blob: c22089d9191158834c13e0ff03b4c2913187de7b [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "systemz-lower"
15
16#include "SystemZISelLowering.h"
17#include "SystemZCallingConv.h"
18#include "SystemZConstantPoolValue.h"
19#include "SystemZMachineFunctionInfo.h"
20#include "SystemZTargetMachine.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25
Will Dietz981af002013-10-12 00:55:57 +000026#include <cctype>
27
Ulrich Weigand5f613df2013-05-06 16:15:19 +000028using namespace llvm;
29
Richard Sandifordf722a8e302013-10-16 11:10:55 +000030namespace {
31// Represents a sequence for extracting a 0/1 value from an IPM result:
32// (((X ^ XORValue) + AddValue) >> Bit)
33struct IPMConversion {
34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
36
37 int64_t XORValue;
38 int64_t AddValue;
39 unsigned Bit;
40};
Richard Sandifordd420f732013-12-13 15:28:45 +000041
42// Represents information about a comparison.
43struct Comparison {
44 Comparison(SDValue Op0In, SDValue Op1In)
45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
46
47 // The operands to the comparison.
48 SDValue Op0, Op1;
49
50 // The opcode that should be used to compare Op0 and Op1.
51 unsigned Opcode;
52
53 // A SystemZICMP value. Only used for integer comparisons.
54 unsigned ICmpType;
55
56 // The mask of CC values that Opcode can produce.
57 unsigned CCValid;
58
59 // The mask of CC values for which the original condition is true.
60 unsigned CCMask;
61};
Richard Sandifordf722a8e302013-10-16 11:10:55 +000062}
63
Ulrich Weigand5f613df2013-05-06 16:15:19 +000064// Classify VT as either 32 or 64 bit.
65static bool is32Bit(EVT VT) {
66 switch (VT.getSimpleVT().SimpleTy) {
67 case MVT::i32:
68 return true;
69 case MVT::i64:
70 return false;
71 default:
72 llvm_unreachable("Unsupported type");
73 }
74}
75
76// Return a version of MachineOperand that can be safely used before the
77// final use.
78static MachineOperand earlyUseOperand(MachineOperand Op) {
79 if (Op.isReg())
80 Op.setIsKill(false);
81 return Op;
82}
83
84SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
85 : TargetLowering(tm, new TargetLoweringObjectFileELF()),
86 Subtarget(*tm.getSubtargetImpl()), TM(tm) {
87 MVT PtrVT = getPointerTy();
88
89 // Set up the register classes.
Richard Sandiford0755c932013-10-01 11:26:28 +000090 if (Subtarget.hasHighWord())
91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
92 else
93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
Ulrich Weigand5f613df2013-05-06 16:15:19 +000094 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
95 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
96 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
97 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
98
99 // Compute derived properties from the register classes
100 computeRegisterProperties();
101
102 // Set up special registers.
103 setExceptionPointerRegister(SystemZ::R6D);
104 setExceptionSelectorRegister(SystemZ::R7D);
105 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
106
107 // TODO: It may be better to default to latency-oriented scheduling, however
108 // LLVM's current latency-oriented scheduler can't handle physreg definitions
Richard Sandiford14a44492013-05-22 13:38:45 +0000109 // such as SystemZ has with CC, so set this to the register-pressure
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000110 // scheduler, because it can.
111 setSchedulingPreference(Sched::RegPressure);
112
113 setBooleanContents(ZeroOrOneBooleanContent);
114 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
115
116 // Instructions are strings of 2-byte aligned 2-byte values.
117 setMinFunctionAlignment(2);
118
119 // Handle operations that are handled in a similar way for all types.
120 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
121 I <= MVT::LAST_FP_VALUETYPE;
122 ++I) {
123 MVT VT = MVT::SimpleValueType(I);
124 if (isTypeLegal(VT)) {
Richard Sandifordf722a8e302013-10-16 11:10:55 +0000125 // Lower SET_CC into an IPM-based sequence.
126 setOperationAction(ISD::SETCC, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000127
128 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
129 setOperationAction(ISD::SELECT, VT, Expand);
130
131 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
132 setOperationAction(ISD::SELECT_CC, VT, Custom);
133 setOperationAction(ISD::BR_CC, VT, Custom);
134 }
135 }
136
137 // Expand jump table branches as address arithmetic followed by an
138 // indirect jump.
139 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
140
141 // Expand BRCOND into a BR_CC (see above).
142 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
143
144 // Handle integer types.
145 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
146 I <= MVT::LAST_INTEGER_VALUETYPE;
147 ++I) {
148 MVT VT = MVT::SimpleValueType(I);
149 if (isTypeLegal(VT)) {
150 // Expand individual DIV and REMs into DIVREMs.
151 setOperationAction(ISD::SDIV, VT, Expand);
152 setOperationAction(ISD::UDIV, VT, Expand);
153 setOperationAction(ISD::SREM, VT, Expand);
154 setOperationAction(ISD::UREM, VT, Expand);
155 setOperationAction(ISD::SDIVREM, VT, Custom);
156 setOperationAction(ISD::UDIVREM, VT, Custom);
157
Richard Sandifordbef3d7a2013-12-10 10:49:34 +0000158 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
159 // stores, putting a serialization instruction after the stores.
160 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
161 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000162
Richard Sandiford41350a52013-12-24 15:18:04 +0000163 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
164 // available, or if the operand is constant.
165 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
166
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000167 // No special instructions for these.
168 setOperationAction(ISD::CTPOP, VT, Expand);
169 setOperationAction(ISD::CTTZ, VT, Expand);
170 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
171 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
172 setOperationAction(ISD::ROTR, VT, Expand);
173
Richard Sandiford7d86e472013-08-21 09:34:56 +0000174 // Use *MUL_LOHI where possible instead of MULH*.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000175 setOperationAction(ISD::MULHS, VT, Expand);
176 setOperationAction(ISD::MULHU, VT, Expand);
Richard Sandiford7d86e472013-08-21 09:34:56 +0000177 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
178 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000179
180 // We have instructions for signed but not unsigned FP conversion.
181 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
182 }
183 }
184
185 // Type legalization will convert 8- and 16-bit atomic operations into
186 // forms that operate on i32s (but still keeping the original memory VT).
187 // Lower them into full i32 operations.
188 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
189 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
190 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
191 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
192 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
193 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
194 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
195 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
196 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
197 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
198 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
199 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
200
201 // We have instructions for signed but not unsigned FP conversion.
202 // Handle unsigned 32-bit types as signed 64-bit types.
203 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
204 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
205
206 // We have native support for a 64-bit CTLZ, via FLOGR.
207 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
208 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
209
210 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
211 setOperationAction(ISD::OR, MVT::i64, Custom);
212
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000213 // FIXME: Can we support these natively?
214 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
215 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
216 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
217
218 // We have native instructions for i8, i16 and i32 extensions, but not i1.
219 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
220 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
221 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
222 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
223
224 // Handle the various types of symbolic address.
225 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
226 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
227 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
228 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
229 setOperationAction(ISD::JumpTable, PtrVT, Custom);
230
231 // We need to handle dynamic allocations specially because of the
232 // 160-byte area at the bottom of the stack.
233 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
234
235 // Use custom expanders so that we can force the function to use
236 // a frame pointer.
237 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
238 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
239
Richard Sandiford03481332013-08-23 11:36:42 +0000240 // Handle prefetches with PFD or PFDRL.
241 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
242
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000243 // Handle floating-point types.
244 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
245 I <= MVT::LAST_FP_VALUETYPE;
246 ++I) {
247 MVT VT = MVT::SimpleValueType(I);
248 if (isTypeLegal(VT)) {
249 // We can use FI for FRINT.
250 setOperationAction(ISD::FRINT, VT, Legal);
251
Richard Sandifordaf5f66a2013-08-21 09:04:20 +0000252 // We can use the extended form of FI for other rounding operations.
253 if (Subtarget.hasFPExtension()) {
254 setOperationAction(ISD::FNEARBYINT, VT, Legal);
255 setOperationAction(ISD::FFLOOR, VT, Legal);
256 setOperationAction(ISD::FCEIL, VT, Legal);
257 setOperationAction(ISD::FTRUNC, VT, Legal);
258 setOperationAction(ISD::FROUND, VT, Legal);
259 }
260
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000261 // No special instructions for these.
262 setOperationAction(ISD::FSIN, VT, Expand);
263 setOperationAction(ISD::FCOS, VT, Expand);
264 setOperationAction(ISD::FREM, VT, Expand);
265 }
266 }
267
268 // We have fused multiply-addition for f32 and f64 but not f128.
269 setOperationAction(ISD::FMA, MVT::f32, Legal);
270 setOperationAction(ISD::FMA, MVT::f64, Legal);
271 setOperationAction(ISD::FMA, MVT::f128, Expand);
272
273 // Needed so that we don't try to implement f128 constant loads using
274 // a load-and-extend of a f80 constant (in cases where the constant
275 // would fit in an f80).
276 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
277
278 // Floating-point truncation and stores need to be done separately.
279 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
280 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
281 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
282
283 // We have 64-bit FPR<->GPR moves, but need special handling for
284 // 32-bit forms.
285 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
286 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
287
288 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
289 // structure, but VAEND is a no-op.
290 setOperationAction(ISD::VASTART, MVT::Other, Custom);
291 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
292 setOperationAction(ISD::VAEND, MVT::Other, Expand);
Richard Sandifordd131ff82013-07-08 09:35:23 +0000293
294 // We want to use MVC in preference to even a single load/store pair.
295 MaxStoresPerMemcpy = 0;
296 MaxStoresPerMemcpyOptSize = 0;
Richard Sandiford47660c12013-07-09 09:32:42 +0000297
298 // The main memset sequence is a byte store followed by an MVC.
299 // Two STC or MV..I stores win over that, but the kind of fused stores
300 // generated by target-independent code don't when the byte value is
301 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
302 // than "STC;MVC". Handle the choice in target-specific code instead.
303 MaxStoresPerMemset = 0;
304 MaxStoresPerMemsetOptSize = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000305}
306
Richard Sandifordabc010b2013-11-06 12:16:02 +0000307EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
308 if (!VT.isVector())
309 return MVT::i32;
310 return VT.changeVectorElementTypeToInteger();
311}
312
313bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
Stephen Lin73de7bf2013-07-09 18:16:56 +0000314 VT = VT.getScalarType();
315
316 if (!VT.isSimple())
317 return false;
318
319 switch (VT.getSimpleVT().SimpleTy) {
320 case MVT::f32:
321 case MVT::f64:
322 return true;
323 case MVT::f128:
324 return false;
325 default:
326 break;
327 }
328
329 return false;
330}
331
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000332bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
333 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
334 return Imm.isZero() || Imm.isNegZero();
335}
336
Richard Sandiford46af5a22013-05-30 09:45:42 +0000337bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
338 bool *Fast) const {
339 // Unaligned accesses should never be slower than the expanded version.
340 // We check specifically for aligned accesses in the few cases where
341 // they are required.
342 if (Fast)
343 *Fast = true;
344 return true;
345}
346
Richard Sandiford791bea42013-07-31 12:58:26 +0000347bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
348 Type *Ty) const {
349 // Punt on globals for now, although they can be used in limited
350 // RELATIVE LONG cases.
351 if (AM.BaseGV)
352 return false;
353
354 // Require a 20-bit signed offset.
355 if (!isInt<20>(AM.BaseOffs))
356 return false;
357
358 // Indexing is OK but no scale factor can be applied.
359 return AM.Scale == 0 || AM.Scale == 1;
360}
361
Richard Sandiford709bda62013-08-19 12:42:31 +0000362bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
363 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
364 return false;
365 unsigned FromBits = FromType->getPrimitiveSizeInBits();
366 unsigned ToBits = ToType->getPrimitiveSizeInBits();
367 return FromBits > ToBits;
368}
369
370bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
371 if (!FromVT.isInteger() || !ToVT.isInteger())
372 return false;
373 unsigned FromBits = FromVT.getSizeInBits();
374 unsigned ToBits = ToVT.getSizeInBits();
375 return FromBits > ToBits;
376}
377
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000378//===----------------------------------------------------------------------===//
379// Inline asm support
380//===----------------------------------------------------------------------===//
381
382TargetLowering::ConstraintType
383SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
384 if (Constraint.size() == 1) {
385 switch (Constraint[0]) {
386 case 'a': // Address register
387 case 'd': // Data register (equivalent to 'r')
388 case 'f': // Floating-point register
Richard Sandiford0755c932013-10-01 11:26:28 +0000389 case 'h': // High-part register
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000390 case 'r': // General-purpose register
391 return C_RegisterClass;
392
393 case 'Q': // Memory with base and unsigned 12-bit displacement
394 case 'R': // Likewise, plus an index
395 case 'S': // Memory with base and signed 20-bit displacement
396 case 'T': // Likewise, plus an index
397 case 'm': // Equivalent to 'T'.
398 return C_Memory;
399
400 case 'I': // Unsigned 8-bit constant
401 case 'J': // Unsigned 12-bit constant
402 case 'K': // Signed 16-bit constant
403 case 'L': // Signed 20-bit displacement (on all targets we support)
404 case 'M': // 0x7fffffff
405 return C_Other;
406
407 default:
408 break;
409 }
410 }
411 return TargetLowering::getConstraintType(Constraint);
412}
413
414TargetLowering::ConstraintWeight SystemZTargetLowering::
415getSingleConstraintMatchWeight(AsmOperandInfo &info,
416 const char *constraint) const {
417 ConstraintWeight weight = CW_Invalid;
418 Value *CallOperandVal = info.CallOperandVal;
419 // If we don't have a value, we can't do a match,
420 // but allow it at the lowest weight.
421 if (CallOperandVal == NULL)
422 return CW_Default;
423 Type *type = CallOperandVal->getType();
424 // Look at the constraint type.
425 switch (*constraint) {
426 default:
427 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
428 break;
429
430 case 'a': // Address register
431 case 'd': // Data register (equivalent to 'r')
Richard Sandiford0755c932013-10-01 11:26:28 +0000432 case 'h': // High-part register
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000433 case 'r': // General-purpose register
434 if (CallOperandVal->getType()->isIntegerTy())
435 weight = CW_Register;
436 break;
437
438 case 'f': // Floating-point register
439 if (type->isFloatingPointTy())
440 weight = CW_Register;
441 break;
442
443 case 'I': // Unsigned 8-bit constant
444 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
445 if (isUInt<8>(C->getZExtValue()))
446 weight = CW_Constant;
447 break;
448
449 case 'J': // Unsigned 12-bit constant
450 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
451 if (isUInt<12>(C->getZExtValue()))
452 weight = CW_Constant;
453 break;
454
455 case 'K': // Signed 16-bit constant
456 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
457 if (isInt<16>(C->getSExtValue()))
458 weight = CW_Constant;
459 break;
460
461 case 'L': // Signed 20-bit displacement (on all targets we support)
462 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
463 if (isInt<20>(C->getSExtValue()))
464 weight = CW_Constant;
465 break;
466
467 case 'M': // 0x7fffffff
468 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
469 if (C->getZExtValue() == 0x7fffffff)
470 weight = CW_Constant;
471 break;
472 }
473 return weight;
474}
475
Richard Sandifordb8204052013-07-12 09:08:12 +0000476// Parse a "{tNNN}" register constraint for which the register type "t"
477// has already been verified. MC is the class associated with "t" and
478// Map maps 0-based register numbers to LLVM register numbers.
