Mathias Agopian | 73e0bc8 | 2011-05-17 22:54:42 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2011 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #ifndef ANDROID_MAT_H |
| 18 | #define ANDROID_MAT_H |
| 19 | |
| 20 | #include "vec.h" |
| 21 | #include "traits.h" |
| 22 | |
| 23 | // ----------------------------------------------------------------------- |
| 24 | |
| 25 | namespace android { |
| 26 | |
| 27 | template <typename TYPE, size_t C, size_t R> |
| 28 | class mat; |
| 29 | |
| 30 | namespace helpers { |
| 31 | |
| 32 | template <typename TYPE, size_t C, size_t R> |
| 33 | mat<TYPE, C, R>& doAssign( |
| 34 | mat<TYPE, C, R>& lhs, |
| 35 | typename TypeTraits<TYPE>::ParameterType rhs) { |
| 36 | for (size_t i=0 ; i<C ; i++) |
| 37 | for (size_t j=0 ; j<R ; j++) |
| 38 | lhs[i][j] = (i==j) ? rhs : 0; |
| 39 | return lhs; |
| 40 | } |
| 41 | |
| 42 | template <typename TYPE, size_t C, size_t R, size_t D> |
| 43 | mat<TYPE, C, R> PURE doMul( |
| 44 | const mat<TYPE, D, R>& lhs, |
| 45 | const mat<TYPE, C, D>& rhs) |
| 46 | { |
| 47 | mat<TYPE, C, R> res; |
| 48 | for (size_t c=0 ; c<C ; c++) { |
| 49 | for (size_t r=0 ; r<R ; r++) { |
| 50 | TYPE v(0); |
| 51 | for (size_t k=0 ; k<D ; k++) { |
| 52 | v += lhs[k][r] * rhs[c][k]; |
| 53 | } |
| 54 | res[c][r] = v; |
| 55 | } |
| 56 | } |
| 57 | return res; |
| 58 | } |
| 59 | |
| 60 | template <typename TYPE, size_t R, size_t D> |
| 61 | vec<TYPE, R> PURE doMul( |
| 62 | const mat<TYPE, D, R>& lhs, |
| 63 | const vec<TYPE, D>& rhs) |
| 64 | { |
| 65 | vec<TYPE, R> res; |
| 66 | for (size_t r=0 ; r<R ; r++) { |
| 67 | TYPE v(0); |
| 68 | for (size_t k=0 ; k<D ; k++) { |
| 69 | v += lhs[k][r] * rhs[k]; |
| 70 | } |
| 71 | res[r] = v; |
| 72 | } |
| 73 | return res; |
| 74 | } |
| 75 | |
| 76 | template <typename TYPE, size_t C, size_t R> |
| 77 | mat<TYPE, C, R> PURE doMul( |
| 78 | const vec<TYPE, R>& lhs, |
| 79 | const mat<TYPE, C, 1>& rhs) |
| 80 | { |
| 81 | mat<TYPE, C, R> res; |
| 82 | for (size_t c=0 ; c<C ; c++) { |
| 83 | for (size_t r=0 ; r<R ; r++) { |
| 84 | res[c][r] = lhs[r] * rhs[c][0]; |
| 85 | } |
| 86 | } |
| 87 | return res; |
| 88 | } |
| 89 | |
| 90 | template <typename TYPE, size_t C, size_t R> |
| 91 | mat<TYPE, C, R> PURE doMul( |
| 92 | const mat<TYPE, C, R>& rhs, |
| 93 | typename TypeTraits<TYPE>::ParameterType v) |
| 94 | { |
| 95 | mat<TYPE, C, R> res; |
| 96 | for (size_t c=0 ; c<C ; c++) { |
| 97 | for (size_t r=0 ; r<R ; r++) { |
| 98 | res[c][r] = rhs[c][r] * v; |
| 99 | } |
| 100 | } |
| 101 | return res; |
| 102 | } |
| 103 | |
| 104 | template <typename TYPE, size_t C, size_t R> |
| 105 | mat<TYPE, C, R> PURE doMul( |
| 106 | typename TypeTraits<TYPE>::ParameterType v, |
| 107 | const mat<TYPE, C, R>& rhs) |
| 108 | { |
| 109 | mat<TYPE, C, R> res; |
| 110 | for (size_t c=0 ; c<C ; c++) { |
| 111 | for (size_t r=0 ; r<R ; r++) { |
| 112 | res[c][r] = v * rhs[c][r]; |
| 113 | } |
| 114 | } |
| 115 | return res; |
| 116 | } |
| 117 | |
| 118 | |
| 119 | }; // namespace helpers |
| 120 | |
| 121 | // ----------------------------------------------------------------------- |
| 122 | |
| 123 | template <typename TYPE, size_t C, size_t R> |
| 124 | class mat : public vec< vec<TYPE, R>, C > { |
