blob: 5f3f0262e4dae8c27b46b3799082e2409aa5d8e5 [file] [log] [blame]
John Stiles44e96be2020-08-31 13:16:04 -04001/*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "src/sksl/SkSLInliner.h"
9
10#include "limits.h"
11#include <memory>
12#include <unordered_set>
13
14#include "src/sksl/SkSLAnalysis.h"
15#include "src/sksl/ir/SkSLBinaryExpression.h"
16#include "src/sksl/ir/SkSLBoolLiteral.h"
17#include "src/sksl/ir/SkSLBreakStatement.h"
18#include "src/sksl/ir/SkSLConstructor.h"
19#include "src/sksl/ir/SkSLContinueStatement.h"
20#include "src/sksl/ir/SkSLDiscardStatement.h"
21#include "src/sksl/ir/SkSLDoStatement.h"
22#include "src/sksl/ir/SkSLEnum.h"
23#include "src/sksl/ir/SkSLExpressionStatement.h"
24#include "src/sksl/ir/SkSLExternalFunctionCall.h"
25#include "src/sksl/ir/SkSLExternalValueReference.h"
26#include "src/sksl/ir/SkSLField.h"
27#include "src/sksl/ir/SkSLFieldAccess.h"
28#include "src/sksl/ir/SkSLFloatLiteral.h"
29#include "src/sksl/ir/SkSLForStatement.h"
30#include "src/sksl/ir/SkSLFunctionCall.h"
31#include "src/sksl/ir/SkSLFunctionDeclaration.h"
32#include "src/sksl/ir/SkSLFunctionDefinition.h"
33#include "src/sksl/ir/SkSLFunctionReference.h"
34#include "src/sksl/ir/SkSLIfStatement.h"
35#include "src/sksl/ir/SkSLIndexExpression.h"
John Stiles98c1f822020-09-09 14:18:53 -040036#include "src/sksl/ir/SkSLInlineMarker.h"
John Stiles44e96be2020-08-31 13:16:04 -040037#include "src/sksl/ir/SkSLIntLiteral.h"
38#include "src/sksl/ir/SkSLInterfaceBlock.h"
39#include "src/sksl/ir/SkSLLayout.h"
40#include "src/sksl/ir/SkSLNop.h"
41#include "src/sksl/ir/SkSLNullLiteral.h"
42#include "src/sksl/ir/SkSLPostfixExpression.h"
43#include "src/sksl/ir/SkSLPrefixExpression.h"
44#include "src/sksl/ir/SkSLReturnStatement.h"
45#include "src/sksl/ir/SkSLSetting.h"
46#include "src/sksl/ir/SkSLSwitchCase.h"
47#include "src/sksl/ir/SkSLSwitchStatement.h"
48#include "src/sksl/ir/SkSLSwizzle.h"
49#include "src/sksl/ir/SkSLTernaryExpression.h"
50#include "src/sksl/ir/SkSLUnresolvedFunction.h"
51#include "src/sksl/ir/SkSLVarDeclarations.h"
52#include "src/sksl/ir/SkSLVarDeclarationsStatement.h"
53#include "src/sksl/ir/SkSLVariable.h"
54#include "src/sksl/ir/SkSLVariableReference.h"
55#include "src/sksl/ir/SkSLWhileStatement.h"
56
57namespace SkSL {
58namespace {
59
John Stiles44dff4f2020-09-21 12:28:01 -040060static bool contains_returns_above_limit(const FunctionDefinition& funcDef, int limit) {
61 class CountReturnsWithLimit : public ProgramVisitor {
John Stiles44e96be2020-08-31 13:16:04 -040062 public:
John Stiles44dff4f2020-09-21 12:28:01 -040063 CountReturnsWithLimit(const FunctionDefinition& funcDef, int limit) : fLimit(limit) {
John Stiles44e96be2020-08-31 13:16:04 -040064 this->visitProgramElement(funcDef);
65 }
66
67 bool visitStatement(const Statement& stmt) override {
Ethan Nicholase6592142020-09-08 10:22:09 -040068 switch (stmt.kind()) {
69 case Statement::Kind::kReturn:
John Stiles44e96be2020-08-31 13:16:04 -040070 ++fNumReturns;
John Stiles44dff4f2020-09-21 12:28:01 -040071 return (fNumReturns > fLimit) || INHERITED::visitStatement(stmt);
John Stiles44e96be2020-08-31 13:16:04 -040072
73 default:
John Stiles93442622020-09-11 12:11:27 -040074 return INHERITED::visitStatement(stmt);
John Stiles44e96be2020-08-31 13:16:04 -040075 }
76 }
77
78 int fNumReturns = 0;
John Stiles44dff4f2020-09-21 12:28:01 -040079 int fLimit = 0;
John Stiles44e96be2020-08-31 13:16:04 -040080 using INHERITED = ProgramVisitor;
81 };
82
John Stiles44dff4f2020-09-21 12:28:01 -040083 return CountReturnsWithLimit{funcDef, limit}.fNumReturns > limit;
John Stiles44e96be2020-08-31 13:16:04 -040084}
85
86static int count_returns_at_end_of_control_flow(const FunctionDefinition& funcDef) {
87 class CountReturnsAtEndOfControlFlow : public ProgramVisitor {
88 public:
89 CountReturnsAtEndOfControlFlow(const FunctionDefinition& funcDef) {
90 this->visitProgramElement(funcDef);
91 }
92
93 bool visitStatement(const Statement& stmt) override {
Ethan Nicholase6592142020-09-08 10:22:09 -040094 switch (stmt.kind()) {
95 case Statement::Kind::kBlock: {
John Stiles44e96be2020-08-31 13:16:04 -040096 // Check only the last statement of a block.
Ethan Nicholas7bd60432020-09-25 14:31:59 -040097 const auto& block = stmt.as<Block>();
98 return block.children().size() &&
99 this->visitStatement(*block.children().back());
John Stiles44e96be2020-08-31 13:16:04 -0400100 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400101 case Statement::Kind::kSwitch:
102 case Statement::Kind::kWhile:
103 case Statement::Kind::kDo:
104 case Statement::Kind::kFor:
John Stiles44e96be2020-08-31 13:16:04 -0400105 // Don't introspect switches or loop structures at all.
