blob: 19e7340cdc0d7778509ff59e1f61b56d552b8a70 [file] [log] [blame]
caryclark@google.com07393ca2013-04-08 11:47:37 +00001/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkIntersections.h"
9#include "SkPathOpsCubic.h"
10#include "SkPathOpsLine.h"
11#include "SkPathOpsPoint.h"
12#include "SkPathOpsQuad.h"
13#include "SkPathOpsRect.h"
14#include "SkReduceOrder.h"
commit-bot@chromium.orgb76d3b62013-04-22 19:55:19 +000015#include "SkTSort.h"
caryclark@google.com07393ca2013-04-08 11:47:37 +000016
17#if ONE_OFF_DEBUG
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000018static const double tLimits1[2][2] = {{0.388600450, 0.388600452}, {0.245852802, 0.245852804}};
caryclark@google.com07393ca2013-04-08 11:47:37 +000019static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.865207696, -0.865208078}};
20#endif
21
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000022#define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
23#define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
caryclark@google.com07393ca2013-04-08 11:47:37 +000024#define SWAP_TOP_DEBUG 0
25
caryclark@google.comd892bd82013-06-17 14:10:36 +000026static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision
27
caryclark@google.com07393ca2013-04-08 11:47:37 +000028static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
29 SkDCubic part = cubic.subDivide(tStart, tEnd);
30 SkDQuad quad = part.toQuad();
31 // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
32 // extremely shallow quadratic?
33 int order = reducer->reduce(quad, SkReduceOrder::kFill_Style);
34#if DEBUG_QUAD_PART
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000035 SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
36 " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
caryclark@google.com07393ca2013-04-08 11:47:37 +000037 cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
38 cubic[3].fX, cubic[3].fY, tStart, tEnd);
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000039 SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
40 " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
caryclark@google.com07393ca2013-04-08 11:47:37 +000041 part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
42 part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
43 quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000044#if DEBUG_QUAD_PART_SHOW_SIMPLE
45 SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
caryclark@google.com07393ca2013-04-08 11:47:37 +000046 if (order > 1) {
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000047 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
caryclark@google.com07393ca2013-04-08 11:47:37 +000048 }
49 if (order > 2) {
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000050 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
caryclark@google.com07393ca2013-04-08 11:47:37 +000051 }
52 SkDebugf(")\n");
53 SkASSERT(order < 4 && order > 0);
54#endif
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000055#endif
caryclark@google.com07393ca2013-04-08 11:47:37 +000056 return order;
57}
58
59static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
60 int order2, SkIntersections& i) {
61 if (order1 == 3 && order2 == 3) {
62 i.intersect(simple1, simple2);
63 } else if (order1 <= 2 && order2 <= 2) {
64 i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
65 } else if (order1 == 3 && order2 <= 2) {
66 i.intersect(simple1, (const SkDLine&) simple2);
67 } else {
68 SkASSERT(order1 <= 2 && order2 == 3);
69 i.intersect(simple2, (const SkDLine&) simple1);
70 i.swapPts();
71 }
72}
73
74// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
75// chase intersections near quadratic ends, requiring odd hacks to find them.
