blob: 0458d284eb403de6bbe88c5955731f3e554c70a9 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000016#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000017#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000020#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000021#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000024#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000025#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000033#include "llvm/IR/PatternMatch.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000034#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000035#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000036#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000037using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000038using namespace llvm::PatternMatch;
39
40const unsigned MaxDepth = 6;
41
Sanjay Patelaee84212014-11-04 16:27:42 +000042/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
43/// 0). For vector types, returns the element type's bitwidth.
Micah Villmowcdfe20b2012-10-08 16:38:25 +000044static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd3951082011-01-25 09:38:29 +000045 if (unsigned BitWidth = Ty->getScalarSizeInBits())
46 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000047
48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd3951082011-01-25 09:38:29 +000049}
Chris Lattner965c7692008-06-02 01:18:21 +000050
Hal Finkel60db0582014-09-07 18:57:58 +000051// Many of these functions have internal versions that take an assumption
52// exclusion set. This is because of the potential for mutual recursion to
53// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
54// classic case of this is assume(x = y), which will attempt to determine
55// bits in x from bits in y, which will attempt to determine bits in y from
56// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
57// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
58// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
59typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
60
Benjamin Kramercfd8d902014-09-12 08:56:53 +000061namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000062// Simplifying using an assume can only be done in a particular control-flow
63// context (the context instruction provides that context). If an assume and
64// the context instruction are not in the same block then the DT helps in
65// figuring out if we can use it.
66struct Query {
67 ExclInvsSet ExclInvs;
Chandler Carruth66b31302015-01-04 12:03:27 +000068 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000069 const Instruction *CxtI;
70 const DominatorTree *DT;
71
Chandler Carruth66b31302015-01-04 12:03:27 +000072 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
Hal Finkel60db0582014-09-07 18:57:58 +000073 const DominatorTree *DT = nullptr)
Chandler Carruth66b31302015-01-04 12:03:27 +000074 : AC(AC), CxtI(CxtI), DT(DT) {}
Hal Finkel60db0582014-09-07 18:57:58 +000075
76 Query(const Query &Q, const Value *NewExcl)
Chandler Carruth66b31302015-01-04 12:03:27 +000077 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
Hal Finkel60db0582014-09-07 18:57:58 +000078 ExclInvs.insert(NewExcl);
79 }
80};
Benjamin Kramercfd8d902014-09-12 08:56:53 +000081} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +000082
Sanjay Patel547e9752014-11-04 16:09:50 +000083// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +000084// the preferred context instruction (if any).
85static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
86 // If we've been provided with a context instruction, then use that (provided
87 // it has been inserted).
88 if (CxtI && CxtI->getParent())
89 return CxtI;
90
91 // If the value is really an already-inserted instruction, then use that.
92 CxtI = dyn_cast<Instruction>(V);
93 if (CxtI && CxtI->getParent())
94 return CxtI;
95
96 return nullptr;
97}
98
99static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
100 const DataLayout *TD, unsigned Depth,
101 const Query &Q);
102
103void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
104 const DataLayout *TD, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000105 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000106 const DominatorTree *DT) {
107 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000108 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000109}
110
111static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
112 const DataLayout *TD, unsigned Depth,
113 const Query &Q);
114
115void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
116 const DataLayout *TD, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000117 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000118 const DominatorTree *DT) {
119 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000120 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000121}
122
123static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
124 const Query &Q);
125
126bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
129 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000130 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
133static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
134 const Query &Q);
135
136bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000137 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000138 const DominatorTree *DT) {
Chandler Carruth66b31302015-01-04 12:03:27 +0000139 return ::isKnownNonZero(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000140}
141
142static bool MaskedValueIsZero(Value *V, const APInt &Mask,
143 const DataLayout *TD, unsigned Depth,
144 const Query &Q);
145
Chandler Carruth66b31302015-01-04 12:03:27 +0000146bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout *TD,
147 unsigned Depth, AssumptionCache *AC,
148 const Instruction *CxtI, const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000149 return ::MaskedValueIsZero(V, Mask, TD, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000150 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000151}
152
153static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
154 unsigned Depth, const Query &Q);
155
156unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
Chandler Carruth66b31302015-01-04 12:03:27 +0000157 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000158 const Instruction *CxtI,
159 const DominatorTree *DT) {
Chandler Carruth66b31302015-01-04 12:03:27 +0000160 return ::ComputeNumSignBits(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000161}
162
Jay Foada0653a32014-05-14 21:14:37 +0000163static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
164 APInt &KnownZero, APInt &KnownOne,
165 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000166 const DataLayout *TD, unsigned Depth,
167 const Query &Q) {
168 if (!Add) {
169 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
170 // We know that the top bits of C-X are clear if X contains less bits
171 // than C (i.e. no wrap-around can happen). For example, 20-X is
172 // positive if we can prove that X is >= 0 and < 16.
173 if (!CLHS->getValue().isNegative()) {
174 unsigned BitWidth = KnownZero.getBitWidth();
175 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
176 // NLZ can't be BitWidth with no sign bit
177 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
178 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
179
180 // If all of the MaskV bits are known to be zero, then we know the
181 // output top bits are zero, because we now know that the output is
182 // from [0-C].
183 if ((KnownZero2 & MaskV) == MaskV) {
184 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
185 // Top bits known zero.
186 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
187 }
188 }
189 }
190 }
191
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000192 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000193
David Majnemer97ddca32014-08-22 00:40:43 +0000194 // If an initial sequence of bits in the result is not needed, the
195 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000196 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000197 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
198 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000199
David Majnemer97ddca32014-08-22 00:40:43 +0000200 // Carry in a 1 for a subtract, rather than a 0.
201 APInt CarryIn(BitWidth, 0);
202 if (!Add) {
203 // Sum = LHS + ~RHS + 1
204 std::swap(KnownZero2, KnownOne2);
205 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000206 }
207
David Majnemer97ddca32014-08-22 00:40:43 +0000208 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
209 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
210
211 // Compute known bits of the carry.
212 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
213 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
214
215 // Compute set of known bits (where all three relevant bits are known).
216 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
217 APInt RHSKnown = KnownZero2 | KnownOne2;
218 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
219 APInt Known = LHSKnown & RHSKnown & CarryKnown;
220
221 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
222 "known bits of sum differ");
223
224 // Compute known bits of the result.
225 KnownZero = ~PossibleSumOne & Known;
226 KnownOne = PossibleSumOne & Known;
227
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000228 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000229 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000230 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000231 // Adding two non-negative numbers, or subtracting a negative number from
232 // a non-negative one, can't wrap into negative.
233 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
234 KnownZero |= APInt::getSignBit(BitWidth);
235 // Adding two negative numbers, or subtracting a non-negative number from
236 // a negative one, can't wrap into non-negative.
237 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
238 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000239 }
240 }
241}
242
Jay Foada0653a32014-05-14 21:14:37 +0000243static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
244 APInt &KnownZero, APInt &KnownOne,
245 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000246 const DataLayout *TD, unsigned Depth,
247 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000248 unsigned BitWidth = KnownZero.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000249 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
250 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000251
252 bool isKnownNegative = false;
253 bool isKnownNonNegative = false;
254 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000255 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000256 if (Op0 == Op1) {
257 // The product of a number with itself is non-negative.
258 isKnownNonNegative = true;
259 } else {
260 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
261 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
262 bool isKnownNegativeOp1 = KnownOne.isNegative();
263 bool isKnownNegativeOp0 = KnownOne2.isNegative();
264 // The product of two numbers with the same sign is non-negative.
265 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
266 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
267 // The product of a negative number and a non-negative number is either
268 // negative or zero.
269 if (!isKnownNonNegative)
270 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000271 isKnownNonZero(Op0, TD, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000272 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000273 isKnownNonZero(Op1, TD, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000274 }
275 }
276
277 // If low bits are zero in either operand, output low known-0 bits.
278 // Also compute a conserative estimate for high known-0 bits.
279 // More trickiness is possible, but this is sufficient for the
280 // interesting case of alignment computation.
281 KnownOne.clearAllBits();
282 unsigned TrailZ = KnownZero.countTrailingOnes() +
283 KnownZero2.countTrailingOnes();
284 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
285 KnownZero2.countLeadingOnes(),
286 BitWidth) - BitWidth;
287
288 TrailZ = std::min(TrailZ, BitWidth);
289 LeadZ = std::min(LeadZ, BitWidth);
290 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
291 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000292
293 // Only make use of no-wrap flags if we failed to compute the sign bit
294 // directly. This matters if the multiplication always overflows, in
295 // which case we prefer to follow the result of the direct computation,
296 // though as the program is invoking undefined behaviour we can choose
297 // whatever we like here.
298 if (isKnownNonNegative && !KnownOne.isNegative())
299 KnownZero.setBit(BitWidth - 1);
300 else if (isKnownNegative && !KnownZero.isNegative())
301 KnownOne.setBit(BitWidth - 1);
302}
303
Jingyue Wu37fcb592014-06-19 16:50:16 +0000304void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
305 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000306 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000307 unsigned NumRanges = Ranges.getNumOperands() / 2;
308 assert(NumRanges >= 1);
309
310 // Use the high end of the ranges to find leading zeros.
311 unsigned MinLeadingZeros = BitWidth;
312 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000313 ConstantInt *Lower =
314 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
315 ConstantInt *Upper =
316 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000317 ConstantRange Range(Lower->getValue(), Upper->getValue());
318 if (Range.isWrappedSet())
319 MinLeadingZeros = 0; // -1 has no zeros
320 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
321 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
322 }
323
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000324 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000325}
Jay Foad5a29c362014-05-15 12:12:55 +0000326
Hal Finkel60db0582014-09-07 18:57:58 +0000327static bool isEphemeralValueOf(Instruction *I, const Value *E) {
328 SmallVector<const Value *, 16> WorkSet(1, I);
329 SmallPtrSet<const Value *, 32> Visited;
330 SmallPtrSet<const Value *, 16> EphValues;
331
332 while (!WorkSet.empty()) {
333 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000334 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000335 continue;
336
337 // If all uses of this value are ephemeral, then so is this value.
338 bool FoundNEUse = false;
339 for (const User *I : V->users())
340 if (!EphValues.count(I)) {
341 FoundNEUse = true;
342 break;
343 }
344
345 if (!FoundNEUse) {
346 if (V == E)
347 return true;
348
349 EphValues.insert(V);
350 if (const User *U = dyn_cast<User>(V))
351 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
352 J != JE; ++J) {
353 if (isSafeToSpeculativelyExecute(*J))
354 WorkSet.push_back(*J);
355 }
356 }
357 }
358
359 return false;
360}
361
362// Is this an intrinsic that cannot be speculated but also cannot trap?