106 return false;
107
Ethan Nicholase6592142020-09-08 10:22:09 -0400108 case Statement::Kind::kReturn:
John Stiles44e96be2020-08-31 13:16:04 -0400109 ++fNumReturns;
110 [[fallthrough]];
111
112 default:
John Stiles93442622020-09-11 12:11:27 -0400113 return INHERITED::visitStatement(stmt);
John Stiles44e96be2020-08-31 13:16:04 -0400114 }
115 }
116
117 int fNumReturns = 0;
118 using INHERITED = ProgramVisitor;
119 };
120
121 return CountReturnsAtEndOfControlFlow{funcDef}.fNumReturns;
122}
123
124static int count_returns_in_breakable_constructs(const FunctionDefinition& funcDef) {
125 class CountReturnsInBreakableConstructs : public ProgramVisitor {
126 public:
127 CountReturnsInBreakableConstructs(const FunctionDefinition& funcDef) {
128 this->visitProgramElement(funcDef);
129 }
130
131 bool visitStatement(const Statement& stmt) override {
Ethan Nicholase6592142020-09-08 10:22:09 -0400132 switch (stmt.kind()) {
133 case Statement::Kind::kSwitch:
134 case Statement::Kind::kWhile:
135 case Statement::Kind::kDo:
136 case Statement::Kind::kFor: {
John Stiles44e96be2020-08-31 13:16:04 -0400137 ++fInsideBreakableConstruct;
John Stiles93442622020-09-11 12:11:27 -0400138 bool result = INHERITED::visitStatement(stmt);
John Stiles44e96be2020-08-31 13:16:04 -0400139 --fInsideBreakableConstruct;
140 return result;
141 }
142
Ethan Nicholase6592142020-09-08 10:22:09 -0400143 case Statement::Kind::kReturn:
John Stiles44e96be2020-08-31 13:16:04 -0400144 fNumReturns += (fInsideBreakableConstruct > 0) ? 1 : 0;
145 [[fallthrough]];
146
147 default:
John Stiles93442622020-09-11 12:11:27 -0400148 return INHERITED::visitStatement(stmt);
John Stiles44e96be2020-08-31 13:16:04 -0400149 }
150 }
151
152 int fNumReturns = 0;
153 int fInsideBreakableConstruct = 0;
154 using INHERITED = ProgramVisitor;
155 };
156
157 return CountReturnsInBreakableConstructs{funcDef}.fNumReturns;
158}
159
160static bool has_early_return(const FunctionDefinition& funcDef) {
John Stiles44e96be2020-08-31 13:16:04 -0400161 int returnsAtEndOfControlFlow = count_returns_at_end_of_control_flow(funcDef);
John Stiles44dff4f2020-09-21 12:28:01 -0400162 return contains_returns_above_limit(funcDef, returnsAtEndOfControlFlow);
John Stiles44e96be2020-08-31 13:16:04 -0400163}
164
John Stiles991b09d2020-09-10 13:33:40 -0400165static bool contains_recursive_call(const FunctionDeclaration& funcDecl) {
166 class ContainsRecursiveCall : public ProgramVisitor {
167 public:
168 bool visit(const FunctionDeclaration& funcDecl) {
169 fFuncDecl = &funcDecl;
170 return funcDecl.fDefinition ? this->visitProgramElement(*funcDecl.fDefinition)
171 : false;
172 }
173
174 bool visitExpression(const Expression& expr) override {
175 if (expr.is<FunctionCall>() && expr.as<FunctionCall>().fFunction.matches(*fFuncDecl)) {
176 return true;
177 }
178 return INHERITED::visitExpression(expr);
179 }
180
181 bool visitStatement(const Statement& stmt) override {
182 if (stmt.is<InlineMarker>() && stmt.as<InlineMarker>().fFuncDecl->matches(*fFuncDecl)) {
183 return true;
184 }
185 return INHERITED::visitStatement(stmt);
186 }
187
188 const FunctionDeclaration* fFuncDecl;
189 using INHERITED = ProgramVisitor;
190 };
191
192 return ContainsRecursiveCall{}.visit(funcDecl);
193}
194
John Stiles44e96be2020-08-31 13:16:04 -0400195static const Type* copy_if_needed(const Type* src, SymbolTable& symbolTable) {
Ethan Nicholase6592142020-09-08 10:22:09 -0400196 if (src->typeKind() == Type::TypeKind::kArray) {
John Stiles44e96be2020-08-31 13:16:04 -0400197 return symbolTable.takeOwnershipOfSymbol(std::make_unique<Type>(*src));
198 }
199 return src;
200}
201
John Stiles915a38c2020-09-14 09:38:13 -0400202static Statement* find_parent_statement(const std::vector<std::unique_ptr<Statement>*>& stmtStack) {
203 SkASSERT(!stmtStack.empty());
204
205 // Walk the statement stack from back to front, ignoring the last element (which is the
206 // enclosing statement).
207 auto iter = stmtStack.rbegin();
208 ++iter;
209
210 // Anything counts as a parent statement other than a scopeless Block.
211 for (; iter != stmtStack.rend(); ++iter) {
212 Statement* stmt = (*iter)->get();
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400213 if (!stmt->is<Block>() || stmt->as<Block>().isScope()) {
John Stiles915a38c2020-09-14 09:38:13 -0400214 return stmt;
215 }
216 }
217
218 // There wasn't any parent statement to be found.
219 return nullptr;
220}
221
John Stilese41b4ee2020-09-28 12:28:16 -0400222std::unique_ptr<Expression> clone_with_ref_kind(const Expression& expr,
223 VariableReference::RefKind refKind) {
224 std::unique_ptr<Expression> clone = expr.clone();
John Stiles70b82422020-09-30 10:55:12 -0400225 class SetRefKindInExpression : public ProgramWriter {
John Stilese41b4ee2020-09-28 12:28:16 -0400226 public:
227 SetRefKindInExpression(VariableReference::RefKind refKind) : fRefKind(refKind) {}
John Stiles70b82422020-09-30 10:55:12 -0400228 bool visitExpression(Expression& expr) override {
John Stilese41b4ee2020-09-28 12:28:16 -0400229 if (expr.is<VariableReference>()) {
John Stiles70b82422020-09-30 10:55:12 -0400230 expr.as<VariableReference>().setRefKind(fRefKind);
John Stilese41b4ee2020-09-28 12:28:16 -0400231 }
232 return INHERITED::visitExpression(expr);
233 }
234
235 private:
236 VariableReference::RefKind fRefKind;
237
John Stiles70b82422020-09-30 10:55:12 -0400238 using INHERITED = ProgramWriter;
John Stilese41b4ee2020-09-28 12:28:16 -0400239 };
240
241 SetRefKindInExpression{refKind}.visitExpression(*clone);
242 return clone;
243}
244
John Stiles44733aa2020-09-29 17:42:23 -0400245bool is_trivial_argument(const Expression& argument) {
246 return argument.is<VariableReference>() ||
247 (argument.is<Swizzle>() && is_trivial_argument(*argument.as<Swizzle>().fBase)) ||
248 (argument.is<FieldAccess>() && is_trivial_argument(*argument.as<FieldAccess>().fBase)) ||
249 (argument.is<IndexExpression>() &&
250 argument.as<IndexExpression>().fIndex->is<IntLiteral>() &&
251 is_trivial_argument(*argument.as<IndexExpression>().fBase));
252}
253
John Stiles44e96be2020-08-31 13:16:04 -0400254} // namespace
255
John Stilesb61ee902020-09-21 12:26:59 -0400256void Inliner::ensureScopedBlocks(Statement* inlinedBody, Statement* parentStmt) {
257 // No changes necessary if this statement isn't actually a block.
258 if (!inlinedBody || !inlinedBody->is<Block>()) {
259 return;
260 }
261
262 // No changes necessary if the parent statement doesn't require a scope.
263 if (!parentStmt || !(parentStmt->is<IfStatement>() || parentStmt->is<ForStatement>() ||
264 parentStmt->is<DoStatement>() || parentStmt->is<WhileStatement>())) {
265 return;
266 }
267
268 Block& block = inlinedBody->as<Block>();
269
270 // The inliner will create inlined function bodies as a Block containing multiple statements,
271 // but no scope. Normally, this is fine, but if this block is used as the statement for a
272 // do/for/if/while, this isn't actually possible to represent textually; a scope must be added
273 // for the generated code to match the intent. In the case of Blocks nested inside other Blocks,
274 // we add the scope to the outermost block if needed. Zero-statement blocks have similar
275 // issues--if we don't represent the Block textually somehow, we run the risk of accidentally
276 // absorbing the following statement into our loop--so we also add a scope to these.
277 for (Block* nestedBlock = &block;; ) {
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400278 if (nestedBlock->isScope()) {
John Stilesb61ee902020-09-21 12:26:59 -0400279 // We found an explicit scope; all is well.
280 return;
281 }
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400282 if (nestedBlock->children().size() != 1) {
John Stilesb61ee902020-09-21 12:26:59 -0400283 // We found a block with multiple (or zero) statements, but no scope? Let's add a scope
284 // to the outermost block.
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400285 block.setIsScope(true);
John Stilesb61ee902020-09-21 12:26:59 -0400286 return;
287 }
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400288 if (!nestedBlock->children()[0]->is<Block>()) {
John Stilesb61ee902020-09-21 12:26:59 -0400289 // This block has exactly one thing inside, and it's not another block. No need to scope
290 // it.
291 return;
292 }
293 // We have to go deeper.