76static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
77 double t2s, double t2e, double precisionScale, SkIntersections& i) {
78 i.upDepth();
79 SkDCubic c1 = cubic1.subDivide(t1s, t1e);
80 SkDCubic c2 = cubic2.subDivide(t2s, t2e);
caryclark@google.comd892bd82013-06-17 14:10:36 +000081 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
caryclark@google.com07393ca2013-04-08 11:47:37 +000082 // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
83 c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
caryclark@google.comd892bd82013-06-17 14:10:36 +000084 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
caryclark@google.com07393ca2013-04-08 11:47:37 +000085 c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
86 double t1Start = t1s;
87 int ts1Count = ts1.count();
88 for (int i1 = 0; i1 <= ts1Count; ++i1) {
89 const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
90 const double t1 = t1s + (t1e - t1s) * tEnd1;
91 SkReduceOrder s1;
92 int o1 = quadPart(cubic1, t1Start, t1, &s1);
93 double t2Start = t2s;
94 int ts2Count = ts2.count();
95 for (int i2 = 0; i2 <= ts2Count; ++i2) {
96 const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
97 const double t2 = t2s + (t2e - t2s) * tEnd2;
98 if (&cubic1 == &cubic2 && t1Start >= t2Start) {
99 t2Start = t2;
100 continue;
101 }
102 SkReduceOrder s2;
103 int o2 = quadPart(cubic2, t2Start, t2, &s2);
104 #if ONE_OFF_DEBUG
105 char tab[] = " ";
106 if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
107 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000108 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
109 __FUNCTION__, t1Start, t1, t2Start, t2);
110 SkIntersections xlocals;
111 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
112 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
113 }
114 #endif
115 SkIntersections locals;
116 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000117 int tCount = locals.used();
118 for (int tIdx = 0; tIdx < tCount; ++tIdx) {
119 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
120 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
121 // if the computed t is not sufficiently precise, iterate
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000122 SkDPoint p1 = cubic1.ptAtT(to1);
123 SkDPoint p2 = cubic2.ptAtT(to2);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000124 if (p1.approximatelyEqual(p2)) {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000125 SkASSERT(!locals.isCoincident(tIdx));
126 if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000127 if (i.swapped()) { // FIXME: insert should respect swap
128 i.insert(to2, to1, p1);
129 } else {
130 i.insert(to1, to2, p1);
131 }
132 }
133 } else {
134 double offset = precisionScale / 16; // FIME: const is arbitrary: test, refine
caryclark@google.com07393ca2013-04-08 11:47:37 +0000135 double c1Bottom = tIdx == 0 ? 0 :
136 (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
caryclark@google.com3b97af52013-04-23 11:56:44 +0000137 double c1Min = SkTMax(c1Bottom, to1 - offset);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000138 double c1Top = tIdx == tCount - 1 ? 1 :
139 (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
caryclark@google.com3b97af52013-04-23 11:56:44 +0000140 double c1Max = SkTMin(c1Top, to1 + offset);
141 double c2Min = SkTMax(0., to2 - offset);
142 double c2Max = SkTMin(1., to2 + offset);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000143 #if ONE_OFF_DEBUG
144 SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
145 __FUNCTION__,
146 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
147 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
148 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
149 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
150 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
151 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
152 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
153 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
154 SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
155 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
156 i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
157 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
158 SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
159 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
160 c1Max, c2Min, c2Max);
161 #endif
162 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
163 #if ONE_OFF_DEBUG
164 SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
165 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
166 #endif
167 if (tCount > 1) {
caryclark@google.com3b97af52013-04-23 11:56:44 +0000168 c1Min = SkTMax(0., to1 - offset);
169 c1Max = SkTMin(1., to1 + offset);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000170 double c2Bottom = tIdx == 0 ? to2 :
171 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
172 double c2Top = tIdx == tCount - 1 ? to2 :
173 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
174 if (c2Bottom > c2Top) {
175 SkTSwap(c2Bottom, c2Top);
176 }
177 if (c2Bottom == to2) {
178 c2Bottom = 0;
179 }
180 if (c2Top == to2) {
181 c2Top = 1;
182 }
caryclark@google.com3b97af52013-04-23 11:56:44 +0000183 c2Min = SkTMax(c2Bottom, to2 - offset);
184 c2Max = SkTMin(c2Top, to2 + offset);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000185 #if ONE_OFF_DEBUG
186 SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
187 __FUNCTION__,
188 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
189 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
190 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
191 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
192 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
193 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
194 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
195 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
196 SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
197 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
198 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
199 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
200 SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
201 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
202 c1Max, c2Min, c2Max);
203 #endif
204 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
205 #if ONE_OFF_DEBUG
206 SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
207 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
208 #endif
caryclark@google.com3b97af52013-04-23 11:56:44 +0000209 c1Min = SkTMax(c1Bottom, to1 - offset);
210 c1Max = SkTMin(c1Top, to1 + offset);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000211 #if ONE_OFF_DEBUG
212 SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
213 __FUNCTION__,
214 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
215 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
216 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
217 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
218 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
219 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
220 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
221 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
222 SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
223 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
224 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
225 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
226 SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
227 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
228 c1Max, c2Min, c2Max);
229 #endif
230 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
231 #if ONE_OFF_DEBUG
232 SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
233 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
234 #endif
235 }
caryclark@google.comfa2aeee2013-07-15 13:29:13 +0000236 // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000237 // FIXME: if no intersection is found, either quadratics intersected where
238 // cubics did not, or the intersection was missed. In the former case, expect
239 // the quadratics to be nearly parallel at the point of intersection, and check
240 // for that.
