blob: cb2e3bc427c4419057098ebd63c02ac7def84d3e [file] [log] [blame]
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "CurveIntersection.h"
8#include "Intersections.h"
9#include "LineIntersection.h"
10#include "SkPath.h"
11#include "SkRect.h"
12#include "SkTArray.h"
13#include "SkTDArray.h"
14#include "ShapeOps.h"
15#include "TSearch.h"
caryclark@google.coma833b5c2012-04-30 19:38:50 +000016#include <algorithm> // used for std::min
caryclark@google.comfa0588f2012-04-26 21:01:06 +000017
18#undef SkASSERT
19#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
20
caryclark@google.com15fa1382012-05-07 20:49:36 +000021// Terminology:
22// A Path contains one of more Contours
23// A Contour is made up of Segment array
24// A Segment is described by a Verb and a Point array
25// A Verb is one of Line, Quad(ratic), and Cubic
26// A Segment contains a Span array
27// A Span is describes a portion of a Segment using starting and ending T
28// T values range from 0 to 1, where 0 is the first Point in the Segment
29
caryclark@google.comfa0588f2012-04-26 21:01:06 +000030// FIXME: remove once debugging is complete
31#if 0 // set to 1 for no debugging whatsoever
32
33//const bool gxRunTestsInOneThread = false;
34
35#define DEBUG_ADD_INTERSECTING_TS 0
36#define DEBUG_BRIDGE 0
37#define DEBUG_DUMP 0
38
39#else
40
41//const bool gRunTestsInOneThread = true;
42
43#define DEBUG_ADD_INTERSECTING_TS 1
44#define DEBUG_BRIDGE 1
45#define DEBUG_DUMP 1
46
47#endif
48
49#if DEBUG_DUMP
50static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
51static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
52static int gContourID;
53static int gSegmentID;
54#endif
55
56static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
57 Intersections& intersections) {
58 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
59 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
60 return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]);
61}
62
63static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
64 Intersections& intersections) {
65 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
66 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
67 intersect(aQuad, bLine, intersections);
68 return intersections.fUsed;
69}
70
71static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3],
72 Intersections& intersections) {
73 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
74 {a[3].fX, a[3].fY}};
75 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
76 return intersect(aCubic, bLine, intersections.fT[0], intersections.fT[1]);
77}
78
79static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
80 Intersections& intersections) {
81 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
82 const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}};
83 intersect(aQuad, bQuad, intersections);
84 return intersections.fUsed;
85}
86
87static int CubicIntersect(const SkPoint a[4], const SkPoint b[4],
88 Intersections& intersections) {
89 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
90 {a[3].fX, a[3].fY}};
91 const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY},
92 {b[3].fX, b[3].fY}};
93 intersect(aCubic, bCubic, intersections);
94 return intersections.fUsed;
95}
96
97static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
98 SkScalar y, bool flipped, Intersections& intersections) {
99 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
100 return horizontalIntersect(aLine, left, right, y, flipped, intersections);
101}
102
103static int VLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
104 SkScalar y, bool flipped, Intersections& intersections) {
105 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
106 return verticalIntersect(aLine, left, right, y, flipped, intersections);
107}
108
109static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
110 SkScalar y, bool flipped, Intersections& intersections) {
111 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
112 return horizontalIntersect(aQuad, left, right, y, flipped, intersections);
113}
114
115static int VQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
116 SkScalar y, bool flipped, Intersections& intersections) {
117 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
118 return verticalIntersect(aQuad, left, right, y, flipped, intersections);
119}
120
121static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
122 SkScalar y, bool flipped, Intersections& intersections) {
123 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
124 {a[3].fX, a[3].fY}};
125 return horizontalIntersect(aCubic, left, right, y, flipped, intersections);
126}
127
128static int VCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
129 SkScalar y, bool flipped, Intersections& intersections) {
130 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
131 {a[3].fX, a[3].fY}};
132 return verticalIntersect(aCubic, left, right, y, flipped, intersections);
133}
134
135static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
136 const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
137 double x, y;
138 xy_at_t(line, t, x, y);
139 out->fX = SkDoubleToScalar(x);
140 out->fY = SkDoubleToScalar(y);
141}
142
143static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
144 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
145 double x, y;
146 xy_at_t(quad, t, x, y);
147 out->fX = SkDoubleToScalar(x);
148 out->fY = SkDoubleToScalar(y);
149}
150
151static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
152 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
153 {a[3].fX, a[3].fY}};
154 double x, y;
155 xy_at_t(cubic, t, x, y);
156 out->fX = SkDoubleToScalar(x);
157 out->fY = SkDoubleToScalar(y);
158}
159
160static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = {
161 NULL,
162 LineXYAtT,
163 QuadXYAtT,
164 CubicXYAtT
165};
166
167static SkScalar LineXAtT(const SkPoint a[2], double t) {
168 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
169 double x;
170 xy_at_t(aLine, t, x, *(double*) 0);
171 return SkDoubleToScalar(x);
172}
173
174static SkScalar QuadXAtT(const SkPoint a[3], double t) {
175 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
176 double x;
177 xy_at_t(quad, t, x, *(double*) 0);
178 return SkDoubleToScalar(x);
179}
180
181static SkScalar CubicXAtT(const SkPoint a[4], double t) {
182 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
183 {a[3].fX, a[3].fY}};
184 double x;
185 xy_at_t(cubic, t, x, *(double*) 0);
186 return SkDoubleToScalar(x);
187}
188
189static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = {
190 NULL,
191 LineXAtT,
192 QuadXAtT,
193 CubicXAtT
194};
195
196static SkScalar LineYAtT(const SkPoint a[2], double t) {
197 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
198 double y;
199 xy_at_t(aLine, t, *(double*) 0, y);
200 return SkDoubleToScalar(y);
201}
202
203static SkScalar QuadYAtT(const SkPoint a[3], double t) {
204 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
205 double y;
206 xy_at_t(quad, t, *(double*) 0, y);
207 return SkDoubleToScalar(y);
208}
209
210static SkScalar CubicYAtT(const SkPoint a[4], double t) {
211 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
212 {a[3].fX, a[3].fY}};
213 double y;
214 xy_at_t(cubic, t, *(double*) 0, y);
215 return SkDoubleToScalar(y);
216}
217
218static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = {
219 NULL,
220 LineYAtT,
221 QuadYAtT,
222 CubicYAtT
223};
224
225static void LineSubDivide(const SkPoint a[2], double startT, double endT,
226 SkPoint sub[2]) {
227 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
228 _Line dst;
229 sub_divide(aLine, startT, endT, dst);
230 sub[0].fX = SkDoubleToScalar(dst[0].x);
231 sub[0].fY = SkDoubleToScalar(dst[0].y);
232 sub[1].fX = SkDoubleToScalar(dst[1].x);
233 sub[1].fY = SkDoubleToScalar(dst[1].y);
234}
235
236static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
237 SkPoint sub[3]) {
238 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
239 {a[2].fX, a[2].fY}};
240 Quadratic dst;
241 sub_divide(aQuad, startT, endT, dst);
242 sub[0].fX = SkDoubleToScalar(dst[0].x);
243 sub[0].fY = SkDoubleToScalar(dst[0].y);
244 sub[1].fX = SkDoubleToScalar(dst[1].x);
245 sub[1].fY = SkDoubleToScalar(dst[1].y);
246 sub[2].fX = SkDoubleToScalar(dst[2].x);
247 sub[2].fY = SkDoubleToScalar(dst[2].y);
248}
249
250static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
251 SkPoint sub[4]) {
252 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
253 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
254 Cubic dst;
255 sub_divide(aCubic, startT, endT, dst);
