtra.append() =
1423 fCurrentContour->addLine(fReducePts.end() - 2);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001424 break;
1425 }
1426 if (reducedVerb == 2) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001427 *fExtra.append() =
1428 fCurrentContour->addQuad(fReducePts.end() - 3);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001429 break;
1430 }
1431 fCurrentContour->addCubic(&pointsPtr[-1]);
1432 break;
1433 case SkPath::kClose_Verb:
1434 SkASSERT(fCurrentContour);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001435 if (finalCurveStart && finalCurveEnd
1436 && *finalCurveStart != *finalCurveEnd) {
1437 *fReducePts.append() = *finalCurveStart;
1438 *fReducePts.append() = *finalCurveEnd;
1439 *fExtra.append() =
1440 fCurrentContour->addLine(fReducePts.end() - 2);
1441 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001442 complete();
1443 continue;
1444 default:
1445 SkDEBUGFAIL("bad verb");
1446 return;
1447 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001448 finalCurveStart = &pointsPtr[verb - 1];
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001449 pointsPtr += verb;
1450 SkASSERT(fCurrentContour);
1451 }
1452 complete();
1453 if (fCurrentContour && !fCurrentContour->fSegments.count()) {
1454 fContours.pop_back();
1455 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001456 // correct pointers in contours since fReducePts may have moved as it grew
1457 int cIndex = 0;
1458 fCurrentContour = &fContours[0];
1459 int extraCount = fExtra.count();
1460 SkASSERT(fExtra[0] == -1);
1461 int eIndex = 0;
1462 int rIndex = 0;
1463 while (++eIndex < extraCount) {
1464 int offset = fExtra[eIndex];
1465 if (offset < 0) {
1466 fCurrentContour = &fContours[++cIndex];
1467 continue;
1468 }
1469 Segment& segment = fCurrentContour->fSegments[offset - 1];
1470 segment.updatePts(&fReducePts[rIndex]);
1471 rIndex += segment.verb() + 1;
1472 }
1473 fExtra.reset(); // we're done with this
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001474}
1475
1476private:
1477 const SkPath& fPath;
1478 SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001479 SkTDArray<uint8_t> fPathVerbs; // FIXME: remove
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001480 Contour* fCurrentContour;
1481 SkTArray<Contour>& fContours;
1482 SkTDArray<SkPoint> fReducePts; // segments created on the fly
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001483 SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001484};
1485
1486class Work {
1487public:
1488 enum SegmentType {
1489 kHorizontalLine_Segment = -1,
1490 kVerticalLine_Segment = 0,
1491 kLine_Segment = SkPath::kLine_Verb,
1492 kQuad_Segment = SkPath::kQuad_Verb,
1493 kCubic_Segment = SkPath::kCubic_Verb,
1494 };
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001495
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001496 // FIXME: does it make sense to write otherIndex now if we're going to
1497 // fix it up later?
1498 void addOtherT(int index, double otherT, int otherIndex) {
1499 fContour->fSegments[fIndex].addOtherT(index, otherT, otherIndex);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001500 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001501
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001502 // Avoid collapsing t values that are close to the same since
1503 // we walk ts to describe consecutive intersections. Since a pair of ts can
1504 // be nearly equal, any problems caused by this should be taken care
1505 // of later.