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400294 nestedBlock = &nestedBlock->children()[0]->as<Block>();
John Stilesb61ee902020-09-21 12:26:59 -0400295 }
296}
297
John Stiles44e96be2020-08-31 13:16:04 -0400298void Inliner::reset(const Context& context, const Program::Settings& settings) {
299 fContext = &context;
300 fSettings = &settings;
301 fInlineVarCounter = 0;
302}
303
John Stilesc75abb82020-09-14 18:24:12 -0400304String Inliner::uniqueNameForInlineVar(const String& baseName, SymbolTable* symbolTable) {
305 // If the base name starts with an underscore, like "_coords", we can't append another
306 // underscore, because OpenGL disallows two consecutive underscores anywhere in the string. But
307 // in the general case, using the underscore as a splitter reads nicely enough that it's worth
308 // putting in this special case.
309 const char* splitter = baseName.startsWith("_") ? "" : "_";
310
311 // Append a unique numeric prefix to avoid name overlap. Check the symbol table to make sure
312 // we're not reusing an existing name. (Note that within a single compilation pass, this check
313 // isn't fully comprehensive, as code isn't always generated in top-to-bottom order.)
314 String uniqueName;
315 for (;;) {
316 uniqueName = String::printf("_%d%s%s", fInlineVarCounter++, splitter, baseName.c_str());
317 StringFragment frag{uniqueName.data(), uniqueName.length()};
318 if ((*symbolTable)[frag] == nullptr) {
319 break;
320 }
321 }
322
323 return uniqueName;
324}
325
John Stiles44e96be2020-08-31 13:16:04 -0400326std::unique_ptr<Expression> Inliner::inlineExpression(int offset,
327 VariableRewriteMap* varMap,
328 const Expression& expression) {
329 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
330 if (e) {
331 return this->inlineExpression(offset, varMap, *e);
332 }
333 return nullptr;
334 };
335 auto argList = [&](const std::vector<std::unique_ptr<Expression>>& originalArgs)
336 -> std::vector<std::unique_ptr<Expression>> {
337 std::vector<std::unique_ptr<Expression>> args;
338 args.reserve(originalArgs.size());
339 for (const std::unique_ptr<Expression>& arg : originalArgs) {
340 args.push_back(expr(arg));
341 }
342 return args;
343 };
344
Ethan Nicholase6592142020-09-08 10:22:09 -0400345 switch (expression.kind()) {
346 case Expression::Kind::kBinary: {
John Stiles44e96be2020-08-31 13:16:04 -0400347 const BinaryExpression& b = expression.as<BinaryExpression>();
348 return std::make_unique<BinaryExpression>(offset,
Ethan Nicholasc8d9c8e2020-09-22 15:05:37 -0400349 expr(b.leftPointer()),
350 b.getOperator(),
351 expr(b.rightPointer()),
Ethan Nicholas30d30222020-09-11 12:27:26 -0400352 &b.type());
John Stiles44e96be2020-08-31 13:16:04 -0400353 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400354 case Expression::Kind::kBoolLiteral:
355 case Expression::Kind::kIntLiteral:
356 case Expression::Kind::kFloatLiteral:
357 case Expression::Kind::kNullLiteral:
John Stiles44e96be2020-08-31 13:16:04 -0400358 return expression.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400359 case Expression::Kind::kConstructor: {
John Stiles44e96be2020-08-31 13:16:04 -0400360 const Constructor& constructor = expression.as<Constructor>();
Ethan Nicholas30d30222020-09-11 12:27:26 -0400361 return std::make_unique<Constructor>(offset, &constructor.type(),
Ethan Nicholasf70f0442020-09-29 12:41:35 -0400362 argList(constructor.arguments()));
John Stiles44e96be2020-08-31 13:16:04 -0400363 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400364 case Expression::Kind::kExternalFunctionCall: {
John Stiles44e96be2020-08-31 13:16:04 -0400365 const ExternalFunctionCall& externalCall = expression.as<ExternalFunctionCall>();
Ethan Nicholas30d30222020-09-11 12:27:26 -0400366 return std::make_unique<ExternalFunctionCall>(offset, &externalCall.type(),
John Stiles44e96be2020-08-31 13:16:04 -0400367 externalCall.fFunction,
368 argList(externalCall.fArguments));
369 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400370 case Expression::Kind::kExternalValue:
John Stiles44e96be2020-08-31 13:16:04 -0400371 return expression.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400372 case Expression::Kind::kFieldAccess: {
John Stiles44e96be2020-08-31 13:16:04 -0400373 const FieldAccess& f = expression.as<FieldAccess>();
374 return std::make_unique<FieldAccess>(expr(f.fBase), f.fFieldIndex, f.fOwnerKind);
375 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400376 case Expression::Kind::kFunctionCall: {
John Stiles44e96be2020-08-31 13:16:04 -0400377 const FunctionCall& funcCall = expression.as<FunctionCall>();
Ethan Nicholas30d30222020-09-11 12:27:26 -0400378 return std::make_unique<FunctionCall>(offset, &funcCall.type(), funcCall.fFunction,
John Stiles44e96be2020-08-31 13:16:04 -0400379 argList(funcCall.fArguments));
380 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400381 case Expression::Kind::kFunctionReference:
Brian Osman2b3b35f2020-09-08 09:17:36 -0400382 return expression.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400383 case Expression::Kind::kIndex: {
John Stiles44e96be2020-08-31 13:16:04 -0400384 const IndexExpression& idx = expression.as<IndexExpression>();
385 return std::make_unique<IndexExpression>(*fContext, expr(idx.fBase), expr(idx.fIndex));
386 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400387 case Expression::Kind::kPrefix: {
John Stiles44e96be2020-08-31 13:16:04 -0400388 const PrefixExpression& p = expression.as<PrefixExpression>();
389 return std::make_unique<PrefixExpression>(p.fOperator, expr(p.fOperand));
390 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400391 case Expression::Kind::kPostfix: {
John Stiles44e96be2020-08-31 13:16:04 -0400392 const PostfixExpression& p = expression.as<PostfixExpression>();
393 return std::make_unique<PostfixExpression>(expr(p.fOperand), p.fOperator);
394 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400395 case Expression::Kind::kSetting:
John Stiles44e96be2020-08-31 13:16:04 -0400396 return expression.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400397 case Expression::Kind::kSwizzle: {
John Stiles44e96be2020-08-31 13:16:04 -0400398 const Swizzle& s = expression.as<Swizzle>();
399 return std::make_unique<Swizzle>(*fContext, expr(s.fBase), s.fComponents);
400 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400401 case Expression::Kind::kTernary: {
John Stiles44e96be2020-08-31 13:16:04 -0400402 const TernaryExpression& t = expression.as<TernaryExpression>();
403 return std::make_unique<TernaryExpression>(offset, expr(t.fTest),
404 expr(t.fIfTrue), expr(t.fIfFalse));
405 }
Brian Osman83ba9302020-09-11 13:33:46 -0400406 case Expression::Kind::kTypeReference:
407 return expression.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400408 case Expression::Kind::kVariableReference: {
