blob: fa428fa108d259708b6a6bd5a72f1a6bedd2c6c6 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Hal Finkel60db0582014-09-07 18:57:58 +000016#include "llvm/Analysis/AssumptionTracker.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000020#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000021#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000024#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000025#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000033#include "llvm/IR/PatternMatch.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000034#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000035#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000036#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000037using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000038using namespace llvm::PatternMatch;
39
40const unsigned MaxDepth = 6;
41
Sanjay Patelaee84212014-11-04 16:27:42 +000042/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
43/// 0). For vector types, returns the element type's bitwidth.
Micah Villmowcdfe20b2012-10-08 16:38:25 +000044static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd3951082011-01-25 09:38:29 +000045 if (unsigned BitWidth = Ty->getScalarSizeInBits())
46 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000047
48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd3951082011-01-25 09:38:29 +000049}
Chris Lattner965c7692008-06-02 01:18:21 +000050
Hal Finkel60db0582014-09-07 18:57:58 +000051// Many of these functions have internal versions that take an assumption
52// exclusion set. This is because of the potential for mutual recursion to
53// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
54// classic case of this is assume(x = y), which will attempt to determine
55// bits in x from bits in y, which will attempt to determine bits in y from
56// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
57// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
58// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
59typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
60
Benjamin Kramercfd8d902014-09-12 08:56:53 +000061namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000062// Simplifying using an assume can only be done in a particular control-flow
63// context (the context instruction provides that context). If an assume and
64// the context instruction are not in the same block then the DT helps in
65// figuring out if we can use it.
66struct Query {
67 ExclInvsSet ExclInvs;
68 AssumptionTracker *AT;
69 const Instruction *CxtI;
70 const DominatorTree *DT;
71
72 Query(AssumptionTracker *AT = nullptr, const Instruction *CxtI = nullptr,
73 const DominatorTree *DT = nullptr)
74 : AT(AT), CxtI(CxtI), DT(DT) {}
75
76 Query(const Query &Q, const Value *NewExcl)
77 : ExclInvs(Q.ExclInvs), AT(Q.AT), CxtI(Q.CxtI), DT(Q.DT) {
78 ExclInvs.insert(NewExcl);
79 }
80};
Benjamin Kramercfd8d902014-09-12 08:56:53 +000081} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +000082
Sanjay Patel547e9752014-11-04 16:09:50 +000083// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +000084// the preferred context instruction (if any).
85static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
86 // If we've been provided with a context instruction, then use that (provided
87 // it has been inserted).
88 if (CxtI && CxtI->getParent())
89 return CxtI;
90
91 // If the value is really an already-inserted instruction, then use that.
92 CxtI = dyn_cast<Instruction>(V);
93 if (CxtI && CxtI->getParent())
94 return CxtI;
95
96 return nullptr;
97}
98
99static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
100 const DataLayout *TD, unsigned Depth,
101 const Query &Q);
102
103void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
104 const DataLayout *TD, unsigned Depth,
105 AssumptionTracker *AT, const Instruction *CxtI,
106 const DominatorTree *DT) {
107 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
108 Query(AT, safeCxtI(V, CxtI), DT));
109}
110
111static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
112 const DataLayout *TD, unsigned Depth,
113 const Query &Q);
114
115void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
116 const DataLayout *TD, unsigned Depth,
117 AssumptionTracker *AT, const Instruction *CxtI,
118 const DominatorTree *DT) {
119 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
120 Query(AT, safeCxtI(V, CxtI), DT));
121}
122
123static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
124 const Query &Q);
125
126bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
127 AssumptionTracker *AT,
128 const Instruction *CxtI,
129 const DominatorTree *DT) {
130 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
131 Query(AT, safeCxtI(V, CxtI), DT));
132}
133
134static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
135 const Query &Q);
136
137bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
138 AssumptionTracker *AT, const Instruction *CxtI,
139 const DominatorTree *DT) {
140 return ::isKnownNonZero(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
141}
142
143static bool MaskedValueIsZero(Value *V, const APInt &Mask,
144 const DataLayout *TD, unsigned Depth,
145 const Query &Q);
146
147bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
148 const DataLayout *TD, unsigned Depth,
149 AssumptionTracker *AT, const Instruction *CxtI,
150 const DominatorTree *DT) {
151 return ::MaskedValueIsZero(V, Mask, TD, Depth,
152 Query(AT, safeCxtI(V, CxtI), DT));
153}
154
155static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
156 unsigned Depth, const Query &Q);
157
158unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
159 unsigned Depth, AssumptionTracker *AT,
160 const Instruction *CxtI,
161 const DominatorTree *DT) {
162 return ::ComputeNumSignBits(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
163}
164
Jay Foada0653a32014-05-14 21:14:37 +0000165static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
166 APInt &KnownZero, APInt &KnownOne,
167 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000168 const DataLayout *TD, unsigned Depth,
169 const Query &Q) {
170 if (!Add) {
171 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
172 // We know that the top bits of C-X are clear if X contains less bits
173 // than C (i.e. no wrap-around can happen). For example, 20-X is
174 // positive if we can prove that X is >= 0 and < 16.