256 sub[0].fX = SkDoubleToScalar(dst[0].x);
257 sub[0].fY = SkDoubleToScalar(dst[0].y);
258 sub[1].fX = SkDoubleToScalar(dst[1].x);
259 sub[1].fY = SkDoubleToScalar(dst[1].y);
260 sub[2].fX = SkDoubleToScalar(dst[2].x);
261 sub[2].fY = SkDoubleToScalar(dst[2].y);
262 sub[3].fX = SkDoubleToScalar(dst[3].x);
263 sub[3].fY = SkDoubleToScalar(dst[3].y);
264}
265
266static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
267 SkRect& bounds) {
268 SkPoint dst[3];
269 QuadSubDivide(a, startT, endT, dst);
270 bounds.fLeft = bounds.fRight = dst[0].fX;
271 bounds.fTop = bounds.fBottom = dst[0].fY;
272 for (int index = 1; index < 3; ++index) {
273 bounds.growToInclude(dst[index].fX, dst[index].fY);
274 }
275}
276
277static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
278 SkRect& bounds) {
279 SkPoint dst[4];
280 CubicSubDivide(a, startT, endT, dst);
281 bounds.fLeft = bounds.fRight = dst[0].fX;
282 bounds.fTop = bounds.fBottom = dst[0].fY;
283 for (int index = 1; index < 4; ++index) {
284 bounds.growToInclude(dst[index].fX, dst[index].fY);
285 }
286}
287
caryclark@google.com15fa1382012-05-07 20:49:36 +0000288static SkPath::Verb QuadReduceOrder(const SkPoint a[3],
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000289 SkTDArray<SkPoint>& reducePts) {
290 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
291 {a[2].fX, a[2].fY}};
292 Quadratic dst;
293 int order = reduceOrder(aQuad, dst);
294 for (int index = 0; index < order; ++index) {
295 SkPoint* pt = reducePts.append();
296 pt->fX = SkDoubleToScalar(dst[index].x);
297 pt->fY = SkDoubleToScalar(dst[index].y);
298 }
299 return (SkPath::Verb) (order - 1);
300}
301
302static SkPath::Verb CubicReduceOrder(const SkPoint a[4],
303 SkTDArray<SkPoint>& reducePts) {
304 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
305 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
306 Cubic dst;
307 int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed);
308 for (int index = 0; index < order; ++index) {
309 SkPoint* pt = reducePts.append();
310 pt->fX = SkDoubleToScalar(dst[index].x);
311 pt->fY = SkDoubleToScalar(dst[index].y);
312 }
313 return (SkPath::Verb) (order - 1);
314}
315
caryclark@google.com15fa1382012-05-07 20:49:36 +0000316static bool QuadIsLinear(const SkPoint a[3]) {
317 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
318 {a[2].fX, a[2].fY}};
319 return isLinear(aQuad, 0, 2);
320}
321
322static bool CubicIsLinear(const SkPoint a[4]) {
323 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
324 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
325 return isLinear(aCubic, 0, 3);
326}
327
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000328static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) {
329 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
330 double x[2];
331 xy_at_t(aLine, startT, x[0], *(double*) 0);
332 xy_at_t(aLine, endT, x[0], *(double*) 0);
333 return startT < endT ? startT : endT;
334}
335
336static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) {
337 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
338 {a[2].fX, a[2].fY}};
339 return leftMostT(aQuad, startT, endT);
340}
341
342static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) {
343 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
344 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
345 return leftMostT(aCubic, startT, endT);
346}
347
348static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = {
349 NULL,
350 LineLeftMost,
351 QuadLeftMost,
352 CubicLeftMost
353};
354
355static bool IsCoincident(const SkPoint a[2], const SkPoint& above,
356 const SkPoint& below) {
357 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
358 const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}};
359 return implicit_matches_ulps(aLine, bLine, 32);
360}
361
caryclark@google.com15fa1382012-05-07 20:49:36 +0000362// sorting angles
363// given angles of {dx dy ddx ddy dddx dddy} sort them
364class Angle {
365public:
366 bool operator<(const Angle& rh) const {
367 if ((dy < 0) ^ (rh.dy < 0)) {
368 return dy < 0;
369 }
370 SkScalar cmp = dx * rh.dy - rh.dx * dy;
371 if (cmp) {
372 return cmp < 0;
373 }
374 if ((ddy < 0) ^ (rh.ddy < 0)) {
375 return ddy < 0;
376 }
377 cmp = ddx * rh.ddy - rh.ddx * ddy;
378 if (cmp) {
379 return cmp < 0;
380 }
381 if ((dddy < 0) ^ (rh.dddy < 0)) {
382 return ddy < 0;
383 }
384 return dddx * rh.dddy < rh.dddx * dddy;
385 }
386
387 void set(SkPoint* pts, SkPath::Verb verb) {
388 dx = pts[1].fX - pts[0].fX; // b - a
389 dy = pts[1].fY - pts[0].fY;
390 if (verb == SkPath::kLine_Verb) {
391 ddx = ddy = dddx = dddy = 0;
392 return;
393 }
394 ddx = pts[2].fX - pts[1].fX - dx; // a - 2b + c
395 ddy = pts[2].fY - pts[2].fY - dy;
396 if (verb == SkPath::kQuad_Verb) {
397 dddx = dddy = 0;
398 return;
399 }
400 dddx = pts[3].fX + 3 * (pts[1].fX - pts[2].fX) - pts[0].fX;
401 dddy = pts[3].fY + 3 * (pts[1].fY - pts[2].fY) - pts[0].fY;
402 }
403
404private:
405 SkScalar dx;
406 SkScalar dy;
407 SkScalar ddx;
408 SkScalar ddy;
409 SkScalar dddx;
410 SkScalar dddy;
411};
412
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000413// Bounds, unlike Rect, does not consider a vertical line to be empty.
414struct Bounds : public SkRect {
415 static bool Intersects(const Bounds& a, const Bounds& b) {
416 return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
417 a.fTop <= b.fBottom && b.fTop <= a.fBottom;
418 }
419
420 bool isEmpty() {
421 return fLeft > fRight || fTop > fBottom
422 || fLeft == fRight && fTop == fBottom
423 || isnan(fLeft) || isnan(fRight)
424 || isnan(fTop) || isnan(fBottom);
425 }
426
427 void setCubicBounds(const SkPoint a[4]) {
428 _Rect dRect;
429 Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
430 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
431 dRect.setBounds(cubic);
432 set(dRect.left, dRect.top, dRect.right, dRect.bottom);
433 }
434
435 void setQuadBounds(const SkPoint a[3]) {
436 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
437 {a[2].fX, a[2].fY}};
438 _Rect dRect;
439 dRect.setBounds(quad);
440 set(dRect.left, dRect.top, dRect.right, dRect.bottom);
441 }
442};
443
444class Segment;
445
caryclark@google.com15fa1382012-05-07 20:49:36 +0000446struct Span {
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000447 double fT;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000448 Segment* fOther;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000449 double fOtherT;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000450 int fWinding; // accumulated from contours surrounding this one
451 // OPTIMIZATION: done needs only 2 bits (values are -1, 0, 1)
452 int fDone; // set when t to t+fDone is processed
453 // OPTIMIZATION: done needs only 2 bits (values are -1, 0, 1)
454 int fCoincident; // -1 start of coincidence, 0 no coincidence, 1 end
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000455};
456
457class Segment {
458public:
459 Segment() {
460#if DEBUG_DUMP
461 fID = ++gSegmentID;
462#endif
463 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000464
465 void addAngle(SkTDArray<Angle>& angles, double start, double end) {
466 // FIXME complete this
467 // start here;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000468 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000469
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000470 bool addCubic(const SkPoint pts[4]) {
471 fPts = pts;
472 fVerb = SkPath::kCubic_Verb;
473 fBounds.setCubicBounds(pts);
474 }
475
476 bool addLine(const SkPoint pts[2]) {
477 fPts = pts;
478 fVerb = SkPath::kLine_Verb;
479 fBounds.set(pts, 2);
480 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000481
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000482 // add 2 to edge or out of range values to get T extremes
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000483 void addOtherT(int index, double other) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000484 fTs[index].fOtherT = other;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000485 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000486
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000487 bool addQuad(const SkPoint pts[3]) {
488 fPts = pts;
489 fVerb = SkPath::kQuad_Verb;
490 fBounds.setQuadBounds(pts);
491 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000492
caryclark@google.com15fa1382012-05-07 20:49:36 +0000493 int addT(double newT, Segment& other, int coincident) {
494 // FIXME: in the pathological case where there is a ton of intercepts,
495 // binary search?