John Stiles44e96be2020-08-31 13:16:04 -0400409 const VariableReference& v = expression.as<VariableReference>();
John Stilese41b4ee2020-09-28 12:28:16 -0400410 auto varMapIter = varMap->find(v.fVariable);
411 if (varMapIter != varMap->end()) {
412 return clone_with_ref_kind(*varMapIter->second, v.fRefKind);
John Stiles44e96be2020-08-31 13:16:04 -0400413 }
414 return v.clone();
415 }
416 default:
417 SkASSERT(false);
418 return nullptr;
419 }
420}
421
422std::unique_ptr<Statement> Inliner::inlineStatement(int offset,
423 VariableRewriteMap* varMap,
424 SymbolTable* symbolTableForStatement,
John Stilese41b4ee2020-09-28 12:28:16 -0400425 const Expression* resultExpr,
John Stiles44e96be2020-08-31 13:16:04 -0400426 bool haveEarlyReturns,
427 const Statement& statement) {
428 auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
429 if (s) {
John Stilesa5f3c312020-09-22 12:05:16 -0400430 return this->inlineStatement(offset, varMap, symbolTableForStatement, resultExpr,
John Stiles44e96be2020-08-31 13:16:04 -0400431 haveEarlyReturns, *s);
432 }
433 return nullptr;
434 };
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400435 auto blockStmts = [&](const Block& block) {
436 std::vector<std::unique_ptr<Statement>> result;
437 for (const std::unique_ptr<Statement>& child : block.children()) {
438 result.push_back(stmt(child));
439 }
440 return result;
441 };
John Stiles44e96be2020-08-31 13:16:04 -0400442 auto stmts = [&](const std::vector<std::unique_ptr<Statement>>& ss) {
443 std::vector<std::unique_ptr<Statement>> result;
444 for (const auto& s : ss) {
445 result.push_back(stmt(s));
446 }
447 return result;
448 };
449 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
450 if (e) {
451 return this->inlineExpression(offset, varMap, *e);
452 }
453 return nullptr;
454 };
Ethan Nicholase6592142020-09-08 10:22:09 -0400455 switch (statement.kind()) {
456 case Statement::Kind::kBlock: {
John Stiles44e96be2020-08-31 13:16:04 -0400457 const Block& b = statement.as<Block>();
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400458 return std::make_unique<Block>(offset, blockStmts(b), b.symbolTable(), b.isScope());
John Stiles44e96be2020-08-31 13:16:04 -0400459 }
460
Ethan Nicholase6592142020-09-08 10:22:09 -0400461 case Statement::Kind::kBreak:
462 case Statement::Kind::kContinue:
463 case Statement::Kind::kDiscard:
John Stiles44e96be2020-08-31 13:16:04 -0400464 return statement.clone();
465
Ethan Nicholase6592142020-09-08 10:22:09 -0400466 case Statement::Kind::kDo: {
John Stiles44e96be2020-08-31 13:16:04 -0400467 const DoStatement& d = statement.as<DoStatement>();
Ethan Nicholas1fd61162020-09-28 13:14:19 -0400468 return std::make_unique<DoStatement>(offset, stmt(d.statement()), expr(d.test()));
John Stiles44e96be2020-08-31 13:16:04 -0400469 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400470 case Statement::Kind::kExpression: {
John Stiles44e96be2020-08-31 13:16:04 -0400471 const ExpressionStatement& e = statement.as<ExpressionStatement>();
Ethan Nicholasd503a5a2020-09-30 09:29:55 -0400472 return std::make_unique<ExpressionStatement>(expr(e.expression()));
John Stiles44e96be2020-08-31 13:16:04 -0400473 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400474 case Statement::Kind::kFor: {
John Stiles44e96be2020-08-31 13:16:04 -0400475 const ForStatement& f = statement.as<ForStatement>();
476 // need to ensure initializer is evaluated first so that we've already remapped its
477 // declarations by the time we evaluate test & next
478 std::unique_ptr<Statement> initializer = stmt(f.fInitializer);
479 return std::make_unique<ForStatement>(offset, std::move(initializer), expr(f.fTest),
480 expr(f.fNext), stmt(f.fStatement), f.fSymbols);
481 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400482 case Statement::Kind::kIf: {
John Stiles44e96be2020-08-31 13:16:04 -0400483 const IfStatement& i = statement.as<IfStatement>();
484 return std::make_unique<IfStatement>(offset, i.fIsStatic, expr(i.fTest),
485 stmt(i.fIfTrue), stmt(i.fIfFalse));
486 }
John Stiles98c1f822020-09-09 14:18:53 -0400487 case Statement::Kind::kInlineMarker:
Ethan Nicholase6592142020-09-08 10:22:09 -0400488 case Statement::Kind::kNop:
John Stiles44e96be2020-08-31 13:16:04 -0400489 return statement.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400490 case Statement::Kind::kReturn: {
John Stiles44e96be2020-08-31 13:16:04 -0400491 const ReturnStatement& r = statement.as<ReturnStatement>();
492 if (r.fExpression) {
John Stilese41b4ee2020-09-28 12:28:16 -0400493 SkASSERT(resultExpr);
John Stilesa5f3c312020-09-22 12:05:16 -0400494 auto assignment =
495 std::make_unique<ExpressionStatement>(std::make_unique<BinaryExpression>(
496 offset,
John Stilese41b4ee2020-09-28 12:28:16 -0400497 clone_with_ref_kind(*resultExpr, VariableReference::kWrite_RefKind),
John Stilesa5f3c312020-09-22 12:05:16 -0400498 Token::Kind::TK_EQ,
499 expr(r.fExpression),
John Stilese41b4ee2020-09-28 12:28:16 -0400500 &resultExpr->type()));
John Stiles44e96be2020-08-31 13:16:04 -0400501 if (haveEarlyReturns) {
502 std::vector<std::unique_ptr<Statement>> block;
503 block.push_back(std::move(assignment));
504 block.emplace_back(new BreakStatement(offset));
505 return std::make_unique<Block>(offset, std::move(block), /*symbols=*/nullptr,
506 /*isScope=*/true);
507 } else {
508 return std::move(assignment);
509 }
510 } else {
511 if (haveEarlyReturns) {
512 return std::make_unique<BreakStatement>(offset);
513 } else {
514 return std::make_unique<Nop>();
515 }
516 }
517 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400518 case Statement::Kind::kSwitch: {
John Stiles44e96be2020-08-31 13:16:04 -0400519 const SwitchStatement& ss = statement.as<SwitchStatement>();
520 std::vector<std::unique_ptr<SwitchCase>> cases;
521 for (const auto& sc : ss.fCases) {
522 cases.emplace_back(new SwitchCase(offset, expr(sc->fValue),
523 stmts(sc->fStatements)));
524 }
525 return std::make_unique<SwitchStatement>(offset, ss.fIsStatic, expr(ss.fValue),
526 std::move(cases), ss.fSymbols);
527 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400528 case Statement::Kind::kVarDeclaration: {
John Stiles44e96be2020-08-31 13:16:04 -0400529 const VarDeclaration& decl = statement.as<VarDeclaration>();
530 std::vector<std::unique_ptr<Expression>> sizes;
531 for (const auto& size : decl.fSizes) {
532 sizes.push_back(expr(size));
533 }
534 std::unique_ptr<Expression> initialValue = expr(decl.fValue);
535 const Variable* old = decl.fVar;
John Stilesc75abb82020-09-14 18:24:12 -0400536 // We assign unique names to inlined variables--scopes hide most of the problems in this
537 // regard, but see `InlinerAvoidsVariableNameOverlap` for a counterexample where unique
538 // names are important.