| 125 | typedef typename TypeTraits<TYPE>::ParameterType pTYPE; |
| 126 | typedef vec< vec<TYPE, R>, C > base; |
| 127 | public: |
| 128 | // STL-like interface. |
| 129 | typedef TYPE value_type; |
| 130 | typedef TYPE& reference; |
| 131 | typedef TYPE const& const_reference; |
| 132 | typedef size_t size_type; |
| 133 | size_type size() const { return R*C; } |
| 134 | enum { ROWS = R, COLS = C }; |
| 135 | |
| 136 | |
| 137 | // ----------------------------------------------------------------------- |
| 138 | // default constructors |
| 139 | |
| 140 | mat() { } |
| 141 | mat(const mat& rhs) : base(rhs) { } |
| 142 | mat(const base& rhs) : base(rhs) { } |
| 143 | |
| 144 | // ----------------------------------------------------------------------- |
| 145 | // conversion constructors |
| 146 | |
| 147 | // sets the diagonal to the value, off-diagonal to zero |
| 148 | mat(pTYPE rhs) { |
| 149 | helpers::doAssign(*this, rhs); |
| 150 | } |
| 151 | |
| 152 | // ----------------------------------------------------------------------- |
| 153 | // Assignment |
| 154 | |
| 155 | mat& operator=(const mat& rhs) { |
| 156 | base::operator=(rhs); |
| 157 | return *this; |
| 158 | } |
| 159 | |
| 160 | mat& operator=(const base& rhs) { |
| 161 | base::operator=(rhs); |
| 162 | return *this; |
| 163 | } |
| 164 | |
| 165 | mat& operator=(pTYPE rhs) { |
| 166 | return helpers::doAssign(*this, rhs); |
| 167 | } |
| 168 | |
| 169 | // ----------------------------------------------------------------------- |
| 170 | // non-member function declaration and definition |
| 171 | |
| 172 | friend inline mat PURE operator + (const mat& lhs, const mat& rhs) { |
| 173 | return helpers::doAdd( |
| 174 | static_cast<const base&>(lhs), |
| 175 | static_cast<const base&>(rhs)); |
| 176 | } |
| 177 | friend inline mat PURE operator - (const mat& lhs, const mat& rhs) { |
| 178 | return helpers::doSub( |
| 179 | static_cast<const base&>(lhs), |
| 180 | static_cast<const base&>(rhs)); |
| 181 | } |
| 182 | |
| 183 | // matrix*matrix |
| 184 | template <size_t D> |
| 185 | friend mat PURE operator * ( |
| 186 | const mat<TYPE, D, R>& lhs, |
| 187 | const mat<TYPE, C, D>& rhs) { |
| 188 | return helpers::doMul(lhs, rhs); |
| 189 | } |
| 190 | |
| 191 | // matrix*vector |
| 192 | friend vec<TYPE, R> PURE operator * ( |
| 193 | const mat& lhs, const vec<TYPE, C>& rhs) { |
| 194 | return helpers::doMul(lhs, rhs); |
| 195 | } |
| 196 | |
| 197 | // vector*matrix |
| 198 | friend mat PURE operator * ( |
| 199 | const vec<TYPE, R>& lhs, const mat<TYPE, C, 1>& rhs) { |
| 200 | return helpers::doMul(lhs, rhs); |
| 201 | } |
| 202 | |
| 203 | // matrix*scalar |
| 204 | friend inline mat PURE operator * (const mat& lhs, pTYPE v) { |
| 205 | return helpers::doMul(lhs, v); |
| 206 | } |
| 207 | |
| 208 | // scalar*matrix |
| 209 | friend inline mat PURE operator * (pTYPE v, const mat& rhs) { |
| 210 | return helpers::doMul(v, rhs); |
| 211 | } |
| 212 | |
| 213 | // ----------------------------------------------------------------------- |
| 214 | // streaming operator to set the columns of the matrix: |
| 215 | // example: |
| 216 | // mat33_t m; |
| 217 | // m << v0 << v1 << v2; |
| 218 | |