496 int insertedAt = -1;
497 Span* span;
498 size_t tCount = fTs.count();
499 double delta;
500 for (size_t idx2 = 0; idx2 < tCount; ++idx2) {
501 // OPTIMIZATION: if there are three or more identical Ts, then
502 // the fourth and following could be further insertion-sorted so
503 // that all the edges are clockwise or counterclockwise.
504 // This could later limit segment tests to the two adjacent
505 // neighbors, although it doesn't help with determining which
506 // circular direction to go in.
507 if (newT <= fTs[idx2].fT) {
508 insertedAt = idx2;
509 span = fTs.insert(idx2);
510 goto finish;
511 }
512 }
513 insertedAt = tCount;
514 span = fTs.append();
515finish:
516 span->fT = newT;
517 span->fOther = &other;
518 span->fWinding = 1;
519 span->fDone = 0;
520 span->fCoincident = coincident;
521 fCoincident |= coincident;
522 return insertedAt;
523 }
524
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000525 const Bounds& bounds() const {
526 return fBounds;
527 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000528
caryclark@google.com15fa1382012-05-07 20:49:36 +0000529 bool done() const {
530 return fDone;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000531 }
532
caryclark@google.com15fa1382012-05-07 20:49:36 +0000533 int findCoincidentEnd(int start) const {
534 int tCount = fTs.count();
535 SkASSERT(start < tCount);
536 const Span& span = fTs[start];
537 SkASSERT(span.fCoincident);
538 for (int index = start + 1; index < tCount; ++index) {
539 const Span& match = fTs[index];
540 if (match.fOther == span.fOther) {
541 SkASSERT(match.fCoincident);
542 return index;
543 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000544 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000545 SkASSERT(0); // should never get here
546 return -1;
547 }
548
549 // start is the index of the beginning T of this edge
550 // it is guaranteed to have an end which describes a non-zero length (?)
551 // winding -1 means ccw, 1 means cw
552 // step is in/out -1 or 1
553 // spanIndex is returned
554 Segment* findNext(int start, int winding, int& step, int& spanIndex) {
555 SkASSERT(step == 1 || step == -1);
556 int count = fTs.count();
557 SkASSERT(step > 0 ? start < count - 1 : start > 0);
558 Span* startSpan = &fTs[start];
559 // FIXME:
560 // since Ts can be stepped either way, done markers must be careful
561 // not to assume that segment was only ascending in T. This shouldn't
562 // be a problem unless pathologically a segment can be partially
563 // ascending and partially descending -- maybe quads/cubic can do this?
564 startSpan->fDone = step;
565 SkPoint startLoc; // OPTIMIZATION: store this in the t span?
566 xyAtT(startSpan->fT, &startLoc);
567 SkPoint endLoc;
568 Span* endSpan;
569 int end = nextSpan(start, step, startLoc, startSpan, &endLoc, &endSpan);
570
571 // if we hit the end looking for span end, is that always an error?
572 SkASSERT(step > 0 ? end + 1 < count : end - 1 >= 0);
573
574 // preflight for coincidence -- if present, it may change winding
575 // considerations and whether reversed edges can be followed
576 bool foundCoincident = false;
577 int last = lastSpan(end, step, &startLoc, startSpan, foundCoincident);
578
579 // Discard opposing direction candidates if no coincidence was found.
580 int candidateCount = abs(last - end);
581 if (candidateCount == 1) {
582 SkASSERT(!foundCoincident);
583 // move in winding direction until edge in correct direction
584 // balance wrong direction edges before finding correct one
585 // this requres that the intersection is angularly sorted
586 // for a single intersection, special case -- choose the opposite
587 // edge that steps the same
588 Segment* other = endSpan->fOther;
589 SkASSERT(!other->fDone);
590 spanIndex = other->matchSpan(this, endSpan->fT);
591 SkASSERT(step < 0 ? spanIndex > 0 : spanIndex < other->fTs.count() - 1);
592 return other;
593 }
594
595 // find the next T that describes a length
596 SkTDArray<Angle> angles;
597 Segment* segmentCandidate = NULL;
598 int spanCandidate = -1;
599 int directionCandidate;
600 do {
601 endSpan = &fTs[end];
602 Segment* other = endSpan->fOther;
603 if (other->fDone) {
604 continue;
605 }
606 // if there is only one live crossing, and no coincidence, continue
607 // in the same direction
608 // if there is coincidence, the only choice may be to reverse direction
609 // find edge on either side of intersection
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +0000610 int oIndex = other->matchSpan(this, endSpan->fT);
caryclark@google.com15fa1382012-05-07 20:49:36 +0000611 int oCount = other->fTs.count();
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +0000612 do {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000613 Span& otherSpan = other->fTs[oIndex];
caryclark@google.com15fa1382012-05-07 20:49:36 +0000614 // if done == -1, prior span has already been processed
615 int next = other->nextSpan(oIndex, step, endLoc, &otherSpan,
616 NULL, NULL);
617 if (next < 0) {
618 continue;
619 }
620 bool otherIsCoincident;
621 last = other->lastSpan(next, step, &endLoc, &otherSpan,
622 otherIsCoincident);
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +0000623 if (last < 0) {
624 continue;
625 }
626 #if 0
627 Span& prior = other->fTs[oIndex - 1];
caryclark@google.com15fa1382012-05-07 20:49:36 +0000628 if (otherSpan.fDone >= 0 && oIndex > 0) {
629 // FIXME: this needs to loop on -- until t && pt are different
caryclark@google.com15fa1382012-05-07 20:49:36 +0000630 if (prior.fDone > 0) {
631 continue;
632 }
633
634 }
635 } else { // step == 1
636 if (otherSpan.fDone <= 0 && oIndex < oCount - 1) {
637 // FIXME: this needs to loop on ++ until t && pt are different
638 Span& next = other->fTs[oIndex + 1];
639 if (next.fDone < 0) {
640 continue;
641 }
642 }
643 }
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +0000644 #endif
caryclark@google.com15fa1382012-05-07 20:49:36 +0000645 if (!segmentCandidate) {
646 segmentCandidate = other;
647 spanCandidate = oIndex;
648 directionCandidate = step;
649 continue;
650 }
651 // there's two or more matches
652 if (spanCandidate >= 0) { // retrieve first stored candidate
653 // add edge leading into junction
654 addAngle(angles, endSpan->fT, startSpan->fT);
655 // add edge leading away from junction
656 double nextT = nextSpan(end, step, endLoc, endSpan, NULL,
657 NULL);
658 if (nextT >= 0) {
659 addAngle(angles, endSpan->fT, nextT);
660 }
661 // add first stored candidate into junction
662 segmentCandidate->addAngle(angles,
663 segmentCandidate->fTs[spanCandidate - 1].fT,
664 segmentCandidate->fTs[spanCandidate].fT);
665 // add first stored candidate away from junction
666 segmentCandidate->addAngle(angles,
667 segmentCandidate->fTs[spanCandidate].fT,
668 segmentCandidate->fTs[spanCandidate + 1].fT);
669 }
670 // add candidate into and away from junction
671
672
673 // start here;
674 // more than once viable candidate -- need to
675 // measure angles to find best
676 // noncoincident quads/cubics may have the same initial angle
677 // as lines, so must sort by derivatives as well
678 // while we're here, figure out all connections given the
679 // initial winding info
680 // so the span needs to contain the pairing info found here
681 // this should include the winding computed for the edge, and
682 // what edge it connects to, and whether it is discarded
683 // (maybe discarded == abs(winding) > 1) ?