539 auto name = std::make_unique<String>(
540 this->uniqueNameForInlineVar(String(old->fName), symbolTableForStatement));
John Stiles44e96be2020-08-31 13:16:04 -0400541 const String* namePtr = symbolTableForStatement->takeOwnershipOfString(std::move(name));
Ethan Nicholas30d30222020-09-11 12:27:26 -0400542 const Type* typePtr = copy_if_needed(&old->type(), *symbolTableForStatement);
John Stiles44e96be2020-08-31 13:16:04 -0400543 const Variable* clone = symbolTableForStatement->takeOwnershipOfSymbol(
544 std::make_unique<Variable>(offset,
545 old->fModifiers,
546 namePtr->c_str(),
Ethan Nicholas30d30222020-09-11 12:27:26 -0400547 typePtr,
John Stiles44e96be2020-08-31 13:16:04 -0400548 old->fStorage,
549 initialValue.get()));
John Stilese41b4ee2020-09-28 12:28:16 -0400550 (*varMap)[old] = std::make_unique<VariableReference>(offset, clone);
John Stiles44e96be2020-08-31 13:16:04 -0400551 return std::make_unique<VarDeclaration>(clone, std::move(sizes),
552 std::move(initialValue));
553 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400554 case Statement::Kind::kVarDeclarations: {
John Stiles44e96be2020-08-31 13:16:04 -0400555 const VarDeclarations& decls = *statement.as<VarDeclarationsStatement>().fDeclaration;
556 std::vector<std::unique_ptr<VarDeclaration>> vars;
557 for (const auto& var : decls.fVars) {
558 vars.emplace_back(&stmt(var).release()->as<VarDeclaration>());
559 }
560 const Type* typePtr = copy_if_needed(&decls.fBaseType, *symbolTableForStatement);
561 return std::unique_ptr<Statement>(new VarDeclarationsStatement(
562 std::make_unique<VarDeclarations>(offset, typePtr, std::move(vars))));
563 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400564 case Statement::Kind::kWhile: {
John Stiles44e96be2020-08-31 13:16:04 -0400565 const WhileStatement& w = statement.as<WhileStatement>();
566 return std::make_unique<WhileStatement>(offset, expr(w.fTest), stmt(w.fStatement));
567 }
568 default:
569 SkASSERT(false);
570 return nullptr;
571 }
572}
573
John Stiles6eadf132020-09-08 10:16:10 -0400574Inliner::InlinedCall Inliner::inlineCall(FunctionCall* call,
John Stiles44e96be2020-08-31 13:16:04 -0400575 SymbolTable* symbolTableForCall) {
576 // Inlining is more complicated here than in a typical compiler, because we have to have a
577 // high-level IR and can't just drop statements into the middle of an expression or even use
578 // gotos.
579 //
580 // Since we can't insert statements into an expression, we run the inline function as extra
581 // statements before the statement we're currently processing, relying on a lack of execution
582 // order guarantees. Since we can't use gotos (which are normally used to replace return
583 // statements), we wrap the whole function in a loop and use break statements to jump to the
584 // end.
585 SkASSERT(fSettings);
586 SkASSERT(fContext);
587 SkASSERT(call);
588 SkASSERT(this->isSafeToInline(*call, /*inlineThreshold=*/INT_MAX));
589
John Stiles44e96be2020-08-31 13:16:04 -0400590 std::vector<std::unique_ptr<Expression>>& arguments = call->fArguments;
John Stiles6eadf132020-09-08 10:16:10 -0400591 const int offset = call->fOffset;
John Stiles44e96be2020-08-31 13:16:04 -0400592 const FunctionDefinition& function = *call->fFunction.fDefinition;
John Stiles6eadf132020-09-08 10:16:10 -0400593 const bool hasEarlyReturn = has_early_return(function);
594
John Stiles44e96be2020-08-31 13:16:04 -0400595 InlinedCall inlinedCall;
John Stiles6eadf132020-09-08 10:16:10 -0400596 inlinedCall.fInlinedBody = std::make_unique<Block>(offset,
597 std::vector<std::unique_ptr<Statement>>{},
598 /*symbols=*/nullptr,
599 /*isScope=*/false);
John Stiles98c1f822020-09-09 14:18:53 -0400600
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400601 Block& inlinedBody = *inlinedCall.fInlinedBody;
602 inlinedBody.children().reserve(1 + // Inline marker
603 1 + // Result variable
604 arguments.size() + // Function arguments (passing in)
John Stilese41b4ee2020-09-28 12:28:16 -0400605 arguments.size() + // Function arguments (copy out-params back)
606 1); // Inlined code (Block or do-while loop)
John Stiles98c1f822020-09-09 14:18:53 -0400607
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400608 inlinedBody.children().push_back(std::make_unique<InlineMarker>(call->fFunction));
John Stiles44e96be2020-08-31 13:16:04 -0400609
John Stilese41b4ee2020-09-28 12:28:16 -0400610 auto makeInlineVar =
611 [&](const String& baseName, const Type* type, Modifiers modifiers,
612 std::unique_ptr<Expression>* initialValue) -> std::unique_ptr<Expression> {
John Stilesa003e812020-09-11 09:43:49 -0400613 // $floatLiteral or $intLiteral aren't real types that we can use for scratch variables, so
614 // replace them if they ever appear here. If this happens, we likely forgot to coerce a type
615 // somewhere during compilation.
616 if (type == fContext->fFloatLiteral_Type.get()) {
John Stilesd2be5c52020-09-11 14:58:06 -0400617 SkDEBUGFAIL("found a $floatLiteral type while inlining");
John Stilesa003e812020-09-11 09:43:49 -0400618 type = fContext->fFloat_Type.get();
619 } else if (type == fContext->fIntLiteral_Type.get()) {
John Stilesd2be5c52020-09-11 14:58:06 -0400620 SkDEBUGFAIL("found an $intLiteral type while inlining");
John Stilesa003e812020-09-11 09:43:49 -0400621 type = fContext->fInt_Type.get();
622 }
623
John Stilesc75abb82020-09-14 18:24:12 -0400624 // Provide our new variable with a unique name, and add it to our symbol table.
625 String uniqueName = this->uniqueNameForInlineVar(baseName, symbolTableForCall);
John Stilescf936f92020-08-31 17:18:45 -0400626 const String* namePtr = symbolTableForCall->takeOwnershipOfString(
627 std::make_unique<String>(std::move(uniqueName)));
John Stiles44e96be2020-08-31 13:16:04 -0400628 StringFragment nameFrag{namePtr->c_str(), namePtr->length()};
629
630 // Add our new variable to the symbol table.
Ethan Nicholas30d30222020-09-11 12:27:26 -0400631 auto newVar = std::make_unique<Variable>(/*offset=*/-1, Modifiers(), nameFrag, type,
John Stiles44e96be2020-08-31 13:16:04 -0400632 Variable::kLocal_Storage, initialValue->get());
633 const Variable* variableSymbol = symbolTableForCall->add(nameFrag, std::move(newVar));
634
635 // Prepare the variable declaration (taking extra care with `out` params to not clobber any
636 // initial value).
637 std::vector<std::unique_ptr<VarDeclaration>> variables;
638 if (initialValue && (modifiers.fFlags & Modifiers::kOut_Flag)) {
639 variables.push_back(std::make_unique<VarDeclaration>(
640 variableSymbol, /*sizes=*/std::vector<std::unique_ptr<Expression>>{},
641 (*initialValue)->clone()));
642 } else {
643 variables.push_back(std::make_unique<VarDeclaration>(
644 variableSymbol, /*sizes=*/std::vector<std::unique_ptr<Expression>>{},
645 std::move(*initialValue)));
646 }
647
648 // Add the new variable-declaration statement to our block of extra statements.
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400649 inlinedBody.children().push_back(std::make_unique<VarDeclarationsStatement>(
John Stilesa003e812020-09-11 09:43:49 -0400650 std::make_unique<VarDeclarations>(offset, type, std::move(variables))));
John Stiles44e96be2020-08-31 13:16:04 -0400651
John Stilese41b4ee2020-09-28 12:28:16 -0400652 return std::make_unique<VariableReference>(offset, variableSymbol);
John Stiles44e96be2020-08-31 13:16:04 -0400653 };
654
655 // Create a variable to hold the result in the extra statements (excepting void).
John Stilese41b4ee2020-09-28 12:28:16 -0400656 std::unique_ptr<Expression> resultExpr;
John Stiles44e96be2020-08-31 13:16:04 -0400657 if (function.fDeclaration.fReturnType != *fContext->fVoid_Type) {
John Stiles44e96be2020-08-31 13:16:04 -0400658 std::unique_ptr<Expression> noInitialValue;
John Stilese41b4ee2020-09-28 12:28:16 -0400659 resultExpr = makeInlineVar(String(function.fDeclaration.fName),
660 &function.fDeclaration.fReturnType,
661 Modifiers{}, &noInitialValue);
662 }
John Stiles44e96be2020-08-31 13:16:04 -0400663
664 // Create variables in the extra statements to hold the arguments, and assign the arguments to
665 // them.