1506 // On the edge or out of range values are negative; add 2 to get end
caryclark@google.com15fa1382012-05-07 20:49:36 +00001507 int addT(double newT, const Work& other, int coincident) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001508 fContour->containsIntercepts();
caryclark@google.com15fa1382012-05-07 20:49:36 +00001509 return fContour->fSegments[fIndex].addT(newT,
1510 other.fContour->fSegments[other.fIndex], coincident);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001511 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001512
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001513 bool advance() {
1514 return ++fIndex < fLast;
1515 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001516
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001517 SkScalar bottom() const {
1518 return bounds().fBottom;
1519 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001520
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001521 const Bounds& bounds() const {
1522 return fContour->fSegments[fIndex].bounds();
1523 }
1524
1525 const SkPoint* cubic() const {
1526 return fCubic;
1527 }
1528
1529 void init(Contour* contour) {
1530 fContour = contour;
1531 fIndex = 0;
1532 fLast = contour->fSegments.count();
1533 }
1534
1535 SkScalar left() const {
1536 return bounds().fLeft;
1537 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001538
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001539 void promoteToCubic() {
1540 fCubic[0] = pts()[0];
1541 fCubic[2] = pts()[1];
1542 fCubic[3] = pts()[2];
1543 fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3;
1544 fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3;
1545 fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3;
1546 fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3;
1547 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001548
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001549 const SkPoint* pts() const {
1550 return fContour->fSegments[fIndex].pts();
1551 }
1552
1553 SkScalar right() const {
1554 return bounds().fRight;
1555 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001556
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001557 ptrdiff_t segmentIndex() const {
1558 return fIndex;
1559 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001560
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001561 SegmentType segmentType() const {
1562 const Segment& segment = fContour->fSegments[fIndex];
1563 SegmentType type = (SegmentType) segment.verb();
1564 if (type != kLine_Segment) {
1565 return type;
1566 }
1567 if (segment.isHorizontal()) {
1568 return kHorizontalLine_Segment;
1569 }
1570 if (segment.isVertical()) {
1571 return kVerticalLine_Segment;
1572 }
1573 return kLine_Segment;
1574 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001575
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001576 bool startAfter(const Work& after) {
1577 fIndex = after.fIndex;
1578 return advance();
1579 }
1580
1581 SkScalar top() const {
1582 return bounds().fTop;
1583 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001584
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001585 SkPath::Verb verb() const {
1586 return fContour->fSegments[fIndex].verb();
1587 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001588
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001589 SkScalar x() const {
1590 return bounds().fLeft;
1591 }
1592
1593 bool xFlipped() const {
1594 return x() != pts()[0].fX;
1595 }
1596
1597 SkScalar y() const {
1598 return bounds().fTop;
1599 }
1600
1601 bool yFlipped() const {
1602 return y() != pts()[0].fX;
1603 }
1604
1605protected:
1606 Contour* fContour;
1607 SkPoint fCubic[4];
1608 int fIndex;
1609 int fLast;
1610};
1611
1612static void debugShowLineIntersection(int pts, const Work& wt,
1613 const Work& wn, const double wtTs[2], const double wnTs[2]) {
1614#if DEBUG_ADD_INTERSECTING_TS
1615 if (!pts) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001616 SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g %1.9g,%1.9g)\n",
1617 __FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY,
1618 wt.pts()[1].fX, wt.pts()[1].fY, wn.pts()[0].fX, wn.pts()[0].fY,
1619 wn.pts()[1].fX, wn.pts()[1].fY);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001620 return;
1621 }
1622 SkPoint wtOutPt, wnOutPt;
1623 LineXYAtT(wt.pts(), wtTs[0], &wtOutPt);
1624 LineXYAtT(wn.pts(), wnTs[0], &wnOutPt);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001625 SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001626 __FUNCTION__,