175 if (!CLHS->getValue().isNegative()) {
176 unsigned BitWidth = KnownZero.getBitWidth();
177 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
178 // NLZ can't be BitWidth with no sign bit
179 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
180 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
181
182 // If all of the MaskV bits are known to be zero, then we know the
183 // output top bits are zero, because we now know that the output is
184 // from [0-C].
185 if ((KnownZero2 & MaskV) == MaskV) {
186 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
187 // Top bits known zero.
188 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
189 }
190 }
191 }
192 }
193
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000194 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000195
David Majnemer97ddca32014-08-22 00:40:43 +0000196 // If an initial sequence of bits in the result is not needed, the
197 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000198 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000199 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
200 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000201
David Majnemer97ddca32014-08-22 00:40:43 +0000202 // Carry in a 1 for a subtract, rather than a 0.
203 APInt CarryIn(BitWidth, 0);
204 if (!Add) {
205 // Sum = LHS + ~RHS + 1
206 std::swap(KnownZero2, KnownOne2);
207 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000208 }
209
David Majnemer97ddca32014-08-22 00:40:43 +0000210 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
211 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
212
213 // Compute known bits of the carry.
214 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
215 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
216
217 // Compute set of known bits (where all three relevant bits are known).
218 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
219 APInt RHSKnown = KnownZero2 | KnownOne2;
220 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
221 APInt Known = LHSKnown & RHSKnown & CarryKnown;
222
223 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
224 "known bits of sum differ");
225
226 // Compute known bits of the result.
227 KnownZero = ~PossibleSumOne & Known;
228 KnownOne = PossibleSumOne & Known;
229
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000230 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000231 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000232 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000233 // Adding two non-negative numbers, or subtracting a negative number from
234 // a non-negative one, can't wrap into negative.
235 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
236 KnownZero |= APInt::getSignBit(BitWidth);
237 // Adding two negative numbers, or subtracting a non-negative number from
238 // a negative one, can't wrap into non-negative.
239 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
240 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000241 }
242 }
243}
244
Jay Foada0653a32014-05-14 21:14:37 +0000245static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
246 APInt &KnownZero, APInt &KnownOne,
247 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000248 const DataLayout *TD, unsigned Depth,
249 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000250 unsigned BitWidth = KnownZero.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000251 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
252 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000253
254 bool isKnownNegative = false;
255 bool isKnownNonNegative = false;
256 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000257 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000258 if (Op0 == Op1) {
259 // The product of a number with itself is non-negative.
260 isKnownNonNegative = true;
261 } else {
262 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
263 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
264 bool isKnownNegativeOp1 = KnownOne.isNegative();
265 bool isKnownNegativeOp0 = KnownOne2.isNegative();
266 // The product of two numbers with the same sign is non-negative.
267 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
268 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
269 // The product of a negative number and a non-negative number is either
270 // negative or zero.
271 if (!isKnownNonNegative)
272 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000273 isKnownNonZero(Op0, TD, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000274 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000275 isKnownNonZero(Op1, TD, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000276 }
277 }
278
279 // If low bits are zero in either operand, output low known-0 bits.
280 // Also compute a conserative estimate for high known-0 bits.
281 // More trickiness is possible, but this is sufficient for the
282 // interesting case of alignment computation.
283 KnownOne.clearAllBits();
284 unsigned TrailZ = KnownZero.countTrailingOnes() +
285 KnownZero2.countTrailingOnes();
286 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
287 KnownZero2.countLeadingOnes(),
288 BitWidth) - BitWidth;
289
290 TrailZ = std::min(TrailZ, BitWidth);
291 LeadZ = std::min(LeadZ, BitWidth);
292 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
293 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000294
295 // Only make use of no-wrap flags if we failed to compute the sign bit
296 // directly. This matters if the multiplication always overflows, in
297 // which case we prefer to follow the result of the direct computation,
298 // though as the program is invoking undefined behaviour we can choose
299 // whatever we like here.
300 if (isKnownNonNegative && !KnownOne.isNegative())
301 KnownZero.setBit(BitWidth - 1);
302 else if (isKnownNegative && !KnownZero.isNegative())
303 KnownOne.setBit(BitWidth - 1);
304}
305
Jingyue Wu37fcb592014-06-19 16:50:16 +0000306void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
307 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000308 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000309 unsigned NumRanges = Ranges.getNumOperands() / 2;
310 assert(NumRanges >= 1);
311
312 // Use the high end of the ranges to find leading zeros.
313 unsigned MinLeadingZeros = BitWidth;
314 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000315 ConstantInt *Lower =
316 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
317 ConstantInt *Upper =
318 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000319 ConstantRange Range(Lower->getValue(), Upper->getValue());
320 if (Range.isWrappedSet())
321 MinLeadingZeros = 0; // -1 has no zeros
322 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
323 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
324 }
325
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000326 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000327}
Jay Foad5a29c362014-05-15 12:12:55 +0000328
Hal Finkel60db0582014-09-07 18:57:58 +0000329static bool isEphemeralValueOf(Instruction *I, const Value *E) {
330 SmallVector<const Value *, 16> WorkSet(1, I);
331 SmallPtrSet<const Value *, 32> Visited;
332 SmallPtrSet<const Value *, 16> EphValues;
333
334 while (!WorkSet.empty()) {
335 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000336 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000337 continue;
338
339 // If all uses of this value are ephemeral, then so is this value.