479static std::pair<unsigned, const TargetRegisterClass *>
480parseRegisterNumber(const std::string &Constraint,
481 const TargetRegisterClass *RC, const unsigned *Map) {
482 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
483 if (isdigit(Constraint[2])) {
484 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
485 unsigned Index = atoi(Suffix.c_str());
486 if (Index < 16 && Map[Index])
487 return std::make_pair(Map[Index], RC);
488 }
489 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
490}
491
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000492std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
Chad Rosier295bd432013-06-22 18:37:38 +0000493getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000494 if (Constraint.size() == 1) {
495 // GCC Constraint Letters
496 switch (Constraint[0]) {
497 default: break;
498 case 'd': // Data register (equivalent to 'r')
499 case 'r': // General-purpose register
500 if (VT == MVT::i64)
501 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
502 else if (VT == MVT::i128)
503 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
504 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
505
506 case 'a': // Address register
507 if (VT == MVT::i64)
508 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
509 else if (VT == MVT::i128)
510 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
511 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
512
Richard Sandiford0755c932013-10-01 11:26:28 +0000513 case 'h': // High-part register (an LLVM extension)
514 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
515
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000516 case 'f': // Floating-point register
517 if (VT == MVT::f64)
518 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
519 else if (VT == MVT::f128)
520 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
521 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
522 }
523 }
Richard Sandifordb8204052013-07-12 09:08:12 +0000524 if (Constraint[0] == '{') {
525 // We need to override the default register parsing for GPRs and FPRs
526 // because the interpretation depends on VT. The internal names of
527 // the registers are also different from the external names
528 // (F0D and F0S instead of F0, etc.).
529 if (Constraint[1] == 'r') {
530 if (VT == MVT::i32)
531 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
532 SystemZMC::GR32Regs);
533 if (VT == MVT::i128)
534 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
535 SystemZMC::GR128Regs);
536 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
537 SystemZMC::GR64Regs);
538 }
539 if (Constraint[1] == 'f') {
540 if (VT == MVT::f32)
541 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
542 SystemZMC::FP32Regs);
543 if (VT == MVT::f128)
544 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
545 SystemZMC::FP128Regs);
546 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
547 SystemZMC::FP64Regs);
548 }
549 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000550 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
551}
552
553void SystemZTargetLowering::
554LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
555 std::vector<SDValue> &Ops,
556 SelectionDAG &DAG) const {
557 // Only support length 1 constraints for now.
558 if (Constraint.length() == 1) {
559 switch (Constraint[0]) {
560 case 'I': // Unsigned 8-bit constant
561 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
562 if (isUInt<8>(C->getZExtValue()))
563 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
564 Op.getValueType()));
565 return;
566
567 case 'J': // Unsigned 12-bit constant
568 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
569 if (isUInt<12>(C->getZExtValue()))
570 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
571 Op.getValueType()));
572 return;
573
574 case 'K': // Signed 16-bit constant
575 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
576 if (isInt<16>(C->getSExtValue()))
577 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
578 Op.getValueType()));
579 return;
580
581 case 'L': // Signed 20-bit displacement (on all targets we support)
582 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
583 if (isInt<20>(C->getSExtValue()))
584 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
585 Op.getValueType()));
586 return;
587
588 case 'M': // 0x7fffffff
589 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
590 if (C->getZExtValue() == 0x7fffffff)
591 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
592 Op.getValueType()));
593 return;
594 }
595 }
596 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
597}
598
599//===----------------------------------------------------------------------===//
600// Calling conventions
601//===----------------------------------------------------------------------===//
602
603#include "SystemZGenCallingConv.inc"
604
Richard Sandiford709bda62013-08-19 12:42:31 +0000605bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
606 Type *ToType) const {
607 return isTruncateFree(FromType, ToType);
608}
609
610bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
611 if (!CI->isTailCall())
612 return false;
613 return true;
614}
615
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000616// Value is a value that has been passed to us in the location described by VA
617// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
618// any loads onto Chain.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000619static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000620 CCValAssign &VA, SDValue Chain,
621 SDValue Value) {
622 // If the argument has been promoted from a smaller type, insert an
623 // assertion to capture this.
624 if (VA.getLocInfo() == CCValAssign::SExt)
625 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
626 DAG.getValueType(VA.getValVT()));
627 else if (VA.getLocInfo() == CCValAssign::ZExt)
628 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
629 DAG.getValueType(VA.getValVT()));
630
631 if (VA.isExtInLoc())
632 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
633 else if (VA.getLocInfo() == CCValAssign::Indirect)
634 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
635 MachinePointerInfo(), false, false, false, 0);
636 else
637 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
638 return Value;
639}
640
641// Value is a value of type VA.getValVT() that we need to copy into
642// the location described by VA. Return a copy of Value converted to
643// VA.getValVT(). The caller is responsible for handling indirect values.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000644static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000645 CCValAssign &VA, SDValue Value) {
646 switch (VA.getLocInfo()) {
647 case CCValAssign::SExt:
648 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
649 case CCValAssign::ZExt:
650 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
651 case CCValAssign::AExt:
652 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
653 case CCValAssign::Full:
654 return Value;
655 default:
656 llvm_unreachable("Unhandled getLocInfo()");
657 }
658}
659
660SDValue SystemZTargetLowering::
661LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
662 const SmallVectorImpl<ISD::InputArg> &Ins,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000663 SDLoc DL, SelectionDAG &DAG,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000664 SmallVectorImpl<SDValue> &InVals) const {
665 MachineFunction &MF = DAG.getMachineFunction();
666 MachineFrameInfo *MFI = MF.getFrameInfo();
667 MachineRegisterInfo &MRI = MF.getRegInfo();
668 SystemZMachineFunctionInfo *FuncInfo =
669 MF.getInfo<SystemZMachineFunctionInfo>();
670 const SystemZFrameLowering *TFL =
671 static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
672
673 // Assign locations to all of the incoming arguments.
674 SmallVector<CCValAssign, 16> ArgLocs;
675 CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
676 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
677
678 unsigned NumFixedGPRs = 0;
679 unsigned NumFixedFPRs = 0;
680 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
681 SDValue ArgValue;
682 CCValAssign &VA = ArgLocs[I];
683 EVT LocVT = VA.getLocVT();
684 if (VA.isRegLoc()) {
685 // Arguments passed in registers
686 const TargetRegisterClass *RC;
687 switch (LocVT.getSimpleVT().SimpleTy) {
688 default:
689 // Integers smaller than i64 should be promoted to i64.
690 llvm_unreachable("Unexpected argument type");
691 case MVT::i32:
692 NumFixedGPRs += 1;
693 RC = &SystemZ::GR32BitRegClass;
694 break;
695 case MVT::i64:
696 NumFixedGPRs += 1;
697 RC = &SystemZ::GR64BitRegClass;
698 break;
699 case MVT::f32:
700 NumFixedFPRs += 1;
701 RC = &SystemZ::FP32BitRegClass;
702 break;
703 case MVT::f64:
704 NumFixedFPRs += 1;
705 RC = &SystemZ::FP64BitRegClass;
706 break;
707 }
708
709 unsigned VReg = MRI.createVirtualRegister(RC);
710 MRI.addLiveIn(VA.getLocReg(), VReg);
711 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
712 } else {
713 assert(VA.isMemLoc() && "Argument not register or memory");
714
715 // Create the frame index object for this incoming parameter.
716 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
717 VA.getLocMemOffset(), true);
718
719 // Create the SelectionDAG nodes corresponding to a load
720 // from this parameter. Unpromoted ints and floats are
721 // passed as right-justified 8-byte values.
722 EVT PtrVT = getPointerTy();
723 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
724 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
725 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
726 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
727 MachinePointerInfo::getFixedStack(FI),
728 false, false, false, 0);
729 }
730
731 // Convert the value of the argument register into the value that's
732 // being passed.
733 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
734 }
735
736 if (IsVarArg) {
737 // Save the number of non-varargs registers for later use by va_start, etc.
738 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
739 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
740
741 // Likewise the address (in the form of a frame index) of where the
742 // first stack vararg would be. The 1-byte size here is arbitrary.
743 int64_t StackSize = CCInfo.getNextStackOffset();
744 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
745
746 // ...and a similar frame index for the caller-allocated save area
747 // that will be used to store the incoming registers.
748 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
749 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
750 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
751
752 // Store the FPR varargs in the reserved frame slots. (We store the
753 // GPRs as part of the prologue.)
754 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
755 SDValue MemOps[SystemZ::NumArgFPRs];
756 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
757 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
758 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
759 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
760 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
761 &SystemZ::FP64BitRegClass);
762 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
763 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
764 MachinePointerInfo::getFixedStack(FI),
765 false, false, 0);
766
767 }
768 // Join the stores, which are independent of one another.
769 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
770 &MemOps[NumFixedFPRs],
771 SystemZ::NumArgFPRs - NumFixedFPRs);
772 }
773 }
774
775 return Chain;
776}
777
Richard Sandiford709bda62013-08-19 12:42:31 +0000778static bool canUseSiblingCall(CCState ArgCCInfo,
779 SmallVectorImpl<CCValAssign> &ArgLocs) {
780 // Punt if there are any indirect or stack arguments, or if the call
781 // needs the call-saved argument register R6.
782 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
783 CCValAssign &VA = ArgLocs[I];
784 if (VA.getLocInfo() == CCValAssign::Indirect)
785 return false;
786 if (!VA.isRegLoc())
787 return false;
788 unsigned Reg = VA.getLocReg();
Richard Sandiford0755c932013-10-01 11:26:28 +0000789 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
Richard Sandiford709bda62013-08-19 12:42:31 +0000790 return false;
791 }
792 return true;
793}
794
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000795SDValue
796SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
797 SmallVectorImpl<SDValue> &InVals) const {
798 SelectionDAG &DAG = CLI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +0000799 SDLoc &DL = CLI.DL;
Craig Topperb94011f2013-07-14 04:42:23 +0000800 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
801 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
802 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000803 SDValue Chain = CLI.Chain;
804 SDValue Callee = CLI.Callee;
Richard Sandiford709bda62013-08-19 12:42:31 +0000805 bool &IsTailCall = CLI.IsTailCall;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000806 CallingConv::ID CallConv = CLI.CallConv;
807 bool IsVarArg = CLI.IsVarArg;
808 MachineFunction &MF = DAG.getMachineFunction();
809 EVT PtrVT = getPointerTy();
810
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000811 // Analyze the operands of the call, assigning locations to each operand.
812 SmallVector<CCValAssign, 16> ArgLocs;
813 CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
814 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
815
Richard Sandiford709bda62013-08-19 12:42:31 +0000816 // We don't support GuaranteedTailCallOpt, only automatically-detected
817 // sibling calls.
818 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
819 IsTailCall = false;
820
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000821 // Get a count of how many bytes are to be pushed on the stack.
822 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
823
824 // Mark the start of the call.
Richard Sandiford709bda62013-08-19 12:42:31 +0000825 if (!IsTailCall)
826 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
827 DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000828
829 // Copy argument values to their designated locations.
830 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
831 SmallVector<SDValue, 8> MemOpChains;
832 SDValue StackPtr;
833 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
834 CCValAssign &VA = ArgLocs[I];
835 SDValue ArgValue = OutVals[I];
836
837 if (VA.getLocInfo() == CCValAssign::Indirect) {
838 // Store the argument in a stack slot and pass its address.
839 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
840 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
841 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
842 MachinePointerInfo::getFixedStack(FI),
843 false, false, 0));
844 ArgValue = SpillSlot;
845 } else
846 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
847
848 if (VA.isRegLoc())
849 // Queue up the argument copies and emit them at the end.
850 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
851 else {
852 assert(VA.isMemLoc() && "Argument not register or memory");
853
854 // Work out the address of the stack slot. Unpromoted ints and
855 // floats are passed as right-justified 8-byte values.
856 if (!StackPtr.getNode())
857 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
858 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
859 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
860 Offset += 4;
861 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
862 DAG.getIntPtrConstant(Offset));
863
864 // Emit the store.
865 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
866 MachinePointerInfo(),
867 false, false, 0));
868 }
869 }
870
871 // Join the stores, which are independent of one another.
872 if (!MemOpChains.empty())
873 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
874 &MemOpChains[0], MemOpChains.size());
875
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000876 // Accept direct calls by converting symbolic call addresses to the
Richard Sandiford709bda62013-08-19 12:42:31 +0000877 // associated Target* opcodes. Force %r1 to be used for indirect
878 // tail calls.
879 SDValue Glue;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000880 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
881 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
882 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
883 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
884 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
885 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
Richard Sandiford709bda62013-08-19 12:42:31 +0000886 } else if (IsTailCall) {
887 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
888 Glue = Chain.getValue(1);
889 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
890 }
891
892 // Build a sequence of copy-to-reg nodes, chained and glued together.
893 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
894 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
895 RegsToPass[I].second, Glue);
896 Glue = Chain.getValue(1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000897 }
898
899 // The first call operand is the chain and the second is the target address.
900 SmallVector<SDValue, 8> Ops;
901 Ops.push_back(Chain);
902 Ops.push_back(Callee);
903
904 // Add argument registers to the end of the list so that they are
905 // known live into the call.
906 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
907 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
908 RegsToPass[I].second.getValueType()));
909
910 // Glue the call to the argument copies, if any.
911 if (Glue.getNode())
912 Ops.push_back(Glue);
913
914 // Emit the call.
915 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Richard Sandiford709bda62013-08-19 12:42:31 +0000916 if (IsTailCall)
917 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000918 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
919 Glue = Chain.getValue(1);
920
921 // Mark the end of the call, which is glued to the call itself.
922 Chain = DAG.getCALLSEQ_END(Chain,
923 DAG.getConstant(NumBytes, PtrVT, true),
924 DAG.getConstant(0, PtrVT, true),
Andrew Trickad6d08a2013-05-29 22:03:55 +0000925 Glue, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000926 Glue = Chain.getValue(1);
927
928 // Assign locations to each value returned by this call.
929 SmallVector<CCValAssign, 16> RetLocs;
930 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
931 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
932
933 // Copy all of the result registers out of their specified physreg.
934 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
935 CCValAssign &VA = RetLocs[I];
936
937 // Copy the value out, gluing the copy to the end of the call sequence.
938 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
939 VA.getLocVT(), Glue);
940 Chain = RetValue.getValue(1);
941 Glue = RetValue.getValue(2);
942
943 // Convert the value of the return register into the value that's
944 // being returned.
945 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
946 }
947
948 return Chain;
949}
950
951SDValue
952SystemZTargetLowering::LowerReturn(SDValue Chain,
953 CallingConv::ID CallConv, bool IsVarArg,
954 const SmallVectorImpl<ISD::OutputArg> &Outs,
955 const SmallVectorImpl<SDValue> &OutVals,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000956 SDLoc DL, SelectionDAG &DAG) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000957 MachineFunction &MF = DAG.getMachineFunction();
958
959 // Assign locations to each returned value.
960 SmallVector<CCValAssign, 16> RetLocs;
961 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
962 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
963
964 // Quick exit for void returns
965 if (RetLocs.empty())
966 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
967
968 // Copy the result values into the output registers.
969 SDValue Glue;
970 SmallVector<SDValue, 4> RetOps;
971 RetOps.push_back(Chain);
972 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
973 CCValAssign &VA = RetLocs[I];
974 SDValue RetValue = OutVals[I];
975
976 // Make the return register live on exit.
977 assert(VA.isRegLoc() && "Can only return in registers!");
978
979 // Promote the value as required.
980 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
981
982 // Chain and glue the copies together.
983 unsigned Reg = VA.getLocReg();
984 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
985 Glue = Chain.getValue(1);
986 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
987 }
988
989 // Update chain and glue.
990 RetOps[0] = Chain;
991 if (Glue.getNode())
992 RetOps.push_back(Glue);
993
994 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
995 RetOps.data(), RetOps.size());
996}
997
Richard Sandiford9afe6132013-12-10 10:36:34 +0000998SDValue SystemZTargetLowering::
999prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
1000 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1001}
1002
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001003// CC is a comparison that will be implemented using an integer or
1004// floating-point comparison. Return the condition code mask for
1005// a branch on true. In the integer case, CCMASK_CMP_UO is set for
1006// unsigned comparisons and clear for signed ones. In the floating-point
1007// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1008static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1009#define CONV(X) \
1010 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1011 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1012 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1013
1014 switch (CC) {
1015 default:
1016 llvm_unreachable("Invalid integer condition!");
1017
1018 CONV(EQ);
1019 CONV(NE);
1020 CONV(GT);
1021 CONV(GE);
1022 CONV(LT);
1023 CONV(LE);
1024
1025 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1026 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1027 }
1028#undef CONV
1029}
1030
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001031// Return a sequence for getting a 1 from an IPM result when CC has a
1032// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1033// The handling of CC values outside CCValid doesn't matter.
1034static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1035 // Deal with cases where the result can be taken directly from a bit
1036 // of the IPM result.