241 }
242 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000243 t2Start = t2;
244 }
245 t1Start = t1;
246 }
247 i.downDepth();
248}
249
250#define LINE_FRACTION 0.1
251
252// intersect the end of the cubic with the other. Try lines from the end to control and opposite
253// end to determine range of t on opposite cubic.
254static void intersectEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000255 const SkDRect& bounds2, bool selfIntersect, SkIntersections& i) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000256 SkDLine line;
257 int t1Index = start ? 0 : 3;
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000258 bool swap = i.swapped();
259 double testT = (double) !start;
260 // quad/quad at this point checks to see if exact matches have already been found
261 // cubic/cubic can't reject so easily since cubics can intersect same point more than once
262 if (!selfIntersect) {
263 SkDLine tmpLine;
264 tmpLine[0] = tmpLine[1] = cubic2[t1Index];
265 tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
266 tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
267 SkIntersections impTs;
268 impTs.intersectRay(cubic1, tmpLine);
269 for (int index = 0; index < impTs.used(); ++index) {
270 SkDPoint realPt = impTs.pt(index);
271 if (!tmpLine[0].approximatelyEqualHalf(realPt)) {
272 continue;
273 }
274 if (swap) {
275 i.insert(testT, impTs[0][index], tmpLine[0]);
276 } else {
277 i.insert(impTs[0][index], testT, tmpLine[0]);
278 }
279 return;
280 }
281 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000282 // don't bother if the two cubics are connnected
caryclark@google.comd892bd82013-06-17 14:10:36 +0000283 static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
284 static const int kMaxLineCubicIntersections = 3;
285 SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
caryclark@google.coma5e55922013-05-07 18:51:31 +0000286 line[0] = cubic1[t1Index];
287 // this variant looks for intersections with the end point and lines parallel to other points
caryclark@google.comd892bd82013-06-17 14:10:36 +0000288 for (int index = 0; index < kPointsInCubic; ++index) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000289 if (index == t1Index) {
290 continue;
291 }
292 SkDVector dxy1 = cubic1[index] - line[0];
293 dxy1 /= SkDCubic::gPrecisionUnit;
294 line[1] = line[0] + dxy1;
295 SkDRect lineBounds;
296 lineBounds.setBounds(line);
297 if (!bounds2.intersects(&lineBounds)) {
298 continue;
299 }
300 SkIntersections local;
301 if (!local.intersect(cubic2, line)) {
302 continue;
303 }
304 for (int idx2 = 0; idx2 < local.used(); ++idx2) {
305 double foundT = local[0][idx2];
306 if (approximately_less_than_zero(foundT)
307 || approximately_greater_than_one(foundT)) {
308 continue;
309 }
310 if (local.pt(idx2).approximatelyEqual(line[0])) {
311 if (i.swapped()) { // FIXME: insert should respect swap
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000312 i.insert(foundT, testT, line[0]);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000313 } else {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000314 i.insert(testT, foundT, line[0]);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000315 }
316 } else {
caryclark@google.comd892bd82013-06-17 14:10:36 +0000317 tVals.push_back(foundT);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000318 }
319 }
320 }
321 if (tVals.count() == 0) {
322 return;
323 }
commit-bot@chromium.orgb76d3b62013-04-22 19:55:19 +0000324 SkTQSort<double>(tVals.begin(), tVals.end() - 1);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000325 double tMin1 = start ? 0 : 1 - LINE_FRACTION;
326 double tMax1 = start ? LINE_FRACTION : 1;
327 int tIdx = 0;
328 do {
329 int tLast = tIdx;
330 while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
331 ++tLast;
332 }
caryclark@google.com3b97af52013-04-23 11:56:44 +0000333 double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
334 double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000335 int lastUsed = i.used();