340 bool FoundNEUse = false;
341 for (const User *I : V->users())
342 if (!EphValues.count(I)) {
343 FoundNEUse = true;
344 break;
345 }
346
347 if (!FoundNEUse) {
348 if (V == E)
349 return true;
350
351 EphValues.insert(V);
352 if (const User *U = dyn_cast<User>(V))
353 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
354 J != JE; ++J) {
355 if (isSafeToSpeculativelyExecute(*J))
356 WorkSet.push_back(*J);
357 }
358 }
359 }
360
361 return false;
362}
363
364// Is this an intrinsic that cannot be speculated but also cannot trap?
365static bool isAssumeLikeIntrinsic(const Instruction *I) {
366 if (const CallInst *CI = dyn_cast<CallInst>(I))
367 if (Function *F = CI->getCalledFunction())
368 switch (F->getIntrinsicID()) {
369 default: break;
370 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
371 case Intrinsic::assume:
372 case Intrinsic::dbg_declare:
373 case Intrinsic::dbg_value:
374 case Intrinsic::invariant_start:
375 case Intrinsic::invariant_end:
376 case Intrinsic::lifetime_start:
377 case Intrinsic::lifetime_end:
378 case Intrinsic::objectsize:
379 case Intrinsic::ptr_annotation:
380 case Intrinsic::var_annotation:
381 return true;
382 }
383
384 return false;
385}
386
387static bool isValidAssumeForContext(Value *V, const Query &Q,
388 const DataLayout *DL) {
389 Instruction *Inv = cast<Instruction>(V);
390
391 // There are two restrictions on the use of an assume:
392 // 1. The assume must dominate the context (or the control flow must
393 // reach the assume whenever it reaches the context).
394 // 2. The context must not be in the assume's set of ephemeral values
395 // (otherwise we will use the assume to prove that the condition
396 // feeding the assume is trivially true, thus causing the removal of
397 // the assume).
398
399 if (Q.DT) {
400 if (Q.DT->dominates(Inv, Q.CxtI)) {
401 return true;
402 } else if (Inv->getParent() == Q.CxtI->getParent()) {
403 // The context comes first, but they're both in the same block. Make sure
404 // there is nothing in between that might interrupt the control flow.
405 for (BasicBlock::const_iterator I =
406 std::next(BasicBlock::const_iterator(Q.CxtI)),
407 IE(Inv); I != IE; ++I)
408 if (!isSafeToSpeculativelyExecute(I, DL) &&
409 !isAssumeLikeIntrinsic(I))
410 return false;
411
412 return !isEphemeralValueOf(Inv, Q.CxtI);
413 }
414
415 return false;
416 }
417
418 // When we don't have a DT, we do a limited search...
419 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
420 return true;
421 } else if (Inv->getParent() == Q.CxtI->getParent()) {
422 // Search forward from the assume until we reach the context (or the end
423 // of the block); the common case is that the assume will come first.
424 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
425 IE = Inv->getParent()->end(); I != IE; ++I)
426 if (I == Q.CxtI)
427 return true;
428
429 // The context must come first...
430 for (BasicBlock::const_iterator I =
431 std::next(BasicBlock::const_iterator(Q.CxtI)),
432 IE(Inv); I != IE; ++I)
433 if (!isSafeToSpeculativelyExecute(I, DL) &&
434 !isAssumeLikeIntrinsic(I))
435 return false;
436
437 return !isEphemeralValueOf(Inv, Q.CxtI);
438 }
439
440 return false;
441}
442
443bool llvm::isValidAssumeForContext(const Instruction *I,
444 const Instruction *CxtI,
445 const DataLayout *DL,
446 const DominatorTree *DT) {
447 return ::isValidAssumeForContext(const_cast<Instruction*>(I),
448 Query(nullptr, CxtI, DT), DL);
449}
450
451template<typename LHS, typename RHS>
452inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
453 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
454m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
455 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
456}
457
458template<typename LHS, typename RHS>
459inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
460 BinaryOp_match<RHS, LHS, Instruction::And>>
461m_c_And(const LHS &L, const RHS &R) {
462 return m_CombineOr(m_And(L, R), m_And(R, L));
463}
464
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000465template<typename LHS, typename RHS>
466inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
467 BinaryOp_match<RHS, LHS, Instruction::Or>>
468m_c_Or(const LHS &L, const RHS &R) {
469 return m_CombineOr(m_Or(L, R), m_Or(R, L));
470}
471
472template<typename LHS, typename RHS>
473inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
474 BinaryOp_match<RHS, LHS, Instruction::Xor>>
475m_c_Xor(const LHS &L, const RHS &R) {
476 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
477}
478
Hal Finkel60db0582014-09-07 18:57:58 +0000479static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
480 APInt &KnownOne,
481 const DataLayout *DL,
482 unsigned Depth, const Query &Q) {
483 // Use of assumptions is context-sensitive. If we don't have a context, we
484 // cannot use them!