1037 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1038 return IPMConversion(0, 0, SystemZ::IPM_CC);
1039 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1040 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1041
1042 // Deal with cases where we can add a value to force the sign bit
1043 // to contain the right value. Putting the bit in 31 means we can
1044 // use SRL rather than RISBG(L), and also makes it easier to get a
1045 // 0/-1 value, so it has priority over the other tests below.
1046 //
1047 // These sequences rely on the fact that the upper two bits of the
1048 // IPM result are zero.
1049 uint64_t TopBit = uint64_t(1) << 31;
1050 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1051 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1052 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1053 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1054 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1055 | SystemZ::CCMASK_1
1056 | SystemZ::CCMASK_2)))
1057 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1058 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1059 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1060 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1061 | SystemZ::CCMASK_2
1062 | SystemZ::CCMASK_3)))
1063 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1064
1065 // Next try inverting the value and testing a bit. 0/1 could be
1066 // handled this way too, but we dealt with that case above.
1067 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1068 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1069
1070 // Handle cases where adding a value forces a non-sign bit to contain
1071 // the right value.
1072 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1073 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1074 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1075 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1076
1077 // The remaing cases are 1, 2, 0/1/3 and 0/2/3. All these are
1078 // can be done by inverting the low CC bit and applying one of the
1079 // sign-based extractions above.
1080 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1081 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1082 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1083 return IPMConversion(1 << SystemZ::IPM_CC,
1084 TopBit - (3 << SystemZ::IPM_CC), 31);
1085 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1086 | SystemZ::CCMASK_1
1087 | SystemZ::CCMASK_3)))
1088 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1089 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1090 | SystemZ::CCMASK_2
1091 | SystemZ::CCMASK_3)))
1092 return IPMConversion(1 << SystemZ::IPM_CC,
1093 TopBit - (1 << SystemZ::IPM_CC), 31);
1094
1095 llvm_unreachable("Unexpected CC combination");
1096}
1097
Richard Sandifordd420f732013-12-13 15:28:45 +00001098// If C can be converted to a comparison against zero, adjust the operands
Richard Sandiforda0757082013-08-01 10:29:45 +00001099// as necessary.
Richard Sandifordd420f732013-12-13 15:28:45 +00001100static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
1101 if (C.ICmpType == SystemZICMP::UnsignedOnly)
Richard Sandiforda0757082013-08-01 10:29:45 +00001102 return;
1103
Richard Sandifordd420f732013-12-13 15:28:45 +00001104 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
Richard Sandiforda0757082013-08-01 10:29:45 +00001105 if (!ConstOp1)
1106 return;
1107
1108 int64_t Value = ConstOp1->getSExtValue();
Richard Sandifordd420f732013-12-13 15:28:45 +00001109 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1110 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1111 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1112 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1113 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1114 C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
Richard Sandiforda0757082013-08-01 10:29:45 +00001115 }
1116}
1117
Richard Sandifordd420f732013-12-13 15:28:45 +00001118// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1119// adjust the operands as necessary.
1120static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001121 // For us to make any changes, it must a comparison between a single-use
1122 // load and a constant.
Richard Sandifordd420f732013-12-13 15:28:45 +00001123 if (!C.Op0.hasOneUse() ||
1124 C.Op0.getOpcode() != ISD::LOAD ||
1125 C.Op1.getOpcode() != ISD::Constant)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001126 return;
1127
1128 // We must have an 8- or 16-bit load.
Richard Sandifordd420f732013-12-13 15:28:45 +00001129 LoadSDNode *Load = cast<LoadSDNode>(C.Op0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001130 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1131 if (NumBits != 8 && NumBits != 16)
1132 return;
1133
1134 // The load must be an extending one and the constant must be within the
1135 // range of the unextended value.
Richard Sandifordd420f732013-12-13 15:28:45 +00001136 ConstantSDNode *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1137 uint64_t Value = ConstOp1->getZExtValue();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001138 uint64_t Mask = (1 << NumBits) - 1;
1139 if (Load->getExtensionType() == ISD::SEXTLOAD) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001140 // Make sure that ConstOp1 is in range of C.Op0.
1141 int64_t SignedValue = ConstOp1->getSExtValue();
1142 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001143 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001144 if (C.ICmpType != SystemZICMP::SignedOnly) {
1145 // Unsigned comparison between two sign-extended values is equivalent
1146 // to unsigned comparison between two zero-extended values.
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001147 Value &= Mask;
Richard Sandifordd420f732013-12-13 15:28:45 +00001148 } else if (NumBits == 8) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001149 // Try to treat the comparison as unsigned, so that we can use CLI.
1150 // Adjust CCMask and Value as necessary.
Richard Sandifordd420f732013-12-13 15:28:45 +00001151 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001152 // Test whether the high bit of the byte is set.
Richard Sandifordd420f732013-12-13 15:28:45 +00001153 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1154 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001155 // Test whether the high bit of the byte is clear.
Richard Sandifordd420f732013-12-13 15:28:45 +00001156 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001157 else
1158 // No instruction exists for this combination.
1159 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001160 C.ICmpType = SystemZICMP::UnsignedOnly;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001161 }
1162 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1163 if (Value > Mask)
1164 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001165 assert(C.ICmpType == SystemZICMP::Any &&
1166 "Signedness shouldn't matter here.");
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001167 } else
1168 return;
1169
1170 // Make sure that the first operand is an i32 of the right extension type.
Richard Sandifordd420f732013-12-13 15:28:45 +00001171 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1172 ISD::SEXTLOAD :
1173 ISD::ZEXTLOAD);
1174 if (C.Op0.getValueType() != MVT::i32 ||
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001175 Load->getExtensionType() != ExtType)
Richard Sandifordd420f732013-12-13 15:28:45 +00001176 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1177 Load->getChain(), Load->getBasePtr(),
1178 Load->getPointerInfo(), Load->getMemoryVT(),
1179 Load->isVolatile(), Load->isNonTemporal(),
1180 Load->getAlignment());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001181
1182 // Make sure that the second operand is an i32 with the right value.
Richard Sandifordd420f732013-12-13 15:28:45 +00001183 if (C.Op1.getValueType() != MVT::i32 ||
1184 Value != ConstOp1->getZExtValue())
1185 C.Op1 = DAG.getConstant(Value, MVT::i32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001186}
1187
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001188// Return true if Op is either an unextended load, or a load suitable
1189// for integer register-memory comparisons of type ICmpType.
1190static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001191 LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode());
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001192 if (Load) {
1193 // There are no instructions to compare a register with a memory byte.
1194 if (Load->getMemoryVT() == MVT::i8)
1195 return false;
1196 // Otherwise decide on extension type.
Richard Sandiford24e597b2013-08-23 11:27:19 +00001197 switch (Load->getExtensionType()) {
1198 case ISD::NON_EXTLOAD:
Richard Sandiford24e597b2013-08-23 11:27:19 +00001199 return true;
1200 case ISD::SEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001201 return ICmpType != SystemZICMP::UnsignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001202 case ISD::ZEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001203 return ICmpType != SystemZICMP::SignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001204 default:
1205 break;
1206 }
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001207 }
Richard Sandiford24e597b2013-08-23 11:27:19 +00001208 return false;
1209}
1210
Richard Sandifordd420f732013-12-13 15:28:45 +00001211// Return true if it is better to swap the operands of C.
1212static bool shouldSwapCmpOperands(const Comparison &C) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001213 // Leave f128 comparisons alone, since they have no memory forms.
Richard Sandifordd420f732013-12-13 15:28:45 +00001214 if (C.Op0.getValueType() == MVT::f128)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001215 return false;
1216
1217 // Always keep a floating-point constant second, since comparisons with
1218 // zero can use LOAD TEST and comparisons with other constants make a
1219 // natural memory operand.
Richard Sandifordd420f732013-12-13 15:28:45 +00001220 if (isa<ConstantFPSDNode>(C.Op1))
Richard Sandiford24e597b2013-08-23 11:27:19 +00001221 return false;
1222
1223 // Never swap comparisons with zero since there are many ways to optimize
1224 // those later.
Richard Sandifordd420f732013-12-13 15:28:45 +00001225 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1226 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001227 return false;
1228
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001229 // Also keep natural memory operands second if the loaded value is
1230 // only used here. Several comparisons have memory forms.
Richard Sandifordd420f732013-12-13 15:28:45 +00001231 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001232 return false;
1233
Richard Sandiford24e597b2013-08-23 11:27:19 +00001234 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1235 // In that case we generally prefer the memory to be second.
Richard Sandifordd420f732013-12-13 15:28:45 +00001236 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001237 // The only exceptions are when the second operand is a constant and
1238 // we can use things like CHHSI.
Richard Sandifordd420f732013-12-13 15:28:45 +00001239 if (!ConstOp1)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001240 return true;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001241 // The unsigned memory-immediate instructions can handle 16-bit
1242 // unsigned integers.
Richard Sandifordd420f732013-12-13 15:28:45 +00001243 if (C.ICmpType != SystemZICMP::SignedOnly &&
1244 isUInt<16>(ConstOp1->getZExtValue()))
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001245 return false;
1246 // The signed memory-immediate instructions can handle 16-bit
1247 // signed integers.
Richard Sandifordd420f732013-12-13 15:28:45 +00001248 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1249 isInt<16>(ConstOp1->getSExtValue()))
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001250 return false;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001251 return true;
1252 }
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001253
1254 // Try to promote the use of CGFR and CLGFR.
Richard Sandifordd420f732013-12-13 15:28:45 +00001255 unsigned Opcode0 = C.Op0.getOpcode();
1256 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001257 return true;
Richard Sandifordd420f732013-12-13 15:28:45 +00001258 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001259 return true;
Richard Sandifordd420f732013-12-13 15:28:45 +00001260 if (C.ICmpType != SystemZICMP::SignedOnly &&
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001261 Opcode0 == ISD::AND &&
Richard Sandifordd420f732013-12-13 15:28:45 +00001262 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1263 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001264 return true;
1265
Richard Sandiford24e597b2013-08-23 11:27:19 +00001266 return false;
1267}
1268
Richard Sandiford73170f82013-12-11 11:45:08 +00001269// Return a version of comparison CC mask CCMask in which the LT and GT
1270// actions are swapped.
1271static unsigned reverseCCMask(unsigned CCMask) {
1272 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1273 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1274 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1275 (CCMask & SystemZ::CCMASK_CMP_UO));
1276}
1277
Richard Sandiford0847c452013-12-13 15:50:30 +00001278// Check whether C tests for equality between X and Y and whether X - Y
1279// or Y - X is also computed. In that case it's better to compare the
1280// result of the subtraction against zero.
1281static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
1282 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1283 C.CCMask == SystemZ::CCMASK_CMP_NE) {
1284 for (SDNode::use_iterator I = C.Op0->use_begin(), E = C.Op0->use_end();
1285 I != E; ++I) {
1286 SDNode *N = *I;
1287 if (N->getOpcode() == ISD::SUB &&
1288 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1289 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1290 C.Op0 = SDValue(N, 0);
1291 C.Op1 = DAG.getConstant(0, N->getValueType(0));
1292 return;
1293 }
1294 }
1295 }
1296}
1297
Richard Sandifordd420f732013-12-13 15:28:45 +00001298// Check whether C compares a floating-point value with zero and if that
1299// floating-point value is also negated. In this case we can use the
1300// negation to set CC, so avoiding separate LOAD AND TEST and
1301// LOAD (NEGATIVE/COMPLEMENT) instructions.
1302static void adjustForFNeg(Comparison &C) {
1303 ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
Richard Sandiford73170f82013-12-11 11:45:08 +00001304 if (C1 && C1->isZero()) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001305 for (SDNode::use_iterator I = C.Op0->use_begin(), E = C.Op0->use_end();
Richard Sandiford73170f82013-12-11 11:45:08 +00001306 I != E; ++I) {
1307 SDNode *N = *I;
1308 if (N->getOpcode() == ISD::FNEG) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001309 C.Op0 = SDValue(N, 0);
1310 C.CCMask = reverseCCMask(C.CCMask);
Richard Sandiford73170f82013-12-11 11:45:08 +00001311 return;
1312 }
1313 }
1314 }
1315}
1316
Richard Sandifordd420f732013-12-13 15:28:45 +00001317// Check whether C compares (shl X, 32) with 0 and whether X is
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001318// also sign-extended. In that case it is better to test the result
1319// of the sign extension using LTGFR.
1320//
1321// This case is important because InstCombine transforms a comparison
1322// with (sext (trunc X)) into a comparison with (shl X, 32).
Richard Sandifordd420f732013-12-13 15:28:45 +00001323static void adjustForLTGFR(Comparison &C) {
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001324 // Check for a comparison between (shl X, 32) and 0.
Richard Sandifordd420f732013-12-13 15:28:45 +00001325 if (C.Op0.getOpcode() == ISD::SHL &&
1326 C.Op0.getValueType() == MVT::i64 &&
1327 C.Op1.getOpcode() == ISD::Constant &&
1328 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1329 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001330 if (C1 && C1->getZExtValue() == 32) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001331 SDValue ShlOp0 = C.Op0.getOperand(0);
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001332 // See whether X has any SIGN_EXTEND_INREG uses.
1333 for (SDNode::use_iterator I = ShlOp0->use_begin(), E = ShlOp0->use_end();
1334 I != E; ++I) {
1335 SDNode *N = *I;
1336 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1337 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001338 C.Op0 = SDValue(N, 0);
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001339 return;
1340 }
1341 }
1342 }
1343 }
1344}
1345
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001346// If C compares the truncation of an extending load, try to compare
1347// the untruncated value instead. This exposes more opportunities to
1348// reuse CC.
1349static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
1350 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1351 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1352 C.Op1.getOpcode() == ISD::Constant &&
1353 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1354 LoadSDNode *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1355 if (L->getMemoryVT().getStoreSizeInBits()
1356 <= C.Op0.getValueType().getSizeInBits()) {
1357 unsigned Type = L->getExtensionType();
1358 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1359 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1360 C.Op0 = C.Op0.getOperand(0);
1361 C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
1362 }
1363 }
1364 }
1365}
1366
Richard Sandiford030c1652013-09-13 09:09:50 +00001367// Return true if shift operation N has an in-range constant shift value.
1368// Store it in ShiftVal if so.
1369static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1370 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1371 if (!Shift)
1372 return false;
1373
1374 uint64_t Amount = Shift->getZExtValue();
1375 if (Amount >= N.getValueType().getSizeInBits())
1376 return false;
1377
1378 ShiftVal = Amount;
1379 return true;
1380}
1381
1382// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1383// instruction and whether the CC value is descriptive enough to handle
1384// a comparison of type Opcode between the AND result and CmpVal.
1385// CCMask says which comparison result is being tested and BitSize is
1386// the number of bits in the operands. If TEST UNDER MASK can be used,
1387// return the corresponding CC mask, otherwise return 0.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001388static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1389 uint64_t Mask, uint64_t CmpVal,
1390 unsigned ICmpType) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001391 assert(Mask != 0 && "ANDs with zero should have been removed by now");
1392
Richard Sandiford030c1652013-09-13 09:09:50 +00001393 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1394 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1395 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1396 return 0;
1397
Richard Sandiford113c8702013-09-03 15:38:35 +00001398 // Work out the masks for the lowest and highest bits.
1399 unsigned HighShift = 63 - countLeadingZeros(Mask);
1400 uint64_t High = uint64_t(1) << HighShift;
1401 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1402
1403 // Signed ordered comparisons are effectively unsigned if the sign
1404 // bit is dropped.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001405 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
Richard Sandiford113c8702013-09-03 15:38:35 +00001406
1407 // Check for equality comparisons with 0, or the equivalent.