336 intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
337 if (lastUsed == i.used()) {
caryclark@google.com3b97af52013-04-23 11:56:44 +0000338 tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
339 tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000340 intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
341 }
342 tIdx = tLast + 1;
343 } while (tIdx < tVals.count());
caryclark@google.com07393ca2013-04-08 11:47:37 +0000344 return;
345}
346
347const double CLOSE_ENOUGH = 0.001;
348
349static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
350 if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
351 return false;
352 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000353 pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000354 return true;
355}
356
357static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
358 int last = i.used() - 1;
359 if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
360 return false;
361 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000362 pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000363 return true;
364}
365
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000366static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
367// the idea here is to see at minimum do a quick reject by rotating all points
368// to either side of the line formed by connecting the endpoints
369// if the opposite curves points are on the line or on the other side, the
370// curves at most intersect at the endpoints
371 for (int oddMan = 0; oddMan < 4; ++oddMan) {
372 const SkDPoint* endPt[3];
373 for (int opp = 1; opp < 4; ++opp) {
374 int end = oddMan ^ opp; // choose a value not equal to oddMan
375 endPt[opp - 1] = &c1[end];
376 }
377 for (int triTest = 0; triTest < 3; ++triTest) {
378 double origX = endPt[triTest]->fX;
379 double origY = endPt[triTest]->fY;
380 int oppTest = triTest + 1;
381 if (3 == oppTest) {
382 oppTest = 0;
383 }
384 double adj = endPt[oppTest]->fX - origX;
385 double opp = endPt[oppTest]->fY - origY;
386 double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp;
387 if (approximately_zero(sign)) {
388 goto tryNextHalfPlane;
389 }
390 for (int n = 0; n < 4; ++n) {
391 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
392 if (test * sign > 0 && !precisely_zero(test)) {
393 goto tryNextHalfPlane;
394 }
395 }
396 }
397 return true;
398tryNextHalfPlane:
399 ;
400 }
401 return false;
402}
403
caryclark@google.com07393ca2013-04-08 11:47:37 +0000404int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000405 bool selfIntersect = &c1 == &c2;
406 if (selfIntersect) {
407 if (c1[0].approximatelyEqualHalf(c1[3])) {
408 insert(0, 1, c1[0]);
409 }
410 } else {
411 for (int i1 = 0; i1 < 4; i1 += 3) {
412 for (int i2 = 0; i2 < 4; i2 += 3) {
413 if (c1[i1].approximatelyEqualHalf(c2[i2])) {
414 insert(i1 >> 1, i2 >> 1, c1[i1]);
415 }
416 }
417 }
418 }
419 SkASSERT(fUsed < 4);
420 if (!selfIntersect) {
421 if (only_end_pts_in_common(c1, c2)) {
422 return fUsed;
423 }
424 if (only_end_pts_in_common(c2, c1)) {
425 return fUsed;
426 }
427 }
428 // quad/quad does linear test here -- cubic does not
429 // cubics which are really lines should have been detected in reduce step earlier
caryclark@google.com07393ca2013-04-08 11:47:37 +0000430 SkDRect c1Bounds, c2Bounds;
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000431 // FIXME: pass in cached bounds from caller
caryclark@google.com07393ca2013-04-08 11:47:37 +0000432 c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
433 c2Bounds.setBounds(c2);
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000434 intersectEnd(c1, false, c2, c2Bounds, selfIntersect, *this);
435 intersectEnd(c1, true, c2, c2Bounds, selfIntersect, *this);
436 if (selfIntersect) {
437 if (fUsed) {
438 return fUsed;
439 }
440 } else {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000441 swap();