1627 wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY,
1628 wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY);
1629 if (pts == 2) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001630 SkDebugf(" wtTs[1]=%g", wtTs[1]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001631 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001632 SkDebugf(" wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001633 wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY,
1634 wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY);
1635 if (pts == 2) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001636 SkDebugf(" wnTs[1]=%g", wnTs[1]);
1637 SkDebugf("\n");
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001638 }
1639#endif
1640}
1641
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001642static bool addIntersectTs(Contour* test, Contour* next, int winding) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001643
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001644 if (test != next) {
1645 if (test->bounds().fBottom < next->bounds().fTop) {
1646 return false;
1647 }
1648 if (!Bounds::Intersects(test->bounds(), next->bounds())) {
1649 return true;
1650 }
1651 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001652 Work wt;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001653 wt.init(test);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001654 do {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001655 Work wn;
1656 wn.init(next);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001657 if (test == next && !wn.startAfter(wt)) {
1658 continue;
1659 }
1660 do {
1661 if (!Bounds::Intersects(wt.bounds(), wn.bounds())) {
1662 continue;
1663 }
1664 int pts;
1665 Intersections ts;
1666 bool swap = false;
1667 switch (wt.segmentType()) {
1668 case Work::kHorizontalLine_Segment:
1669 swap = true;
1670 switch (wn.segmentType()) {
1671 case Work::kHorizontalLine_Segment:
1672 case Work::kVerticalLine_Segment:
1673 case Work::kLine_Segment: {
1674 pts = HLineIntersect(wn.pts(), wt.left(),
1675 wt.right(), wt.y(), wt.xFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001676 debugShowLineIntersection(pts, wt, wn,
1677 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001678 break;
1679 }
1680 case Work::kQuad_Segment: {
1681 pts = HQuadIntersect(wn.pts(), wt.left(),
1682 wt.right(), wt.y(), wt.xFlipped(), ts);
1683 break;
1684 }
1685 case Work::kCubic_Segment: {
1686 pts = HCubicIntersect(wn.pts(), wt.left(),
1687 wt.right(), wt.y(), wt.xFlipped(), ts);
1688 break;
1689 }
1690 default:
1691 SkASSERT(0);
1692 }
1693 break;
1694 case Work::kVerticalLine_Segment:
1695 swap = true;
1696 switch (wn.segmentType()) {
1697 case Work::kHorizontalLine_Segment:
1698 case Work::kVerticalLine_Segment:
1699 case Work::kLine_Segment: {
1700 pts = VLineIntersect(wn.pts(), wt.top(),
1701 wt.bottom(), wt.x(), wt.yFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001702 debugShowLineIntersection(pts, wt, wn,
1703 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001704 break;
1705 }
1706 case Work::kQuad_Segment: {
1707 pts = VQuadIntersect(wn.pts(), wt.top(),
1708 wt.bottom(), wt.x(), wt.yFlipped(), ts);
1709 break;
1710 }
1711 case Work::kCubic_Segment: {
1712 pts = VCubicIntersect(wn.pts(), wt.top(),
1713 wt.bottom(), wt.x(), wt.yFlipped(), ts);
1714 break;
1715 }
1716 default:
1717 SkASSERT(0);
1718 }
1719 break;
1720 case Work::kLine_Segment:
1721 switch (wn.segmentType()) {
1722 case Work::kHorizontalLine_Segment:
1723 pts = HLineIntersect(wt.pts(), wn.left(),
1724 wn.right(), wn.y(), wn.xFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001725 debugShowLineIntersection(pts, wt, wn,
1726 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001727 break;
1728 case Work::kVerticalLine_Segment:
1729 pts = VLineIntersect(wt.pts(), wn.top(),
1730 wn.bottom(), wn.x(), wn.yFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001731 debugShowLineIntersection(pts, wt, wn,
1732 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001733 break;
1734 case Work::kLine_Segment: {
1735 pts = LineIntersect(wt.pts(), wn.pts(), ts);
1736 debugShowLineIntersection(pts, wt, wn,
1737 ts.fT[1], ts.fT[0]);
1738 break;
1739 }
1740 case Work::kQuad_Segment: {
1741 swap = true;
1742 pts = QuadLineIntersect(wn.pts(), wt.pts(), ts);
1743 break;
1744 }
1745 case Work::kCubic_Segment: {
1746 swap = true;
1747 pts = CubicLineIntersect(wn.pts(), wt.pts(), ts);
1748 break;
1749 }
1750 default:
1751 SkASSERT(0);