1408 if (CmpVal == 0) {
1409 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1410 return SystemZ::CCMASK_TM_ALL_0;
1411 if (CCMask == SystemZ::CCMASK_CMP_NE)
1412 return SystemZ::CCMASK_TM_SOME_1;
1413 }
1414 if (EffectivelyUnsigned && CmpVal <= Low) {
1415 if (CCMask == SystemZ::CCMASK_CMP_LT)
1416 return SystemZ::CCMASK_TM_ALL_0;
1417 if (CCMask == SystemZ::CCMASK_CMP_GE)
1418 return SystemZ::CCMASK_TM_SOME_1;
1419 }
1420 if (EffectivelyUnsigned && CmpVal < Low) {
1421 if (CCMask == SystemZ::CCMASK_CMP_LE)
1422 return SystemZ::CCMASK_TM_ALL_0;
1423 if (CCMask == SystemZ::CCMASK_CMP_GT)
1424 return SystemZ::CCMASK_TM_SOME_1;
1425 }
1426
1427 // Check for equality comparisons with the mask, or the equivalent.
1428 if (CmpVal == Mask) {
1429 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1430 return SystemZ::CCMASK_TM_ALL_1;
1431 if (CCMask == SystemZ::CCMASK_CMP_NE)
1432 return SystemZ::CCMASK_TM_SOME_0;
1433 }
1434 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1435 if (CCMask == SystemZ::CCMASK_CMP_GT)
1436 return SystemZ::CCMASK_TM_ALL_1;
1437 if (CCMask == SystemZ::CCMASK_CMP_LE)
1438 return SystemZ::CCMASK_TM_SOME_0;
1439 }
1440 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1441 if (CCMask == SystemZ::CCMASK_CMP_GE)
1442 return SystemZ::CCMASK_TM_ALL_1;
1443 if (CCMask == SystemZ::CCMASK_CMP_LT)
1444 return SystemZ::CCMASK_TM_SOME_0;
1445 }
1446
1447 // Check for ordered comparisons with the top bit.
1448 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1449 if (CCMask == SystemZ::CCMASK_CMP_LE)
1450 return SystemZ::CCMASK_TM_MSB_0;
1451 if (CCMask == SystemZ::CCMASK_CMP_GT)
1452 return SystemZ::CCMASK_TM_MSB_1;
1453 }
1454 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1455 if (CCMask == SystemZ::CCMASK_CMP_LT)
1456 return SystemZ::CCMASK_TM_MSB_0;
1457 if (CCMask == SystemZ::CCMASK_CMP_GE)
1458 return SystemZ::CCMASK_TM_MSB_1;
1459 }
1460
1461 // If there are just two bits, we can do equality checks for Low and High
1462 // as well.
1463 if (Mask == Low + High) {
1464 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1465 return SystemZ::CCMASK_TM_MIXED_MSB_0;
1466 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1467 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1468 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1469 return SystemZ::CCMASK_TM_MIXED_MSB_1;
1470 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1471 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1472 }
1473
1474 // Looks like we've exhausted our options.
1475 return 0;
1476}
1477
Richard Sandifordd420f732013-12-13 15:28:45 +00001478// See whether C can be implemented as a TEST UNDER MASK instruction.
1479// Update the arguments with the TM version if so.
1480static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001481 // Check that we have a comparison with a constant.
Richard Sandifordd420f732013-12-13 15:28:45 +00001482 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1483 if (!ConstOp1)
Richard Sandiford35b9be22013-08-28 10:31:43 +00001484 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001485 uint64_t CmpVal = ConstOp1->getZExtValue();
Richard Sandiford35b9be22013-08-28 10:31:43 +00001486
1487 // Check whether the nonconstant input is an AND with a constant mask.
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001488 Comparison NewC(C);
1489 uint64_t MaskVal;
1490 ConstantSDNode *Mask = 0;
1491 if (C.Op0.getOpcode() == ISD::AND) {
1492 NewC.Op0 = C.Op0.getOperand(0);
1493 NewC.Op1 = C.Op0.getOperand(1);
1494 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1495 if (!Mask)
1496 return;
1497 MaskVal = Mask->getZExtValue();
1498 } else {
1499 // There is no instruction to compare with a 64-bit immediate
1500 // so use TMHH instead if possible. We need an unsigned ordered
1501 // comparison with an i64 immediate.
1502 if (NewC.Op0.getValueType() != MVT::i64 ||
1503 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1504 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1505 NewC.ICmpType == SystemZICMP::SignedOnly)
1506 return;
1507 // Convert LE and GT comparisons into LT and GE.
1508 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
1509 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
1510 if (CmpVal == uint64_t(-1))
1511 return;
1512 CmpVal += 1;
1513 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1514 }
1515 // If the low N bits of Op1 are zero than the low N bits of Op0 can
1516 // be masked off without changing the result.
1517 MaskVal = -(CmpVal & -CmpVal);
1518 NewC.ICmpType = SystemZICMP::UnsignedOnly;
1519 }
Richard Sandiford35b9be22013-08-28 10:31:43 +00001520
Richard Sandiford113c8702013-09-03 15:38:35 +00001521 // Check whether the combination of mask, comparison value and comparison
1522 // type are suitable.
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001523 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
Richard Sandiford030c1652013-09-13 09:09:50 +00001524 unsigned NewCCMask, ShiftVal;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001525 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1526 NewC.Op0.getOpcode() == ISD::SHL &&
1527 isSimpleShift(NewC.Op0, ShiftVal) &&
1528 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1529 MaskVal >> ShiftVal,
Richard Sandiford030c1652013-09-13 09:09:50 +00001530 CmpVal >> ShiftVal,
1531 SystemZICMP::Any))) {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001532 NewC.Op0 = NewC.Op0.getOperand(0);
1533 MaskVal >>= ShiftVal;
1534 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1535 NewC.Op0.getOpcode() == ISD::SRL &&
1536 isSimpleShift(NewC.Op0, ShiftVal) &&
1537 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
Richard Sandiford030c1652013-09-13 09:09:50 +00001538 MaskVal << ShiftVal,
1539 CmpVal << ShiftVal,
1540 SystemZICMP::UnsignedOnly))) {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001541 NewC.Op0 = NewC.Op0.getOperand(0);
1542 MaskVal <<= ShiftVal;
Richard Sandiford030c1652013-09-13 09:09:50 +00001543 } else {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001544 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
1545 NewC.ICmpType);
Richard Sandiford030c1652013-09-13 09:09:50 +00001546 if (!NewCCMask)
1547 return;
1548 }
Richard Sandiford113c8702013-09-03 15:38:35 +00001549
Richard Sandiford35b9be22013-08-28 10:31:43 +00001550 // Go ahead and make the change.
Richard Sandifordd420f732013-12-13 15:28:45 +00001551 C.Opcode = SystemZISD::TM;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001552 C.Op0 = NewC.Op0;
1553 if (Mask && Mask->getZExtValue() == MaskVal)
1554 C.Op1 = SDValue(Mask, 0);
1555 else
1556 C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
Richard Sandifordd420f732013-12-13 15:28:45 +00001557 C.CCValid = SystemZ::CCMASK_TM;
1558 C.CCMask = NewCCMask;
Richard Sandiford35b9be22013-08-28 10:31:43 +00001559}
1560
Richard Sandifordd420f732013-12-13 15:28:45 +00001561// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
1562static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1563 ISD::CondCode Cond) {
1564 Comparison C(CmpOp0, CmpOp1);
1565 C.CCMask = CCMaskForCondCode(Cond);
1566 if (C.Op0.getValueType().isFloatingPoint()) {
1567 C.CCValid = SystemZ::CCMASK_FCMP;
1568 C.Opcode = SystemZISD::FCMP;
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001569 adjustForFNeg(C);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001570 } else {
Richard Sandifordd420f732013-12-13 15:28:45 +00001571 C.CCValid = SystemZ::CCMASK_ICMP;
1572 C.Opcode = SystemZISD::ICMP;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001573 // Choose the type of comparison. Equality and inequality tests can
1574 // use either signed or unsigned comparisons. The choice also doesn't
1575 // matter if both sign bits are known to be clear. In those cases we
1576 // want to give the main isel code the freedom to choose whichever
1577 // form fits best.
Richard Sandifordd420f732013-12-13 15:28:45 +00001578 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1579 C.CCMask == SystemZ::CCMASK_CMP_NE ||
1580 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
1581 C.ICmpType = SystemZICMP::Any;
1582 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
1583 C.ICmpType = SystemZICMP::UnsignedOnly;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001584 else
Richard Sandifordd420f732013-12-13 15:28:45 +00001585 C.ICmpType = SystemZICMP::SignedOnly;
1586 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
1587 adjustZeroCmp(DAG, C);
1588 adjustSubwordCmp(DAG, C);
Richard Sandiford0847c452013-12-13 15:50:30 +00001589 adjustForSubtraction(DAG, C);
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001590 adjustForLTGFR(C);
1591 adjustICmpTruncate(DAG, C);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001592 }
1593
Richard Sandifordd420f732013-12-13 15:28:45 +00001594 if (shouldSwapCmpOperands(C)) {
1595 std::swap(C.Op0, C.Op1);
1596 C.CCMask = reverseCCMask(C.CCMask);
Richard Sandiford24e597b2013-08-23 11:27:19 +00001597 }
1598
Richard Sandifordd420f732013-12-13 15:28:45 +00001599 adjustForTestUnderMask(DAG, C);
Richard Sandifordd420f732013-12-13 15:28:45 +00001600 return C;
1601}
1602
1603// Emit the comparison instruction described by C.
1604static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1605 if (C.Opcode == SystemZISD::ICMP)
1606 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
1607 DAG.getConstant(C.ICmpType, MVT::i32));
1608 if (C.Opcode == SystemZISD::TM) {
1609 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1610 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1611 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
1612 DAG.getConstant(RegisterOnly, MVT::i32));
1613 }
1614 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001615}
1616
Richard Sandiford7d86e472013-08-21 09:34:56 +00001617// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1618// 64 bits. Extend is the extension type to use. Store the high part
1619// in Hi and the low part in Lo.
1620static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1621 unsigned Extend, SDValue Op0, SDValue Op1,
1622 SDValue &Hi, SDValue &Lo) {
1623 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1624 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1625 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1626 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1627 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1628 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1629}
1630
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001631// Lower a binary operation that produces two VT results, one in each
1632// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
1633// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1634// on the extended Op0 and (unextended) Op1. Store the even register result
1635// in Even and the odd register result in Odd.
Andrew Trickef9de2a2013-05-25 02:42:55 +00001636static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001637 unsigned Extend, unsigned Opcode,
1638 SDValue Op0, SDValue Op1,
1639 SDValue &Even, SDValue &Odd) {
1640 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1641 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1642 SDValue(In128, 0), Op1);
1643 bool Is32Bit = is32Bit(VT);
Richard Sandifordd8163202013-09-13 09:12:44 +00001644 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1645 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001646}
1647
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001648// Return an i32 value that is 1 if the CC value produced by Glue is
1649// in the mask CCMask and 0 otherwise. CC is known to have a value
1650// in CCValid, so other values can be ignored.
1651static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
1652 unsigned CCValid, unsigned CCMask) {
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001653 IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
1654 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1655
1656 if (Conversion.XORValue)
1657 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
1658 DAG.getConstant(Conversion.XORValue, MVT::i32));
1659
1660 if (Conversion.AddValue)
1661 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
1662 DAG.getConstant(Conversion.AddValue, MVT::i32));
1663
1664 // The SHR/AND sequence should get optimized to an RISBG.
1665 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
1666 DAG.getConstant(Conversion.Bit, MVT::i32));
1667 if (Conversion.Bit != 31)
1668 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
1669 DAG.getConstant(1, MVT::i32));
1670 return Result;
1671}
1672
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001673SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
1674 SelectionDAG &DAG) const {
1675 SDValue CmpOp0 = Op.getOperand(0);
1676 SDValue CmpOp1 = Op.getOperand(1);
1677 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1678 SDLoc DL(Op);
1679
Richard Sandifordd420f732013-12-13 15:28:45 +00001680 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1681 SDValue Glue = emitCmp(DAG, DL, C);
1682 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001683}
1684
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001685SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1686 SDValue Chain = Op.getOperand(0);
1687 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1688 SDValue CmpOp0 = Op.getOperand(2);
1689 SDValue CmpOp1 = Op.getOperand(3);
1690 SDValue Dest = Op.getOperand(4);
Andrew Trickef9de2a2013-05-25 02:42:55 +00001691 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001692
Richard Sandifordd420f732013-12-13 15:28:45 +00001693 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1694 SDValue Glue = emitCmp(DAG, DL, C);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001695 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
Richard Sandifordd420f732013-12-13 15:28:45 +00001696 Chain, DAG.getConstant(C.CCValid, MVT::i32),
1697 DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001698}
1699
Richard Sandiford57485472013-12-13 15:35:00 +00001700// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
1701// allowing Pos and Neg to be wider than CmpOp.
1702static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
1703 return (Neg.getOpcode() == ISD::SUB &&
1704 Neg.getOperand(0).getOpcode() == ISD::Constant &&
1705 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
1706 Neg.getOperand(1) == Pos &&
1707 (Pos == CmpOp ||
1708 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
1709 Pos.getOperand(0) == CmpOp)));
1710}
1711
1712// Return the absolute or negative absolute of Op; IsNegative decides which.
1713static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
1714 bool IsNegative) {
1715 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
1716 if (IsNegative)
1717 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
1718 DAG.getConstant(0, Op.getValueType()), Op);
1719 return Op;
1720}
1721
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001722SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1723 SelectionDAG &DAG) const {
1724 SDValue CmpOp0 = Op.getOperand(0);
1725 SDValue CmpOp1 = Op.getOperand(1);
1726 SDValue TrueOp = Op.getOperand(2);
1727 SDValue FalseOp = Op.getOperand(3);
1728 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001729 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001730
Richard Sandifordd420f732013-12-13 15:28:45 +00001731 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
Richard Sandiford57485472013-12-13 15:35:00 +00001732
1733 // Check for absolute and negative-absolute selections, including those
1734 // where the comparison value is sign-extended (for LPGFR and LNGFR).
1735 // This check supplements the one in DAGCombiner.
1736 if (C.Opcode == SystemZISD::ICMP &&
1737 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
1738 C.CCMask != SystemZ::CCMASK_CMP_NE &&
1739 C.Op1.getOpcode() == ISD::Constant &&
1740 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1741 if (isAbsolute(C.Op0, TrueOp, FalseOp))
1742 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
1743 if (isAbsolute(C.Op0, FalseOp, TrueOp))
1744 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
1745 }
1746
Richard Sandifordd420f732013-12-13 15:28:45 +00001747 SDValue Glue = emitCmp(DAG, DL, C);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001748
1749 // Special case for handling -1/0 results. The shifts we use here
1750 // should get optimized with the IPM conversion sequence.
1751 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
1752 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
1753 if (TrueC && FalseC) {
1754 int64_t TrueVal = TrueC->getSExtValue();
1755 int64_t FalseVal = FalseC->getSExtValue();
1756 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
1757 // Invert the condition if we want -1 on false.
1758 if (TrueVal == 0)
Richard Sandifordd420f732013-12-13 15:28:45 +00001759 C.CCMask ^= C.CCValid;
1760 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001761 EVT VT = Op.getValueType();
1762 // Extend the result to VT. Upper bits are ignored.
1763 if (!is32Bit(VT))
1764 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
1765 // Sign-extend from the low bit.
1766 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
1767 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
1768 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
1769 }
1770 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001771
Richard Sandiford3d768e32013-07-31 12:30:20 +00001772 SmallVector<SDValue, 5> Ops;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001773 Ops.push_back(TrueOp);
1774 Ops.push_back(FalseOp);
Richard Sandifordd420f732013-12-13 15:28:45 +00001775 Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32));
1776 Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32));
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001777 Ops.push_back(Glue);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001778
1779 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1780 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1781}
1782
1783SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1784 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001785 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001786 const GlobalValue *GV = Node->getGlobal();
1787 int64_t Offset = Node->getOffset();
1788 EVT PtrVT = getPointerTy();
1789 Reloc::Model RM = TM.getRelocationModel();
1790 CodeModel::Model CM = TM.getCodeModel();
1791
1792 SDValue Result;
1793 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
Richard Sandiford54b36912013-09-27 15:14:04 +00001794 // Assign anchors at 1<<12 byte boundaries.
1795 uint64_t Anchor = Offset & ~uint64_t(0xfff);
1796 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1797 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1798
1799 // The offset can be folded into the address if it is aligned to a halfword.