485 if (!Q.AT || !Q.CxtI)
486 return;
487
488 unsigned BitWidth = KnownZero.getBitWidth();
489
490 Function *F = const_cast<Function*>(Q.CxtI->getParent()->getParent());
491 for (auto &CI : Q.AT->assumptions(F)) {
492 CallInst *I = CI;
493 if (Q.ExclInvs.count(I))
494 continue;
495
Philip Reames00d3b272014-11-24 23:44:28 +0000496 // Warning: This loop can end up being somewhat performance sensetive.
497 // We're running this loop for once for each value queried resulting in a
498 // runtime of ~O(#assumes * #values).
499
500 assert(isa<IntrinsicInst>(I) &&
501 dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume &&
502 "must be an assume intrinsic");
503
504 Value *Arg = I->getArgOperand(0);
505
506 if (Arg == V &&
Hal Finkel60db0582014-09-07 18:57:58 +0000507 isValidAssumeForContext(I, Q, DL)) {
508 assert(BitWidth == 1 && "assume operand is not i1?");
509 KnownZero.clearAllBits();
510 KnownOne.setAllBits();
511 return;
512 }
513
514 Value *A, *B;
515 auto m_V = m_CombineOr(m_Specific(V),
516 m_CombineOr(m_PtrToInt(m_Specific(V)),
517 m_BitCast(m_Specific(V))));
518
519 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000520 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000521 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000522 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000523 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
524 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
525 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
526 KnownZero |= RHSKnownZero;
527 KnownOne |= RHSKnownOne;
528 // assume(v & b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000529 } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
530 m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000531 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
532 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
533 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
534 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
535 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
536
537 // For those bits in the mask that are known to be one, we can propagate
538 // known bits from the RHS to V.
539 KnownZero |= RHSKnownZero & MaskKnownOne;
540 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000541 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000542 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
543 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000544 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
545 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
546 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
547 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
548 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
549
550 // For those bits in the mask that are known to be one, we can propagate
551 // inverted known bits from the RHS to V.
552 KnownZero |= RHSKnownOne & MaskKnownOne;
553 KnownOne |= RHSKnownZero & MaskKnownOne;
554 // assume(v | b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000555 } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
556 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000557 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
558 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
559 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
560 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
561 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
562
563 // For those bits in B that are known to be zero, we can propagate known
564 // bits from the RHS to V.
565 KnownZero |= RHSKnownZero & BKnownZero;
566 KnownOne |= RHSKnownOne & BKnownZero;
567 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000568 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
569 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000570 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
571 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
572 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
573 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
574 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
575
576 // For those bits in B that are known to be zero, we can propagate
577 // inverted known bits from the RHS to V.
578 KnownZero |= RHSKnownOne & BKnownZero;
579 KnownOne |= RHSKnownZero & BKnownZero;
580 // assume(v ^ b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000581 } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
582 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000583 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
584 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
585 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
586 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
587 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
588
589 // For those bits in B that are known to be zero, we can propagate known
590 // bits from the RHS to V. For those bits in B that are known to be one,
591 // we can propagate inverted known bits from the RHS to V.
592 KnownZero |= RHSKnownZero & BKnownZero;
593 KnownOne |= RHSKnownOne & BKnownZero;
594 KnownZero |= RHSKnownOne & BKnownOne;
595 KnownOne |= RHSKnownZero & BKnownOne;
596 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000597 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
598 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000599 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
600 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
601 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
602 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
603 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
604
605 // For those bits in B that are known to be zero, we can propagate
606 // inverted known bits from the RHS to V. For those bits in B that are
607 // known to be one, we can propagate known bits from the RHS to V.
608 KnownZero |= RHSKnownOne & BKnownZero;
609 KnownOne |= RHSKnownZero & BKnownZero;
610 KnownZero |= RHSKnownZero & BKnownOne;
611 KnownOne |= RHSKnownOne & BKnownOne;
612 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000613 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
614 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000615 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
616 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
617 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
618 // For those bits in RHS that are known, we can propagate them to known
619 // bits in V shifted to the right by C.
620 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
621 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
622 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000623 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
624 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000625 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
626 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
627 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
628 // For those bits in RHS that are known, we can propagate them inverted
629 // to known bits in V shifted to the right by C.
630 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
631 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
632 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000633 } else if (match(Arg,
634 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000635 m_AShr(m_V,
636 m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000637 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000638 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
639 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
640 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
641 // For those bits in RHS that are known, we can propagate them to known
642 // bits in V shifted to the right by C.
643 KnownZero |= RHSKnownZero << C->getZExtValue();
644 KnownOne |= RHSKnownOne << C->getZExtValue();
645 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000647 m_LShr(m_V, m_ConstantInt(C)),
648 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000649 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000650 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
651 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
652 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
653 // For those bits in RHS that are known, we can propagate them inverted
654 // to known bits in V shifted to the right by C.