363static bool isAssumeLikeIntrinsic(const Instruction *I) {
364 if (const CallInst *CI = dyn_cast<CallInst>(I))
365 if (Function *F = CI->getCalledFunction())
366 switch (F->getIntrinsicID()) {
367 default: break;
368 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
369 case Intrinsic::assume:
370 case Intrinsic::dbg_declare:
371 case Intrinsic::dbg_value:
372 case Intrinsic::invariant_start:
373 case Intrinsic::invariant_end:
374 case Intrinsic::lifetime_start:
375 case Intrinsic::lifetime_end:
376 case Intrinsic::objectsize:
377 case Intrinsic::ptr_annotation:
378 case Intrinsic::var_annotation:
379 return true;
380 }
381
382 return false;
383}
384
385static bool isValidAssumeForContext(Value *V, const Query &Q,
386 const DataLayout *DL) {
387 Instruction *Inv = cast<Instruction>(V);
388
389 // There are two restrictions on the use of an assume:
390 // 1. The assume must dominate the context (or the control flow must
391 // reach the assume whenever it reaches the context).
392 // 2. The context must not be in the assume's set of ephemeral values
393 // (otherwise we will use the assume to prove that the condition
394 // feeding the assume is trivially true, thus causing the removal of
395 // the assume).
396
397 if (Q.DT) {
398 if (Q.DT->dominates(Inv, Q.CxtI)) {
399 return true;
400 } else if (Inv->getParent() == Q.CxtI->getParent()) {
401 // The context comes first, but they're both in the same block. Make sure
402 // there is nothing in between that might interrupt the control flow.
403 for (BasicBlock::const_iterator I =
404 std::next(BasicBlock::const_iterator(Q.CxtI)),
405 IE(Inv); I != IE; ++I)
406 if (!isSafeToSpeculativelyExecute(I, DL) &&
407 !isAssumeLikeIntrinsic(I))
408 return false;
409
410 return !isEphemeralValueOf(Inv, Q.CxtI);
411 }
412
413 return false;
414 }
415
416 // When we don't have a DT, we do a limited search...
417 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
418 return true;
419 } else if (Inv->getParent() == Q.CxtI->getParent()) {
420 // Search forward from the assume until we reach the context (or the end
421 // of the block); the common case is that the assume will come first.
422 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
423 IE = Inv->getParent()->end(); I != IE; ++I)
424 if (I == Q.CxtI)
425 return true;
426
427 // The context must come first...
428 for (BasicBlock::const_iterator I =
429 std::next(BasicBlock::const_iterator(Q.CxtI)),
430 IE(Inv); I != IE; ++I)
431 if (!isSafeToSpeculativelyExecute(I, DL) &&
432 !isAssumeLikeIntrinsic(I))
433 return false;
434
435 return !isEphemeralValueOf(Inv, Q.CxtI);
436 }
437
438 return false;
439}
440
441bool llvm::isValidAssumeForContext(const Instruction *I,
442 const Instruction *CxtI,
443 const DataLayout *DL,
444 const DominatorTree *DT) {
445 return ::isValidAssumeForContext(const_cast<Instruction*>(I),
446 Query(nullptr, CxtI, DT), DL);
447}
448
449template<typename LHS, typename RHS>
450inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
451 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
452m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
453 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
454}
455
456template<typename LHS, typename RHS>
457inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
458 BinaryOp_match<RHS, LHS, Instruction::And>>
459m_c_And(const LHS &L, const RHS &R) {
460 return m_CombineOr(m_And(L, R), m_And(R, L));
461}
462
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000463template<typename LHS, typename RHS>
464inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
465 BinaryOp_match<RHS, LHS, Instruction::Or>>
466m_c_Or(const LHS &L, const RHS &R) {
467 return m_CombineOr(m_Or(L, R), m_Or(R, L));
468}
469
470template<typename LHS, typename RHS>
471inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
472 BinaryOp_match<RHS, LHS, Instruction::Xor>>
473m_c_Xor(const LHS &L, const RHS &R) {
474 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
475}
476
Hal Finkel60db0582014-09-07 18:57:58 +0000477static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
478 APInt &KnownOne,
479 const DataLayout *DL,
480 unsigned Depth, const Query &Q) {
481 // Use of assumptions is context-sensitive. If we don't have a context, we
482 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000483 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000484 return;
485
486 unsigned BitWidth = KnownZero.getBitWidth();
487
Chandler Carruth66b31302015-01-04 12:03:27 +0000488 for (auto &AssumeVH : Q.AC->assumptions()) {
489 if (!AssumeVH)
490 continue;
491 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000492 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000493 "Got assumption for the wrong function!");
Hal Finkel60db0582014-09-07 18:57:58 +0000494 if (Q.ExclInvs.count(I))
495 continue;
496
Philip Reames00d3b272014-11-24 23:44:28 +0000497 // Warning: This loop can end up being somewhat performance sensetive.
498 // We're running this loop for once for each value queried resulting in a
499 // runtime of ~O(#assumes * #values).
500
501 assert(isa<IntrinsicInst>(I) &&
502 dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume &&
503 "must be an assume intrinsic");
504
505 Value *Arg = I->getArgOperand(0);
506
507 if (Arg == V &&
Hal Finkel60db0582014-09-07 18:57:58 +0000508 isValidAssumeForContext(I, Q, DL)) {
509 assert(BitWidth == 1 && "assume operand is not i1?");
510 KnownZero.clearAllBits();
511 KnownOne.setAllBits();
512 return;
513 }
514
David Majnemer9b609752014-12-12 23:59:29 +0000515 // The remaining tests are all recursive, so bail out if we hit the limit.
516 if (Depth == MaxDepth)
517 continue;
518
Hal Finkel60db0582014-09-07 18:57:58 +0000519 Value *A, *B;
520 auto m_V = m_CombineOr(m_Specific(V),
521 m_CombineOr(m_PtrToInt(m_Specific(V)),
522 m_BitCast(m_Specific(V))));
523
524 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000525 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000526 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000527 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000528 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
529 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
530 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
531 KnownZero |= RHSKnownZero;
532 KnownOne |= RHSKnownOne;
533 // assume(v & b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000534 } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
535 m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000536 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
537 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
538 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
539 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
540 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
541
542 // For those bits in the mask that are known to be one, we can propagate
543 // known bits from the RHS to V.
544 KnownZero |= RHSKnownZero & MaskKnownOne;
545 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000546 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000547 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
548 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000549 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
550 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
551 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
552 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
553 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
554
555 // For those bits in the mask that are known to be one, we can propagate
556 // inverted known bits from the RHS to V.
557 KnownZero |= RHSKnownOne & MaskKnownOne;
558 KnownOne |= RHSKnownZero & MaskKnownOne;
559 // assume(v | b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000560 } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
561 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000562 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
563 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
564 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
565 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
566 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
567
568 // For those bits in B that are known to be zero, we can propagate known
569 // bits from the RHS to V.
570 KnownZero |= RHSKnownZero & BKnownZero;
571 KnownOne |= RHSKnownOne & BKnownZero;
572 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000573 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
574 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000575 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
576 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
577 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
578 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
579 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
580
581 // For those bits in B that are known to be zero, we can propagate
582 // inverted known bits from the RHS to V.
583 KnownZero |= RHSKnownOne & BKnownZero;
584 KnownOne |= RHSKnownZero & BKnownZero;
585 // assume(v ^ b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000586 } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
587 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000588 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
589 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
590 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
591 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
592 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
593
594 // For those bits in B that are known to be zero, we can propagate known
595 // bits from the RHS to V. For those bits in B that are known to be one,
596 // we can propagate inverted known bits from the RHS to V.
597 KnownZero |= RHSKnownZero & BKnownZero;
598 KnownOne |= RHSKnownOne & BKnownZero;
599 KnownZero |= RHSKnownOne & BKnownOne;
600 KnownOne |= RHSKnownZero & BKnownOne;
601 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000602 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
603 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000604 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
608 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
609
610 // For those bits in B that are known to be zero, we can propagate
611 // inverted known bits from the RHS to V. For those bits in B that are
612 // known to be one, we can propagate known bits from the RHS to V.
613 KnownZero |= RHSKnownOne & BKnownZero;
614 KnownOne |= RHSKnownZero & BKnownZero;
615 KnownZero |= RHSKnownZero & BKnownOne;
616 KnownOne |= RHSKnownOne & BKnownOne;
617 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000618 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
619 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000620 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
621 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
622 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
623 // For those bits in RHS that are known, we can propagate them to known
624 // bits in V shifted to the right by C.
625 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
626 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
627 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000628 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
629 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000630 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
631 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
632 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
633 // For those bits in RHS that are known, we can propagate them inverted
634 // to known bits in V shifted to the right by C.
635 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
636 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
637 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000638 } else if (match(Arg,
639 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000640 m_AShr(m_V,
641 m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000642 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000643 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
644 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
645 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
646 // For those bits in RHS that are known, we can propagate them to known
647 // bits in V shifted to the right by C.
648 KnownZero |= RHSKnownZero << C->getZExtValue();
649 KnownOne |= RHSKnownOne << C->getZExtValue();
650 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000651 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000652 m_LShr(m_V, m_ConstantInt(C)),
653 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000654 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000655 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
656 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
657 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
658 // For those bits in RHS that are known, we can propagate them inverted
659 // to known bits in V shifted to the right by C.
660 KnownZero |= RHSKnownOne << C->getZExtValue();
661 KnownOne |= RHSKnownZero << C->getZExtValue();
662 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000663 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000664 Pred == ICmpInst::ICMP_SGE &&
665 isValidAssumeForContext(I, Q, DL)) {
666 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
667 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
668
669 if (RHSKnownZero.isNegative()) {
670 // We know that the sign bit is zero.
671 KnownZero |= APInt::getSignBit(BitWidth);
672 }
673 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000674 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000675 Pred == ICmpInst::ICMP_SGT &&
676 isValidAssumeForContext(I, Q, DL)) {
677 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
678 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
679
680 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
681 // We know that the sign bit is zero.
682 KnownZero |= APInt::getSignBit(BitWidth);
683 }
684 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000685 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000686 Pred == ICmpInst::ICMP_SLE &&
687 isValidAssumeForContext(I, Q, DL)) {
688 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
689 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
690
691 if (RHSKnownOne.isNegative()) {
692 // We know that the sign bit is one.
693 KnownOne |= APInt::getSignBit(BitWidth);
694 }
695 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000696 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000697 Pred == ICmpInst::ICMP_SLT &&
698 isValidAssumeForContext(I, Q, DL)) {
699 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
700 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
701
702 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
703 // We know that the sign bit is one.
704 KnownOne |= APInt::getSignBit(BitWidth);
705 }
706 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000707 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000708 Pred == ICmpInst::ICMP_ULE &&
709 isValidAssumeForContext(I, Q, DL)) {
710 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
711 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
712
713 // Whatever high bits in c are zero are known to be zero.
714 KnownZero |=
715 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
716 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000717 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000718 Pred == ICmpInst::ICMP_ULT &&
719 isValidAssumeForContext(I, Q, DL)) {
720 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
721 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
722
723 // Whatever high bits in c are zero are known to be zero (if c is a power
724 // of 2, then one more).