1800 Offset -= Anchor;
1801 if (Offset != 0 && (Offset & 1) == 0) {
1802 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1803 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001804 Offset = 0;
1805 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001806 } else {
1807 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1808 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1809 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1810 MachinePointerInfo::getGOT(), false, false, false, 0);
1811 }
1812
1813 // If there was a non-zero offset that we didn't fold, create an explicit
1814 // addition for it.
1815 if (Offset != 0)
1816 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1817 DAG.getConstant(Offset, PtrVT));
1818
1819 return Result;
1820}
1821
1822SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1823 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001824 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001825 const GlobalValue *GV = Node->getGlobal();
1826 EVT PtrVT = getPointerTy();
1827 TLSModel::Model model = TM.getTLSModel(GV);
1828
1829 if (model != TLSModel::LocalExec)
1830 llvm_unreachable("only local-exec TLS mode supported");
1831
1832 // The high part of the thread pointer is in access register 0.
1833 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1834 DAG.getConstant(0, MVT::i32));
1835 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1836
1837 // The low part of the thread pointer is in access register 1.
1838 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1839 DAG.getConstant(1, MVT::i32));
1840 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1841
1842 // Merge them into a single 64-bit address.
1843 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1844 DAG.getConstant(32, PtrVT));
1845 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1846
1847 // Get the offset of GA from the thread pointer.
1848 SystemZConstantPoolValue *CPV =
1849 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1850
1851 // Force the offset into the constant pool and load it from there.
1852 SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1853 SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1854 CPAddr, MachinePointerInfo::getConstantPool(),
1855 false, false, false, 0);
1856
1857 // Add the base and offset together.
1858 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1859}
1860
1861SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1862 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001863 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001864 const BlockAddress *BA = Node->getBlockAddress();
1865 int64_t Offset = Node->getOffset();
1866 EVT PtrVT = getPointerTy();
1867
1868 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1869 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1870 return Result;
1871}
1872
1873SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1874 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001875 SDLoc DL(JT);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001876 EVT PtrVT = getPointerTy();
1877 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1878
1879 // Use LARL to load the address of the table.
1880 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1881}
1882
1883SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1884 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001885 SDLoc DL(CP);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001886 EVT PtrVT = getPointerTy();
1887
1888 SDValue Result;
1889 if (CP->isMachineConstantPoolEntry())
1890 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1891 CP->getAlignment());
1892 else
1893 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1894 CP->getAlignment(), CP->getOffset());
1895
1896 // Use LARL to load the address of the constant pool entry.
1897 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1898}
1899
1900SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1901 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001902 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001903 SDValue In = Op.getOperand(0);
1904 EVT InVT = In.getValueType();
1905 EVT ResVT = Op.getValueType();
1906
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001907 if (InVT == MVT::i32 && ResVT == MVT::f32) {
Richard Sandifordf6377fb2013-10-01 14:31:11 +00001908 SDValue In64;
1909 if (Subtarget.hasHighWord()) {
1910 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
1911 MVT::i64);
1912 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1913 MVT::i64, SDValue(U64, 0), In);
1914 } else {
1915 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1916 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
1917 DAG.getConstant(32, MVT::i64));
1918 }
1919 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
Richard Sandiford87a44362013-09-30 10:28:35 +00001920 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
Richard Sandifordd8163202013-09-13 09:12:44 +00001921 DL, MVT::f32, Out64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001922 }
1923 if (InVT == MVT::f32 && ResVT == MVT::i32) {
1924 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
Richard Sandiford87a44362013-09-30 10:28:35 +00001925 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
Richard Sandifordd8163202013-09-13 09:12:44 +00001926 MVT::f64, SDValue(U64, 0), In);
1927 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
Richard Sandifordf6377fb2013-10-01 14:31:11 +00001928 if (Subtarget.hasHighWord())
1929 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
1930 MVT::i32, Out64);
1931 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
1932 DAG.getConstant(32, MVT::i64));
1933 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001934 }
1935 llvm_unreachable("Unexpected bitcast combination");
1936}
1937
1938SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1939 SelectionDAG &DAG) const {
1940 MachineFunction &MF = DAG.getMachineFunction();
1941 SystemZMachineFunctionInfo *FuncInfo =
1942 MF.getInfo<SystemZMachineFunctionInfo>();
1943 EVT PtrVT = getPointerTy();
1944
1945 SDValue Chain = Op.getOperand(0);
1946 SDValue Addr = Op.getOperand(1);
1947 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001948 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001949
1950 // The initial values of each field.
1951 const unsigned NumFields = 4;
1952 SDValue Fields[NumFields] = {
1953 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1954 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1955 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1956 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1957 };
1958
1959 // Store each field into its respective slot.
1960 SDValue MemOps[NumFields];
1961 unsigned Offset = 0;
1962 for (unsigned I = 0; I < NumFields; ++I) {
1963 SDValue FieldAddr = Addr;
1964 if (Offset != 0)
1965 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1966 DAG.getIntPtrConstant(Offset));
1967 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1968 MachinePointerInfo(SV, Offset),
1969 false, false, 0);
1970 Offset += 8;
1971 }
1972 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1973}
1974
1975SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1976 SelectionDAG &DAG) const {
1977 SDValue Chain = Op.getOperand(0);
1978 SDValue DstPtr = Op.getOperand(1);
1979 SDValue SrcPtr = Op.getOperand(2);
1980 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1981 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001982 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001983
1984 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1985 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1986 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1987}
1988
1989SDValue SystemZTargetLowering::
1990lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1991 SDValue Chain = Op.getOperand(0);
1992 SDValue Size = Op.getOperand(1);
Andrew Trickef9de2a2013-05-25 02:42:55 +00001993 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001994
1995 unsigned SPReg = getStackPointerRegisterToSaveRestore();
1996
1997 // Get a reference to the stack pointer.
1998 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1999
2000 // Get the new stack pointer value.
2001 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
2002
2003 // Copy the new stack pointer back.
2004 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2005
2006 // The allocated data lives above the 160 bytes allocated for the standard
2007 // frame, plus any outgoing stack arguments. We don't know how much that
2008 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2009 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2010 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2011
2012 SDValue Ops[2] = { Result, Chain };
2013 return DAG.getMergeValues(Ops, 2, DL);
2014}
2015
Richard Sandiford7d86e472013-08-21 09:34:56 +00002016SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2017 SelectionDAG &DAG) const {
2018 EVT VT = Op.getValueType();
2019 SDLoc DL(Op);
2020 SDValue Ops[2];
2021 if (is32Bit(VT))
2022 // Just do a normal 64-bit multiplication and extract the results.
2023 // We define this so that it can be used for constant division.
2024 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2025 Op.getOperand(1), Ops[1], Ops[0]);
2026 else {
2027 // Do a full 128-bit multiplication based on UMUL_LOHI64:
2028 //
2029 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2030 //
2031 // but using the fact that the upper halves are either all zeros
2032 // or all ones:
2033 //
2034 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2035 //
2036 // and grouping the right terms together since they are quicker than the
2037 // multiplication:
2038 //
2039 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2040 SDValue C63 = DAG.getConstant(63, MVT::i64);
2041 SDValue LL = Op.getOperand(0);
2042 SDValue RL = Op.getOperand(1);
2043 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2044 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2045 // UMUL_LOHI64 returns the low result in the odd register and the high
2046 // result in the even register. SMUL_LOHI is defined to return the
2047 // low half first, so the results are in reverse order.
2048 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2049 LL, RL, Ops[1], Ops[0]);
2050 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2051 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2052 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2053 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2054 }
2055 return DAG.getMergeValues(Ops, 2, DL);
2056}
2057
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002058SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2059 SelectionDAG &DAG) const {
2060 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002061 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002062 SDValue Ops[2];
Richard Sandiford7d86e472013-08-21 09:34:56 +00002063 if (is32Bit(VT))
2064 // Just do a normal 64-bit multiplication and extract the results.
2065 // We define this so that it can be used for constant division.
2066 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2067 Op.getOperand(1), Ops[1], Ops[0]);
2068 else
2069 // UMUL_LOHI64 returns the low result in the odd register and the high
2070 // result in the even register. UMUL_LOHI is defined to return the
2071 // low half first, so the results are in reverse order.
2072 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2073 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002074 return DAG.getMergeValues(Ops, 2, DL);
2075}
2076
2077SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2078 SelectionDAG &DAG) const {
2079 SDValue Op0 = Op.getOperand(0);
2080 SDValue Op1 = Op.getOperand(1);
2081 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002082 SDLoc DL(Op);
Richard Sandiforde6e78852013-07-02 15:40:22 +00002083 unsigned Opcode;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002084
2085 // We use DSGF for 32-bit division.
2086 if (is32Bit(VT)) {
2087 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
Richard Sandiforde6e78852013-07-02 15:40:22 +00002088 Opcode = SystemZISD::SDIVREM32;
2089 } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2090 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
2091 Opcode = SystemZISD::SDIVREM32;
2092 } else
2093 Opcode = SystemZISD::SDIVREM64;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002094
2095 // DSG(F) takes a 64-bit dividend, so the even register in the GR128
2096 // input is "don't care". The instruction returns the remainder in
2097 // the even register and the quotient in the odd register.
2098 SDValue Ops[2];
Richard Sandiforde6e78852013-07-02 15:40:22 +00002099 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002100 Op0, Op1, Ops[1], Ops[0]);
2101 return DAG.getMergeValues(Ops, 2, DL);
2102}
2103
2104SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
2105 SelectionDAG &DAG) const {
2106 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002107 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002108
2109 // DL(G) uses a double-width dividend, so we need to clear the even
2110 // register in the GR128 input. The instruction returns the remainder
2111 // in the even register and the quotient in the odd register.
2112 SDValue Ops[2];
2113 if (is32Bit(VT))
2114 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
2115 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2116 else
2117 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
2118 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2119 return DAG.getMergeValues(Ops, 2, DL);
2120}
2121
2122SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
2123 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
2124
2125 // Get the known-zero masks for each operand.
2126 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
2127 APInt KnownZero[2], KnownOne[2];
2128 DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
2129 DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
2130
2131 // See if the upper 32 bits of one operand and the lower 32 bits of the
2132 // other are known zero. They are the low and high operands respectively.
2133 uint64_t Masks[] = { KnownZero[0].getZExtValue(),
2134 KnownZero[1].getZExtValue() };
2135 unsigned High, Low;
2136 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
2137 High = 1, Low = 0;
2138 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
2139 High = 0, Low = 1;
2140 else
2141 return Op;
2142
2143 SDValue LowOp = Ops[Low];
2144 SDValue HighOp = Ops[High];
2145
2146 // If the high part is a constant, we're better off using IILH.
2147 if (HighOp.getOpcode() == ISD::Constant)
2148 return Op;
2149
2150 // If the low part is a constant that is outside the range of LHI,
2151 // then we're better off using IILF.
2152 if (LowOp.getOpcode() == ISD::Constant) {
2153 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
2154 if (!isInt<16>(Value))
2155 return Op;
2156 }
2157
2158 // Check whether the high part is an AND that doesn't change the
2159 // high 32 bits and just masks out low bits. We can skip it if so.
2160 if (HighOp.getOpcode() == ISD::AND &&
2161 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
Richard Sandifordccc2a7c2013-12-03 11:01:54 +00002162 SDValue HighOp0 = HighOp.getOperand(0);
2163 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
2164 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
2165 HighOp = HighOp0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002166 }
2167
2168 // Take advantage of the fact that all GR32 operations only change the
2169 // low 32 bits by truncating Low to an i32 and inserting it directly
2170 // using a subreg. The interesting cases are those where the truncation
2171 // can be folded.
Andrew Trickef9de2a2013-05-25 02:42:55 +00002172 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002173 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
Richard Sandiford87a44362013-09-30 10:28:35 +00002174 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
Richard Sandifordd8163202013-09-13 09:12:44 +00002175 MVT::i64, HighOp, Low32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002176}
2177
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002178// Op is an atomic load. Lower it into a normal volatile load.
2179SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
2180 SelectionDAG &DAG) const {
2181 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2182 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
2183 Node->getChain(), Node->getBasePtr(),
2184 Node->getMemoryVT(), Node->getMemOperand());
2185}
2186
2187// Op is an atomic store. Lower it into a normal volatile store followed
2188// by a serialization.
2189SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
2190 SelectionDAG &DAG) const {
2191 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2192 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
2193 Node->getBasePtr(), Node->getMemoryVT(),
2194 Node->getMemOperand());
2195 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
2196 Chain), 0);
2197}
2198
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002199// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
2200// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002201SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
2202 SelectionDAG &DAG,
2203 unsigned Opcode) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002204 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2205
2206 // 32-bit operations need no code outside the main loop.
2207 EVT NarrowVT = Node->getMemoryVT();
2208 EVT WideVT = MVT::i32;
2209 if (NarrowVT == WideVT)
2210 return Op;
2211
2212 int64_t BitSize = NarrowVT.getSizeInBits();
2213 SDValue ChainIn = Node->getChain();
2214 SDValue Addr = Node->getBasePtr();
2215 SDValue Src2 = Node->getVal();
2216 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002217 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002218 EVT PtrVT = Addr.getValueType();
2219
2220 // Convert atomic subtracts of constants into additions.
2221 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
2222 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
2223 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
2224 Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
2225 }
2226
2227 // Get the address of the containing word.
2228 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2229 DAG.getConstant(-4, PtrVT));
2230
2231 // Get the number of bits that the word must be rotated left in order
2232 // to bring the field to the top bits of a GR32.
2233 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2234 DAG.getConstant(3, PtrVT));
2235 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2236
2237 // Get the complementing shift amount, for rotating a field in the top
2238 // bits back to its proper position.
2239 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2240 DAG.getConstant(0, WideVT), BitShift);
2241
2242 // Extend the source operand to 32 bits and prepare it for the inner loop.
2243 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
2244 // operations require the source to be shifted in advance. (This shift
2245 // can be folded if the source is constant.) For AND and NAND, the lower
2246 // bits must be set, while for other opcodes they should be left clear.
2247 if (Opcode != SystemZISD::ATOMIC_SWAPW)
2248 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
2249 DAG.getConstant(32 - BitSize, WideVT));
2250 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
2251 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
2252 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
2253 DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
2254
2255 // Construct the ATOMIC_LOADW_* node.
2256 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2257 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
2258 DAG.getConstant(BitSize, WideVT) };
2259 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
2260 array_lengthof(Ops),
2261 NarrowVT, MMO);
2262
2263 // Rotate the result of the final CS so that the field is in the lower
2264 // bits of a GR32, then truncate it.
2265 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
2266 DAG.getConstant(BitSize, WideVT));
2267 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
2268
2269 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
2270 return DAG.getMergeValues(RetOps, 2, DL);
2271}
2272
Richard Sandiford41350a52013-12-24 15:18:04 +00002273// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
Richard Sandiford002019a2013-12-24 15:22:39 +00002274// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
Richard Sandiford41350a52013-12-24 15:18:04 +00002275// operations into additions.
2276SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
2277 SelectionDAG &DAG) const {
2278 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2279 EVT MemVT = Node->getMemoryVT();
2280 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
2281 // A full-width operation.
2282 assert(Op.getValueType() == MemVT && "Mismatched VTs");
2283 SDValue Src2 = Node->getVal();
2284 SDValue NegSrc2;
2285 SDLoc DL(Src2);
2286
2287 if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
2288 // Use an addition if the operand is constant and either LAA(G) is
2289 // available or the negative value is in the range of A(G)FHI.
2290 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
2291 if (isInt<32>(Value) || TM.getSubtargetImpl()->hasInterlockedAccess1())
2292 NegSrc2 = DAG.getConstant(Value, MemVT);
2293 } else if (TM.getSubtargetImpl()->hasInterlockedAccess1())
2294 // Use LAA(G) if available.
2295 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
2296 Src2);
2297
2298 if (NegSrc2.getNode())
2299 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
2300 Node->getChain(), Node->getBasePtr(), NegSrc2,
2301 Node->getMemOperand(), Node->getOrdering(),
2302 Node->getSynchScope());
2303
2304 // Use the node as-is.
2305 return Op;
2306 }
2307
2308 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2309}
2310
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002311// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
2312// into a fullword ATOMIC_CMP_SWAPW operation.