1752 }
1753 break;
1754 case Work::kQuad_Segment:
1755 switch (wn.segmentType()) {
1756 case Work::kHorizontalLine_Segment:
1757 pts = HQuadIntersect(wt.pts(), wn.left(),
1758 wn.right(), wn.y(), wn.xFlipped(), ts);
1759 break;
1760 case Work::kVerticalLine_Segment:
1761 pts = VQuadIntersect(wt.pts(), wn.top(),
1762 wn.bottom(), wn.x(), wn.yFlipped(), ts);
1763 break;
1764 case Work::kLine_Segment: {
1765 pts = QuadLineIntersect(wt.pts(), wn.pts(), ts);
1766 break;
1767 }
1768 case Work::kQuad_Segment: {
1769 pts = QuadIntersect(wt.pts(), wn.pts(), ts);
1770 break;
1771 }
1772 case Work::kCubic_Segment: {
1773 wt.promoteToCubic();
1774 pts = CubicIntersect(wt.cubic(), wn.pts(), ts);
1775 break;
1776 }
1777 default:
1778 SkASSERT(0);
1779 }
1780 break;
1781 case Work::kCubic_Segment:
1782 switch (wn.segmentType()) {
1783 case Work::kHorizontalLine_Segment:
1784 pts = HCubicIntersect(wt.pts(), wn.left(),
1785 wn.right(), wn.y(), wn.xFlipped(), ts);
1786 break;
1787 case Work::kVerticalLine_Segment:
1788 pts = VCubicIntersect(wt.pts(), wn.top(),
1789 wn.bottom(), wn.x(), wn.yFlipped(), ts);
1790 break;
1791 case Work::kLine_Segment: {
1792 pts = CubicLineIntersect(wt.pts(), wn.pts(), ts);
1793 break;
1794 }
1795 case Work::kQuad_Segment: {
1796 wn.promoteToCubic();
1797 pts = CubicIntersect(wt.pts(), wn.cubic(), ts);
1798 break;
1799 }
1800 case Work::kCubic_Segment: {
1801 pts = CubicIntersect(wt.pts(), wn.pts(), ts);
1802 break;
1803 }
1804 default:
1805 SkASSERT(0);
1806 }
1807 break;
1808 default:
1809 SkASSERT(0);
1810 }
1811 // in addition to recording T values, record matching segment
caryclark@google.com15fa1382012-05-07 20:49:36 +00001812 int coincident = pts == 2 && wn.segmentType() <= Work::kLine_Segment
1813 && wt.segmentType() <= Work::kLine_Segment ? -1 :0;
1814 for (int pt = 0; pt < pts; ++pt) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001815 SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
1816 SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
caryclark@google.com15fa1382012-05-07 20:49:36 +00001817 int testTAt = wt.addT(ts.fT[swap][pt], wn, coincident);
1818 int nextTAt = wn.addT(ts.fT[!swap][pt], wt, coincident);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001819 wt.addOtherT(testTAt, ts.fT[!swap][pt], nextTAt);
1820 wn.addOtherT(nextTAt, ts.fT[swap][pt], testTAt);
caryclark@google.com15fa1382012-05-07 20:49:36 +00001821 coincident = -coincident;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001822 }
1823 } while (wn.advance());
1824 } while (wt.advance());
1825 return true;
1826}
1827
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001828// see if coincidence is formed by clipping non-concident segments
1829static void coincidenceCheck(SkTDArray<Contour*>& contourList, int winding) {
1830 int contourCount = contourList.count();
1831 for (size_t cIndex = 0; cIndex < contourCount; ++cIndex) {
1832 Contour* contour = contourList[cIndex];
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001833 contour->findTooCloseToCall(winding);
1834 }
1835}
1836
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001837
1838// OPTIMIZATION: not crazy about linear search here to find top active y.
1839// seems like we should break down and do the sort, or maybe sort each
1840// contours' segments?
1841// Once the segment array is built, there's no reason I can think of not to
1842// sort it in Y. hmmm
1843static Segment* findTopContour(SkTDArray<Contour*>& contourList,
1844 int contourCount) {
1845 int cIndex = 0;
1846 Segment* topStart;
1847 do {
1848 Contour* topContour = contourList[cIndex];
1849 topStart = topContour->topSegment();
1850 } while (!topStart && ++cIndex < contourCount);
1851 if (!topStart) {
1852 return NULL;
1853 }
1854 SkScalar top = topStart->bounds().fTop;
1855 for (int cTest = cIndex + 1; cTest < contourCount; ++cTest) {
1856 Contour* contour = contourList[cTest];
1857 if (top < contour->bounds().fTop) {
1858 continue;
1859 }
1860 Segment* test = contour->topSegment();
1861 if (top > test->bounds().fTop) {
1862 cIndex = cTest;
1863 topStart = test;
1864 top = test->bounds().fTop;
1865 }
1866 }
1867 return topStart;
1868}
1869
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001870// Each segment may have an inside or an outside. Segments contained within
1871// winding may have insides on either side, and form a contour that should be
1872// ignored. Segments that are coincident with opposing direction segments may
1873// have outsides on either side, and should also disappear.