655 KnownZero |= RHSKnownOne << C->getZExtValue();
656 KnownOne |= RHSKnownZero << C->getZExtValue();
657 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000658 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000659 Pred == ICmpInst::ICMP_SGE &&
660 isValidAssumeForContext(I, Q, DL)) {
661 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
662 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
663
664 if (RHSKnownZero.isNegative()) {
665 // We know that the sign bit is zero.
666 KnownZero |= APInt::getSignBit(BitWidth);
667 }
668 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000669 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000670 Pred == ICmpInst::ICMP_SGT &&
671 isValidAssumeForContext(I, Q, DL)) {
672 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
673 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
674
675 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
676 // We know that the sign bit is zero.
677 KnownZero |= APInt::getSignBit(BitWidth);
678 }
679 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000680 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000681 Pred == ICmpInst::ICMP_SLE &&
682 isValidAssumeForContext(I, Q, DL)) {
683 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
684 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
685
686 if (RHSKnownOne.isNegative()) {
687 // We know that the sign bit is one.
688 KnownOne |= APInt::getSignBit(BitWidth);
689 }
690 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000691 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000692 Pred == ICmpInst::ICMP_SLT &&
693 isValidAssumeForContext(I, Q, DL)) {
694 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
695 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
696
697 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
698 // We know that the sign bit is one.
699 KnownOne |= APInt::getSignBit(BitWidth);
700 }
701 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000702 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703 Pred == ICmpInst::ICMP_ULE &&
704 isValidAssumeForContext(I, Q, DL)) {
705 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
706 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
707
708 // Whatever high bits in c are zero are known to be zero.
709 KnownZero |=
710 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
711 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000712 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713 Pred == ICmpInst::ICMP_ULT &&
714 isValidAssumeForContext(I, Q, DL)) {
715 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
716 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
717
718 // Whatever high bits in c are zero are known to be zero (if c is a power
719 // of 2, then one more).
720 if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
721 KnownZero |=
722 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
723 else
724 KnownZero |=
725 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000726 }
727 }
728}
729
Jay Foada0653a32014-05-14 21:14:37 +0000730/// Determine which bits of V are known to be either zero or one and return
731/// them in the KnownZero/KnownOne bit sets.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000732///
Chris Lattner965c7692008-06-02 01:18:21 +0000733/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
734/// we cannot optimize based on the assumption that it is zero without changing
735/// it to be an explicit zero. If we don't change it to zero, other code could
736/// optimized based on the contradictory assumption that it is non-zero.
737/// Because instcombine aggressively folds operations with undef args anyway,
738/// this won't lose us code quality.
Chris Lattner4bc28252009-09-08 00:06:16 +0000739///
740/// This function is defined on values with integer type, values with pointer
741/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000742/// where V is a vector, known zero, and known one values are the
Chris Lattner4bc28252009-09-08 00:06:16 +0000743/// same width as the vector element, and the bit is set only if it is true
744/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +0000745void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
746 const DataLayout *TD, unsigned Depth,
747 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +0000748 assert(V && "No Value?");
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000749 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000750 unsigned BitWidth = KnownZero.getBitWidth();
751
Nadav Rotem3924cb02011-12-05 06:29:09 +0000752 assert((V->getType()->isIntOrIntVectorTy() ||
753 V->getType()->getScalarType()->isPointerTy()) &&
754 "Not integer or pointer type!");
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000755 assert((!TD ||
756 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000757 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000758 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem3924cb02011-12-05 06:29:09 +0000759 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner965c7692008-06-02 01:18:21 +0000760 KnownOne.getBitWidth() == BitWidth &&
Jay Foade48d9e82014-05-14 08:00:07 +0000761 "V, KnownOne and KnownZero should have same BitWidth");
Chris Lattner965c7692008-06-02 01:18:21 +0000762
763 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
764 // We know all of the bits for a constant!
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000765 KnownOne = CI->getValue();
766 KnownZero = ~KnownOne;
Chris Lattner965c7692008-06-02 01:18:21 +0000767 return;
768 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000769 // Null and aggregate-zero are all-zeros.
770 if (isa<ConstantPointerNull>(V) ||
771 isa<ConstantAggregateZero>(V)) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000772 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000773 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000774 return;
775 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000776 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner8213c8a2012-02-06 21:56:39 +0000777 // each element. There is no real need to handle ConstantVector here, because
778 // we don't handle undef in any particularly useful way.
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000779 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
780 // We know that CDS must be a vector of integers. Take the intersection of
781 // each element.
782 KnownZero.setAllBits(); KnownOne.setAllBits();
783 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner9be59592012-01-25 01:27:20 +0000784 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000785 Elt = CDS->getElementAsInteger(i);
786 KnownZero &= ~Elt;
Craig Topper1bef2c82012-12-22 19:15:35 +0000787 KnownOne &= Elt;
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000788 }
789 return;
790 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000791
Chandler Carruth5b8cd2f2014-10-19 09:06:56 +0000792 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
793 // the bits of its aliasee.