| 219 | // column_builder<> stores the matrix and knows which column to set |
| 220 | template<size_t PREV_COLUMN> |
| 221 | struct column_builder { |
| 222 | mat& matrix; |
| 223 | column_builder(mat& matrix) : matrix(matrix) { } |
| 224 | }; |
| 225 | |
| 226 | // operator << is not a method of column_builder<> so we can |
| 227 | // overload it for unauthorized values (partial specialization |
| 228 | // not allowed in class-scope). |
| 229 | // we just set the column and return the next column_builder<> |
| 230 | template<size_t PREV_COLUMN> |
| 231 | friend column_builder<PREV_COLUMN+1> operator << ( |
| 232 | const column_builder<PREV_COLUMN>& lhs, |
| 233 | const vec<TYPE, R>& rhs) { |
| 234 | lhs.matrix[PREV_COLUMN+1] = rhs; |
| 235 | return column_builder<PREV_COLUMN+1>(lhs.matrix); |
| 236 | } |
| 237 | |
| 238 | // we return void here so we get a compile-time error if the |
| 239 | // user tries to set too many columns |
| 240 | friend void operator << ( |
| 241 | const column_builder<C-2>& lhs, |
| 242 | const vec<TYPE, R>& rhs) { |
| 243 | lhs.matrix[C-1] = rhs; |
| 244 | } |
| 245 | |
| 246 | // this is where the process starts. we set the first columns and |
| 247 | // return the next column_builder<> |
| 248 | column_builder<0> operator << (const vec<TYPE, R>& rhs) { |
| 249 | (*this)[0] = rhs; |
| 250 | return column_builder<0>(*this); |
| 251 | } |
| 252 | }; |
| 253 | |
| 254 | // Specialize column matrix so they're exactly equivalent to a vector |
| 255 | template <typename TYPE, size_t R> |
| 256 | class mat<TYPE, 1, R> : public vec<TYPE, R> { |
| 257 | typedef vec<TYPE, R> base; |
| 258 | public: |
| 259 | // STL-like interface. |
| 260 | typedef TYPE value_type; |
| 261 | typedef TYPE& reference; |
| 262 | typedef TYPE const& const_reference; |
| 263 | typedef size_t size_type; |
| 264 | size_type size() const { return R; } |
| 265 | enum { ROWS = R, COLS = 1 }; |
| 266 | |
| 267 | mat() { } |
| 268 | mat(const base& rhs) : base(rhs) { } |
| 269 | mat(const mat& rhs) : base(rhs) { } |
| 270 | mat(const TYPE& rhs) { helpers::doAssign(*this, rhs); } |
| 271 | mat& operator=(const mat& rhs) { base::operator=(rhs); return *this; } |
| 272 | mat& operator=(const base& rhs) { base::operator=(rhs); return *this; } |
| 273 | mat& operator=(const TYPE& rhs) { return helpers::doAssign(*this, rhs); } |
| 274 | // we only have one column, so ignore the index |
| 275 | const base& operator[](size_t) const { return *this; } |
| 276 | base& operator[](size_t) { return *this; } |
| 277 | void operator << (const vec<TYPE, R>& rhs) { base::operator[](0) = rhs; } |
| 278 | }; |
| 279 | |
| 280 | // ----------------------------------------------------------------------- |
| 281 | // matrix functions |
| 282 | |
| 283 | // transpose. this handles matrices of matrices |
| 284 | inline int PURE transpose(int v) { return v; } |
| 285 | inline float PURE transpose(float v) { return v; } |
| 286 | inline double PURE transpose(double v) { return v; } |
| 287 | |
| 288 | // Transpose a matrix |
| 289 | template <typename TYPE, size_t C, size_t R> |
| 290 | mat<TYPE, R, C> PURE transpose(const mat<TYPE, C, R>& m) { |
| 291 | mat<TYPE, R, C> r; |
| 292 | for (size_t i=0 ; i<R ; i++) |