725 if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
726 KnownZero |=
727 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
728 else
729 KnownZero |=
730 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000731 }
732 }
733}
734
Jay Foada0653a32014-05-14 21:14:37 +0000735/// Determine which bits of V are known to be either zero or one and return
736/// them in the KnownZero/KnownOne bit sets.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000737///
Chris Lattner965c7692008-06-02 01:18:21 +0000738/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
739/// we cannot optimize based on the assumption that it is zero without changing
740/// it to be an explicit zero. If we don't change it to zero, other code could
741/// optimized based on the contradictory assumption that it is non-zero.
742/// Because instcombine aggressively folds operations with undef args anyway,
743/// this won't lose us code quality.
Chris Lattner4bc28252009-09-08 00:06:16 +0000744///
745/// This function is defined on values with integer type, values with pointer
746/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000747/// where V is a vector, known zero, and known one values are the
Chris Lattner4bc28252009-09-08 00:06:16 +0000748/// same width as the vector element, and the bit is set only if it is true
749/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +0000750void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
751 const DataLayout *TD, unsigned Depth,
752 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +0000753 assert(V && "No Value?");
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000754 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000755 unsigned BitWidth = KnownZero.getBitWidth();
756
Nadav Rotem3924cb02011-12-05 06:29:09 +0000757 assert((V->getType()->isIntOrIntVectorTy() ||
758 V->getType()->getScalarType()->isPointerTy()) &&
759 "Not integer or pointer type!");
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000760 assert((!TD ||
761 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000762 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000763 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem3924cb02011-12-05 06:29:09 +0000764 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner965c7692008-06-02 01:18:21 +0000765 KnownOne.getBitWidth() == BitWidth &&
Jay Foade48d9e82014-05-14 08:00:07 +0000766 "V, KnownOne and KnownZero should have same BitWidth");
Chris Lattner965c7692008-06-02 01:18:21 +0000767
768 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
769 // We know all of the bits for a constant!
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000770 KnownOne = CI->getValue();
771 KnownZero = ~KnownOne;
Chris Lattner965c7692008-06-02 01:18:21 +0000772 return;
773 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000774 // Null and aggregate-zero are all-zeros.
775 if (isa<ConstantPointerNull>(V) ||
776 isa<ConstantAggregateZero>(V)) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000777 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000778 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000779 return;
780 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000781 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner8213c8a2012-02-06 21:56:39 +0000782 // each element. There is no real need to handle ConstantVector here, because
783 // we don't handle undef in any particularly useful way.
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000784 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
785 // We know that CDS must be a vector of integers. Take the intersection of
786 // each element.
787 KnownZero.setAllBits(); KnownOne.setAllBits();
788 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner9be59592012-01-25 01:27:20 +0000789 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000790 Elt = CDS->getElementAsInteger(i);
791 KnownZero &= ~Elt;
Craig Topper1bef2c82012-12-22 19:15:35 +0000792 KnownOne &= Elt;
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000793 }
794 return;
795 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000796
Chris Lattner965c7692008-06-02 01:18:21 +0000797 // The address of an aligned GlobalValue has trailing zeros.
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000798 if (auto *GO = dyn_cast<GlobalObject>(V)) {
799 unsigned Align = GO->getAlignment();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000800 if (Align == 0 && TD) {
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000801 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000802 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000803 if (ObjectType->isSized()) {
804 // If the object is defined in the current Module, we'll be giving
805 // it the preferred alignment. Otherwise, we have to assume that it
806 // may only have the minimum ABI alignment.
807 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
808 Align = TD->getPreferredAlignment(GVar);
809 else
810 Align = TD->getABITypeAlignment(ObjectType);
811 }
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000812 }
Dan Gohmana72f8562009-08-11 15:50:03 +0000813 }
Chris Lattner965c7692008-06-02 01:18:21 +0000814 if (Align > 0)
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000815 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000816 countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000817 else
Jay Foad25a5e4c2010-12-01 08:53:58 +0000818 KnownZero.clearAllBits();
819 KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000820 return;
821 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000822
Chris Lattner83791ce2011-05-23 00:03:39 +0000823 if (Argument *A = dyn_cast<Argument>(V)) {
Hal Finkelccc70902014-07-22 16:58:55 +0000824 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
Duncan Sands271ea6c2012-10-04 13:36:31 +0000825
Hal Finkelccc70902014-07-22 16:58:55 +0000826 if (!Align && TD && A->hasStructRetAttr()) {
Duncan Sands271ea6c2012-10-04 13:36:31 +0000827 // An sret parameter has at least the ABI alignment of the return type.
828 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
829 if (EltTy->isSized())
830 Align = TD->getABITypeAlignment(EltTy);
831 }
832
833 if (Align)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000834 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
David Majnemer8df46c92015-01-03 02:33:25 +0000835 else
836 KnownZero.clearAllBits();
837 KnownOne.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000838
839 // Don't give up yet... there might be an assumption that provides more
840 // information...
841 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner83791ce2011-05-23 00:03:39 +0000842 return;
843 }
Chris Lattner965c7692008-06-02 01:18:21 +0000844
Chris Lattner83791ce2011-05-23 00:03:39 +0000845 // Start out not knowing anything.
846 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000847
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000848 // Limit search depth.
849 // All recursive calls that increase depth must come after this.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000850 if (Depth == MaxDepth)
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000851 return;
852
853 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
854 // the bits of its aliasee.
855 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
856 if (!GA->mayBeOverridden())
857 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth + 1, Q);
858 return;
859 }
Chris Lattner965c7692008-06-02 01:18:21 +0000860
Hal Finkel60db0582014-09-07 18:57:58 +0000861 // Check whether a nearby assume intrinsic can determine some known bits.
862 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
863
Dan Gohman80ca01c2009-07-17 20:47:02 +0000864 Operator *I = dyn_cast<Operator>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000865 if (!I) return;
866
867 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000868 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000869 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000870 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000871 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000872 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000873 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000874 case Instruction::And: {
875 // If either the LHS or the RHS are Zero, the result is zero.
Hal Finkel60db0582014-09-07 18:57:58 +0000876 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
877 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000878
Chris Lattner965c7692008-06-02 01:18:21 +0000879 // Output known-1 bits are only known if set in both the LHS & RHS.
880 KnownOne &= KnownOne2;
881 // Output known-0 are known to be clear if zero in either the LHS | RHS.
882 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000883 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000884 }
885 case Instruction::Or: {
Hal Finkel60db0582014-09-07 18:57:58 +0000886 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
887 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000888
Chris Lattner965c7692008-06-02 01:18:21 +0000889 // Output known-0 bits are only known if clear in both the LHS & RHS.
890 KnownZero &= KnownZero2;
891 // Output known-1 are known to be set if set in either the LHS | RHS.
892 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000893 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000894 }
895 case Instruction::Xor: {
Hal Finkel60db0582014-09-07 18:57:58 +0000896 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
897 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000898
Chris Lattner965c7692008-06-02 01:18:21 +0000899 // Output known-0 bits are known if clear or set in both the LHS & RHS.
900 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
901 // Output known-1 are known to be set if set in only one of the LHS, RHS.
902 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
903 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000904 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000905 }
906 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000907 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000908 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Hal Finkel60db0582014-09-07 18:57:58 +0000909 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
910 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000911 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000912 }
913 case Instruction::UDiv: {
914 // For the purposes of computing leading zeros we can conservatively
915 // treat a udiv as a logical right shift by the power of 2 known to
916 // be less than the denominator.
Hal Finkel60db0582014-09-07 18:57:58 +0000917 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000918 unsigned LeadZ = KnownZero2.countLeadingOnes();
919
Jay Foad25a5e4c2010-12-01 08:53:58 +0000920 KnownOne2.clearAllBits();
921 KnownZero2.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000922 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000923 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
924 if (RHSUnknownLeadingOnes != BitWidth)
925 LeadZ = std::min(BitWidth,
926 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
927
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000928 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000929 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000930 }
931 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +0000932 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
933 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000934
935 // Only known if known in both the LHS and RHS.
936 KnownOne &= KnownOne2;
937 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000938 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000939 case Instruction::FPTrunc:
940 case Instruction::FPExt:
941 case Instruction::FPToUI:
942 case Instruction::FPToSI:
943 case Instruction::SIToFP:
944 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000945 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000946 case Instruction::PtrToInt:
947 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000948 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000949 // We can't handle these if we don't know the pointer size.
Jay Foad5a29c362014-05-15 12:12:55 +0000950 if (!TD) break;
Chris Lattner965c7692008-06-02 01:18:21 +0000951 // FALL THROUGH and handle them the same as zext/trunc.
952 case Instruction::ZExt:
953 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000954 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000955
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000956 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000957 // Note that we handle pointer operands here because of inttoptr/ptrtoint
958 // which fall through here.
Nadav Rotem11350aa2012-12-19 20:47:04 +0000959 if(TD) {
960 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
961 } else {
962 SrcBitWidth = SrcTy->getScalarSizeInBits();
Jay Foad5a29c362014-05-15 12:12:55 +0000963 if (!SrcBitWidth) break;
Nadav Rotem11350aa2012-12-19 20:47:04 +0000964 }
Nadav Rotem15198e92012-10-26 17:17:05 +0000965
966 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000967 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
968 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000969 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000970 KnownZero = KnownZero.zextOrTrunc(BitWidth);
971 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000972 // Any top bits are known to be zero.
973 if (BitWidth > SrcBitWidth)
974 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000975 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000976 }
977 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000978 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +0000979 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000980 // TODO: For now, not handling conversions like:
981 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000982 !I->getType()->isVectorTy()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000983 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +0000984 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000985 }
986 break;
987 }
988 case Instruction::SExt: {
989 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000990 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +0000991
Jay Foad583abbc2010-12-07 08:25:19 +0000992 KnownZero = KnownZero.trunc(SrcBitWidth);
993 KnownOne = KnownOne.trunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000994 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000995 KnownZero = KnownZero.zext(BitWidth);
996 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000997
998 // If the sign bit of the input is known set or clear, then we know the
999 // top bits of the result.
1000 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1001 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1002 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1003 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001004 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001005 }
1006 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001007 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001008 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1009 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +00001010 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001011 KnownZero <<= ShiftAmt;
1012 KnownOne <<= ShiftAmt;
1013 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Chris Lattner965c7692008-06-02 01:18:21 +00001014 }
1015 break;
1016 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001017 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001018 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1019 // Compute the new bits that are at the top now.
1020 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001021
Chris Lattner965c7692008-06-02 01:18:21 +00001022 // Unsigned shift right.
Sanjay Patel8f093f42014-11-05 18:00:07 +00001023 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001024 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1025 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1026 // high bits known zero.