794 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
795 if (GA->mayBeOverridden()) {
796 KnownZero.clearAllBits(); KnownOne.clearAllBits();
797 } else {
798 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1, Q);
799 }
800 return;
801 }
802
Chris Lattner965c7692008-06-02 01:18:21 +0000803 // The address of an aligned GlobalValue has trailing zeros.
804 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
805 unsigned Align = GV->getAlignment();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000806 if (Align == 0 && TD) {
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000807 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
808 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000809 if (ObjectType->isSized()) {
810 // If the object is defined in the current Module, we'll be giving
811 // it the preferred alignment. Otherwise, we have to assume that it
812 // may only have the minimum ABI alignment.
813 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
814 Align = TD->getPreferredAlignment(GVar);
815 else
816 Align = TD->getABITypeAlignment(ObjectType);
817 }
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000818 }
Dan Gohmana72f8562009-08-11 15:50:03 +0000819 }
Chris Lattner965c7692008-06-02 01:18:21 +0000820 if (Align > 0)
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000821 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000822 countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000823 else
Jay Foad25a5e4c2010-12-01 08:53:58 +0000824 KnownZero.clearAllBits();
825 KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000826 return;
827 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000828
Chris Lattner83791ce2011-05-23 00:03:39 +0000829 if (Argument *A = dyn_cast<Argument>(V)) {
Hal Finkelccc70902014-07-22 16:58:55 +0000830 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
Duncan Sands271ea6c2012-10-04 13:36:31 +0000831
Hal Finkelccc70902014-07-22 16:58:55 +0000832 if (!Align && TD && A->hasStructRetAttr()) {
Duncan Sands271ea6c2012-10-04 13:36:31 +0000833 // An sret parameter has at least the ABI alignment of the return type.
834 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
835 if (EltTy->isSized())
836 Align = TD->getABITypeAlignment(EltTy);
837 }
838
839 if (Align)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000840 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Hal Finkel60db0582014-09-07 18:57:58 +0000841
842 // Don't give up yet... there might be an assumption that provides more
843 // information...
844 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner83791ce2011-05-23 00:03:39 +0000845 return;
846 }
Chris Lattner965c7692008-06-02 01:18:21 +0000847
Chris Lattner83791ce2011-05-23 00:03:39 +0000848 // Start out not knowing anything.
849 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000850
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000851 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +0000852 return; // Limit search depth.
853
Hal Finkel60db0582014-09-07 18:57:58 +0000854 // Check whether a nearby assume intrinsic can determine some known bits.
855 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
856
Dan Gohman80ca01c2009-07-17 20:47:02 +0000857 Operator *I = dyn_cast<Operator>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000858 if (!I) return;
859
860 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000861 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000862 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000863 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000864 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000865 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000866 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000867 case Instruction::And: {
868 // If either the LHS or the RHS are Zero, the result is zero.
Hal Finkel60db0582014-09-07 18:57:58 +0000869 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
870 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000871
Chris Lattner965c7692008-06-02 01:18:21 +0000872 // Output known-1 bits are only known if set in both the LHS & RHS.
873 KnownOne &= KnownOne2;
874 // Output known-0 are known to be clear if zero in either the LHS | RHS.
875 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000876 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000877 }
878 case Instruction::Or: {
Hal Finkel60db0582014-09-07 18:57:58 +0000879 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
880 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000881
Chris Lattner965c7692008-06-02 01:18:21 +0000882 // Output known-0 bits are only known if clear in both the LHS & RHS.
883 KnownZero &= KnownZero2;
884 // Output known-1 are known to be set if set in either the LHS | RHS.
885 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000886 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000887 }
888 case Instruction::Xor: {
Hal Finkel60db0582014-09-07 18:57:58 +0000889 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
890 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000891
Chris Lattner965c7692008-06-02 01:18:21 +0000892 // Output known-0 bits are known if clear or set in both the LHS & RHS.
893 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
894 // Output known-1 are known to be set if set in only one of the LHS, RHS.
895 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
896 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000897 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000898 }
899 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000900 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000901 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Hal Finkel60db0582014-09-07 18:57:58 +0000902 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
903 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000904 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000905 }
906 case Instruction::UDiv: {
907 // For the purposes of computing leading zeros we can conservatively
908 // treat a udiv as a logical right shift by the power of 2 known to
909 // be less than the denominator.
Hal Finkel60db0582014-09-07 18:57:58 +0000910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000911 unsigned LeadZ = KnownZero2.countLeadingOnes();
912
Jay Foad25a5e4c2010-12-01 08:53:58 +0000913 KnownOne2.clearAllBits();
914 KnownZero2.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000915 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000916 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
917 if (RHSUnknownLeadingOnes != BitWidth)
918 LeadZ = std::min(BitWidth,
919 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
920
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000921 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000922 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000923 }
924 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +0000925 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
926 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000927
928 // Only known if known in both the LHS and RHS.