| 293 | for (size_t j=0 ; j<C ; j++) |
| 294 | r[i][j] = transpose(m[j][i]); |
| 295 | return r; |
| 296 | } |
| 297 | |
Max Braun | 3d41ecd | 2011-08-17 18:22:52 -0700 | [diff] [blame] | 298 | // Calculate the trace of a matrix |
| 299 | template <typename TYPE, size_t C> static TYPE trace(const mat<TYPE, C, C>& m) { |
| 300 | TYPE t; |
| 301 | for (size_t i=0 ; i<C ; i++) |
| 302 | t += m[i][i]; |
| 303 | return t; |
| 304 | } |
| 305 | |
| 306 | // Test positive-semidefiniteness of a matrix |
| 307 | template <typename TYPE, size_t C> |
| 308 | static bool isPositiveSemidefinite(const mat<TYPE, C, C>& m, TYPE tolerance) { |
| 309 | for (size_t i=0 ; i<C ; i++) |
| 310 | if (m[i][i] < 0) |
| 311 | return false; |
| 312 | |
| 313 | for (size_t i=0 ; i<C ; i++) |
| 314 | for (size_t j=i+1 ; j<C ; j++) |
| 315 | if (fabs(m[i][j] - m[j][i]) > tolerance) |
| 316 | return false; |
| 317 | |
| 318 | return true; |
| 319 | } |
| 320 | |
Mathias Agopian | 73e0bc8 | 2011-05-17 22:54:42 -0700 | [diff] [blame] | 321 | // Transpose a vector |
| 322 | template < |
| 323 | template<typename T, size_t S> class VEC, |
| 324 | typename TYPE, |
| 325 | size_t SIZE |
| 326 | > |
| 327 | mat<TYPE, SIZE, 1> PURE transpose(const VEC<TYPE, SIZE>& v) { |
| 328 | mat<TYPE, SIZE, 1> r; |
| 329 | for (size_t i=0 ; i<SIZE ; i++) |
| 330 | r[i][0] = transpose(v[i]); |
| 331 | return r; |
| 332 | } |
| 333 | |
| 334 | // ----------------------------------------------------------------------- |
| 335 | // "dumb" matrix inversion |
| 336 | template<typename T, size_t N> |
| 337 | mat<T, N, N> PURE invert(const mat<T, N, N>& src) { |
| 338 | T t; |
| 339 | size_t swap; |
| 340 | mat<T, N, N> tmp(src); |
| 341 | mat<T, N, N> inverse(1); |
| 342 | |
| 343 | for (size_t i=0 ; i<N ; i++) { |
| 344 | // look for largest element in column |
| 345 | swap = i; |
| 346 | for (size_t j=i+1 ; j<N ; j++) { |
| 347 | if (fabs(tmp[j][i]) > fabs(tmp[i][i])) { |
| 348 | swap = j; |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | if (swap != i) { |
| 353 | /* swap rows. */ |
| 354 | for (size_t k=0 ; k<N ; k++) { |
| 355 | t = tmp[i][k]; |
| 356 | tmp[i][k] = tmp[swap][k]; |
| 357 | tmp[swap][k] = t; |
| 358 | |
| 359 | t = inverse[i][k]; |
| 360 | inverse[i][k] = inverse[swap][k]; |
| 361 | inverse[swap][k] = t; |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | t = 1 / tmp[i][i]; |
| 366 | for (size_t k=0 ; k<N ; k++) { |
| 367 | tmp[i][k] *= t; |
| 368 | inverse[i][k] *= t; |
| 369 | } |
| 370 | for (size_t j=0 ; j<N ; j++) { |
| 371 | if (j != i) { |
| 372 | t = tmp[j][i]; |
| 373 | for (size_t k=0 ; k<N ; k++) { |
| 374 | tmp[j][k] -= tmp[i][k] * t; |
| 375 | inverse[j][k] -= inverse[i][k] * t; |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | } |
| 380 | return inverse; |
| 381 | } |
| 382 | |
| 383 | // ----------------------------------------------------------------------- |
| 384 | |
| 385 | typedef mat<float, 2, 2> mat22_t; |
| 386 | typedef mat<float, 3, 3> mat33_t; |
| 387 | typedef mat<float, 4, 4> mat44_t; |
| 388 | |
| 389 | // ----------------------------------------------------------------------- |
| 390 | |
| 391 | }; // namespace android |
| 392 | |
| 393 | #endif /* ANDROID_MAT_H */ |