684 // only need derivatives for duration of sorting, add a new struct
685 // for pairings, remove extra spans that have zero length and
686 // reference an unused other
687 // for coincident, the last span on the other may be marked done
688 // (always?)
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +0000689 } while (++oIndex < oCount);
caryclark@google.com15fa1382012-05-07 20:49:36 +0000690 } while ((end += step) != last);
691 // if loop is exhausted, contour may be closed.
692 // FIXME: pass in close point so we can check for closure
693
694 // given a segment, and a sense of where 'inside' is, return the next
695 // segment. If this segment has an intersection, or ends in multiple
696 // segments, find the mate that continues the outside.
697 // note that if there are multiples, but no coincidence, we can limit
698 // choices to connections in the correct direction
699
700 // mark found segments as done
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000701 }
702
703 void findTooCloseToCall(int winding) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000704 int count = fTs.count();
705 if (count < 3) { // require t=0, x, 1 at minimum
706 return;
707 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000708 int matchIndex = 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000709 int moCount;
710 Span* match;
711 Segment* mOther;
712 do {
713 match = &fTs[matchIndex];
714 mOther = match->fOther;
715 moCount = mOther->fTs.count();
716 } while (moCount >= 3 || ++matchIndex < count - 1); // require t=0, x, 1 at minimum
717 SkPoint matchPt;
718 // OPTIMIZATION: defer matchPt until qualifying toCount is found?
719 xyAtT(match->fT, &matchPt);
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000720 // look for a pair of nearby T values that map to the same (x,y) value
721 // if found, see if the pair of other segments share a common point. If
722 // so, the span from here to there is coincident.
caryclark@google.com15fa1382012-05-07 20:49:36 +0000723 for (int index = matchIndex + 1; index < count; ++index) {
724 Span* test = &fTs[index];
725 Segment* tOther = test->fOther;
726 int toCount = tOther->fTs.count();
727 if (toCount < 3) { // require t=0, x, 1 at minimum
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000728 continue;
729 }
730 SkPoint testPt;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000731 xyAtT(test->fT, &testPt);
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000732 if (matchPt != testPt) {
733 matchIndex = index;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000734 moCount = toCount;
735 match = test;
736 mOther = tOther;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000737 matchPt = testPt;
738 continue;
739 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000740 int moStart = -1; // FIXME: initialization is debugging only
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000741 for (int moIndex = 0; moIndex < moCount; ++moIndex) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000742 Span& moSpan = mOther->fTs[moIndex];
743 if (moSpan.fOther == this) {
744 if (moSpan.fOtherT == match->fT) {
745 moStart = moIndex;
746 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000747 continue;
748 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000749 if (moSpan.fOther != tOther) {
750 continue;
751 }
752 int toStart = -1;
753 int toIndex; // FIXME: initialization is debugging only
754 bool found = false;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000755 for (toIndex = 0; toIndex < toCount; ++toIndex) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000756 Span& toSpan = tOther->fTs[toIndex];
757 if (toSpan.fOther == this) {
758 if (toSpan.fOtherT == test->fT) {
759 toStart = toIndex;
760 }
761 continue;
762 }
763 if (toSpan.fOther == mOther && toSpan.fOtherT
764 == moSpan.fT) {
765 found = true;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000766 break;
767 }
768 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000769 if (!found) {
770 continue;
771 }
772 SkASSERT(moStart >= 0);
773 SkASSERT(toStart >= 0);
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000774 // test to see if the segment between there and here is linear
caryclark@google.com15fa1382012-05-07 20:49:36 +0000775 if (!mOther->isLinear(moStart, moIndex)
776 || !tOther->isLinear(toStart, toIndex)) {
777 continue;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000778 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000779 mOther->fTs[moStart].fCoincident = -1;
780 tOther->fTs[toStart].fCoincident = -1;
781 mOther->fTs[moIndex].fCoincident = 1;
782 tOther->fTs[toIndex].fCoincident = 1;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000783 }
784 nextStart:
785 ;
786 }
787 }
788
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000789 int findByT(double t, const Segment* match) const {
790 // OPTIMIZATION: bsearch if count is honkin huge
791 int count = fTs.count();
792 for (int index = 0; index < count; ++index) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000793 const Span& span = fTs[index];
794 if (t == span.fT && match == span.fOther) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000795 return index;
796 }
797 }
798 SkASSERT(0); // should never get here
799 return -1;
800 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000801
802 // find the adjacent T that is leftmost, with a point != base
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000803 int findLefty(int tIndex, const SkPoint& base) const {
804 int bestTIndex;
805 SkPoint test;
806 SkScalar bestX = DBL_MAX;
807 int testTIndex = tIndex;
808 while (--testTIndex >= 0) {
809 xyAtT(testTIndex, &test);
810 if (test != base) {
811 continue;
812 }
813 bestX = test.fX;
814 bestTIndex = testTIndex;
815 break;
816 }
817 int count = fTs.count();
818 testTIndex = tIndex;
819 while (++testTIndex < count) {
820 xyAtT(testTIndex, &test);
821 if (test == base) {
822 continue;
823 }
824 return bestX > test.fX ? testTIndex : bestTIndex;
825 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000826 SkASSERT(0); // can't get here (?)
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000827 return -1;
828 }
829
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000830 // OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
831 // and use more concise logic like the old edge walker code?