2313SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
2314 SelectionDAG &DAG) const {
2315 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2316
2317 // We have native support for 32-bit compare and swap.
2318 EVT NarrowVT = Node->getMemoryVT();
2319 EVT WideVT = MVT::i32;
2320 if (NarrowVT == WideVT)
2321 return Op;
2322
2323 int64_t BitSize = NarrowVT.getSizeInBits();
2324 SDValue ChainIn = Node->getOperand(0);
2325 SDValue Addr = Node->getOperand(1);
2326 SDValue CmpVal = Node->getOperand(2);
2327 SDValue SwapVal = Node->getOperand(3);
2328 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002329 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002330 EVT PtrVT = Addr.getValueType();
2331
2332 // Get the address of the containing word.
2333 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2334 DAG.getConstant(-4, PtrVT));
2335
2336 // Get the number of bits that the word must be rotated left in order
2337 // to bring the field to the top bits of a GR32.
2338 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2339 DAG.getConstant(3, PtrVT));
2340 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2341
2342 // Get the complementing shift amount, for rotating a field in the top
2343 // bits back to its proper position.
2344 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2345 DAG.getConstant(0, WideVT), BitShift);
2346
2347 // Construct the ATOMIC_CMP_SWAPW node.
2348 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2349 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
2350 NegBitShift, DAG.getConstant(BitSize, WideVT) };
2351 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
2352 VTList, Ops, array_lengthof(Ops),
2353 NarrowVT, MMO);
2354 return AtomicOp;
2355}
2356
2357SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
2358 SelectionDAG &DAG) const {
2359 MachineFunction &MF = DAG.getMachineFunction();
2360 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002361 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002362 SystemZ::R15D, Op.getValueType());
2363}
2364
2365SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
2366 SelectionDAG &DAG) const {
2367 MachineFunction &MF = DAG.getMachineFunction();
2368 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002369 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002370 SystemZ::R15D, Op.getOperand(1));
2371}
2372
Richard Sandiford03481332013-08-23 11:36:42 +00002373SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
2374 SelectionDAG &DAG) const {
2375 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2376 if (!IsData)
2377 // Just preserve the chain.
2378 return Op.getOperand(0);
2379
2380 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2381 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
2382 MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode());
2383 SDValue Ops[] = {
2384 Op.getOperand(0),
2385 DAG.getConstant(Code, MVT::i32),
2386 Op.getOperand(1)
2387 };
2388 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
2389 Node->getVTList(), Ops, array_lengthof(Ops),
2390 Node->getMemoryVT(), Node->getMemOperand());
2391}
2392
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002393SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
2394 SelectionDAG &DAG) const {
2395 switch (Op.getOpcode()) {
2396 case ISD::BR_CC:
2397 return lowerBR_CC(Op, DAG);
2398 case ISD::SELECT_CC:
2399 return lowerSELECT_CC(Op, DAG);
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002400 case ISD::SETCC:
2401 return lowerSETCC(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002402 case ISD::GlobalAddress:
2403 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
2404 case ISD::GlobalTLSAddress:
2405 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
2406 case ISD::BlockAddress:
2407 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
2408 case ISD::JumpTable:
2409 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
2410 case ISD::ConstantPool:
2411 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
2412 case ISD::BITCAST:
2413 return lowerBITCAST(Op, DAG);
2414 case ISD::VASTART:
2415 return lowerVASTART(Op, DAG);
2416 case ISD::VACOPY:
2417 return lowerVACOPY(Op, DAG);
2418 case ISD::DYNAMIC_STACKALLOC:
2419 return lowerDYNAMIC_STACKALLOC(Op, DAG);
Richard Sandiford7d86e472013-08-21 09:34:56 +00002420 case ISD::SMUL_LOHI:
2421 return lowerSMUL_LOHI(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002422 case ISD::UMUL_LOHI:
2423 return lowerUMUL_LOHI(Op, DAG);
2424 case ISD::SDIVREM:
2425 return lowerSDIVREM(Op, DAG);
2426 case ISD::UDIVREM:
2427 return lowerUDIVREM(Op, DAG);
2428 case ISD::OR:
2429 return lowerOR(Op, DAG);
2430 case ISD::ATOMIC_SWAP:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002431 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2432 case ISD::ATOMIC_STORE:
2433 return lowerATOMIC_STORE(Op, DAG);
2434 case ISD::ATOMIC_LOAD:
2435 return lowerATOMIC_LOAD(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002436 case ISD::ATOMIC_LOAD_ADD:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002437 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002438 case ISD::ATOMIC_LOAD_SUB:
Richard Sandiford41350a52013-12-24 15:18:04 +00002439 return lowerATOMIC_LOAD_SUB(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002440 case ISD::ATOMIC_LOAD_AND:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002441 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002442 case ISD::ATOMIC_LOAD_OR:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002443 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002444 case ISD::ATOMIC_LOAD_XOR:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002445 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002446 case ISD::ATOMIC_LOAD_NAND:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002447 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002448 case ISD::ATOMIC_LOAD_MIN:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002449 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002450 case ISD::ATOMIC_LOAD_MAX:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002451 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002452 case ISD::ATOMIC_LOAD_UMIN:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002453 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002454 case ISD::ATOMIC_LOAD_UMAX:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002455 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002456 case ISD::ATOMIC_CMP_SWAP:
2457 return lowerATOMIC_CMP_SWAP(Op, DAG);
2458 case ISD::STACKSAVE:
2459 return lowerSTACKSAVE(Op, DAG);
2460 case ISD::STACKRESTORE:
2461 return lowerSTACKRESTORE(Op, DAG);
Richard Sandiford03481332013-08-23 11:36:42 +00002462 case ISD::PREFETCH:
2463 return lowerPREFETCH(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002464 default:
2465 llvm_unreachable("Unexpected node to lower");
2466 }
2467}
2468
2469const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2470#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2471 switch (Opcode) {
2472 OPCODE(RET_FLAG);
2473 OPCODE(CALL);
Richard Sandiford709bda62013-08-19 12:42:31 +00002474 OPCODE(SIBCALL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002475 OPCODE(PCREL_WRAPPER);
Richard Sandiford54b36912013-09-27 15:14:04 +00002476 OPCODE(PCREL_OFFSET);
Richard Sandiford57485472013-12-13 15:35:00 +00002477 OPCODE(IABS);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00002478 OPCODE(ICMP);
2479 OPCODE(FCMP);
Richard Sandiford35b9be22013-08-28 10:31:43 +00002480 OPCODE(TM);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002481 OPCODE(BR_CCMASK);
2482 OPCODE(SELECT_CCMASK);
2483 OPCODE(ADJDYNALLOC);
2484 OPCODE(EXTRACT_ACCESS);
2485 OPCODE(UMUL_LOHI64);
2486 OPCODE(SDIVREM64);
2487 OPCODE(UDIVREM32);
2488 OPCODE(UDIVREM64);
Richard Sandifordd131ff82013-07-08 09:35:23 +00002489 OPCODE(MVC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002490 OPCODE(MVC_LOOP);
Richard Sandiford178273a2013-09-05 10:36:45 +00002491 OPCODE(NC);
2492 OPCODE(NC_LOOP);
2493 OPCODE(OC);
2494 OPCODE(OC_LOOP);
2495 OPCODE(XC);
2496 OPCODE(XC_LOOP);
Richard Sandiford761703a2013-08-12 10:17:33 +00002497 OPCODE(CLC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002498 OPCODE(CLC_LOOP);
Richard Sandifordca232712013-08-16 11:21:54 +00002499 OPCODE(STRCMP);
Richard Sandifordbb83a502013-08-16 11:29:37 +00002500 OPCODE(STPCPY);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00002501 OPCODE(SEARCH_STRING);
Richard Sandiford564681c2013-08-12 10:28:10 +00002502 OPCODE(IPM);
Richard Sandiford9afe6132013-12-10 10:36:34 +00002503 OPCODE(SERIALIZE);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002504 OPCODE(ATOMIC_SWAPW);
2505 OPCODE(ATOMIC_LOADW_ADD);
2506 OPCODE(ATOMIC_LOADW_SUB);
2507 OPCODE(ATOMIC_LOADW_AND);
2508 OPCODE(ATOMIC_LOADW_OR);
2509 OPCODE(ATOMIC_LOADW_XOR);
2510 OPCODE(ATOMIC_LOADW_NAND);
2511 OPCODE(ATOMIC_LOADW_MIN);
2512 OPCODE(ATOMIC_LOADW_MAX);
2513 OPCODE(ATOMIC_LOADW_UMIN);
2514 OPCODE(ATOMIC_LOADW_UMAX);
2515 OPCODE(ATOMIC_CMP_SWAPW);
Richard Sandiford03481332013-08-23 11:36:42 +00002516 OPCODE(PREFETCH);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002517 }
2518 return NULL;
2519#undef OPCODE
2520}
2521
2522//===----------------------------------------------------------------------===//
2523// Custom insertion
2524//===----------------------------------------------------------------------===//
2525
2526// Create a new basic block after MBB.
2527static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2528 MachineFunction &MF = *MBB->getParent();
2529 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2530 MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
2531 return NewMBB;
2532}
2533
Richard Sandifordbe133a82013-08-28 09:01:51 +00002534// Split MBB after MI and return the new block (the one that contains
2535// instructions after MI).
2536static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2537 MachineBasicBlock *MBB) {
2538 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2539 NewMBB->splice(NewMBB->begin(), MBB,
2540 llvm::next(MachineBasicBlock::iterator(MI)),
2541 MBB->end());
2542 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2543 return NewMBB;
2544}
2545
Richard Sandiford5e318f02013-08-27 09:54:29 +00002546// Split MBB before MI and return the new block (the one that contains MI).
2547static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2548 MachineBasicBlock *MBB) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002549 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002550 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002551 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2552 return NewMBB;
2553}
2554
Richard Sandiford5e318f02013-08-27 09:54:29 +00002555// Force base value Base into a register before MI. Return the register.
2556static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2557 const SystemZInstrInfo *TII) {
2558 if (Base.isReg())
2559 return Base.getReg();
2560
2561 MachineBasicBlock *MBB = MI->getParent();
2562 MachineFunction &MF = *MBB->getParent();
2563 MachineRegisterInfo &MRI = MF.getRegInfo();
2564
2565 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2566 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2567 .addOperand(Base).addImm(0).addReg(0);
2568 return Reg;
2569}
2570
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002571// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2572MachineBasicBlock *
2573SystemZTargetLowering::emitSelect(MachineInstr *MI,
2574 MachineBasicBlock *MBB) const {
2575 const SystemZInstrInfo *TII = TM.getInstrInfo();
2576
2577 unsigned DestReg = MI->getOperand(0).getReg();
2578 unsigned TrueReg = MI->getOperand(1).getReg();
2579 unsigned FalseReg = MI->getOperand(2).getReg();
Richard Sandiford3d768e32013-07-31 12:30:20 +00002580 unsigned CCValid = MI->getOperand(3).getImm();
2581 unsigned CCMask = MI->getOperand(4).getImm();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002582 DebugLoc DL = MI->getDebugLoc();
2583
2584 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002585 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002586 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2587
2588 // StartMBB:
Richard Sandiford0fb90ab2013-05-28 10:41:11 +00002589 // BRC CCMask, JoinMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002590 // # fallthrough to FalseMBB
2591 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00002592 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2593 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002594 MBB->addSuccessor(JoinMBB);
2595 MBB->addSuccessor(FalseMBB);
2596
2597 // FalseMBB:
2598 // # fallthrough to JoinMBB
2599 MBB = FalseMBB;
2600 MBB->addSuccessor(JoinMBB);
2601
2602 // JoinMBB:
2603 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2604 // ...
2605 MBB = JoinMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002606 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002607 .addReg(TrueReg).addMBB(StartMBB)
2608 .addReg(FalseReg).addMBB(FalseMBB);
2609
2610 MI->eraseFromParent();
2611 return JoinMBB;
2612}
2613
Richard Sandifordb86a8342013-06-27 09:27:40 +00002614// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2615// StoreOpcode is the store to use and Invert says whether the store should
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002616// happen when the condition is false rather than true. If a STORE ON
2617// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
Richard Sandifordb86a8342013-06-27 09:27:40 +00002618MachineBasicBlock *
2619SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2620 MachineBasicBlock *MBB,
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002621 unsigned StoreOpcode, unsigned STOCOpcode,
2622 bool Invert) const {
Richard Sandifordb86a8342013-06-27 09:27:40 +00002623 const SystemZInstrInfo *TII = TM.getInstrInfo();
2624
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002625 unsigned SrcReg = MI->getOperand(0).getReg();
2626 MachineOperand Base = MI->getOperand(1);
2627 int64_t Disp = MI->getOperand(2).getImm();
2628 unsigned IndexReg = MI->getOperand(3).getReg();
Richard Sandiford3d768e32013-07-31 12:30:20 +00002629 unsigned CCValid = MI->getOperand(4).getImm();
2630 unsigned CCMask = MI->getOperand(5).getImm();
Richard Sandifordb86a8342013-06-27 09:27:40 +00002631 DebugLoc DL = MI->getDebugLoc();
2632
2633 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2634
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002635 // Use STOCOpcode if possible. We could use different store patterns in
2636 // order to avoid matching the index register, but the performance trade-offs
2637 // might be more complicated in that case.
2638 if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
2639 if (Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00002640 CCMask ^= CCValid;
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002641 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +00002642 .addReg(SrcReg).addOperand(Base).addImm(Disp)
2643 .addImm(CCValid).addImm(CCMask);
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002644 MI->eraseFromParent();
2645 return MBB;
2646 }
2647
Richard Sandifordb86a8342013-06-27 09:27:40 +00002648 // Get the condition needed to branch around the store.
2649 if (!Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00002650 CCMask ^= CCValid;
Richard Sandifordb86a8342013-06-27 09:27:40 +00002651
2652 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002653 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002654 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2655
2656 // StartMBB:
2657 // BRC CCMask, JoinMBB
2658 // # fallthrough to FalseMBB
Richard Sandifordb86a8342013-06-27 09:27:40 +00002659 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00002660 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2661 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002662 MBB->addSuccessor(JoinMBB);
2663 MBB->addSuccessor(FalseMBB);
2664
2665 // FalseMBB:
2666 // store %SrcReg, %Disp(%Index,%Base)
2667 // # fallthrough to JoinMBB
2668 MBB = FalseMBB;
2669 BuildMI(MBB, DL, TII->get(StoreOpcode))
2670 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2671 MBB->addSuccessor(JoinMBB);
2672
2673 MI->eraseFromParent();
2674 return JoinMBB;
2675}
2676
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002677// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2678// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
2679// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2680// BitSize is the width of the field in bits, or 0 if this is a partword
2681// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2682// is one of the operands. Invert says whether the field should be
2683// inverted after performing BinOpcode (e.g. for NAND).
2684MachineBasicBlock *
2685SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2686 MachineBasicBlock *MBB,
2687 unsigned BinOpcode,
2688 unsigned BitSize,
2689 bool Invert) const {
2690 const SystemZInstrInfo *TII = TM.getInstrInfo();
2691 MachineFunction &MF = *MBB->getParent();
2692 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002693 bool IsSubWord = (BitSize < 32);
2694
2695 // Extract the operands. Base can be a register or a frame index.
2696 // Src2 can be a register or immediate.
2697 unsigned Dest = MI->getOperand(0).getReg();
2698 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2699 int64_t Disp = MI->getOperand(2).getImm();
2700 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
2701 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2702 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2703 DebugLoc DL = MI->getDebugLoc();
2704 if (IsSubWord)
2705 BitSize = MI->getOperand(6).getImm();
2706
2707 // Subword operations use 32-bit registers.
2708 const TargetRegisterClass *RC = (BitSize <= 32 ?
2709 &SystemZ::GR32BitRegClass :
2710 &SystemZ::GR64BitRegClass);
2711 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2712 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2713
2714 // Get the right opcodes for the displacement.
2715 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2716 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2717 assert(LOpcode && CSOpcode && "Displacement out of range");
2718
2719 // Create virtual registers for temporary results.