1874// 'Normal' segments will have one inside and one outside. Subsequent connections
1875// when winding should follow the intersection direction. If more than one edge
1876// is an option, choose first edge that continues the inside.
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001877 // since we start with leftmost top edge, we'll traverse through a
1878 // smaller angle counterclockwise to get to the next edge.
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001879static void bridge(SkTDArray<Contour*>& contourList) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00001880 int contourCount = contourList.count();
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001881 int winding = 0; // there are no contours outside this one
caryclark@google.com15fa1382012-05-07 20:49:36 +00001882 do {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001883 Segment* topStart = findTopContour(contourList, contourCount);
caryclark@google.com15fa1382012-05-07 20:49:36 +00001884 if (!topStart) {
1885 break;
1886 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001887 // Start at the top. Above the top is outside, below is inside.
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001888 // follow edges to intersection by changing the tIndex by direction.
1889 int tIndex, step;
1890 const Segment* topSegment = topStart->findTop(tIndex, step);
1891 const Segment* next = topSegment;
1892 do {
1893 int spanIndex;
1894 next = next->findNext(tIndex, winding, step, spanIndex);
1895 } while (next != topSegment);
1896
caryclark@google.com15fa1382012-05-07 20:49:36 +00001897 // at intersection, stay on outside, but mark remaining edges as inside
1898 // or, only mark first pair as inside?
1899 // how is this going to work for contained (but not intersecting)
1900 // segments?
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001901 // start here ;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001902 // find span
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001903 // mark neighbors winding coverage
1904 // output span
1905 // mark span as processed
caryclark@google.com15fa1382012-05-07 20:49:36 +00001906
1907 } while (true);
1908
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001909
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001910}
1911
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001912static void fixOtherTIndex(SkTDArray<Contour*>& contourList) {
1913 int contourCount = contourList.count();
1914 for (int cTest = 0; cTest < contourCount; ++cTest) {
1915 Contour* contour = contourList[cTest];
1916 contour->fixOtherTIndex();
1917 }
1918}
1919
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001920static void makeContourList(SkTArray<Contour>& contours, Contour& sentinel,
1921 SkTDArray<Contour*>& list) {
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001922 int count = contours.count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001923 if (count == 0) {
1924 return;
1925 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001926 for (int index = 0; index < count; ++index) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001927 *list.append() = &contours[index];
1928 }
1929 *list.append() = &sentinel;
1930 QSort<Contour>(list.begin(), list.end() - 1);
1931}
1932
1933void simplifyx(const SkPath& path, bool asFill, SkPath& simple) {
1934 // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001935 int winding = (path.getFillType() & 1) ? 1 : -1;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001936 simple.reset();
1937 simple.setFillType(SkPath::kEvenOdd_FillType);
1938
1939 // turn path into list of segments
1940 SkTArray<Contour> contours;
1941 // FIXME: add self-intersecting cubics' T values to segment
1942 EdgeBuilder builder(path, contours);
1943 SkTDArray<Contour*> contourList;
1944 Contour sentinel;
1945 sentinel.reset();
1946 makeContourList(contours, sentinel, contourList);
1947 Contour** currentPtr = contourList.begin();
1948 if (!currentPtr) {
1949 return;
1950 }
1951 // find all intersections between segments
1952 do {
1953 Contour** nextPtr = currentPtr;
1954 Contour* current = *currentPtr++;
1955 Contour* next;
1956 do {
1957 next = *nextPtr++;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001958 } while (next != &sentinel && addIntersectTs(current, next, winding));
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001959 } while (*currentPtr != &sentinel);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001960 fixOtherTIndex(contourList);
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001961 // eat through coincident edges
1962 coincidenceCheck(contourList, winding);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001963 // construct closed contours
1964 bridge(contourList);
1965}
1966