1027 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Chris Lattner965c7692008-06-02 01:18:21 +00001028 }
1029 break;
1030 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001031 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001032 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1033 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001034 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001035
Chris Lattner965c7692008-06-02 01:18:21 +00001036 // Signed shift right.
Hal Finkel60db0582014-09-07 18:57:58 +00001037 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001038 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1039 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001040
Chris Lattner965c7692008-06-02 01:18:21 +00001041 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1042 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1043 KnownZero |= HighBits;
1044 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1045 KnownOne |= HighBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001046 }
1047 break;
1048 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001049 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001050 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001051 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001052 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001053 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001054 }
Chris Lattner965c7692008-06-02 01:18:21 +00001055 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001056 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001057 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001058 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001059 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001060 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001061 }
1062 case Instruction::SRem:
1063 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001064 APInt RA = Rem->getValue().abs();
1065 if (RA.isPowerOf2()) {
1066 APInt LowBits = RA - 1;
Hal Finkel60db0582014-09-07 18:57:58 +00001067 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
1068 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001069
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001070 // The low bits of the first operand are unchanged by the srem.
1071 KnownZero = KnownZero2 & LowBits;
1072 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001073
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001074 // If the first operand is non-negative or has all low bits zero, then
1075 // the upper bits are all zero.
1076 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1077 KnownZero |= ~LowBits;
1078
1079 // If the first operand is negative and not all low bits are zero, then
1080 // the upper bits are all one.
1081 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1082 KnownOne |= ~LowBits;
1083
Craig Topper1bef2c82012-12-22 19:15:35 +00001084 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001085 }
1086 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001087
1088 // The sign bit is the LHS's sign bit, except when the result of the
1089 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001090 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001091 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001092 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001093 Depth+1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001094 // If it's known zero, our sign bit is also zero.
1095 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001096 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001097 }
1098
Chris Lattner965c7692008-06-02 01:18:21 +00001099 break;
1100 case Instruction::URem: {
1101 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1102 APInt RA = Rem->getValue();
1103 if (RA.isPowerOf2()) {
1104 APInt LowBits = (RA - 1);
Jay Foada0653a32014-05-14 21:14:37 +00001105 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001106 Depth+1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001107 KnownZero |= ~LowBits;
1108 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001109 break;
1110 }
1111 }
1112
1113 // Since the result is less than or equal to either operand, any leading
1114 // zero bits in either operand must also exist in the result.
Hal Finkel60db0582014-09-07 18:57:58 +00001115 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
1116 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001117
Chris Lattner4612ae12009-01-20 18:22:57 +00001118 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001119 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001120 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001121 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001122 break;
1123 }
1124
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001125 case Instruction::Alloca: {
Victor Hernandez8acf2952009-10-23 21:09:37 +00001126 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner965c7692008-06-02 01:18:21 +00001127 unsigned Align = AI->getAlignment();
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001128 if (Align == 0 && TD)
1129 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001130
Chris Lattner965c7692008-06-02 01:18:21 +00001131 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001132 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001133 break;
1134 }
1135 case Instruction::GetElementPtr: {
1136 // Analyze all of the subscripts of this getelementptr instruction
1137 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001138 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001139 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001140 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001141 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1142
1143 gep_type_iterator GTI = gep_type_begin(I);
1144 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1145 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001146 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001147 // Handle struct member offset arithmetic.
Jay Foad5a29c362014-05-15 12:12:55 +00001148 if (!TD) {
1149 TrailZ = 0;
1150 break;
1151 }
Matt Arsenault74742a12013-08-19 21:43:16 +00001152
1153 // Handle case when index is vector zeroinitializer
1154 Constant *CIndex = cast<Constant>(Index);
1155 if (CIndex->isZeroValue())
1156 continue;
1157
1158 if (CIndex->getType()->isVectorTy())
1159 Index = CIndex->getSplatValue();
1160
Chris Lattner965c7692008-06-02 01:18:21 +00001161 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault74742a12013-08-19 21:43:16 +00001162 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001163 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001164 TrailZ = std::min<unsigned>(TrailZ,
1165 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001166 } else {
1167 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001168 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001169 if (!IndexedTy->isSized()) {
1170 TrailZ = 0;
1171 break;
1172 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001173 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sandsaf9eaa82009-05-09 07:06:46 +00001174 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner965c7692008-06-02 01:18:21 +00001175 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001176 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001177 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001178 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001179 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001180 }
1181 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001182
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001183 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001184 break;
1185 }
1186 case Instruction::PHI: {
1187 PHINode *P = cast<PHINode>(I);
1188 // Handle the case of a simple two-predecessor recurrence PHI.
1189 // There's a lot more that could theoretically be done here, but
1190 // this is sufficient to catch some interesting cases.
1191 if (P->getNumIncomingValues() == 2) {
1192 for (unsigned i = 0; i != 2; ++i) {
1193 Value *L = P->getIncomingValue(i);
1194 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001195 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001196 if (!LU)
1197 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001198 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001199 // Check for operations that have the property that if
1200 // both their operands have low zero bits, the result
1201 // will have low zero bits.
1202 if (Opcode == Instruction::Add ||
1203 Opcode == Instruction::Sub ||
1204 Opcode == Instruction::And ||
1205 Opcode == Instruction::Or ||
1206 Opcode == Instruction::Mul) {
1207 Value *LL = LU->getOperand(0);
1208 Value *LR = LU->getOperand(1);
1209 // Find a recurrence.
1210 if (LL == I)
1211 L = LR;
1212 else if (LR == I)
1213 L = LL;
1214 else
1215 break;
1216 // Ok, we have a PHI of the form L op= R. Check for low
1217 // zero bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001218 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001219
1220 // We need to take the minimum number of known bits
1221 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Hal Finkel60db0582014-09-07 18:57:58 +00001222 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001223
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001224 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001225 std::min(KnownZero2.countTrailingOnes(),
1226 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001227 break;
1228 }
1229 }
1230 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001231
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001232 // Unreachable blocks may have zero-operand PHI nodes.
1233 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001234 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001235
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001236 // Otherwise take the unions of the known bit sets of the operands,
1237 // taking conservative care to avoid excessive recursion.
1238 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001239 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001240 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001241 break;
1242
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001243 KnownZero = APInt::getAllOnesValue(BitWidth);
1244 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001245 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
1246 // Skip direct self references.
1247 if (P->getIncomingValue(i) == P) continue;
1248
1249 KnownZero2 = APInt(BitWidth, 0);
1250 KnownOne2 = APInt(BitWidth, 0);
1251 // Recurse, but cap the recursion to one level, because we don't
1252 // want to waste time spinning around in loops.
Jay Foada0653a32014-05-14 21:14:37 +00001253 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001254 MaxDepth-1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001255 KnownZero &= KnownZero2;
1256 KnownOne &= KnownOne2;
1257 // If all bits have been ruled out, there's no need to check
1258 // more operands.
1259 if (!KnownZero && !KnownOne)
1260 break;
1261 }
1262 }
Chris Lattner965c7692008-06-02 01:18:21 +00001263 break;
1264 }
1265 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001266 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001267 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001268 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1269 // If a range metadata is attached to this IntrinsicInst, intersect the
1270 // explicit range specified by the metadata and the implicit range of
1271 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001272 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1273 switch (II->getIntrinsicID()) {
1274 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +00001275 case Intrinsic::ctlz:
1276 case Intrinsic::cttz: {
1277 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001278 // If this call is undefined for 0, the result will be less than 2^n.
1279 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1280 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001281 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001282 break;
1283 }
1284 case Intrinsic::ctpop: {
1285 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001286 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001287 break;
1288 }
Chad Rosierb3628842011-05-26 23:13:19 +00001289 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001290 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001291 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001292 }
1293 }
1294 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001295 case Instruction::ExtractValue:
1296 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1297 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1298 if (EVI->getNumIndices() != 1) break;
1299 if (EVI->getIndices()[0] == 0) {
1300 switch (II->getIntrinsicID()) {
1301 default: break;
1302 case Intrinsic::uadd_with_overflow:
1303 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001304 computeKnownBitsAddSub(true, II->getArgOperand(0),
1305 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001306 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001307 break;
1308 case Intrinsic::usub_with_overflow:
1309 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001310 computeKnownBitsAddSub(false, II->getArgOperand(0),
1311 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001312 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001313 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001314 case Intrinsic::umul_with_overflow:
1315 case Intrinsic::smul_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001316 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
1317 false, KnownZero, KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +00001318 KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001319 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001320 }
1321 }
1322 }
Chris Lattner965c7692008-06-02 01:18:21 +00001323 }
Jay Foad5a29c362014-05-15 12:12:55 +00001324
1325 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001326}
1327
Sanjay Patelaee84212014-11-04 16:27:42 +00001328/// Determine whether the sign bit is known to be zero or one.
1329/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001330void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1331 const DataLayout *TD, unsigned Depth,
1332 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001333 unsigned BitWidth = getBitWidth(V->getType(), TD);
1334 if (!BitWidth) {
1335 KnownZero = false;
1336 KnownOne = false;
1337 return;
1338 }
1339 APInt ZeroBits(BitWidth, 0);
1340 APInt OneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001341 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001342 KnownOne = OneBits[BitWidth - 1];
1343 KnownZero = ZeroBits[BitWidth - 1];
1344}
1345
Sanjay Patelaee84212014-11-04 16:27:42 +00001346/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001347/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001348/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001349/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001350bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1351 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001352 if (Constant *C = dyn_cast<Constant>(V)) {
1353 if (C->isNullValue())
1354 return OrZero;
1355 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1356 return CI->getValue().isPowerOf2();
1357 // TODO: Handle vector constants.
1358 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001359
1360 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1361 // it is shifted off the end then the result is undefined.
1362 if (match(V, m_Shl(m_One(), m_Value())))
1363 return true;
1364
1365 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1366 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001367 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001368 return true;
1369
1370 // The remaining tests are all recursive, so bail out if we hit the limit.
1371 if (Depth++ == MaxDepth)
1372 return false;
1373
Craig Topper9f008862014-04-15 04:59:12 +00001374 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001375 // A shift of a power of two is a power of two or zero.
1376 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1377 match(V, m_Shr(m_Value(X), m_Value()))))
Hal Finkel60db0582014-09-07 18:57:58 +00001378 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001379
Duncan Sandsd3951082011-01-25 09:38:29 +00001380 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001381 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001382
1383 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001384 return
1385 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1386 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001387
Duncan Sandsba286d72011-10-26 20:55:21 +00001388 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1389 // A power of two and'd with anything is a power of two or zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001390 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
1391 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001392 return true;
1393 // X & (-X) is always a power of two or zero.
1394 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1395 return true;
1396 return false;
1397 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001398
David Majnemerb7d54092013-07-30 21:01:36 +00001399 // Adding a power-of-two or zero to the same power-of-two or zero yields
1400 // either the original power-of-two, a larger power-of-two or zero.