2720 unsigned OrigVal = MRI.createVirtualRegister(RC);
2721 unsigned OldVal = MRI.createVirtualRegister(RC);
2722 unsigned NewVal = (BinOpcode || IsSubWord ?
2723 MRI.createVirtualRegister(RC) : Src2.getReg());
2724 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2725 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2726
2727 // Insert a basic block for the main loop.
2728 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002729 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002730 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2731
2732 // StartMBB:
2733 // ...
2734 // %OrigVal = L Disp(%Base)
2735 // # fall through to LoopMMB
2736 MBB = StartMBB;
2737 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2738 .addOperand(Base).addImm(Disp).addReg(0);
2739 MBB->addSuccessor(LoopMBB);
2740
2741 // LoopMBB:
2742 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2743 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2744 // %RotatedNewVal = OP %RotatedOldVal, %Src2
2745 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2746 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2747 // JNE LoopMBB
2748 // # fall through to DoneMMB
2749 MBB = LoopMBB;
2750 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2751 .addReg(OrigVal).addMBB(StartMBB)
2752 .addReg(Dest).addMBB(LoopMBB);
2753 if (IsSubWord)
2754 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2755 .addReg(OldVal).addReg(BitShift).addImm(0);
2756 if (Invert) {
2757 // Perform the operation normally and then invert every bit of the field.
2758 unsigned Tmp = MRI.createVirtualRegister(RC);
2759 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2760 .addReg(RotatedOldVal).addOperand(Src2);
2761 if (BitSize < 32)
2762 // XILF with the upper BitSize bits set.
Richard Sandiford652784e2013-09-25 11:11:53 +00002763 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002764 .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2765 else if (BitSize == 32)
2766 // XILF with every bit set.
Richard Sandiford652784e2013-09-25 11:11:53 +00002767 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002768 .addReg(Tmp).addImm(~uint32_t(0));
2769 else {
2770 // Use LCGR and add -1 to the result, which is more compact than
2771 // an XILF, XILH pair.
2772 unsigned Tmp2 = MRI.createVirtualRegister(RC);
2773 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2774 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2775 .addReg(Tmp2).addImm(-1);
2776 }
2777 } else if (BinOpcode)
2778 // A simply binary operation.
2779 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2780 .addReg(RotatedOldVal).addOperand(Src2);
2781 else if (IsSubWord)
2782 // Use RISBG to rotate Src2 into position and use it to replace the
2783 // field in RotatedOldVal.
2784 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2785 .addReg(RotatedOldVal).addReg(Src2.getReg())
2786 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2787 if (IsSubWord)
2788 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2789 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2790 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2791 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00002792 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2793 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002794 MBB->addSuccessor(LoopMBB);
2795 MBB->addSuccessor(DoneMBB);
2796
2797 MI->eraseFromParent();
2798 return DoneMBB;
2799}
2800
2801// Implement EmitInstrWithCustomInserter for pseudo
2802// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
2803// instruction that should be used to compare the current field with the
2804// minimum or maximum value. KeepOldMask is the BRC condition-code mask
2805// for when the current field should be kept. BitSize is the width of
2806// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2807MachineBasicBlock *
2808SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2809 MachineBasicBlock *MBB,
2810 unsigned CompareOpcode,
2811 unsigned KeepOldMask,
2812 unsigned BitSize) const {
2813 const SystemZInstrInfo *TII = TM.getInstrInfo();
2814 MachineFunction &MF = *MBB->getParent();
2815 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002816 bool IsSubWord = (BitSize < 32);
2817
2818 // Extract the operands. Base can be a register or a frame index.
2819 unsigned Dest = MI->getOperand(0).getReg();
2820 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2821 int64_t Disp = MI->getOperand(2).getImm();
2822 unsigned Src2 = MI->getOperand(3).getReg();
2823 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2824 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2825 DebugLoc DL = MI->getDebugLoc();
2826 if (IsSubWord)
2827 BitSize = MI->getOperand(6).getImm();
2828
2829 // Subword operations use 32-bit registers.
2830 const TargetRegisterClass *RC = (BitSize <= 32 ?
2831 &SystemZ::GR32BitRegClass :
2832 &SystemZ::GR64BitRegClass);
2833 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2834 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2835
2836 // Get the right opcodes for the displacement.
2837 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2838 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2839 assert(LOpcode && CSOpcode && "Displacement out of range");
2840
2841 // Create virtual registers for temporary results.
2842 unsigned OrigVal = MRI.createVirtualRegister(RC);
2843 unsigned OldVal = MRI.createVirtualRegister(RC);
2844 unsigned NewVal = MRI.createVirtualRegister(RC);
2845 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2846 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2847 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2848
2849 // Insert 3 basic blocks for the loop.
2850 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002851 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002852 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2853 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2854 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2855
2856 // StartMBB:
2857 // ...
2858 // %OrigVal = L Disp(%Base)
2859 // # fall through to LoopMMB
2860 MBB = StartMBB;
2861 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2862 .addOperand(Base).addImm(Disp).addReg(0);
2863 MBB->addSuccessor(LoopMBB);
2864
2865 // LoopMBB:
2866 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2867 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2868 // CompareOpcode %RotatedOldVal, %Src2
Richard Sandiford312425f2013-05-20 14:23:08 +00002869 // BRC KeepOldMask, UpdateMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002870 MBB = LoopMBB;
2871 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2872 .addReg(OrigVal).addMBB(StartMBB)
2873 .addReg(Dest).addMBB(UpdateMBB);
2874 if (IsSubWord)
2875 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2876 .addReg(OldVal).addReg(BitShift).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00002877 BuildMI(MBB, DL, TII->get(CompareOpcode))
2878 .addReg(RotatedOldVal).addReg(Src2);
2879 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00002880 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002881 MBB->addSuccessor(UpdateMBB);
2882 MBB->addSuccessor(UseAltMBB);
2883
2884 // UseAltMBB:
2885 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2886 // # fall through to UpdateMMB
2887 MBB = UseAltMBB;
2888 if (IsSubWord)
2889 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2890 .addReg(RotatedOldVal).addReg(Src2)
2891 .addImm(32).addImm(31 + BitSize).addImm(0);
2892 MBB->addSuccessor(UpdateMBB);
2893
2894 // UpdateMBB:
2895 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2896 // [ %RotatedAltVal, UseAltMBB ]
2897 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2898 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2899 // JNE LoopMBB
2900 // # fall through to DoneMMB
2901 MBB = UpdateMBB;
2902 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2903 .addReg(RotatedOldVal).addMBB(LoopMBB)
2904 .addReg(RotatedAltVal).addMBB(UseAltMBB);
2905 if (IsSubWord)
2906 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2907 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2908 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2909 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00002910 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2911 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002912 MBB->addSuccessor(LoopMBB);
2913 MBB->addSuccessor(DoneMBB);
2914
2915 MI->eraseFromParent();
2916 return DoneMBB;
2917}
2918
2919// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2920// instruction MI.
2921MachineBasicBlock *
2922SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2923 MachineBasicBlock *MBB) const {
2924 const SystemZInstrInfo *TII = TM.getInstrInfo();
2925 MachineFunction &MF = *MBB->getParent();
2926 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002927
2928 // Extract the operands. Base can be a register or a frame index.
2929 unsigned Dest = MI->getOperand(0).getReg();
2930 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2931 int64_t Disp = MI->getOperand(2).getImm();
2932 unsigned OrigCmpVal = MI->getOperand(3).getReg();
2933 unsigned OrigSwapVal = MI->getOperand(4).getReg();
2934 unsigned BitShift = MI->getOperand(5).getReg();
2935 unsigned NegBitShift = MI->getOperand(6).getReg();
2936 int64_t BitSize = MI->getOperand(7).getImm();
2937 DebugLoc DL = MI->getDebugLoc();
2938
2939 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2940
2941 // Get the right opcodes for the displacement.
2942 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
2943 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2944 assert(LOpcode && CSOpcode && "Displacement out of range");
2945
2946 // Create virtual registers for temporary results.
2947 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
2948 unsigned OldVal = MRI.createVirtualRegister(RC);
2949 unsigned CmpVal = MRI.createVirtualRegister(RC);
2950 unsigned SwapVal = MRI.createVirtualRegister(RC);
2951 unsigned StoreVal = MRI.createVirtualRegister(RC);
2952 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
2953 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
2954 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2955
2956 // Insert 2 basic blocks for the loop.
2957 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002958 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002959 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2960 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
2961
2962 // StartMBB:
2963 // ...
2964 // %OrigOldVal = L Disp(%Base)
2965 // # fall through to LoopMMB
2966 MBB = StartMBB;
2967 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2968 .addOperand(Base).addImm(Disp).addReg(0);
2969 MBB->addSuccessor(LoopMBB);
2970
2971 // LoopMBB:
2972 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
2973 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
2974 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
2975 // %Dest = RLL %OldVal, BitSize(%BitShift)
2976 // ^^ The low BitSize bits contain the field
2977 // of interest.
2978 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
2979 // ^^ Replace the upper 32-BitSize bits of the
2980 // comparison value with those that we loaded,
2981 // so that we can use a full word comparison.
Richard Sandiford8a757bb2013-07-31 12:11:07 +00002982 // CR %Dest, %RetryCmpVal
2983 // JNE DoneMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002984 // # Fall through to SetMBB
2985 MBB = LoopMBB;
2986 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2987 .addReg(OrigOldVal).addMBB(StartMBB)
2988 .addReg(RetryOldVal).addMBB(SetMBB);
2989 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
2990 .addReg(OrigCmpVal).addMBB(StartMBB)
2991 .addReg(RetryCmpVal).addMBB(SetMBB);
2992 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
2993 .addReg(OrigSwapVal).addMBB(StartMBB)
2994 .addReg(RetrySwapVal).addMBB(SetMBB);
2995 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
2996 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
2997 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
2998 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00002999 BuildMI(MBB, DL, TII->get(SystemZ::CR))
3000 .addReg(Dest).addReg(RetryCmpVal);
3001 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00003002 .addImm(SystemZ::CCMASK_ICMP)
3003 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003004 MBB->addSuccessor(DoneMBB);
3005 MBB->addSuccessor(SetMBB);
3006
3007 // SetMBB:
3008 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
3009 // ^^ Replace the upper 32-BitSize bits of the new
3010 // value with those that we loaded.
3011 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
3012 // ^^ Rotate the new field to its proper position.
3013 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
3014 // JNE LoopMBB
3015 // # fall through to ExitMMB
3016 MBB = SetMBB;
3017 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
3018 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3019 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
3020 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
3021 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
3022 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00003023 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3024 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003025 MBB->addSuccessor(LoopMBB);
3026 MBB->addSuccessor(DoneMBB);
3027
3028 MI->eraseFromParent();
3029 return DoneMBB;
3030}
3031
3032// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
3033// if the high register of the GR128 value must be cleared or false if
Richard Sandiford87a44362013-09-30 10:28:35 +00003034// it's "don't care". SubReg is subreg_l32 when extending a GR32
3035// and subreg_l64 when extending a GR64.
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003036MachineBasicBlock *
3037SystemZTargetLowering::emitExt128(MachineInstr *MI,
3038 MachineBasicBlock *MBB,
3039 bool ClearEven, unsigned SubReg) const {
3040 const SystemZInstrInfo *TII = TM.getInstrInfo();
3041 MachineFunction &MF = *MBB->getParent();
3042 MachineRegisterInfo &MRI = MF.getRegInfo();
3043 DebugLoc DL = MI->getDebugLoc();
3044
3045 unsigned Dest = MI->getOperand(0).getReg();
3046 unsigned Src = MI->getOperand(1).getReg();
3047 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3048
3049 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
3050 if (ClearEven) {
3051 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3052 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
3053
3054 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
3055 .addImm(0);
3056 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
Richard Sandiford87a44362013-09-30 10:28:35 +00003057 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003058 In128 = NewIn128;
3059 }
3060 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
3061 .addReg(In128).addReg(Src).addImm(SubReg);
3062
3063 MI->eraseFromParent();
3064 return MBB;
3065}
3066
Richard Sandifordd131ff82013-07-08 09:35:23 +00003067MachineBasicBlock *
Richard Sandiford564681c2013-08-12 10:28:10 +00003068SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
3069 MachineBasicBlock *MBB,
3070 unsigned Opcode) const {
Richard Sandifordd131ff82013-07-08 09:35:23 +00003071 const SystemZInstrInfo *TII = TM.getInstrInfo();
Richard Sandiford5e318f02013-08-27 09:54:29 +00003072 MachineFunction &MF = *MBB->getParent();
3073 MachineRegisterInfo &MRI = MF.getRegInfo();
Richard Sandifordd131ff82013-07-08 09:35:23 +00003074 DebugLoc DL = MI->getDebugLoc();
3075
Richard Sandiford5e318f02013-08-27 09:54:29 +00003076 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
Richard Sandifordd131ff82013-07-08 09:35:23 +00003077 uint64_t DestDisp = MI->getOperand(1).getImm();
Richard Sandiford5e318f02013-08-27 09:54:29 +00003078 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
Richard Sandifordd131ff82013-07-08 09:35:23 +00003079 uint64_t SrcDisp = MI->getOperand(3).getImm();
3080 uint64_t Length = MI->getOperand(4).getImm();
3081
Richard Sandifordbe133a82013-08-28 09:01:51 +00003082 // When generating more than one CLC, all but the last will need to
3083 // branch to the end when a difference is found.
3084 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
3085 splitBlockAfter(MI, MBB) : 0);
3086
Richard Sandiford5e318f02013-08-27 09:54:29 +00003087 // Check for the loop form, in which operand 5 is the trip count.
3088 if (MI->getNumExplicitOperands() > 5) {
3089 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
3090
3091 uint64_t StartCountReg = MI->getOperand(5).getReg();
3092 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
3093 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
3094 forceReg(MI, DestBase, TII));
3095
3096 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
3097 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
3098 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
3099 MRI.createVirtualRegister(RC));
3100 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
3101 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
3102 MRI.createVirtualRegister(RC));
3103
3104 RC = &SystemZ::GR64BitRegClass;
3105 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
3106 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
3107
3108 MachineBasicBlock *StartMBB = MBB;
3109 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3110 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
Richard Sandifordbe133a82013-08-28 09:01:51 +00003111 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003112
3113 // StartMBB:
3114 // # fall through to LoopMMB
3115 MBB->addSuccessor(LoopMBB);
3116
3117 // LoopMBB:
3118 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00003119 // [ %NextDestReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00003120 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00003121 // [ %NextSrcReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00003122 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00003123 // [ %NextCountReg, NextMBB ]
3124 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
Richard Sandiford5e318f02013-08-27 09:54:29 +00003125 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
Richard Sandifordbe133a82013-08-28 09:01:51 +00003126 // ( JLH EndMBB )
3127 //
3128 // The prefetch is used only for MVC. The JLH is used only for CLC.
3129 MBB = LoopMBB;
3130
3131 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
3132 .addReg(StartDestReg).addMBB(StartMBB)
3133 .addReg(NextDestReg).addMBB(NextMBB);
3134 if (!HaveSingleBase)
3135 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
3136 .addReg(StartSrcReg).addMBB(StartMBB)
3137 .addReg(NextSrcReg).addMBB(NextMBB);
3138 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
3139 .addReg(StartCountReg).addMBB(StartMBB)
3140 .addReg(NextCountReg).addMBB(NextMBB);
3141 if (Opcode == SystemZ::MVC)
3142 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
3143 .addImm(SystemZ::PFD_WRITE)
3144 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
3145 BuildMI(MBB, DL, TII->get(Opcode))
3146 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
3147 .addReg(ThisSrcReg).addImm(SrcDisp);
3148 if (EndMBB) {
3149 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3150 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3151 .addMBB(EndMBB);
3152 MBB->addSuccessor(EndMBB);
3153 MBB->addSuccessor(NextMBB);
3154 }
3155
3156 // NextMBB:
Richard Sandiford5e318f02013-08-27 09:54:29 +00003157 // %NextDestReg = LA 256(%ThisDestReg)
3158 // %NextSrcReg = LA 256(%ThisSrcReg)
3159 // %NextCountReg = AGHI %ThisCountReg, -1
3160 // CGHI %NextCountReg, 0
3161 // JLH LoopMBB
3162 // # fall through to DoneMMB
3163 //
3164 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
Richard Sandifordbe133a82013-08-28 09:01:51 +00003165 MBB = NextMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00003166
Richard Sandiford5e318f02013-08-27 09:54:29 +00003167 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
3168 .addReg(ThisDestReg).addImm(256).addReg(0);
3169 if (!HaveSingleBase)
3170 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
3171 .addReg(ThisSrcReg).addImm(256).addReg(0);
3172 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
3173 .addReg(ThisCountReg).addImm(-1);
3174 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
3175 .addReg(NextCountReg).addImm(0);
3176 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3177 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3178 .addMBB(LoopMBB);
3179 MBB->addSuccessor(LoopMBB);
3180 MBB->addSuccessor(DoneMBB);
3181
3182 DestBase = MachineOperand::CreateReg(NextDestReg, false);
3183 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
3184 Length &= 255;
3185 MBB = DoneMBB;
3186 }
3187 // Handle any remaining bytes with straight-line code.