666 VariableRewriteMap varMap;
John Stilese41b4ee2020-09-28 12:28:16 -0400667 std::vector<int> argsToCopyBack;
John Stiles44e96be2020-08-31 13:16:04 -0400668 for (int i = 0; i < (int) arguments.size(); ++i) {
669 const Variable* param = function.fDeclaration.fParameters[i];
John Stilese41b4ee2020-09-28 12:28:16 -0400670 bool isOutParam = param->fModifiers.fFlags & Modifiers::kOut_Flag;
John Stiles44e96be2020-08-31 13:16:04 -0400671
John Stiles44733aa2020-09-29 17:42:23 -0400672 // If this argument can be inlined trivially (e.g. a swizzle, or a constant array index)...
673 if (is_trivial_argument(*arguments[i])) {
John Stilese41b4ee2020-09-28 12:28:16 -0400674 // ... and it's an `out` param, or it isn't written to within the inline function...
675 if (isOutParam || !Analysis::StatementWritesToVariable(*function.fBody, *param)) {
John Stilesf201af82020-09-29 16:57:55 -0400676 // ... we don't need to copy it at all! We can just use the existing expression.
677 varMap[param] = arguments[i]->clone();
John Stiles44e96be2020-08-31 13:16:04 -0400678 continue;
679 }
680 }
681
John Stilese41b4ee2020-09-28 12:28:16 -0400682 if (isOutParam) {
683 argsToCopyBack.push_back(i);
684 }
685
Ethan Nicholas30d30222020-09-11 12:27:26 -0400686 varMap[param] = makeInlineVar(String(param->fName), &arguments[i]->type(),
687 param->fModifiers, &arguments[i]);
John Stiles44e96be2020-08-31 13:16:04 -0400688 }
689
690 const Block& body = function.fBody->as<Block>();
John Stiles44e96be2020-08-31 13:16:04 -0400691 auto inlineBlock = std::make_unique<Block>(offset, std::vector<std::unique_ptr<Statement>>{});
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400692 inlineBlock->children().reserve(body.children().size());
693 for (const std::unique_ptr<Statement>& stmt : body.children()) {
694 inlineBlock->children().push_back(this->inlineStatement(
John Stilese41b4ee2020-09-28 12:28:16 -0400695 offset, &varMap, symbolTableForCall, resultExpr.get(), hasEarlyReturn, *stmt));
John Stiles44e96be2020-08-31 13:16:04 -0400696 }
697 if (hasEarlyReturn) {
698 // Since we output to backends that don't have a goto statement (which would normally be
699 // used to perform an early return), we fake it by wrapping the function in a
700 // do { } while (false); and then use break statements to jump to the end in order to
701 // emulate a goto.
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400702 inlinedBody.children().push_back(std::make_unique<DoStatement>(
John Stiles44e96be2020-08-31 13:16:04 -0400703 /*offset=*/-1,
704 std::move(inlineBlock),
705 std::make_unique<BoolLiteral>(*fContext, offset, /*value=*/false)));
706 } else {
John Stiles6eadf132020-09-08 10:16:10 -0400707 // No early returns, so we can just dump the code in. We still need to keep the block so we
708 // don't get name conflicts with locals.
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400709 inlinedBody.children().push_back(std::move(inlineBlock));
John Stiles44e96be2020-08-31 13:16:04 -0400710 }
711
John Stilese41b4ee2020-09-28 12:28:16 -0400712 // Copy back the values of `out` parameters into their real destinations.
713 for (int i : argsToCopyBack) {
John Stiles44e96be2020-08-31 13:16:04 -0400714 const Variable* p = function.fDeclaration.fParameters[i];
John Stilese41b4ee2020-09-28 12:28:16 -0400715 SkASSERT(varMap.find(p) != varMap.end());
716 inlinedBody.children().push_back(
717 std::make_unique<ExpressionStatement>(std::make_unique<BinaryExpression>(
718 offset,
719 clone_with_ref_kind(*arguments[i], VariableReference::kWrite_RefKind),
720 Token::Kind::TK_EQ,
721 std::move(varMap[p]),
722 &arguments[i]->type())));
John Stiles44e96be2020-08-31 13:16:04 -0400723 }
724
John Stilese41b4ee2020-09-28 12:28:16 -0400725 if (resultExpr != nullptr) {
726 // Return our result variable as our replacement expression.
727 SkASSERT(resultExpr->as<VariableReference>().fRefKind == VariableReference::kRead_RefKind);
728 inlinedCall.fReplacementExpr = std::move(resultExpr);
John Stiles44e96be2020-08-31 13:16:04 -0400729 } else {
730 // It's a void function, so it doesn't actually result in anything, but we have to return
731 // something non-null as a standin.
732 inlinedCall.fReplacementExpr = std::make_unique<BoolLiteral>(*fContext, offset,
733 /*value=*/false);
734 }
735
John Stiles44e96be2020-08-31 13:16:04 -0400736 return inlinedCall;
737}
738
John Stiles93442622020-09-11 12:11:27 -0400739bool Inliner::isSafeToInline(const FunctionCall& functionCall, int inlineThreshold) {
John Stiles44e96be2020-08-31 13:16:04 -0400740 SkASSERT(fSettings);
741
742 if (functionCall.fFunction.fDefinition == nullptr) {
743 // Can't inline something if we don't actually have its definition.
744 return false;
745 }
746 const FunctionDefinition& functionDef = *functionCall.fFunction.fDefinition;
747 if (inlineThreshold < INT_MAX) {
748 if (!(functionDef.fDeclaration.fModifiers.fFlags & Modifiers::kInline_Flag) &&
749 Analysis::NodeCount(functionDef) >= inlineThreshold) {
750 // The function exceeds our maximum inline size and is not flagged 'inline'.
751 return false;
752 }
753 }
John Stiles44e96be2020-08-31 13:16:04 -0400754 if (!fSettings->fCaps || !fSettings->fCaps->canUseDoLoops()) {
755 // We don't have do-while loops. We use do-while loops to simulate early returns, so we
756 // can't inline functions that have an early return.
757 bool hasEarlyReturn = has_early_return(functionDef);
758
759 // If we didn't detect an early return, there shouldn't be any returns in breakable
760 // constructs either.
761 SkASSERT(hasEarlyReturn || count_returns_in_breakable_constructs(functionDef) == 0);
762 return !hasEarlyReturn;
763 }
764 // We have do-while loops, but we don't have any mechanism to simulate early returns within a
765 // breakable construct (switch/for/do/while), so we can't inline if there's a return inside one.
766 bool hasReturnInBreakableConstruct = (count_returns_in_breakable_constructs(functionDef) > 0);
767
768 // If we detected returns in breakable constructs, we should also detect an early return.
769 SkASSERT(!hasReturnInBreakableConstruct || has_early_return(functionDef));
770 return !hasReturnInBreakableConstruct;
771}
772
John Stiles93442622020-09-11 12:11:27 -0400773bool Inliner::analyze(Program& program) {
774 // A candidate function for inlining, containing everything that `inlineCall` needs.
775 struct InlineCandidate {
John Stiles915a38c2020-09-14 09:38:13 -0400776 SymbolTable* fSymbols; // the SymbolTable of the candidate
777 Statement* fParentStmt; // the parent Statement of the enclosing stmt
778 std::unique_ptr<Statement>* fEnclosingStmt; // the Statement containing the candidate
779 std::unique_ptr<Expression>* fCandidateExpr; // the candidate FunctionCall to be inlined
John Stiles93442622020-09-11 12:11:27 -0400780 };
781
782 // This is structured much like a ProgramVisitor, but does not actually use ProgramVisitor.
783 // The analyzer needs to keep track of the `unique_ptr<T>*` of statements and expressions so
784 // that they can later be replaced, and ProgramVisitor does not provide this; it only provides a
785 // `const T&`.
786 class InlineCandidateAnalyzer {
787 public:
788 // A list of all the inlining candidates we found during analysis.
789 std::vector<InlineCandidate> fInlineCandidates;
790 // A stack of the symbol tables; since most nodes don't have one, expected to be shallower
791 // than the enclosing-statement stack.