929 KnownOne &= KnownOne2;
930 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000931 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000932 case Instruction::FPTrunc:
933 case Instruction::FPExt:
934 case Instruction::FPToUI:
935 case Instruction::FPToSI:
936 case Instruction::SIToFP:
937 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000938 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000939 case Instruction::PtrToInt:
940 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000941 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000942 // We can't handle these if we don't know the pointer size.
Jay Foad5a29c362014-05-15 12:12:55 +0000943 if (!TD) break;
Chris Lattner965c7692008-06-02 01:18:21 +0000944 // FALL THROUGH and handle them the same as zext/trunc.
945 case Instruction::ZExt:
946 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000947 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000948
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000949 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000950 // Note that we handle pointer operands here because of inttoptr/ptrtoint
951 // which fall through here.
Nadav Rotem11350aa2012-12-19 20:47:04 +0000952 if(TD) {
953 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
954 } else {
955 SrcBitWidth = SrcTy->getScalarSizeInBits();
Jay Foad5a29c362014-05-15 12:12:55 +0000956 if (!SrcBitWidth) break;
Nadav Rotem11350aa2012-12-19 20:47:04 +0000957 }
Nadav Rotem15198e92012-10-26 17:17:05 +0000958
959 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000960 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
961 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000962 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000963 KnownZero = KnownZero.zextOrTrunc(BitWidth);
964 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000965 // Any top bits are known to be zero.
966 if (BitWidth > SrcBitWidth)
967 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000968 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000969 }
970 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000971 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +0000972 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000973 // TODO: For now, not handling conversions like:
974 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000975 !I->getType()->isVectorTy()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000976 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +0000977 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000978 }
979 break;
980 }
981 case Instruction::SExt: {
982 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000983 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +0000984
Jay Foad583abbc2010-12-07 08:25:19 +0000985 KnownZero = KnownZero.trunc(SrcBitWidth);
986 KnownOne = KnownOne.trunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000987 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000988 KnownZero = KnownZero.zext(BitWidth);
989 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000990
991 // If the sign bit of the input is known set or clear, then we know the
992 // top bits of the result.
993 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
994 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
995 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
996 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000997 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000998 }
999 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001000 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001001 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1002 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +00001003 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001004 KnownZero <<= ShiftAmt;
1005 KnownOne <<= ShiftAmt;
1006 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Chris Lattner965c7692008-06-02 01:18:21 +00001007 }
1008 break;
1009 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001010 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001011 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1012 // Compute the new bits that are at the top now.
1013 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001014
Chris Lattner965c7692008-06-02 01:18:21 +00001015 // Unsigned shift right.
Sanjay Patel8f093f42014-11-05 18:00:07 +00001016 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001017 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1018 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1019 // high bits known zero.
1020 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Chris Lattner965c7692008-06-02 01:18:21 +00001021 }
1022 break;
1023 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001024 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001025 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1026 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001027 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001028
Chris Lattner965c7692008-06-02 01:18:21 +00001029 // Signed shift right.
Hal Finkel60db0582014-09-07 18:57:58 +00001030 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001031 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1032 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001033
Chris Lattner965c7692008-06-02 01:18:21 +00001034 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1035 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1036 KnownZero |= HighBits;
1037 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1038 KnownOne |= HighBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001039 }
1040 break;
1041 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001042 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001043 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001044 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001045 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001046 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001047 }
Chris Lattner965c7692008-06-02 01:18:21 +00001048 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001049 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001050 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001051 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001052 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001053 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001054 }
1055 case Instruction::SRem:
1056 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001057 APInt RA = Rem->getValue().abs();
1058 if (RA.isPowerOf2()) {
1059 APInt LowBits = RA - 1;
Hal Finkel60db0582014-09-07 18:57:58 +00001060 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
1061 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001062
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001063 // The low bits of the first operand are unchanged by the srem.
1064 KnownZero = KnownZero2 & LowBits;
1065 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001066
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001067 // If the first operand is non-negative or has all low bits zero, then
1068 // the upper bits are all zero.
1069 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1070 KnownZero |= ~LowBits;
1071
1072 // If the first operand is negative and not all low bits are zero, then
1073 // the upper bits are all one.
1074 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1075 KnownOne |= ~LowBits;
1076
Craig Topper1bef2c82012-12-22 19:15:35 +00001077 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001078 }
1079 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001080
1081 // The sign bit is the LHS's sign bit, except when the result of the
1082 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001083 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001084 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001085 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001086 Depth+1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001087 // If it's known zero, our sign bit is also zero.
1088 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001089 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001090 }
1091
Chris Lattner965c7692008-06-02 01:18:21 +00001092 break;
1093 case Instruction::URem: {
1094 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1095 APInt RA = Rem->getValue();
1096 if (RA.isPowerOf2()) {
1097 APInt LowBits = (RA - 1);
Jay Foada0653a32014-05-14 21:14:37 +00001098 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001099 Depth+1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001100 KnownZero |= ~LowBits;
1101 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001102 break;
1103 }
1104 }
1105
1106 // Since the result is less than or equal to either operand, any leading
1107 // zero bits in either operand must also exist in the result.