3188 while (Length > 0) {
3189 uint64_t ThisLength = std::min(Length, uint64_t(256));
3190 // The previous iteration might have created out-of-range displacements.
3191 // Apply them using LAY if so.
3192 if (!isUInt<12>(DestDisp)) {
3193 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3194 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3195 .addOperand(DestBase).addImm(DestDisp).addReg(0);
3196 DestBase = MachineOperand::CreateReg(Reg, false);
3197 DestDisp = 0;
3198 }
3199 if (!isUInt<12>(SrcDisp)) {
3200 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3201 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3202 .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
3203 SrcBase = MachineOperand::CreateReg(Reg, false);
3204 SrcDisp = 0;
3205 }
3206 BuildMI(*MBB, MI, DL, TII->get(Opcode))
3207 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
3208 .addOperand(SrcBase).addImm(SrcDisp);
3209 DestDisp += ThisLength;
3210 SrcDisp += ThisLength;
3211 Length -= ThisLength;
Richard Sandifordbe133a82013-08-28 09:01:51 +00003212 // If there's another CLC to go, branch to the end if a difference
3213 // was found.
3214 if (EndMBB && Length > 0) {
3215 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
3216 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3217 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3218 .addMBB(EndMBB);
3219 MBB->addSuccessor(EndMBB);
3220 MBB->addSuccessor(NextMBB);
3221 MBB = NextMBB;
3222 }
3223 }
3224 if (EndMBB) {
3225 MBB->addSuccessor(EndMBB);
3226 MBB = EndMBB;
3227 MBB->addLiveIn(SystemZ::CC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003228 }
Richard Sandifordd131ff82013-07-08 09:35:23 +00003229
3230 MI->eraseFromParent();
3231 return MBB;
3232}
3233
Richard Sandifordca232712013-08-16 11:21:54 +00003234// Decompose string pseudo-instruction MI into a loop that continually performs
3235// Opcode until CC != 3.
3236MachineBasicBlock *
3237SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
3238 MachineBasicBlock *MBB,
3239 unsigned Opcode) const {
3240 const SystemZInstrInfo *TII = TM.getInstrInfo();
3241 MachineFunction &MF = *MBB->getParent();
3242 MachineRegisterInfo &MRI = MF.getRegInfo();
3243 DebugLoc DL = MI->getDebugLoc();
3244
3245 uint64_t End1Reg = MI->getOperand(0).getReg();
3246 uint64_t Start1Reg = MI->getOperand(1).getReg();
3247 uint64_t Start2Reg = MI->getOperand(2).getReg();
3248 uint64_t CharReg = MI->getOperand(3).getReg();
3249
3250 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
3251 uint64_t This1Reg = MRI.createVirtualRegister(RC);
3252 uint64_t This2Reg = MRI.createVirtualRegister(RC);
3253 uint64_t End2Reg = MRI.createVirtualRegister(RC);
3254
3255 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00003256 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Richard Sandifordca232712013-08-16 11:21:54 +00003257 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3258
3259 // StartMBB:
Richard Sandifordca232712013-08-16 11:21:54 +00003260 // # fall through to LoopMMB
Richard Sandifordca232712013-08-16 11:21:54 +00003261 MBB->addSuccessor(LoopMBB);
3262
3263 // LoopMBB:
3264 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
3265 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
Richard Sandiford7789b082013-09-30 08:48:38 +00003266 // R0L = %CharReg
3267 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
Richard Sandifordca232712013-08-16 11:21:54 +00003268 // JO LoopMBB
3269 // # fall through to DoneMMB
Richard Sandiford6f6d5512013-08-20 09:38:48 +00003270 //
Richard Sandiford7789b082013-09-30 08:48:38 +00003271 // The load of R0L can be hoisted by post-RA LICM.
Richard Sandifordca232712013-08-16 11:21:54 +00003272 MBB = LoopMBB;
Richard Sandifordca232712013-08-16 11:21:54 +00003273
3274 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
3275 .addReg(Start1Reg).addMBB(StartMBB)
3276 .addReg(End1Reg).addMBB(LoopMBB);
3277 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
3278 .addReg(Start2Reg).addMBB(StartMBB)
3279 .addReg(End2Reg).addMBB(LoopMBB);
Richard Sandiford7789b082013-09-30 08:48:38 +00003280 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
Richard Sandifordca232712013-08-16 11:21:54 +00003281 BuildMI(MBB, DL, TII->get(Opcode))
3282 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
3283 .addReg(This1Reg).addReg(This2Reg);
3284 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3285 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
3286 MBB->addSuccessor(LoopMBB);
3287 MBB->addSuccessor(DoneMBB);
3288
3289 DoneMBB->addLiveIn(SystemZ::CC);
3290
3291 MI->eraseFromParent();
3292 return DoneMBB;
3293}
3294
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003295MachineBasicBlock *SystemZTargetLowering::
3296EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
3297 switch (MI->getOpcode()) {
Richard Sandiford7c5c0ea2013-10-01 13:10:16 +00003298 case SystemZ::Select32Mux:
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003299 case SystemZ::Select32:
3300 case SystemZ::SelectF32:
3301 case SystemZ::Select64:
3302 case SystemZ::SelectF64:
3303 case SystemZ::SelectF128:
3304 return emitSelect(MI, MBB);
3305
Richard Sandiford2896d042013-10-01 14:33:55 +00003306 case SystemZ::CondStore8Mux:
3307 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
3308 case SystemZ::CondStore8MuxInv:
3309 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
3310 case SystemZ::CondStore16Mux:
3311 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
3312 case SystemZ::CondStore16MuxInv:
3313 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003314 case SystemZ::CondStore8:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003315 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003316 case SystemZ::CondStore8Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003317 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003318 case SystemZ::CondStore16:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003319 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003320 case SystemZ::CondStore16Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003321 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003322 case SystemZ::CondStore32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003323 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003324 case SystemZ::CondStore32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003325 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003326 case SystemZ::CondStore64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003327 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003328 case SystemZ::CondStore64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003329 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003330 case SystemZ::CondStoreF32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003331 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003332 case SystemZ::CondStoreF32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003333 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003334 case SystemZ::CondStoreF64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003335 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003336 case SystemZ::CondStoreF64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003337 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003338
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003339 case SystemZ::AEXT128_64:
Richard Sandiford87a44362013-09-30 10:28:35 +00003340 return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003341 case SystemZ::ZEXT128_32:
Richard Sandiford87a44362013-09-30 10:28:35 +00003342 return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003343 case SystemZ::ZEXT128_64:
Richard Sandiford87a44362013-09-30 10:28:35 +00003344 return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003345
3346 case SystemZ::ATOMIC_SWAPW:
3347 return emitAtomicLoadBinary(MI, MBB, 0, 0);
3348 case SystemZ::ATOMIC_SWAP_32:
3349 return emitAtomicLoadBinary(MI, MBB, 0, 32);
3350 case SystemZ::ATOMIC_SWAP_64:
3351 return emitAtomicLoadBinary(MI, MBB, 0, 64);
3352
3353 case SystemZ::ATOMIC_LOADW_AR:
3354 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
3355 case SystemZ::ATOMIC_LOADW_AFI:
3356 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
3357 case SystemZ::ATOMIC_LOAD_AR:
3358 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
3359 case SystemZ::ATOMIC_LOAD_AHI:
3360 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
3361 case SystemZ::ATOMIC_LOAD_AFI:
3362 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
3363 case SystemZ::ATOMIC_LOAD_AGR:
3364 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
3365 case SystemZ::ATOMIC_LOAD_AGHI:
3366 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
3367 case SystemZ::ATOMIC_LOAD_AGFI:
3368 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
3369
3370 case SystemZ::ATOMIC_LOADW_SR:
3371 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
3372 case SystemZ::ATOMIC_LOAD_SR:
3373 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
3374 case SystemZ::ATOMIC_LOAD_SGR:
3375 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
3376
3377 case SystemZ::ATOMIC_LOADW_NR:
3378 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
3379 case SystemZ::ATOMIC_LOADW_NILH:
Richard Sandiford652784e2013-09-25 11:11:53 +00003380 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003381 case SystemZ::ATOMIC_LOAD_NR:
3382 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00003383 case SystemZ::ATOMIC_LOAD_NILL:
3384 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
3385 case SystemZ::ATOMIC_LOAD_NILH:
3386 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
3387 case SystemZ::ATOMIC_LOAD_NILF:
3388 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003389 case SystemZ::ATOMIC_LOAD_NGR:
3390 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003391 case SystemZ::ATOMIC_LOAD_NILL64:
3392 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
3393 case SystemZ::ATOMIC_LOAD_NILH64:
3394 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
Richard Sandiford70284282013-10-01 14:20:41 +00003395 case SystemZ::ATOMIC_LOAD_NIHL64:
3396 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
3397 case SystemZ::ATOMIC_LOAD_NIHH64:
3398 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003399 case SystemZ::ATOMIC_LOAD_NILF64:
3400 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
Richard Sandiford70284282013-10-01 14:20:41 +00003401 case SystemZ::ATOMIC_LOAD_NIHF64:
3402 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003403
3404 case SystemZ::ATOMIC_LOADW_OR:
3405 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
3406 case SystemZ::ATOMIC_LOADW_OILH:
Richard Sandiford652784e2013-09-25 11:11:53 +00003407 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003408 case SystemZ::ATOMIC_LOAD_OR:
3409 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00003410 case SystemZ::ATOMIC_LOAD_OILL:
3411 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
3412 case SystemZ::ATOMIC_LOAD_OILH:
3413 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
3414 case SystemZ::ATOMIC_LOAD_OILF:
3415 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003416 case SystemZ::ATOMIC_LOAD_OGR:
3417 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003418 case SystemZ::ATOMIC_LOAD_OILL64:
3419 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
3420 case SystemZ::ATOMIC_LOAD_OILH64:
3421 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
Richard Sandiford6e96ac62013-10-01 13:22:41 +00003422 case SystemZ::ATOMIC_LOAD_OIHL64:
3423 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
3424 case SystemZ::ATOMIC_LOAD_OIHH64:
3425 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003426 case SystemZ::ATOMIC_LOAD_OILF64:
3427 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
Richard Sandiford6e96ac62013-10-01 13:22:41 +00003428 case SystemZ::ATOMIC_LOAD_OIHF64:
3429 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003430
3431 case SystemZ::ATOMIC_LOADW_XR:
3432 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3433 case SystemZ::ATOMIC_LOADW_XILF:
Richard Sandiford652784e2013-09-25 11:11:53 +00003434 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003435 case SystemZ::ATOMIC_LOAD_XR:
3436 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00003437 case SystemZ::ATOMIC_LOAD_XILF:
3438 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003439 case SystemZ::ATOMIC_LOAD_XGR:
3440 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003441 case SystemZ::ATOMIC_LOAD_XILF64:
3442 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
Richard Sandiford5718dac2013-10-01 14:08:44 +00003443 case SystemZ::ATOMIC_LOAD_XIHF64:
3444 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003445
3446 case SystemZ::ATOMIC_LOADW_NRi:
3447 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3448 case SystemZ::ATOMIC_LOADW_NILHi:
Richard Sandiford652784e2013-09-25 11:11:53 +00003449 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003450 case SystemZ::ATOMIC_LOAD_NRi:
3451 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00003452 case SystemZ::ATOMIC_LOAD_NILLi:
3453 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3454 case SystemZ::ATOMIC_LOAD_NILHi:
3455 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3456 case SystemZ::ATOMIC_LOAD_NILFi:
3457 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003458 case SystemZ::ATOMIC_LOAD_NGRi:
3459 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00003460 case SystemZ::ATOMIC_LOAD_NILL64i:
3461 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3462 case SystemZ::ATOMIC_LOAD_NILH64i:
3463 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
Richard Sandiford70284282013-10-01 14:20:41 +00003464 case SystemZ::ATOMIC_LOAD_NIHL64i:
3465 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
3466 case SystemZ::ATOMIC_LOAD_NIHH64i:
3467 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00003468 case SystemZ::ATOMIC_LOAD_NILF64i:
3469 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
Richard Sandiford70284282013-10-01 14:20:41 +00003470 case SystemZ::ATOMIC_LOAD_NIHF64i:
3471 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003472
3473 case SystemZ::ATOMIC_LOADW_MIN:
3474 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3475 SystemZ::CCMASK_CMP_LE, 0);
3476 case SystemZ::ATOMIC_LOAD_MIN_32:
3477 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3478 SystemZ::CCMASK_CMP_LE, 32);
3479 case SystemZ::ATOMIC_LOAD_MIN_64:
3480 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3481 SystemZ::CCMASK_CMP_LE, 64);
3482
3483 case SystemZ::ATOMIC_LOADW_MAX:
3484 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3485 SystemZ::CCMASK_CMP_GE, 0);
3486 case SystemZ::ATOMIC_LOAD_MAX_32:
3487 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3488 SystemZ::CCMASK_CMP_GE, 32);
3489 case SystemZ::ATOMIC_LOAD_MAX_64:
3490 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3491 SystemZ::CCMASK_CMP_GE, 64);
3492
3493 case SystemZ::ATOMIC_LOADW_UMIN:
3494 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3495 SystemZ::CCMASK_CMP_LE, 0);
3496 case SystemZ::ATOMIC_LOAD_UMIN_32:
3497 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3498 SystemZ::CCMASK_CMP_LE, 32);
3499 case SystemZ::ATOMIC_LOAD_UMIN_64:
3500 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3501 SystemZ::CCMASK_CMP_LE, 64);
3502
3503 case SystemZ::ATOMIC_LOADW_UMAX:
3504 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3505 SystemZ::CCMASK_CMP_GE, 0);
3506 case SystemZ::ATOMIC_LOAD_UMAX_32:
3507 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3508 SystemZ::CCMASK_CMP_GE, 32);
3509 case SystemZ::ATOMIC_LOAD_UMAX_64:
3510 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3511 SystemZ::CCMASK_CMP_GE, 64);
3512
3513 case SystemZ::ATOMIC_CMP_SWAPW:
3514 return emitAtomicCmpSwapW(MI, MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003515 case SystemZ::MVCSequence:
3516 case SystemZ::MVCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00003517 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
Richard Sandiford178273a2013-09-05 10:36:45 +00003518 case SystemZ::NCSequence:
3519 case SystemZ::NCLoop:
3520 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3521 case SystemZ::OCSequence:
3522 case SystemZ::OCLoop:
3523 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3524 case SystemZ::XCSequence:
3525 case SystemZ::XCLoop:
3526 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003527 case SystemZ::CLCSequence:
3528 case SystemZ::CLCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00003529 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
Richard Sandifordca232712013-08-16 11:21:54 +00003530 case SystemZ::CLSTLoop:
3531 return emitStringWrapper(MI, MBB, SystemZ::CLST);
Richard Sandifordbb83a502013-08-16 11:29:37 +00003532 case SystemZ::MVSTLoop:
3533 return emitStringWrapper(MI, MBB, SystemZ::MVST);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00003534 case SystemZ::SRSTLoop:
3535 return emitStringWrapper(MI, MBB, SystemZ::SRST);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003536 default:
3537 llvm_unreachable("Unexpected instr type to insert");
3538 }
3539}