1401 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1402 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1403 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1404 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1405 match(X, m_And(m_Value(), m_Specific(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001406 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001407 return true;
1408 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1409 match(Y, m_And(m_Value(), m_Specific(X))))
Hal Finkel60db0582014-09-07 18:57:58 +00001410 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001411 return true;
1412
1413 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1414 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001415 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001416
1417 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001418 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001419 // If i8 V is a power of two or zero:
1420 // ZeroBits: 1 1 1 0 1 1 1 1
1421 // ~ZeroBits: 0 0 0 1 0 0 0 0
1422 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1423 // If OrZero isn't set, we cannot give back a zero result.
1424 // Make sure either the LHS or RHS has a bit set.
1425 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1426 return true;
1427 }
1428 }
David Majnemerbeab5672013-05-18 19:30:37 +00001429
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001430 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001431 // is a power of two only if the first operand is a power of two and not
1432 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001433 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1434 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001435 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1436 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001437 }
1438
Duncan Sandsd3951082011-01-25 09:38:29 +00001439 return false;
1440}
1441
Chandler Carruth80d3e562012-12-07 02:08:58 +00001442/// \brief Test whether a GEP's result is known to be non-null.
1443///
1444/// Uses properties inherent in a GEP to try to determine whether it is known
1445/// to be non-null.
1446///
1447/// Currently this routine does not support vector GEPs.
1448static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001449 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001450 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1451 return false;
1452
1453 // FIXME: Support vector-GEPs.
1454 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1455
1456 // If the base pointer is non-null, we cannot walk to a null address with an
1457 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001458 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001459 return true;
1460
1461 // Past this, if we don't have DataLayout, we can't do much.
1462 if (!DL)
1463 return false;
1464
1465 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1466 // If so, then the GEP cannot produce a null pointer, as doing so would
1467 // inherently violate the inbounds contract within address space zero.
1468 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1469 GTI != GTE; ++GTI) {
1470 // Struct types are easy -- they must always be indexed by a constant.
1471 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1472 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1473 unsigned ElementIdx = OpC->getZExtValue();
1474 const StructLayout *SL = DL->getStructLayout(STy);
1475 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1476 if (ElementOffset > 0)
1477 return true;
1478 continue;
1479 }
1480
1481 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1482 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
1483 continue;
1484
1485 // Fast path the constant operand case both for efficiency and so we don't
1486 // increment Depth when just zipping down an all-constant GEP.
1487 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1488 if (!OpC->isZero())
1489 return true;
1490 continue;
1491 }
1492
1493 // We post-increment Depth here because while isKnownNonZero increments it
1494 // as well, when we pop back up that increment won't persist. We don't want
1495 // to recurse 10k times just because we have 10k GEP operands. We don't
1496 // bail completely out because we want to handle constant GEPs regardless
1497 // of depth.
1498 if (Depth++ >= MaxDepth)
1499 continue;
1500
Hal Finkel60db0582014-09-07 18:57:58 +00001501 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001502 return true;
1503 }
1504
1505 return false;
1506}
1507
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001508/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1509/// ensure that the value it's attached to is never Value? 'RangeType' is
1510/// is the type of the value described by the range.
1511static bool rangeMetadataExcludesValue(MDNode* Ranges,
1512 const APInt& Value) {
1513 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1514 assert(NumRanges >= 1);
1515 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001516 ConstantInt *Lower =
1517 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1518 ConstantInt *Upper =
1519 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001520 ConstantRange Range(Lower->getValue(), Upper->getValue());
1521 if (Range.contains(Value))
1522 return false;
1523 }
1524 return true;
1525}
1526
Sanjay Patelaee84212014-11-04 16:27:42 +00001527/// Return true if the given value is known to be non-zero when defined.
1528/// For vectors return true if every element is known to be non-zero when
1529/// defined. Supports values with integer or pointer type and vectors of
1530/// integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001531bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
1532 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001533 if (Constant *C = dyn_cast<Constant>(V)) {
1534 if (C->isNullValue())
1535 return false;
1536 if (isa<ConstantInt>(C))
1537 // Must be non-zero due to null test above.
1538 return true;
1539 // TODO: Handle vectors
1540 return false;
1541 }
1542
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001543 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001544 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001545 // If the possible ranges don't contain zero, then the value is
1546 // definitely non-zero.
1547 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1548 const APInt ZeroValue(Ty->getBitWidth(), 0);
1549 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1550 return true;
1551 }
1552 }
1553 }
1554
Duncan Sandsd3951082011-01-25 09:38:29 +00001555 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001556 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001557 return false;
1558
Chandler Carruth80d3e562012-12-07 02:08:58 +00001559 // Check for pointer simplifications.
1560 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001561 if (isKnownNonNull(V))
1562 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001563 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001564 if (isGEPKnownNonNull(GEP, TD, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001565 return true;
1566 }
1567
Nadav Rotemaa3e2a92012-12-14 20:43:49 +00001568 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd3951082011-01-25 09:38:29 +00001569
1570 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001571 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001572 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001573 return isKnownNonZero(X, TD, Depth, Q) ||
1574 isKnownNonZero(Y, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001575
1576 // ext X != 0 if X != 0.
1577 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001578 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001579
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001580 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001581 // if the lowest bit is shifted off the end.
1582 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001583 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001584 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001585 if (BO->hasNoUnsignedWrap())
Hal Finkel60db0582014-09-07 18:57:58 +00001586 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001587
Duncan Sandsd3951082011-01-25 09:38:29 +00001588 APInt KnownZero(BitWidth, 0);
1589 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001590 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001591 if (KnownOne[0])
1592 return true;
1593 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001594 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001595 // defined if the sign bit is shifted off the end.
1596 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001597 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001598 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001599 if (BO->isExact())
Hal Finkel60db0582014-09-07 18:57:58 +00001600 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001601
Duncan Sandsd3951082011-01-25 09:38:29 +00001602 bool XKnownNonNegative, XKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001603 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001604 if (XKnownNegative)
1605 return true;
1606 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001607 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001608 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001609 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001610 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001611 // X + Y.
1612 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1613 bool XKnownNonNegative, XKnownNegative;
1614 bool YKnownNonNegative, YKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001615 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
1616 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001617
1618 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001619 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001620 if (XKnownNonNegative && YKnownNonNegative)
Hal Finkel60db0582014-09-07 18:57:58 +00001621 if (isKnownNonZero(X, TD, Depth, Q) ||
1622 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001623 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001624
1625 // If X and Y are both negative (as signed values) then their sum is not
1626 // zero unless both X and Y equal INT_MIN.
1627 if (BitWidth && XKnownNegative && YKnownNegative) {
1628 APInt KnownZero(BitWidth, 0);
1629 APInt KnownOne(BitWidth, 0);
1630 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1631 // The sign bit of X is set. If some other bit is set then X is not equal
1632 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001633 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001634 if ((KnownOne & Mask) != 0)
1635 return true;
1636 // The sign bit of Y is set. If some other bit is set then Y is not equal
1637 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001638 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001639 if ((KnownOne & Mask) != 0)
1640 return true;
1641 }
1642
1643 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001644 if (XKnownNonNegative &&
1645 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001646 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001647 if (YKnownNonNegative &&
1648 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001649 return true;
1650 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001651 // X * Y.
1652 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1653 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1654 // If X and Y are non-zero then so is X * Y as long as the multiplication
1655 // does not overflow.
1656 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Hal Finkel60db0582014-09-07 18:57:58 +00001657 isKnownNonZero(X, TD, Depth, Q) &&
1658 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001659 return true;
1660 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001661 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1662 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Hal Finkel60db0582014-09-07 18:57:58 +00001663 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
1664 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001665 return true;
1666 }
1667
1668 if (!BitWidth) return false;
1669 APInt KnownZero(BitWidth, 0);
1670 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001671 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001672 return KnownOne != 0;
1673}
1674
Sanjay Patelaee84212014-11-04 16:27:42 +00001675/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1676/// simplify operations downstream. Mask is known to be zero for bits that V
1677/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001678///
1679/// This function is defined on values with integer type, values with pointer
1680/// type (but only if TD is non-null), and vectors of integers. In the case
1681/// where V is a vector, the mask, known zero, and known one values are the
1682/// same width as the vector element, and the bit is set only if it is true
1683/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +00001684bool MaskedValueIsZero(Value *V, const APInt &Mask,
1685 const DataLayout *TD, unsigned Depth,
1686 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001687 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001688 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001689 return (KnownZero & Mask) == Mask;
1690}
1691
1692
1693
Sanjay Patelaee84212014-11-04 16:27:42 +00001694/// Return the number of times the sign bit of the register is replicated into
1695/// the other bits. We know that at least 1 bit is always equal to the sign bit
1696/// (itself), but other cases can give us information. For example, immediately
1697/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1698/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001699///
1700/// 'Op' must have a scalar integer type.
1701///
Hal Finkel60db0582014-09-07 18:57:58 +00001702unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
1703 unsigned Depth, const Query &Q) {
Duncan Sands9dff9be2010-02-15 16:12:20 +00001704 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001705 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohman26366932009-06-22 22:02:32 +00001706 "on non-integer values!");
Chris Lattner229907c2011-07-18 04:54:35 +00001707 Type *Ty = V->getType();
Dan Gohman26366932009-06-22 22:02:32 +00001708 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1709 Ty->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001710 unsigned Tmp, Tmp2;
1711 unsigned FirstAnswer = 1;
1712
Jay Foada0653a32014-05-14 21:14:37 +00001713 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001714 // below.
1715
Chris Lattner965c7692008-06-02 01:18:21 +00001716 if (Depth == 6)
1717 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001718
Dan Gohman80ca01c2009-07-17 20:47:02 +00001719 Operator *U = dyn_cast<Operator>(V);
1720 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001721 default: break;
1722 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001723 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Hal Finkel60db0582014-09-07 18:57:58 +00001724 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001725
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001726 case Instruction::AShr: {
Hal Finkel60db0582014-09-07 18:57:58 +00001727 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001728 // ashr X, C -> adds C sign bits. Vectors too.
1729 const APInt *ShAmt;
1730 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1731 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001732 if (Tmp > TyBits) Tmp = TyBits;
1733 }
1734 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001735 }
1736 case Instruction::Shl: {
1737 const APInt *ShAmt;
1738 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001739 // shl destroys sign bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001740 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001741 Tmp2 = ShAmt->getZExtValue();
1742 if (Tmp2 >= TyBits || // Bad shift.
1743 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1744 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001745 }
1746 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001747 }
Chris Lattner965c7692008-06-02 01:18:21 +00001748 case Instruction::And:
1749 case Instruction::Or:
1750 case Instruction::Xor: // NOT is handled here.
1751 // Logical binary ops preserve the number of sign bits at the worst.