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000442 intersectEnd(c2, false, c1, c1Bounds, false, *this);
443 intersectEnd(c2, true, c1, c1Bounds, false, *this);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000444 swap();
445 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000446 // if two ends intersect, check middle for coincidence
447 if (fUsed >= 2) {
448 SkASSERT(!selfIntersect);
449 int last = fUsed - 1;
450 double tRange1 = fT[0][last] - fT[0][0];
451 double tRange2 = fT[1][last] - fT[1][0];
452 for (int index = 1; index < 5; ++index) {
453 double testT1 = fT[0][0] + tRange1 * index / 5;
454 double testT2 = fT[1][0] + tRange2 * index / 5;
455 SkDPoint testPt1 = c1.ptAtT(testT1);
456 SkDPoint testPt2 = c2.ptAtT(testT2);
457 if (!testPt1.approximatelyEqual(testPt2)) {
458 goto skipCoincidence;
459 }
460 }
461 if (fUsed > 2) {
462 fPt[1] = fPt[last];
463 fT[0][1] = fT[0][last];
464 fT[1][1] = fT[1][last];
465 fUsed = 2;
466 }
467 fIsCoincident[0] = fIsCoincident[1] = 0x03;
468 return fUsed;
469 }
470skipCoincidence:
471 ::intersect(c1, 0, 1, c2, 0, 1, 1, *this);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000472 // If an end point and a second point very close to the end is returned, the second
473 // point may have been detected because the approximate quads
474 // intersected at the end and close to it. Verify that the second point is valid.
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000475 if (fUsed <= 1) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000476 return fUsed;
477 }
478 SkDPoint pt[2];
479 if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
480 && pt[0].approximatelyEqual(pt[1])) {
481 removeOne(1);
482 }
483 if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
484 && pt[0].approximatelyEqual(pt[1])) {
485 removeOne(used() - 2);
486 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000487 // vet the pairs of t values to see if the mid value is also on the curve. If so, mark
488 // the span as coincident
489 if (fUsed >= 2 && !coincidentUsed()) {
490 int last = fUsed - 1;
491 int match = 0;
492 for (int index = 0; index < last; ++index) {
493 double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
494 double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000495 pt[0] = c1.ptAtT(mid1);
496 pt[1] = c2.ptAtT(mid2);
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000497 if (pt[0].approximatelyEqual(pt[1])) {
498 match |= 1 << index;
499 }
500 }
501 if (match) {
502 if (((match + 1) & match) != 0) {
503 SkDebugf("%s coincident hole\n", __FUNCTION__);
504 }
505 // for now, assume that everything from start to finish is coincident
506 if (fUsed > 2) {
507 fPt[1] = fPt[last];
508 fT[0][1] = fT[0][last];
509 fT[1][1] = fT[1][last];
510 fIsCoincident[0] = 0x03;
511 fIsCoincident[1] = 0x03;
512 fUsed = 2;
513 }
514 }
515 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000516 return fUsed;
517}
518
519// Up promote the quad to a cubic.
520// OPTIMIZATION If this is a common use case, optimize by duplicating
521// the intersect 3 loop to avoid the promotion / demotion code
522int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
523 SkDCubic up = quad.toCubic();
524 (void) intersect(cubic, up);
525 return used();
526}
527
528/* http://www.ag.jku.at/compass/compasssample.pdf
529( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
530Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
531SINTEF Applied Mathematics http://www.sintef.no )
532describes a method to find the self intersection of a cubic by taking the gradient of the implicit
533form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
534
535int SkIntersections::intersect(const SkDCubic& c) {
536 // check to see if x or y end points are the extrema. Are other quick rejects possible?
537 if (c.endsAreExtremaInXOrY()) {
538 return false;
539 }
540 (void) intersect(c, c);
541 if (used() > 0) {
542 SkASSERT(used() == 1);
543 if (fT[0][0] > fT[1][0]) {
544 swapPts();
545 }
546 }
547 return used();
548}