832 // FIXME: this needs to deal with coincident edges
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000833 const Segment* findTop(int& tIndex) const {
834 // iterate through T intersections and return topmost
835 // topmost tangent from y-min to first pt is closer to horizontal
836 int firstT = 0;
837 int lastT = 0;
838 SkScalar topY = fPts[0].fY;
839 int count = fTs.count();
840 int index;
841 for (index = 1; index < count; ++index) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000842 const Span& span = fTs[index];
843 double t = span.fT;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000844 SkScalar yIntercept = yAtT(t);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000845 if (topY > yIntercept) {
846 topY = yIntercept;
847 firstT = lastT = index;
848 } else if (topY == yIntercept) {
849 lastT = index;
850 }
851 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000852 // if there's only a pair of segments, go with the endpoint chosen above
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000853 if (firstT == lastT && (firstT == 0 || firstT == count - 1)) {
854 tIndex = firstT;
855 return this;
856 }
857 // if the topmost T is not on end, or is three-way or more, find left
858 SkPoint leftBase;
859 xyAtT(firstT, &leftBase);
860 int tLeft = findLefty(firstT, leftBase);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000861 const Segment* leftSegment = this;
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000862 // look for left-ness from tLeft to firstT (matching y of other)
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000863 for (index = firstT; index <= lastT; ++index) {
864 const Segment* other = fTs[index].fOther;
865 double otherT = fTs[index].fOtherT;
866 int otherTIndex = other->findByT(otherT, this);
867 // pick companionT closest (but not too close) on either side
868 int otherTLeft = other->findLefty(otherTIndex, leftBase);
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000869 // within this span, find highest y
870 SkPoint testPt, otherPt;
871 testPt.fY = yAtT(tLeft);
872 otherPt.fY = other->yAtT(otherTLeft);
873 // FIXME: incomplete
874 // find the y intercept with the opposite segment
875 if (testPt.fY < otherPt.fY) {
876
877 } else if (testPt.fY > otherPt.fY) {
878
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000879 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000880 // FIXME: leftMost no good. Use y intercept instead
881#if 0
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000882 SkScalar otherMost = other->leftMost(otherTIndex, otherTLeft);
883 if (otherMost < left) {
884 leftSegment = other;
885 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000886#endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000887 }
888 return leftSegment;
889 }
890
891 bool intersected() const {
892 return fTs.count() > 0;
893 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000894
895 bool isLinear(int start, int end) const {
896 if (fVerb == SkPath::kLine_Verb) {
897 return true;
898 }
899 if (fVerb == SkPath::kQuad_Verb) {
900 SkPoint qPart[3];
901 QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart);
902 return QuadIsLinear(qPart);
903 } else {
904 SkASSERT(fVerb == SkPath::kCubic_Verb);
905 SkPoint cPart[4];
906 CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart);
907 return CubicIsLinear(cPart);
908 }
909 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000910
911 bool isHorizontal() const {
912 return fBounds.fTop == fBounds.fBottom;
913 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000914
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000915 bool isVertical() const {
916 return fBounds.fLeft == fBounds.fRight;
917 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000918
caryclark@google.com15fa1382012-05-07 20:49:36 +0000919 int lastSpan(int end, int step, const SkPoint* startLoc,
920 const Span* startSpan, bool& coincident) {
921 int last = end;
922 int count = fTs.count();
923 coincident = false;
924 SkPoint lastLoc;
925 do {
926 if (fTs[last].fCoincident == -step) {
927 coincident = true;
928 }
929 if (step > 0 ? ++last < count : --last >= 0) {
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +0000930 return -1;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000931 }
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +0000932 const Span& lastSpan = fTs[last];
933 if (lastSpan.fDone == -step) {
934 return -1;
935 }
936 if (lastSpan.fT == startSpan->fT) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000937 continue;
938 }
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +0000939 xyAtT(lastSpan.fT, &lastLoc);
caryclark@google.com15fa1382012-05-07 20:49:36 +0000940 } while (*startLoc == lastLoc);
caryclark@google.comfcd4f3e2012-05-07 21:09:32 +0000941 return last;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000942 }
943
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000944 SkScalar leftMost(int start, int end) const {
945 return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT);
946 }
947
caryclark@google.com15fa1382012-05-07 20:49:36 +0000948 int matchSpan(const Segment* match, double matchT)
949 {
950 int count = fTs.count();
951 for (int index = 0; index < count; ++index) {
952 Span& span = fTs[index];
953 if (span.fOther != match) {
954 continue;
955 }
956 if (span.fOtherT != matchT) {
957 continue;
958 }
959 return index;
960 }
961 SkASSERT(0); // should never get here
962 return -1;
963 }
964
965 int nextSpan(int from, int step, const SkPoint& fromLoc,
966 const Span* fromSpan, SkPoint* toLoc, Span** toSpan) {
967 int count = fTs.count();
968 int to = from;
969 while (step > 0 ? ++to < count : --to >= 0) {
970 Span* span = &fTs[to];
971 if (span->fT == fromSpan->fT) {
972 continue;
973 }
974 SkPoint loc;
975 xyAtT(span->fT, &loc);
976 if (fromLoc == loc) {
977 continue;
978 }
979 if (toLoc) {
980 *toLoc = loc;
981 }
982 if (toSpan) {
983 *toSpan = span;
984 }
985 return to;
986 }
987 return -1;
988 }
989
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000990 const SkPoint* pts() const {
991 return fPts;
992 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000993
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000994 void reset() {
995 fPts = NULL;
996 fVerb = (SkPath::Verb) -1;
997 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
998 fTs.reset();
caryclark@google.com15fa1382012-05-07 20:49:36 +0000999 fDone = false;
1000 fCoincident = 0;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001001 }
1002
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001003 // OPTIMIZATION: remove this function if it's never called
1004 double t(int tIndex) const {
1005 return fTs[tIndex].fT;
1006 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001007
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001008 SkPath::Verb verb() const {
1009 return fVerb;
1010 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001011
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001012 SkScalar xAtT(double t) const {
1013 return (*SegmentXAtT[fVerb])(fPts, t);
1014 }
1015
1016 void xyAtT(double t, SkPoint* pt) const {
1017 (*SegmentXYAtT[fVerb])(fPts, t, pt);
1018 }
1019
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001020 SkScalar yAtT(double t) const {
1021 return (*SegmentYAtT[fVerb])(fPts, t);
1022 }
1023
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001024#if DEBUG_DUMP
1025 void dump() const {
1026 const char className[] = "Segment";
1027 const int tab = 4;
1028 for (int i = 0; i < fTs.count(); ++i) {
1029 SkPoint out;
1030 (*SegmentXYAtT[fVerb])(fPts, t(i), &out);
1031 SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d"
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001032 " otherT=%1.9g winding=%d\n",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001033 tab + sizeof(className), className, fID,
1034 kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY,
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001035 fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWinding);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001036 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001037 SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001038 tab + sizeof(className), className, fID,
caryclark@google.com15fa1382012-05-07 20:49:36 +00001039 fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001040 }
1041#endif
1042
1043private:
1044 const SkPoint* fPts;
1045 SkPath::Verb fVerb;
1046 Bounds fBounds;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001047 SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
1048 // FIXME: coincident only needs two bits (-1, 0, 1)
1049 int fCoincident; // non-zero if some coincident span inside
1050 bool fDone;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001051#if DEBUG_DUMP
1052 int fID;
1053#endif
1054};
1055
1056class Contour {
1057public:
1058 Contour() {
1059 reset();
1060#if DEBUG_DUMP
1061 fID = ++gContourID;
1062#endif
1063 }
1064
1065 bool operator<(const Contour& rh) const {
1066 return fBounds.fTop == rh.fBounds.fTop
1067 ? fBounds.fLeft < rh.fBounds.fLeft
1068 : fBounds.fTop < rh.fBounds.fTop;
1069 }
1070
1071 void addCubic(const SkPoint pts[4]) {
1072 fSegments.push_back().addCubic(pts);