Hal Finkel60db0582014-09-07 18:57:58 +00001752 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001753 if (Tmp != 1) {
Hal Finkel60db0582014-09-07 18:57:58 +00001754 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001755 FirstAnswer = std::min(Tmp, Tmp2);
1756 // We computed what we know about the sign bits as our first
1757 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00001758 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00001759 }
1760 break;
1761
1762 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +00001763 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001764 if (Tmp == 1) return 1; // Early out.
Hal Finkel60db0582014-09-07 18:57:58 +00001765 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001766 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001767
Chris Lattner965c7692008-06-02 01:18:21 +00001768 case Instruction::Add:
1769 // Add can have at most one carry bit. Thus we know that the output
1770 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001771 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001772 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00001773
Chris Lattner965c7692008-06-02 01:18:21 +00001774 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00001775 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00001776 if (CRHS->isAllOnesValue()) {
1777 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001778 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001779
Chris Lattner965c7692008-06-02 01:18:21 +00001780 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1781 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001782 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001783 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001784
Chris Lattner965c7692008-06-02 01:18:21 +00001785 // If we are subtracting one from a positive number, there is no carry
1786 // out of the result.
1787 if (KnownZero.isNegative())
1788 return Tmp;
1789 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001790
Hal Finkel60db0582014-09-07 18:57:58 +00001791 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001792 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001793 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001794
Chris Lattner965c7692008-06-02 01:18:21 +00001795 case Instruction::Sub:
Hal Finkel60db0582014-09-07 18:57:58 +00001796 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001797 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001798
Chris Lattner965c7692008-06-02 01:18:21 +00001799 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00001800 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00001801 if (CLHS->isNullValue()) {
1802 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001803 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001804 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1805 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001806 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001807 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001808
Chris Lattner965c7692008-06-02 01:18:21 +00001809 // If the input is known to be positive (the sign bit is known clear),
1810 // the output of the NEG has the same number of sign bits as the input.
1811 if (KnownZero.isNegative())
1812 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00001813
Chris Lattner965c7692008-06-02 01:18:21 +00001814 // Otherwise, we treat this like a SUB.
1815 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001816
Chris Lattner965c7692008-06-02 01:18:21 +00001817 // Sub can have at most one carry bit. Thus we know that the output
1818 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001819 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001820 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001821 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001822
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001823 case Instruction::PHI: {
1824 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00001825 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001826 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00001827 if (NumIncomingValues > 4) break;
1828 // Unreachable blocks may have zero-operand PHI nodes.
1829 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001830
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001831 // Take the minimum of all incoming values. This can't infinitely loop
1832 // because of our depth threshold.
Hal Finkel60db0582014-09-07 18:57:58 +00001833 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00001834 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001835 if (Tmp == 1) return Tmp;
1836 Tmp = std::min(Tmp,
Hal Finkel60db0582014-09-07 18:57:58 +00001837 ComputeNumSignBits(PN->getIncomingValue(i), TD,
1838 Depth+1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001839 }
1840 return Tmp;
1841 }
1842
Chris Lattner965c7692008-06-02 01:18:21 +00001843 case Instruction::Trunc:
1844 // FIXME: it's tricky to do anything useful for this, but it is an important
1845 // case for targets like X86.
1846 break;
1847 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001848
Chris Lattner965c7692008-06-02 01:18:21 +00001849 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1850 // use this information.
1851 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001852 APInt Mask;
Hal Finkel60db0582014-09-07 18:57:58 +00001853 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001854
Chris Lattner965c7692008-06-02 01:18:21 +00001855 if (KnownZero.isNegative()) { // sign bit is 0
1856 Mask = KnownZero;
1857 } else if (KnownOne.isNegative()) { // sign bit is 1;
1858 Mask = KnownOne;
1859 } else {
1860 // Nothing known.
1861 return FirstAnswer;
1862 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001863
Chris Lattner965c7692008-06-02 01:18:21 +00001864 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1865 // the number of identical bits in the top of the input value.
1866 Mask = ~Mask;
1867 Mask <<= Mask.getBitWidth()-TyBits;
1868 // Return # leading zeros. We use 'min' here in case Val was zero before
1869 // shifting. We don't want to return '64' as for an i32 "0".
1870 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1871}
Chris Lattnera12a6de2008-06-02 01:29:46 +00001872
Sanjay Patelaee84212014-11-04 16:27:42 +00001873/// This function computes the integer multiple of Base that equals V.
1874/// If successful, it returns true and returns the multiple in
1875/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00001876/// through SExt instructions only if LookThroughSExt is true.
1877bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00001878 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00001879 const unsigned MaxDepth = 6;
1880
Dan Gohman6a976bb2009-11-18 00:58:27 +00001881 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00001882 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00001883 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00001884
Chris Lattner229907c2011-07-18 04:54:35 +00001885 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00001886
Dan Gohman6a976bb2009-11-18 00:58:27 +00001887 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00001888
1889 if (Base == 0)
1890 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001891
Victor Hernandez47444882009-11-10 08:28:35 +00001892 if (Base == 1) {
1893 Multiple = V;
1894 return true;
1895 }
1896
1897 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1898 Constant *BaseVal = ConstantInt::get(T, Base);
1899 if (CO && CO == BaseVal) {
1900 // Multiple is 1.
1901 Multiple = ConstantInt::get(T, 1);
1902 return true;
1903 }
1904
1905 if (CI && CI->getZExtValue() % Base == 0) {
1906 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00001907 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00001908 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001909
Victor Hernandez47444882009-11-10 08:28:35 +00001910 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001911
Victor Hernandez47444882009-11-10 08:28:35 +00001912 Operator *I = dyn_cast<Operator>(V);
1913 if (!I) return false;
1914
1915 switch (I->getOpcode()) {
1916 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001917 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00001918 if (!LookThroughSExt) return false;
1919 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001920 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00001921 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1922 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00001923 case Instruction::Shl:
1924 case Instruction::Mul: {
1925 Value *Op0 = I->getOperand(0);
1926 Value *Op1 = I->getOperand(1);
1927
1928 if (I->getOpcode() == Instruction::Shl) {
1929 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1930 if (!Op1CI) return false;
1931 // Turn Op0 << Op1 into Op0 * 2^Op1
1932 APInt Op1Int = Op1CI->getValue();
1933 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00001934 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00001935 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00001936 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00001937 }
1938
Craig Topper9f008862014-04-15 04:59:12 +00001939 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001940 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1941 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1942 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001943 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001944 MulC->getType()->getPrimitiveSizeInBits())
1945 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001946 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001947 MulC->getType()->getPrimitiveSizeInBits())
1948 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001949
Chris Lattner72d283c2010-09-05 17:20:46 +00001950 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1951 Multiple = ConstantExpr::getMul(MulC, Op1C);
1952 return true;
1953 }
Victor Hernandez47444882009-11-10 08:28:35 +00001954
1955 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1956 if (Mul0CI->getValue() == 1) {
1957 // V == Base * Op1, so return Op1
1958 Multiple = Op1;
1959 return true;
1960 }
1961 }
1962
Craig Topper9f008862014-04-15 04:59:12 +00001963 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001964 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1965 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1966 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001967 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001968 MulC->getType()->getPrimitiveSizeInBits())
1969 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001970 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001971 MulC->getType()->getPrimitiveSizeInBits())
1972 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001973
Chris Lattner72d283c2010-09-05 17:20:46 +00001974 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1975 Multiple = ConstantExpr::getMul(MulC, Op0C);
1976 return true;
1977 }
Victor Hernandez47444882009-11-10 08:28:35 +00001978
1979 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1980 if (Mul1CI->getValue() == 1) {
1981 // V == Base * Op0, so return Op0
1982 Multiple = Op0;
1983 return true;
1984 }
1985 }
Victor Hernandez47444882009-11-10 08:28:35 +00001986 }
1987 }
1988
1989 // We could not determine if V is a multiple of Base.
1990 return false;
1991}
1992
Sanjay Patelaee84212014-11-04 16:27:42 +00001993/// Return true if we can prove that the specified FP value is never equal to
1994/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00001995///
1996/// NOTE: this function will need to be revisited when we support non-default
1997/// rounding modes!
1998///
1999bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2000 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2001 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002002
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002003 // FIXME: Magic number! At the least, this should be given a name because it's
2004 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2005 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002006 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002007 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002008
Dan Gohman80ca01c2009-07-17 20:47:02 +00002009 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002010 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002011
2012 // Check if the nsz fast-math flag is set
2013 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2014 if (FPO->hasNoSignedZeros())
2015 return true;
2016
Chris Lattnera12a6de2008-06-02 01:29:46 +00002017 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002018 if (I->getOpcode() == Instruction::FAdd)
2019 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2020 if (CFP->isNullValue())
2021 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002022
Chris Lattnera12a6de2008-06-02 01:29:46 +00002023 // sitofp and uitofp turn into +0.0 for zero.
2024 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2025 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002026
Chris Lattnera12a6de2008-06-02 01:29:46 +00002027 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2028 // sqrt(-0.0) = -0.0, no other negative results are possible.
2029 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002030 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002031
Chris Lattnera12a6de2008-06-02 01:29:46 +00002032 if (const CallInst *CI = dyn_cast<CallInst>(I))
2033 if (const Function *F = CI->getCalledFunction()) {
2034 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002035 // abs(x) != -0.0
2036 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002037 // fabs[lf](x) != -0.0
2038 if (F->getName() == "fabs") return true;
2039 if (F->getName() == "fabsf") return true;
2040 if (F->getName() == "fabsl") return true;
2041 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2042 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002043 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002044 }
2045 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002046
Chris Lattnera12a6de2008-06-02 01:29:46 +00002047 return false;
2048}
2049
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002050bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2051 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2052 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2053
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002054 // FIXME: Magic number! At the least, this should be given a name because it's
2055 // used similarly in CannotBeNegativeZero(). A better fix may be to
2056 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002057 if (Depth == 6)
2058 return false; // Limit search depth.
2059
2060 const Operator *I = dyn_cast<Operator>(V);
2061 if (!I) return false;
2062
2063 switch (I->getOpcode()) {
2064 default: break;
2065 case Instruction::FMul:
2066 // x*x is always non-negative or a NaN.
2067 if (I->getOperand(0) == I->getOperand(1))
2068 return true;
2069 // Fall through
2070 case Instruction::FAdd:
2071 case Instruction::FDiv:
2072 case Instruction::FRem:
2073 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2074 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2075 case Instruction::FPExt:
2076 case Instruction::FPTrunc:
2077 // Widening/narrowing never change sign.
2078 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2079 case Instruction::Call:
2080 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2081 switch (II->getIntrinsicID()) {
2082 default: break;
2083 case Intrinsic::exp:
2084 case Intrinsic::exp2:
2085 case Intrinsic::fabs:
2086 case Intrinsic::sqrt:
2087 return true;
2088 case Intrinsic::powi:
2089 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2090 // powi(x,n) is non-negative if n is even.