792 std::vector<SymbolTable*> fSymbolTableStack;
793 // A stack of "enclosing" statements--these would be suitable for the inliner to use for
794 // adding new instructions. Not all statements are suitable (e.g. a for-loop's initializer).
795 // The inliner might replace a statement with a block containing the statement.
796 std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
797
798 void visit(Program& program) {
799 fSymbolTableStack.push_back(program.fSymbols.get());
800
801 for (ProgramElement& pe : program) {
802 this->visitProgramElement(&pe);
803 }
804
805 fSymbolTableStack.pop_back();
806 }
807
808 void visitProgramElement(ProgramElement* pe) {
809 switch (pe->kind()) {
810 case ProgramElement::Kind::kFunction: {
811 FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
812 this->visitStatement(&funcDef.fBody);
813 break;
814 }
815 default:
816 // The inliner can't operate outside of a function's scope.
817 break;
818 }
819 }
820
821 void visitStatement(std::unique_ptr<Statement>* stmt,
822 bool isViableAsEnclosingStatement = true) {
823 if (!*stmt) {
824 return;
825 }
826
827 size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
828 size_t oldSymbolStackSize = fSymbolTableStack.size();
829
830 if (isViableAsEnclosingStatement) {
831 fEnclosingStmtStack.push_back(stmt);
832 }
833
834 switch ((*stmt)->kind()) {
835 case Statement::Kind::kBreak:
836 case Statement::Kind::kContinue:
837 case Statement::Kind::kDiscard:
838 case Statement::Kind::kInlineMarker:
839 case Statement::Kind::kNop:
840 break;
841
842 case Statement::Kind::kBlock: {
843 Block& block = (*stmt)->as<Block>();
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400844 if (block.symbolTable()) {
845 fSymbolTableStack.push_back(block.symbolTable().get());
John Stiles93442622020-09-11 12:11:27 -0400846 }
847
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400848 for (std::unique_ptr<Statement>& stmt : block.children()) {
849 this->visitStatement(&stmt);
John Stiles93442622020-09-11 12:11:27 -0400850 }
851 break;
852 }
853 case Statement::Kind::kDo: {
854 DoStatement& doStmt = (*stmt)->as<DoStatement>();
855 // The loop body is a candidate for inlining.
Ethan Nicholas1fd61162020-09-28 13:14:19 -0400856 this->visitStatement(&doStmt.statement());
John Stiles93442622020-09-11 12:11:27 -0400857 // The inliner isn't smart enough to inline the test-expression for a do-while
858 // loop at this time. There are two limitations:
859 // - We would need to insert the inlined-body block at the very end of the do-
860 // statement's inner fStatement. We don't support that today, but it's doable.
861 // - We cannot inline the test expression if the loop uses `continue` anywhere;
862 // that would skip over the inlined block that evaluates the test expression.
863 // There isn't a good fix for this--any workaround would be more complex than
864 // the cost of a function call. However, loops that don't use `continue` would
865 // still be viable candidates for inlining.
866 break;
867 }
868 case Statement::Kind::kExpression: {
869 ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
Ethan Nicholasd503a5a2020-09-30 09:29:55 -0400870 this->visitExpression(&expr.expression());
John Stiles93442622020-09-11 12:11:27 -0400871 break;
872 }
873 case Statement::Kind::kFor: {
874 ForStatement& forStmt = (*stmt)->as<ForStatement>();
875 if (forStmt.fSymbols) {
876 fSymbolTableStack.push_back(forStmt.fSymbols.get());
877 }
878
879 // The initializer and loop body are candidates for inlining.
880 this->visitStatement(&forStmt.fInitializer,
881 /*isViableAsEnclosingStatement=*/false);
882 this->visitStatement(&forStmt.fStatement);
883
884 // The inliner isn't smart enough to inline the test- or increment-expressions
885 // of a for loop loop at this time. There are a handful of limitations:
886 // - We would need to insert the test-expression block at the very beginning of
887 // the for-loop's inner fStatement, and the increment-expression block at the
888 // very end. We don't support that today, but it's doable.
889 // - The for-loop's built-in test-expression would need to be dropped entirely,
890 // and the loop would be halted via a break statement at the end of the
891 // inlined test-expression. This is again something we don't support today,
892 // but it could be implemented.
893 // - We cannot inline the increment-expression if the loop uses `continue`
894 // anywhere; that would skip over the inlined block that evaluates the
895 // increment expression. There isn't a good fix for this--any workaround would
896 // be more complex than the cost of a function call. However, loops that don't
897 // use `continue` would still be viable candidates for increment-expression
898 // inlining.
899 break;
900 }
901 case Statement::Kind::kIf: {
902 IfStatement& ifStmt = (*stmt)->as<IfStatement>();
903 this->visitExpression(&ifStmt.fTest);
904 this->visitStatement(&ifStmt.fIfTrue);
905 this->visitStatement(&ifStmt.fIfFalse);
906 break;
907 }
908 case Statement::Kind::kReturn: {
909 ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
910 this->visitExpression(&returnStmt.fExpression);
911 break;
912 }
913 case Statement::Kind::kSwitch: {
914 SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
915 if (switchStmt.fSymbols) {
916 fSymbolTableStack.push_back(switchStmt.fSymbols.get());
917 }
918
919 this->visitExpression(&switchStmt.fValue);
920 for (std::unique_ptr<SwitchCase>& switchCase : switchStmt.fCases) {
921 // The switch-case's fValue cannot be a FunctionCall; skip it.
922 for (std::unique_ptr<Statement>& caseBlock : switchCase->fStatements) {
923 this->visitStatement(&caseBlock);
924 }
925 }
926 break;
927 }
928 case Statement::Kind::kVarDeclaration: {
929 VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
930 // Don't need to scan the declaration's sizes; those are always IntLiterals.
931 this->visitExpression(&varDeclStmt.fValue);
932 break;
933 }
934 case Statement::Kind::kVarDeclarations: {
935 VarDeclarationsStatement& varDecls = (*stmt)->as<VarDeclarationsStatement>();
936 for (std::unique_ptr<Statement>& varDecl : varDecls.fDeclaration->fVars) {
937 this->visitStatement(&varDecl, /*isViableAsEnclosingStatement=*/false);
938 }
939 break;
940 }
941 case Statement::Kind::kWhile: {
942 WhileStatement& whileStmt = (*stmt)->as<WhileStatement>();
943 // The loop body is a candidate for inlining.
944 this->visitStatement(&whileStmt.fStatement);
945 // The inliner isn't smart enough to inline the test-expression for a while
946 // loop at this time. There are two limitations:
947 // - We would need to insert the inlined-body block at the very beginning of the
948 // while loop's inner fStatement. We don't support that today, but it's
949 // doable.
950 // - The while-loop's built-in test-expression would need to be replaced with a
951 // `true` BoolLiteral, and the loop would be halted via a break statement at
952 // the end of the inlined test-expression. This is again something we don't
953 // support today, but it could be implemented.
954 break;
955 }
956 default:
957 SkUNREACHABLE;
958 }
959
960 // Pop our symbol and enclosing-statement stacks.
961 fSymbolTableStack.resize(oldSymbolStackSize);
962 fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
963 }
964
965 void visitExpression(std::unique_ptr<Expression>* expr) {
966 if (!*expr) {
967 return;
968 }
969
970 switch ((*expr)->kind()) {
971 case Expression::Kind::kBoolLiteral:
972 case Expression::Kind::kDefined:
973 case Expression::Kind::kExternalValue:
974 case Expression::Kind::kFieldAccess:
975 case Expression::Kind::kFloatLiteral:
976 case Expression::Kind::kFunctionReference:
977 case Expression::Kind::kIntLiteral:
978 case Expression::Kind::kNullLiteral:
979 case Expression::Kind::kSetting:
980 case Expression::Kind::kTypeReference:
981 case Expression::Kind::kVariableReference:
982 // Nothing to scan here.