1073 fContainsCurves = true;
1074 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001075
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001076 void addLine(const SkPoint pts[2]) {
1077 fSegments.push_back().addLine(pts);
1078 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001079
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001080 void addQuad(const SkPoint pts[3]) {
1081 fSegments.push_back().addQuad(pts);
1082 fContainsCurves = true;
1083 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001084
1085 const Bounds& bounds() const {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001086 return fBounds;
1087 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001088
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001089 void complete() {
1090 setBounds();
1091 fContainsIntercepts = false;
1092 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001093
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001094 void containsIntercepts() {
1095 fContainsIntercepts = true;
1096 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001097
1098 void findTooCloseToCall(int winding) {
1099 int segmentCount = fSegments.count();
1100 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
1101 fSegments[sIndex].findTooCloseToCall(winding);
1102 }
1103 }
1104
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001105 void reset() {
1106 fSegments.reset();
1107 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
caryclark@google.com15fa1382012-05-07 20:49:36 +00001108 fContainsCurves = fContainsIntercepts = false;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001109 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001110
1111 // OPTIMIZATION: feel pretty uneasy about this. It seems like once again
1112 // we need to sort and walk edges in y, but that on the surface opens the
1113 // same can of worms as before. But then, this is a rough sort based on
1114 // segments' top, and not a true sort, so it could be ameniable to regular
1115 // sorting instead of linear searching. Still feel like I'm missing something
1116 Segment* topSegment() {
1117 int segmentCount = fSegments.count();
1118 SkASSERT(segmentCount > 0);
1119 int best = -1;
1120 Segment* bestSegment = NULL;
1121 while (++best < segmentCount) {
1122 Segment* testSegment = &fSegments[best];
1123 if (testSegment->done()) {
1124 continue;
1125 }
1126 bestSegment = testSegment;
1127 break;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001128 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001129 if (!bestSegment) {
1130 return NULL;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001131 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001132 SkScalar bestTop = bestSegment->bounds().fTop;
1133 for (int test = best + 1; test < segmentCount; ++test) {
1134 Segment* testSegment = &fSegments[test];
1135 if (testSegment->done()) {
1136 continue;
1137 }
1138 SkScalar testTop = testSegment->bounds().fTop;
1139 if (bestTop > testTop) {
1140 bestTop = testTop;
1141 bestSegment = testSegment;
1142 }
1143 }
1144 return bestSegment;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001145 }
1146
1147#if DEBUG_DUMP
1148 void dump() {
1149 int i;
1150 const char className[] = "Contour";
1151 const int tab = 4;
1152 SkDebugf("%s %p (contour=%d)\n", className, this, fID);
1153 for (i = 0; i < fSegments.count(); ++i) {
1154 SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className),
1155 className, i);
1156 fSegments[i].dump();
1157 }
1158 SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n",
1159 tab + sizeof(className), className,
1160 fBounds.fLeft, fBounds.fTop,
1161 fBounds.fRight, fBounds.fBottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001162 SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
1163 className, fContainsIntercepts);
1164 SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className),
1165 className, fContainsCurves);
1166 }
1167#endif
1168
1169protected:
1170 void setBounds() {
1171 int count = fSegments.count();
1172 if (count == 0) {
1173 SkDebugf("%s empty contour\n", __FUNCTION__);
1174 SkASSERT(0);
1175 // FIXME: delete empty contour?
1176 return;
1177 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001178 fBounds = fSegments.front().bounds();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001179 for (int index = 1; index < count; ++index) {
1180 fBounds.growToInclude(fSegments[index].bounds());
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001181 }
1182 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001183
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001184public:
1185 SkTArray<Segment> fSegments; // not worth accessor functions?
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001186
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001187private:
1188 Bounds fBounds;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001189 bool fContainsIntercepts;
1190 bool fContainsCurves;
1191#if DEBUG_DUMP
1192 int fID;
1193#endif
1194};
1195
1196class EdgeBuilder {
1197public:
1198
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001199EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours)
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001200 : fPath(path)
1201 , fCurrentContour(NULL)
1202 , fContours(contours)
1203{
1204#if DEBUG_DUMP
1205 gContourID = 0;
1206 gSegmentID = 0;
1207#endif
1208 walk();
1209}
1210
1211protected:
1212
1213void complete() {
1214 if (fCurrentContour && fCurrentContour->fSegments.count()) {
1215 fCurrentContour->complete();
1216 fCurrentContour = NULL;
1217 }
1218}
1219
1220void startContour() {
1221 if (!fCurrentContour) {
1222 fCurrentContour = fContours.push_back_n(1);
1223 }
1224}
1225
1226void walk() {
1227 // FIXME:remove once we can access path pts directly
1228 SkPath::RawIter iter(fPath); // FIXME: access path directly when allowed
1229 SkPoint pts[4];
1230 SkPath::Verb verb;
1231 do {
1232 verb = iter.next(pts);
1233 *fPathVerbs.append() = verb;
1234 if (verb == SkPath::kMove_Verb) {
1235 *fPathPts.append() = pts[0];
1236 } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) {
1237 fPathPts.append(verb, &pts[1]);
1238 }
1239 } while (verb != SkPath::kDone_Verb);
1240 // FIXME: end of section to remove once path pts are accessed directly
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001241
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001242 SkPath::Verb reducedVerb;
1243 uint8_t* verbPtr = fPathVerbs.begin();
1244 const SkPoint* pointsPtr = fPathPts.begin();
1245 while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) {
1246 switch (verb) {
1247 case SkPath::kMove_Verb:
1248 complete();
1249 startContour();
1250 pointsPtr += 1;
1251 continue;
1252 case SkPath::kLine_Verb:
1253 // skip degenerate points
1254 if (pointsPtr[-1].fX != pointsPtr[0].fX
1255 || pointsPtr[-1].fY != pointsPtr[0].fY) {
1256 fCurrentContour->addLine(&pointsPtr[-1]);
1257 }
1258 break;
1259 case SkPath::kQuad_Verb:
1260 reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts);
1261 if (reducedVerb == 0) {
1262 break; // skip degenerate points
1263 }
1264 if (reducedVerb == 1) {
1265 fCurrentContour->addLine(fReducePts.end() - 2);
1266 break;
1267 }
1268 fCurrentContour->addQuad(&pointsPtr[-1]);
1269 break;
1270 case SkPath::kCubic_Verb:
1271 reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts);
1272 if (reducedVerb == 0) {
1273 break; // skip degenerate points
1274 }
1275 if (reducedVerb == 1) {
1276 fCurrentContour->addLine(fReducePts.end() - 2);
1277 break;
1278 }
1279 if (reducedVerb == 2) {
1280 fCurrentContour->addQuad(fReducePts.end() - 3);
1281 break;
1282 }
1283 fCurrentContour->addCubic(&pointsPtr[-1]);
1284 break;
1285 case SkPath::kClose_Verb:
1286 SkASSERT(fCurrentContour);
1287 complete();
1288 continue;
1289 default:
1290 SkDEBUGFAIL("bad verb");
1291 return;
1292 }
1293 pointsPtr += verb;
1294 SkASSERT(fCurrentContour);
1295 }
1296 complete();
1297 if (fCurrentContour && !fCurrentContour->fSegments.count()) {
1298 fContours.pop_back();
1299 }
1300}
1301
1302private:
1303 const SkPath& fPath;
1304 SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001305 SkTDArray<uint8_t> fPathVerbs; // FIXME: remove
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001306 Contour* fCurrentContour;
1307 SkTArray<Contour>& fContours;
1308 SkTDArray<SkPoint> fReducePts; // segments created on the fly
1309};
1310
1311class Work {
1312public:
1313 enum SegmentType {
1314 kHorizontalLine_Segment = -1,
1315 kVerticalLine_Segment = 0,
1316 kLine_Segment = SkPath::kLine_Verb,
1317 kQuad_Segment = SkPath::kQuad_Verb,
1318 kCubic_Segment = SkPath::kCubic_Verb,
1319 };
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001320
1321 void addOtherT(int index, double other) {
1322 fContour->fSegments[fIndex].addOtherT(index, other);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001323 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001324
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001325 // Avoid collapsing t values that are close to the same since
1326 // we walk ts to describe consecutive intersections. Since a pair of ts can
1327 // be nearly equal, any problems caused by this should be taken care
1328 // of later.