2091 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2092 return true;
2093 }
2094 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2095 case Intrinsic::fma:
2096 case Intrinsic::fmuladd:
2097 // x*x+y is non-negative if y is non-negative.
2098 return I->getOperand(0) == I->getOperand(1) &&
2099 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2100 }
2101 break;
2102 }
2103 return false;
2104}
2105
Sanjay Patelaee84212014-11-04 16:27:42 +00002106/// If the specified value can be set by repeating the same byte in memory,
2107/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002108/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2109/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2110/// byte store (e.g. i16 0x1234), return null.
2111Value *llvm::isBytewiseValue(Value *V) {
2112 // All byte-wide stores are splatable, even of arbitrary variables.
2113 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002114
2115 // Handle 'null' ConstantArrayZero etc.
2116 if (Constant *C = dyn_cast<Constant>(V))
2117 if (C->isNullValue())
2118 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002119
Chris Lattner9cb10352010-12-26 20:15:01 +00002120 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002121 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002122 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2123 if (CFP->getType()->isFloatTy())
2124 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2125 if (CFP->getType()->isDoubleTy())
2126 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2127 // Don't handle long double formats, which have strange constraints.
2128 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002129
Benjamin Kramer17d90152015-02-07 19:29:02 +00002130 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002131 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002132 if (CI->getBitWidth() % 8 == 0) {
2133 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002134
Benjamin Kramer17d90152015-02-07 19:29:02 +00002135 // We can check that all bytes of an integer are equal by making use of a
2136 // little trick: rotate by 8 and check if it's still the same value.
2137 if (CI->getValue() != CI->getValue().rotl(8))
2138 return nullptr;
2139 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002140 }
2141 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002142
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002143 // A ConstantDataArray/Vector is splatable if all its members are equal and
2144 // also splatable.
2145 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2146 Value *Elt = CA->getElementAsConstant(0);
2147 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002148 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002149 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002150
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002151 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2152 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002153 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002154
Chris Lattner9cb10352010-12-26 20:15:01 +00002155 return Val;
2156 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002157
Chris Lattner9cb10352010-12-26 20:15:01 +00002158 // Conceptually, we could handle things like:
2159 // %a = zext i8 %X to i16
2160 // %b = shl i16 %a, 8
2161 // %c = or i16 %a, %b
2162 // but until there is an example that actually needs this, it doesn't seem
2163 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002164 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002165}
2166
2167
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002168// This is the recursive version of BuildSubAggregate. It takes a few different
2169// arguments. Idxs is the index within the nested struct From that we are
2170// looking at now (which is of type IndexedType). IdxSkip is the number of
2171// indices from Idxs that should be left out when inserting into the resulting
2172// struct. To is the result struct built so far, new insertvalue instructions
2173// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002174static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002175 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002176 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002177 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002178 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002179 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002180 // Save the original To argument so we can modify it
2181 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002182 // General case, the type indexed by Idxs is a struct
2183 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2184 // Process each struct element recursively
2185 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002186 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002187 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002188 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002189 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002190 if (!To) {
2191 // Couldn't find any inserted value for this index? Cleanup
2192 while (PrevTo != OrigTo) {
2193 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2194 PrevTo = Del->getAggregateOperand();
2195 Del->eraseFromParent();
2196 }
2197 // Stop processing elements
2198 break;
2199 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002200 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002201 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002202 if (To)
2203 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002204 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002205 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2206 // the struct's elements had a value that was inserted directly. In the latter
2207 // case, perhaps we can't determine each of the subelements individually, but
2208 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002209
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002210 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002211 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002212
2213 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002214 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002215
2216 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002217 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002218 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002219}
2220
2221// This helper takes a nested struct and extracts a part of it (which is again a
2222// struct) into a new value. For example, given the struct:
2223// { a, { b, { c, d }, e } }
2224// and the indices "1, 1" this returns
2225// { c, d }.
2226//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002227// It does this by inserting an insertvalue for each element in the resulting
2228// struct, as opposed to just inserting a single struct. This will only work if
2229// each of the elements of the substruct are known (ie, inserted into From by an
2230// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002231//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002232// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002233static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002234 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002235 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002236 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002237 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002238 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002239 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002240 unsigned IdxSkip = Idxs.size();
2241
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002242 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002243}
2244
Sanjay Patelaee84212014-11-04 16:27:42 +00002245/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002246/// the scalar value indexed is already around as a register, for example if it
2247/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002248///
2249/// If InsertBefore is not null, this function will duplicate (modified)
2250/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002251Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2252 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002253 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002254 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002255 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002256 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002257 // We have indices, so V should have an indexable type.
2258 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2259 "Not looking at a struct or array?");
2260 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2261 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002262
Chris Lattner67058832012-01-25 06:48:06 +00002263 if (Constant *C = dyn_cast<Constant>(V)) {
2264 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002265 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002266 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2267 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002268
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002269 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002270 // Loop the indices for the insertvalue instruction in parallel with the
2271 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002272 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002273 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2274 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002275 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002276 // We can't handle this without inserting insertvalues
2277 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002278 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002279
2280 // The requested index identifies a part of a nested aggregate. Handle
2281 // this specially. For example,
2282 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2283 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2284 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2285 // This can be changed into
2286 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2287 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2288 // which allows the unused 0,0 element from the nested struct to be
2289 // removed.
2290 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2291 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002292 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002293
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002294 // This insert value inserts something else than what we are looking for.
2295 // See if the (aggregrate) value inserted into has the value we are
2296 // looking for, then.
2297 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002298 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002299 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002300 }
2301 // If we end up here, the indices of the insertvalue match with those
2302 // requested (though possibly only partially). Now we recursively look at
2303 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002304 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002305 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002306 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002307 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002308
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002309 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002310 // If we're extracting a value from an aggregrate that was extracted from
2311 // something else, we can extract from that something else directly instead.
2312 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002313
2314 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002315 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002316 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002317 SmallVector<unsigned, 5> Idxs;
2318 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002319 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002320 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002321
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002322 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002323 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002324
Craig Topper1bef2c82012-12-22 19:15:35 +00002325 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002326 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002327
Jay Foad57aa6362011-07-13 10:26:04 +00002328 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002329 }
2330 // Otherwise, we don't know (such as, extracting from a function return value
2331 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002332 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002333}
Evan Chengda3db112008-06-30 07:31:25 +00002334
Sanjay Patelaee84212014-11-04 16:27:42 +00002335/// Analyze the specified pointer to see if it can be expressed as a base
2336/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002337Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002338 const DataLayout *DL) {
Dan Gohman20a2ae92013-01-31 02:00:45 +00002339 // Without DataLayout, conservatively assume 64-bit offsets, which is
2340 // the widest we support.
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002341 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes368c4d02012-12-31 20:48:35 +00002342 APInt ByteOffset(BitWidth, 0);
2343 while (1) {
2344 if (Ptr->getType()->isVectorTy())
2345 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002346
Nuno Lopes368c4d02012-12-31 20:48:35 +00002347 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002348 if (DL) {
2349 APInt GEPOffset(BitWidth, 0);
2350 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
2351 break;
2352
2353 ByteOffset += GEPOffset;
2354 }
2355
Nuno Lopes368c4d02012-12-31 20:48:35 +00002356 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002357 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2358 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002359 Ptr = cast<Operator>(Ptr)->getOperand(0);
2360 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2361 if (GA->mayBeOverridden())
2362 break;
2363 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002364 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002365 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002366 }
2367 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002368 Offset = ByteOffset.getSExtValue();
2369 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002370}
2371
2372
Sanjay Patelaee84212014-11-04 16:27:42 +00002373/// This function computes the length of a null-terminated C string pointed to
2374/// by V. If successful, it returns true and returns the string in Str.
2375/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002376bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2377 uint64_t Offset, bool TrimAtNul) {
2378 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002379
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002380 // Look through bitcast instructions and geps.
2381 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002382
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002383 // If the value is a GEP instructionor constant expression, treat it as an
2384 // offset.
2385 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002386 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002387 if (GEP->getNumOperands() != 3)
2388 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002389
Evan Chengda3db112008-06-30 07:31:25 +00002390 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002391 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2392 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002393 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002394 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002395
Evan Chengda3db112008-06-30 07:31:25 +00002396 // Check to make sure that the first operand of the GEP is an integer and
2397 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002398 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002399 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002400 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002401
Evan Chengda3db112008-06-30 07:31:25 +00002402 // If the second index isn't a ConstantInt, then this is a variable index
2403 // into the array. If this occurs, we can't say anything meaningful about
2404 // the string.
2405 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002406 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002407 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002408 else
2409 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002410 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Chengda3db112008-06-30 07:31:25 +00002411 }
Nick Lewycky46209882011-10-20 00:34:35 +00002412
Evan Chengda3db112008-06-30 07:31:25 +00002413 // The GEP instruction, constant or instruction, must reference a global
2414 // variable that is a constant and is initialized. The referenced constant
2415 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002416 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002417 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002418 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002419
Nick Lewycky46209882011-10-20 00:34:35 +00002420 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002421 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002422 // This is a degenerate case. The initializer is constant zero so the
2423 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002424 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002425 return true;
2426 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002427
Evan Chengda3db112008-06-30 07:31:25 +00002428 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002429 const ConstantDataArray *Array =
2430 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002431 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002432 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002433
Evan Chengda3db112008-06-30 07:31:25 +00002434 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002435 uint64_t NumElts = Array->getType()->getArrayNumElements();
2436
2437 // Start out with the entire array in the StringRef.
2438 Str = Array->getAsString();
2439
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002440 if (Offset > NumElts)
2441 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002442
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002443 // Skip over 'offset' bytes.
2444 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002445
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002446 if (TrimAtNul) {
2447 // Trim off the \0 and anything after it. If the array is not nul
2448 // terminated, we just return the whole end of string. The client may know
2449 // some other way that the string is length-bound.
2450 Str = Str.substr(0, Str.find('\0'));
2451 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002452 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002453}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002454
2455// These next two are very similar to the above, but also look through PHI
2456// nodes.
2457// TODO: See if we can integrate these two together.
2458
Sanjay Patelaee84212014-11-04 16:27:42 +00002459/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002460/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002461static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002462 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002463 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002464
2465 // If this is a PHI node, there are two cases: either we have already seen it
2466 // or we haven't.
2467 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002468 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002469 return ~0ULL; // already in the set.
2470
2471 // If it was new, see if all the input strings are the same length.
2472 uint64_t LenSoFar = ~0ULL;
2473 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2474 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
2475 if (Len == 0) return 0; // Unknown length -> unknown.
2476
2477 if (Len == ~0ULL) continue;
2478
2479 if (Len != LenSoFar && LenSoFar != ~0ULL)
2480 return 0; // Disagree -> unknown.
2481 LenSoFar = Len;
2482 }
2483
2484 // Success, all agree.