983 break;
984
985 case Expression::Kind::kBinary: {
986 BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
Ethan Nicholasc8d9c8e2020-09-22 15:05:37 -0400987 this->visitExpression(&binaryExpr.leftPointer());
John Stiles93442622020-09-11 12:11:27 -0400988
989 // Logical-and and logical-or binary expressions do not inline the right side,
990 // because that would invalidate short-circuiting. That is, when evaluating
991 // expressions like these:
992 // (false && x()) // always false
993 // (true || y()) // always true
994 // It is illegal for side-effects from x() or y() to occur. The simplest way to
995 // enforce that rule is to avoid inlining the right side entirely. However, it
996 // is safe for other types of binary expression to inline both sides.
Ethan Nicholasc8d9c8e2020-09-22 15:05:37 -0400997 Token::Kind op = binaryExpr.getOperator();
998 bool shortCircuitable = (op == Token::Kind::TK_LOGICALAND ||
999 op == Token::Kind::TK_LOGICALOR);
John Stiles93442622020-09-11 12:11:27 -04001000 if (!shortCircuitable) {
Ethan Nicholasc8d9c8e2020-09-22 15:05:37 -04001001 this->visitExpression(&binaryExpr.rightPointer());
John Stiles93442622020-09-11 12:11:27 -04001002 }
1003 break;
1004 }
1005 case Expression::Kind::kConstructor: {
1006 Constructor& constructorExpr = (*expr)->as<Constructor>();
Ethan Nicholasf70f0442020-09-29 12:41:35 -04001007 for (std::unique_ptr<Expression>& arg : constructorExpr.arguments()) {
John Stiles93442622020-09-11 12:11:27 -04001008 this->visitExpression(&arg);
1009 }
1010 break;
1011 }
1012 case Expression::Kind::kExternalFunctionCall: {
1013 ExternalFunctionCall& funcCallExpr = (*expr)->as<ExternalFunctionCall>();
1014 for (std::unique_ptr<Expression>& arg : funcCallExpr.fArguments) {
1015 this->visitExpression(&arg);
1016 }
1017 break;
1018 }
1019 case Expression::Kind::kFunctionCall: {
1020 FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
1021 for (std::unique_ptr<Expression>& arg : funcCallExpr.fArguments) {
1022 this->visitExpression(&arg);
1023 }
1024 this->addInlineCandidate(expr);
1025 break;
1026 }
1027 case Expression::Kind::kIndex:{
1028 IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
1029 this->visitExpression(&indexExpr.fBase);
1030 this->visitExpression(&indexExpr.fIndex);
1031 break;
1032 }
1033 case Expression::Kind::kPostfix: {
1034 PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
1035 this->visitExpression(&postfixExpr.fOperand);
1036 break;
1037 }
1038 case Expression::Kind::kPrefix: {
1039 PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
1040 this->visitExpression(&prefixExpr.fOperand);
1041 break;
1042 }
1043 case Expression::Kind::kSwizzle: {
1044 Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
1045 this->visitExpression(&swizzleExpr.fBase);
1046 break;
1047 }
1048 case Expression::Kind::kTernary: {
1049 TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
1050 // The test expression is a candidate for inlining.
1051 this->visitExpression(&ternaryExpr.fTest);
1052 // The true- and false-expressions cannot be inlined, because we are only
1053 // allowed to evaluate one side.
1054 break;
1055 }
1056 default:
1057 SkUNREACHABLE;
1058 }
1059 }
1060
1061 void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
1062 fInlineCandidates.push_back(InlineCandidate{fSymbolTableStack.back(),
John Stiles915a38c2020-09-14 09:38:13 -04001063 find_parent_statement(fEnclosingStmtStack),
1064 fEnclosingStmtStack.back(),
1065 candidate});
John Stiles93442622020-09-11 12:11:27 -04001066 }
1067 };
1068
John Stiles93442622020-09-11 12:11:27 -04001069 InlineCandidateAnalyzer analyzer;
1070 analyzer.visit(program);
John Stiles915a38c2020-09-14 09:38:13 -04001071
1072 // For each of our candidate function-call sites, check if it is actually safe to inline.
1073 // Memoize our results so we don't check a function more than once.
John Stiles93442622020-09-11 12:11:27 -04001074 std::unordered_map<const FunctionDeclaration*, bool> inlinableMap; // <function, safe-to-inline>
John Stiles915a38c2020-09-14 09:38:13 -04001075 for (const InlineCandidate& candidate : analyzer.fInlineCandidates) {
John Stiles93442622020-09-11 12:11:27 -04001076 const FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
1077 const FunctionDeclaration* funcDecl = &funcCall.fFunction;
1078 if (inlinableMap.find(funcDecl) == inlinableMap.end()) {
1079 // We do not perform inlining on recursive calls to avoid an infinite death spiral of
1080 // inlining.
1081 int inlineThreshold = (funcDecl->fCallCount.load() > 1) ? fSettings->fInlineThreshold
1082 : INT_MAX;
1083 inlinableMap[funcDecl] = this->isSafeToInline(funcCall, inlineThreshold) &&
1084 !contains_recursive_call(*funcDecl);
John Stiles93442622020-09-11 12:11:27 -04001085 }
1086 }
1087
John Stiles915a38c2020-09-14 09:38:13 -04001088 // Inline the candidates where we've determined that it's safe to do so.
1089 std::unordered_set<const std::unique_ptr<Statement>*> enclosingStmtSet;
1090 bool madeChanges = false;
1091 for (const InlineCandidate& candidate : analyzer.fInlineCandidates) {
1092 FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
1093 const FunctionDeclaration* funcDecl = &funcCall.fFunction;
1094
1095 // If we determined that this candidate was not actually inlinable, skip it.
1096 if (!inlinableMap[funcDecl]) {
1097 continue;
1098 }
1099
1100 // Inlining two expressions using the same enclosing statement in the same inlining pass
1101 // does not work properly. If this happens, skip it; we'll get it in the next pass.
1102 auto [unusedIter, inserted] = enclosingStmtSet.insert(candidate.fEnclosingStmt);
1103 if (!inserted) {
1104 continue;
1105 }
1106
1107 // Convert the function call to its inlined equivalent.
1108 InlinedCall inlinedCall = this->inlineCall(&funcCall, candidate.fSymbols);
1109 if (inlinedCall.fInlinedBody) {
1110 // Ensure that the inlined body has a scope if it needs one.
John Stilesb61ee902020-09-21 12:26:59 -04001111 this->ensureScopedBlocks(inlinedCall.fInlinedBody.get(), candidate.fParentStmt);
John Stiles915a38c2020-09-14 09:38:13 -04001112
1113 // Move the enclosing statement to the end of the unscoped Block containing the inlined
1114 // function, then replace the enclosing statement with that Block.
1115 // Before:
1116 // fInlinedBody = Block{ stmt1, stmt2, stmt3 }
1117 // fEnclosingStmt = stmt4
1118 // After:
1119 // fInlinedBody = null
1120 // fEnclosingStmt = Block{ stmt1, stmt2, stmt3, stmt4 }
Ethan Nicholas7bd60432020-09-25 14:31:59 -04001121 inlinedCall.fInlinedBody->children().push_back(std::move(*candidate.fEnclosingStmt));
John Stiles915a38c2020-09-14 09:38:13 -04001122 *candidate.fEnclosingStmt = std::move(inlinedCall.fInlinedBody);
1123 }
1124
1125 // Replace the candidate function call with our replacement expression.
1126 *candidate.fCandidateExpr = std::move(inlinedCall.fReplacementExpr);
1127 madeChanges = true;
1128
1129 // Note that nothing was destroyed except for the FunctionCall. All other nodes should
1130 // remain valid.
1131 }
1132
1133 return madeChanges;
John Stiles93442622020-09-11 12:11:27 -04001134}
1135
John Stiles44e96be2020-08-31 13:16:04 -04001136} // namespace SkSL