1329 // On the edge or out of range values are negative; add 2 to get end
caryclark@google.com15fa1382012-05-07 20:49:36 +00001330 int addT(double newT, const Work& other, int coincident) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001331 fContour->containsIntercepts();
caryclark@google.com15fa1382012-05-07 20:49:36 +00001332 return fContour->fSegments[fIndex].addT(newT,
1333 other.fContour->fSegments[other.fIndex], coincident);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001334 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001335
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001336 bool advance() {
1337 return ++fIndex < fLast;
1338 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001339
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001340 SkScalar bottom() const {
1341 return bounds().fBottom;
1342 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001343
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001344 const Bounds& bounds() const {
1345 return fContour->fSegments[fIndex].bounds();
1346 }
1347
1348 const SkPoint* cubic() const {
1349 return fCubic;
1350 }
1351
1352 void init(Contour* contour) {
1353 fContour = contour;
1354 fIndex = 0;
1355 fLast = contour->fSegments.count();
1356 }
1357
1358 SkScalar left() const {
1359 return bounds().fLeft;
1360 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001361
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001362 void promoteToCubic() {
1363 fCubic[0] = pts()[0];
1364 fCubic[2] = pts()[1];
1365 fCubic[3] = pts()[2];
1366 fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3;
1367 fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3;
1368 fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3;
1369 fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3;
1370 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001371
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001372 const SkPoint* pts() const {
1373 return fContour->fSegments[fIndex].pts();
1374 }
1375
1376 SkScalar right() const {
1377 return bounds().fRight;
1378 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001379
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001380 ptrdiff_t segmentIndex() const {
1381 return fIndex;
1382 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001383
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001384 SegmentType segmentType() const {
1385 const Segment& segment = fContour->fSegments[fIndex];
1386 SegmentType type = (SegmentType) segment.verb();
1387 if (type != kLine_Segment) {
1388 return type;
1389 }
1390 if (segment.isHorizontal()) {
1391 return kHorizontalLine_Segment;
1392 }
1393 if (segment.isVertical()) {
1394 return kVerticalLine_Segment;
1395 }
1396 return kLine_Segment;
1397 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001398
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001399 bool startAfter(const Work& after) {
1400 fIndex = after.fIndex;
1401 return advance();
1402 }
1403
1404 SkScalar top() const {
1405 return bounds().fTop;
1406 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001407
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001408 SkPath::Verb verb() const {
1409 return fContour->fSegments[fIndex].verb();
1410 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001411
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001412 SkScalar x() const {
1413 return bounds().fLeft;
1414 }
1415
1416 bool xFlipped() const {
1417 return x() != pts()[0].fX;
1418 }
1419
1420 SkScalar y() const {
1421 return bounds().fTop;
1422 }
1423
1424 bool yFlipped() const {
1425 return y() != pts()[0].fX;
1426 }
1427
1428protected:
1429 Contour* fContour;
1430 SkPoint fCubic[4];
1431 int fIndex;
1432 int fLast;
1433};
1434
1435static void debugShowLineIntersection(int pts, const Work& wt,
1436 const Work& wn, const double wtTs[2], const double wnTs[2]) {
1437#if DEBUG_ADD_INTERSECTING_TS
1438 if (!pts) {
1439 return;
1440 }
1441 SkPoint wtOutPt, wnOutPt;
1442 LineXYAtT(wt.pts(), wtTs[0], &wtOutPt);
1443 LineXYAtT(wn.pts(), wnTs[0], &wnOutPt);
1444 SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n",
1445 __FUNCTION__,
1446 wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY,
1447 wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY);
1448 if (pts == 2) {
1449 SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]);
1450 }
1451 SkDebugf("%s wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n",
1452 __FUNCTION__,
1453 wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY,
1454 wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY);
1455 if (pts == 2) {
1456 SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]);
1457 }
1458#endif
1459}
1460
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001461static bool addIntersectTs(Contour* test, Contour* next, int winding) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001462 if (test != next) {
1463 if (test->bounds().fBottom < next->bounds().fTop) {
1464 return false;
1465 }
1466 if (!Bounds::Intersects(test->bounds(), next->bounds())) {
1467 return true;
1468 }
1469 }
1470 Work wt, wn;
1471 wt.init(test);
1472 wn.init(next);
1473 do {
1474 if (test == next && !wn.startAfter(wt)) {
1475 continue;
1476 }
1477 do {
1478 if (!Bounds::Intersects(wt.bounds(), wn.bounds())) {
1479 continue;
1480 }
1481 int pts;
1482 Intersections ts;
1483 bool swap = false;
1484 switch (wt.segmentType()) {
1485 case Work::kHorizontalLine_Segment:
1486 swap = true;
1487 switch (wn.segmentType()) {
1488 case Work::kHorizontalLine_Segment:
1489 case Work::kVerticalLine_Segment:
1490 case Work::kLine_Segment: {
1491 pts = HLineIntersect(wn.pts(), wt.left(),
1492 wt.right(), wt.y(), wt.xFlipped(), ts);
1493 break;
1494 }
1495 case Work::kQuad_Segment: {
1496 pts = HQuadIntersect(wn.pts(), wt.left(),
1497 wt.right(), wt.y(), wt.xFlipped(), ts);
1498 break;
1499 }
1500 case Work::kCubic_Segment: {
1501 pts = HCubicIntersect(wn.pts(), wt.left(),
1502 wt.right(), wt.y(), wt.xFlipped(), ts);
1503 break;
1504 }
1505 default:
1506 SkASSERT(0);
1507 }
1508 break;
1509 case Work::kVerticalLine_Segment:
1510 swap = true;
1511 switch (wn.segmentType()) {
1512 case Work::kHorizontalLine_Segment:
1513 case Work::kVerticalLine_Segment:
1514 case Work::kLine_Segment: {
1515 pts = VLineIntersect(wn.pts(), wt.top(),
1516 wt.bottom(), wt.x(), wt.yFlipped(), ts);
1517 break;
1518 }
1519 case Work::kQuad_Segment: {
1520 pts = VQuadIntersect(wn.pts(), wt.top(),
1521 wt.bottom(), wt.x(), wt.yFlipped(), ts);
1522 break;
1523 }
1524 case Work::kCubic_Segment: {
1525 pts = VCubicIntersect(wn.pts(), wt.top(),
1526 wt.bottom(), wt.x(), wt.yFlipped(), ts);
1527 break;
1528 }
1529 default:
1530 SkASSERT(0);
1531 }
1532 break;
1533 case Work::kLine_Segment:
1534 switch (wn.segmentType()) {
1535 case Work::kHorizontalLine_Segment:
1536 pts = HLineIntersect(wt.pts(), wn.left(),
1537 wn.right(), wn.y(), wn.xFlipped(), ts);
1538 break;
1539 case Work::kVerticalLine_Segment:
1540 pts = VLineIntersect(wt.pts(), wn.top(),
1541 wn.bottom(), wn.x(), wn.yFlipped(), ts);
1542 break;
1543 case Work::kLine_Segment: {
1544 pts = LineIntersect(wt.pts(), wn.pts(), ts);
1545 debugShowLineIntersection(pts, wt, wn,
1546 ts.fT[1], ts.fT[0]);
1547 break;
1548 }
1549 case Work::kQuad_Segment: {
1550 swap = true;
1551 pts = QuadLineIntersect(wn.pts(), wt.pts(), ts);
1552 break;
1553 }
1554 case Work::kCubic_Segment: {
1555 swap = true;
1556 pts = CubicLineIntersect(wn.pts(), wt.pts(), ts);
1557 break;
1558 }
1559 default:
1560 SkASSERT(0);
1561 }
1562 break;
1563 case Work::kQuad_Segment:
1564 switch (wn.segmentType()) {
1565 case Work::kHorizontalLine_Segment:
1566 pts = HQuadIntersect(wt.pts(), wn.left(),
1567 wn.right(), wn.y(), wn.xFlipped(), ts);
1568 break;
1569 case Work::kVerticalLine_Segment:
1570 pts = VQuadIntersect(wt.pts(), wn.top(),
1571 wn.bottom(), wn.x(), wn.yFlipped(), ts);
1572 break;
1573 case Work::kLine_Segment: {
1574 pts = QuadLineIntersect(wt.pts(), wn.pts(), ts);
1575 break;
1576 }
1577 case Work::kQuad_Segment: {
1578 pts = QuadIntersect(wt.pts(), wn.pts(), ts);
1579 break;
1580 }
1581 case Work::kCubic_Segment: {
1582 wt.promoteToCubic();
1583 pts = CubicIntersect(wt.cubic(), wn.pts(), ts);
1584 break;
1585 }
1586 default:
1587 SkASSERT(0);
1588 }
1589 break;
1590 case Work::kCubic_Segment:
1591 switch (wn.segmentType()) {
1592 case Work::kHorizontalLine_Segment:
1593 pts = HCubicIntersect(wt.pts(), wn.left(),
1594 wn.right(), wn.y(), wn.xFlipped(), ts);
1595 break;
1596 case Work::kVerticalLine_Segment:
1597 pts = VCubicIntersect(wt.pts(), wn.top(),
1598 wn.bottom(), wn.x(), wn.yFlipped(), ts);
1599 break;
1600 case Work::kLine_Segment: {
1601 pts = CubicLineIntersect(wt.pts(), wn.pts(), ts);
1602 break;
1603 }
1604 case Work::kQuad_Segment: {
1605 wn.promoteToCubic();
1606 pts = CubicIntersect(wt.pts(), wn.cubic(), ts);
1607 break;
1608 }
1609 case Work::kCubic_Segment: {
1610 pts = CubicIntersect(wt.pts(), wn.pts(), ts);
1611 break;
1612 }
1613 default:
1614 SkASSERT(0);
1615 }
1616 break;
1617 default:
1618 SkASSERT(0);
1619 }
1620 // in addition to recording T values, record matching segment
caryclark@google.com15fa1382012-05-07 20:49:36 +00001621 int coincident = pts == 2 && wn.segmentType() <= Work::kLine_Segment
1622 && wt.segmentType() <= Work::kLine_Segment ? -1 :0;
1623 for (int pt = 0; pt < pts; ++pt) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001624 SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
1625 SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
caryclark@google.com15fa1382012-05-07 20:49:36 +00001626 int testTAt = wt.addT(ts.fT[swap][pt], wn, coincident);
1627 int nextTAt = wn.addT(ts.fT[!swap][pt], wt, coincident);
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001628 wt.addOtherT(testTAt, ts.fT[!swap][pt]);
1629 wn.addOtherT(nextTAt, ts.fT[swap][pt]);
caryclark@google.com15fa1382012-05-07 20:49:36 +00001630 coincident = -coincident;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001631 }
1632 } while (wn.advance());
1633 } while (wt.advance());
1634 return true;
1635}
1636
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001637// see if coincidence is formed by clipping non-concident segments
1638static void coincidenceCheck(SkTDArray<Contour*>& contourList, int winding) {
1639 int contourCount = contourList.count();
1640 for (size_t cIndex = 0; cIndex < contourCount; ++cIndex) {
1641 Contour* contour = contourList[cIndex];
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001642 contour->findTooCloseToCall(winding);
1643 }
1644}
1645
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001646// Each segment may have an inside or an outside. Segments contained within
1647// winding may have insides on either side, and form a contour that should be
1648// ignored. Segments that are coincident with opposing direction segments may
1649// have outsides on either side, and should also disappear.
1650// 'Normal' segments will have one inside and one outside. Subsequent connections
1651// when winding should follow the intersection direction. If more than one edge
1652// is an option, choose first edge that continues the inside.
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001653
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001654static void bridge(SkTDArray<Contour*>& contourList) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00001655 int contourCount = contourList.count();
1656 do {
1657 // OPTIMIZATION: not crazy about linear search here to find top active y.
1658 // seems like we should break down and do the sort, or maybe sort each
1659 // contours' segments?
1660 // Once the segment array is built, there's no reason I can think of not to
1661 // sort it in Y. hmmm
1662 int cIndex = 0;
1663 Segment* topStart;
1664 do {
1665 Contour* topContour = contourList[cIndex];
1666 topStart = topContour->topSegment();
1667 } while (!topStart && ++cIndex < contourCount);
1668 if (!topStart) {
1669 break;
1670 }
1671 SkScalar top = topStart->bounds().fTop;
1672 for (int cTest = cIndex + 1; cTest < contourCount; ++cTest) {
1673 Contour* contour = contourList[cTest];
1674 if (top < contour->bounds().fTop) {
1675 continue;
1676 }
1677 Segment* test = contour->topSegment();
1678 if (top > test->bounds().fTop) {
1679 cIndex = cTest;
1680 topStart = test;
1681 top = test->bounds().fTop;
1682 }
1683 }
1684 int index;
1685 const Segment* topSegment = topStart->findTop(index);
1686 // Start at the top. Above the top is outside, below is inside.
1687 // follow edges to intersection
1688 // at intersection, stay on outside, but mark remaining edges as inside
1689 // or, only mark first pair as inside?
1690 // how is this going to work for contained (but not intersecting)
1691 // segments?
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001692 // start here ;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001693 // find span
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001694 // mark neighbors winding coverage
1695 // output span
1696 // mark span as processed
caryclark@google.com15fa1382012-05-07 20:49:36 +00001697
1698 } while (true);
1699
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001700
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001701}
1702
1703static void makeContourList(SkTArray<Contour>& contours, Contour& sentinel,
1704 SkTDArray<Contour*>& list) {
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001705 int count = contours.count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001706 if (count == 0) {
1707 return;
1708 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001709 for (int index = 0; index < count; ++index) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001710 *list.append() = &contours[index];
1711 }
1712 *list.append() = &sentinel;
1713 QSort<Contour>(list.begin(), list.end() - 1);
1714}
1715
1716void simplifyx(const SkPath& path, bool asFill, SkPath& simple) {
1717 // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001718 int winding = (path.getFillType() & 1) ? 1 : -1;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001719 simple.reset();
1720 simple.setFillType(SkPath::kEvenOdd_FillType);
1721
1722 // turn path into list of segments
1723 SkTArray<Contour> contours;
1724 // FIXME: add self-intersecting cubics' T values to segment
1725 EdgeBuilder builder(path, contours);
1726 SkTDArray<Contour*> contourList;
1727 Contour sentinel;
1728 sentinel.reset();
1729 makeContourList(contours, sentinel, contourList);
1730 Contour** currentPtr = contourList.begin();
1731 if (!currentPtr) {
1732 return;
1733 }
1734 // find all intersections between segments
1735 do {
1736 Contour** nextPtr = currentPtr;
1737 Contour* current = *currentPtr++;
1738 Contour* next;
1739 do {
1740 next = *nextPtr++;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001741 } while (next != &sentinel && addIntersectTs(current, next, winding));
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001742 } while (*currentPtr != &sentinel);
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001743 // eat through coincident edges
1744 coincidenceCheck(contourList, winding);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001745 // construct closed contours
1746 bridge(contourList);
1747}
1748