2485 return LenSoFar;
2486 }
2487
2488 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2489 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2490 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2491 if (Len1 == 0) return 0;
2492 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2493 if (Len2 == 0) return 0;
2494 if (Len1 == ~0ULL) return Len2;
2495 if (Len2 == ~0ULL) return Len1;
2496 if (Len1 != Len2) return 0;
2497 return Len1;
2498 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002499
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002500 // Otherwise, see if we can read the string.
2501 StringRef StrData;
2502 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002503 return 0;
2504
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002505 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002506}
2507
Sanjay Patelaee84212014-11-04 16:27:42 +00002508/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002509/// the specified pointer, return 'len+1'. If we can't, return 0.
2510uint64_t llvm::GetStringLength(Value *V) {
2511 if (!V->getType()->isPointerTy()) return 0;
2512
2513 SmallPtrSet<PHINode*, 32> PHIs;
2514 uint64_t Len = GetStringLengthH(V, PHIs);
2515 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2516 // an empty string as a length.
2517 return Len == ~0ULL ? 1 : Len;
2518}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002519
Dan Gohman0f124e12011-01-24 18:53:32 +00002520Value *
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002521llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002522 if (!V->getType()->isPointerTy())
2523 return V;
2524 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2525 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2526 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002527 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2528 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002529 V = cast<Operator>(V)->getOperand(0);
2530 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2531 if (GA->mayBeOverridden())
2532 return V;
2533 V = GA->getAliasee();
2534 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002535 // See if InstructionSimplify knows any relevant tricks.
2536 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002537 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Craig Topper9f008862014-04-15 04:59:12 +00002538 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002539 V = Simplified;
2540 continue;
2541 }
2542
Dan Gohmana4fcd242010-12-15 20:02:24 +00002543 return V;
2544 }
2545 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2546 }
2547 return V;
2548}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002549
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002550void
2551llvm::GetUnderlyingObjects(Value *V,
2552 SmallVectorImpl<Value *> &Objects,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002553 const DataLayout *TD,
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002554 unsigned MaxLookup) {
2555 SmallPtrSet<Value *, 4> Visited;
2556 SmallVector<Value *, 4> Worklist;
2557 Worklist.push_back(V);
2558 do {
2559 Value *P = Worklist.pop_back_val();
2560 P = GetUnderlyingObject(P, TD, MaxLookup);
2561
David Blaikie70573dc2014-11-19 07:49:26 +00002562 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002563 continue;
2564
2565 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2566 Worklist.push_back(SI->getTrueValue());
2567 Worklist.push_back(SI->getFalseValue());
2568 continue;
2569 }
2570
2571 if (PHINode *PN = dyn_cast<PHINode>(P)) {
2572 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2573 Worklist.push_back(PN->getIncomingValue(i));
2574 continue;
2575 }
2576
2577 Objects.push_back(P);
2578 } while (!Worklist.empty());
2579}
2580
Sanjay Patelaee84212014-11-04 16:27:42 +00002581/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002582bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002583 for (const User *U : V->users()) {
2584 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002585 if (!II) return false;
2586
2587 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2588 II->getIntrinsicID() != Intrinsic::lifetime_end)
2589 return false;
2590 }
2591 return true;
2592}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002593
Dan Gohman7ac046a2012-01-04 23:01:09 +00002594bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002595 const DataLayout *TD) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00002596 const Operator *Inst = dyn_cast<Operator>(V);
2597 if (!Inst)
2598 return false;
2599
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002600 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
2601 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
2602 if (C->canTrap())
2603 return false;
2604
2605 switch (Inst->getOpcode()) {
2606 default:
2607 return true;
2608 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00002609 case Instruction::URem: {
2610 // x / y is undefined if y == 0.
2611 const APInt *V;
2612 if (match(Inst->getOperand(1), m_APInt(V)))
2613 return *V != 0;
2614 return false;
2615 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002616 case Instruction::SDiv:
2617 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00002618 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00002619 const APInt *Numerator, *Denominator;
2620 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
2621 return false;
2622 // We cannot hoist this division if the denominator is 0.
2623 if (*Denominator == 0)
2624 return false;
2625 // It's safe to hoist if the denominator is not 0 or -1.
2626 if (*Denominator != -1)
2627 return true;
2628 // At this point we know that the denominator is -1. It is safe to hoist as
2629 // long we know that the numerator is not INT_MIN.
2630 if (match(Inst->getOperand(0), m_APInt(Numerator)))
2631 return !Numerator->isMinSignedValue();
2632 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00002633 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002634 }
2635 case Instruction::Load: {
2636 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002637 if (!LI->isUnordered() ||
2638 // Speculative load may create a race that did not exist in the source.
2639 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002640 return false;
Hal Finkel2e42c342014-07-10 05:27:53 +00002641 return LI->getPointerOperand()->isDereferenceablePointer(TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002642 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002643 case Instruction::Call: {
Michael Liao736bac62014-11-06 19:05:57 +00002644 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2645 switch (II->getIntrinsicID()) {
2646 // These synthetic intrinsics have no side-effects and just mark
2647 // information about their operands.
2648 // FIXME: There are other no-op synthetic instructions that potentially
2649 // should be considered at least *safe* to speculate...
2650 case Intrinsic::dbg_declare:
2651 case Intrinsic::dbg_value:
2652 return true;
Chandler Carruth28192c92012-04-07 19:22:18 +00002653
Michael Liao736bac62014-11-06 19:05:57 +00002654 case Intrinsic::bswap:
2655 case Intrinsic::ctlz:
2656 case Intrinsic::ctpop:
2657 case Intrinsic::cttz:
2658 case Intrinsic::objectsize:
2659 case Intrinsic::sadd_with_overflow:
2660 case Intrinsic::smul_with_overflow:
2661 case Intrinsic::ssub_with_overflow:
2662 case Intrinsic::uadd_with_overflow:
2663 case Intrinsic::umul_with_overflow:
2664 case Intrinsic::usub_with_overflow:
2665 return true;
2666 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2667 // errno like libm sqrt would.
2668 case Intrinsic::sqrt:
2669 case Intrinsic::fma:
2670 case Intrinsic::fmuladd:
2671 case Intrinsic::fabs:
2672 case Intrinsic::minnum:
2673 case Intrinsic::maxnum:
2674 return true;
2675 // TODO: some fp intrinsics are marked as having the same error handling
2676 // as libm. They're safe to speculate when they won't error.
2677 // TODO: are convert_{from,to}_fp16 safe?
2678 // TODO: can we list target-specific intrinsics here?
2679 default: break;
2680 }
2681 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002682 return false; // The called function could have undefined behavior or
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002683 // side-effects, even if marked readnone nounwind.
2684 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002685 case Instruction::VAArg:
2686 case Instruction::Alloca:
2687 case Instruction::Invoke:
2688 case Instruction::PHI:
2689 case Instruction::Store:
2690 case Instruction::Ret:
2691 case Instruction::Br:
2692 case Instruction::IndirectBr:
2693 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002694 case Instruction::Unreachable:
2695 case Instruction::Fence:
2696 case Instruction::LandingPad:
2697 case Instruction::AtomicRMW:
2698 case Instruction::AtomicCmpXchg:
2699 case Instruction::Resume:
2700 return false; // Misc instructions which have effects
2701 }
2702}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002703
Sanjay Patelaee84212014-11-04 16:27:42 +00002704/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002705bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002706 // Alloca never returns null, malloc might.
2707 if (isa<AllocaInst>(V)) return true;
2708
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002709 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002710 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002711 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002712
2713 // Global values are not null unless extern weak.
2714 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2715 return !GV->hasExternalWeakLinkage();
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002716
Philip Reamescdb72f32014-10-20 22:40:55 +00002717 // A Load tagged w/nonnull metadata is never null.
2718 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00002719 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00002720
Nick Lewyckyec373542014-05-20 05:13:21 +00002721 if (ImmutableCallSite CS = V)
Hal Finkelb0407ba2014-07-18 15:51:28 +00002722 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00002723 return true;
2724
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002725 // operator new never returns null.
2726 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2727 return true;
2728
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002729 return false;
2730}
David Majnemer491331a2015-01-02 07:29:43 +00002731
2732OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
2733 const DataLayout *DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00002734 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00002735 const Instruction *CxtI,
2736 const DominatorTree *DT) {
2737 // Multiplying n * m significant bits yields a result of n + m significant
2738 // bits. If the total number of significant bits does not exceed the
2739 // result bit width (minus 1), there is no overflow.
2740 // This means if we have enough leading zero bits in the operands
2741 // we can guarantee that the result does not overflow.
2742 // Ref: "Hacker's Delight" by Henry Warren
2743 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
2744 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00002745 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00002746 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00002747 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00002748 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
2749 DT);
2750 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
2751 DT);
David Majnemer491331a2015-01-02 07:29:43 +00002752 // Note that underestimating the number of zero bits gives a more
2753 // conservative answer.
2754 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
2755 RHSKnownZero.countLeadingOnes();
2756 // First handle the easy case: if we have enough zero bits there's
2757 // definitely no overflow.
2758 if (ZeroBits >= BitWidth)
2759 return OverflowResult::NeverOverflows;
2760
2761 // Get the largest possible values for each operand.
2762 APInt LHSMax = ~LHSKnownZero;
2763 APInt RHSMax = ~RHSKnownZero;
2764
2765 // We know the multiply operation doesn't overflow if the maximum values for
2766 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00002767 bool MaxOverflow;
2768 LHSMax.umul_ov(RHSMax, MaxOverflow);
2769 if (!MaxOverflow)
2770 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00002771
David Majnemerc8a576b2015-01-02 07:29:47 +00002772 // We know it always overflows if multiplying the smallest possible values for
2773 // the operands also results in overflow.
2774 bool MinOverflow;
2775 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
2776 if (MinOverflow)
2777 return OverflowResult::AlwaysOverflows;
2778
2779 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00002780}
David Majnemer5310c1e2015-01-07 00:39:50 +00002781
2782OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
2783 const DataLayout *DL,
2784 AssumptionCache *AC,
2785 const Instruction *CxtI,
2786 const DominatorTree *DT) {
2787 bool LHSKnownNonNegative, LHSKnownNegative;
2788 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
2789 AC, CxtI, DT);
2790 if (LHSKnownNonNegative || LHSKnownNegative) {
2791 bool RHSKnownNonNegative, RHSKnownNegative;
2792 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
2793 AC, CxtI, DT);
2794
2795 if (LHSKnownNegative && RHSKnownNegative) {
2796 // The sign bit is set in both cases: this MUST overflow.
2797 // Create a simple add instruction, and insert it into the struct.
2798 return OverflowResult::AlwaysOverflows;
2799 }
2800
2801 if (LHSKnownNonNegative && RHSKnownNonNegative) {
2802 // The sign bit is clear in both cases: this CANNOT overflow.
2803 // Create a simple add instruction, and insert it into the struct.
2804 return OverflowResult::NeverOverflows;
2805 }
2806 }
2807
2808 return OverflowResult::MayOverflow;
2809}