Hal Finkel60db0582014-09-07 18:57:58 +00001108 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
1109 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001110
Chris Lattner4612ae12009-01-20 18:22:57 +00001111 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001112 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001113 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001114 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001115 break;
1116 }
1117
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001118 case Instruction::Alloca: {
Victor Hernandez8acf2952009-10-23 21:09:37 +00001119 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner965c7692008-06-02 01:18:21 +00001120 unsigned Align = AI->getAlignment();
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001121 if (Align == 0 && TD)
1122 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001123
Chris Lattner965c7692008-06-02 01:18:21 +00001124 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001125 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001126 break;
1127 }
1128 case Instruction::GetElementPtr: {
1129 // Analyze all of the subscripts of this getelementptr instruction
1130 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001131 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001132 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001133 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001134 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1135
1136 gep_type_iterator GTI = gep_type_begin(I);
1137 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1138 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001139 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001140 // Handle struct member offset arithmetic.
Jay Foad5a29c362014-05-15 12:12:55 +00001141 if (!TD) {
1142 TrailZ = 0;
1143 break;
1144 }
Matt Arsenault74742a12013-08-19 21:43:16 +00001145
1146 // Handle case when index is vector zeroinitializer
1147 Constant *CIndex = cast<Constant>(Index);
1148 if (CIndex->isZeroValue())
1149 continue;
1150
1151 if (CIndex->getType()->isVectorTy())
1152 Index = CIndex->getSplatValue();
1153
Chris Lattner965c7692008-06-02 01:18:21 +00001154 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault74742a12013-08-19 21:43:16 +00001155 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001156 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001157 TrailZ = std::min<unsigned>(TrailZ,
1158 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001159 } else {
1160 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001161 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001162 if (!IndexedTy->isSized()) {
1163 TrailZ = 0;
1164 break;
1165 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001166 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sandsaf9eaa82009-05-09 07:06:46 +00001167 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner965c7692008-06-02 01:18:21 +00001168 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001169 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001170 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001171 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001172 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001173 }
1174 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001175
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001176 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001177 break;
1178 }
1179 case Instruction::PHI: {
1180 PHINode *P = cast<PHINode>(I);
1181 // Handle the case of a simple two-predecessor recurrence PHI.
1182 // There's a lot more that could theoretically be done here, but
1183 // this is sufficient to catch some interesting cases.
1184 if (P->getNumIncomingValues() == 2) {
1185 for (unsigned i = 0; i != 2; ++i) {
1186 Value *L = P->getIncomingValue(i);
1187 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001188 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001189 if (!LU)
1190 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001191 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001192 // Check for operations that have the property that if
1193 // both their operands have low zero bits, the result
1194 // will have low zero bits.
1195 if (Opcode == Instruction::Add ||
1196 Opcode == Instruction::Sub ||
1197 Opcode == Instruction::And ||
1198 Opcode == Instruction::Or ||
1199 Opcode == Instruction::Mul) {
1200 Value *LL = LU->getOperand(0);
1201 Value *LR = LU->getOperand(1);
1202 // Find a recurrence.
1203 if (LL == I)
1204 L = LR;
1205 else if (LR == I)
1206 L = LL;
1207 else
1208 break;
1209 // Ok, we have a PHI of the form L op= R. Check for low
1210 // zero bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001211 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001212
1213 // We need to take the minimum number of known bits
1214 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Hal Finkel60db0582014-09-07 18:57:58 +00001215 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001216
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001217 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001218 std::min(KnownZero2.countTrailingOnes(),
1219 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001220 break;
1221 }
1222 }
1223 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001224
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001225 // Unreachable blocks may have zero-operand PHI nodes.
1226 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001227 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001228
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001229 // Otherwise take the unions of the known bit sets of the operands,
1230 // taking conservative care to avoid excessive recursion.
1231 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001232 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001233 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001234 break;
1235
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001236 KnownZero = APInt::getAllOnesValue(BitWidth);
1237 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001238 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
1239 // Skip direct self references.
1240 if (P->getIncomingValue(i) == P) continue;
1241
1242 KnownZero2 = APInt(BitWidth, 0);
1243 KnownOne2 = APInt(BitWidth, 0);
1244 // Recurse, but cap the recursion to one level, because we don't
1245 // want to waste time spinning around in loops.
Jay Foada0653a32014-05-14 21:14:37 +00001246 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001247 MaxDepth-1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001248 KnownZero &= KnownZero2;
1249 KnownOne &= KnownOne2;
1250 // If all bits have been ruled out, there's no need to check
1251 // more operands.
1252 if (!KnownZero && !KnownOne)
1253 break;
1254 }
1255 }
Chris Lattner965c7692008-06-02 01:18:21 +00001256 break;
1257 }
1258 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001259 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001260 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001261 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1262 // If a range metadata is attached to this IntrinsicInst, intersect the
1263 // explicit range specified by the metadata and the implicit range of
1264 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001265 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1266 switch (II->getIntrinsicID()) {
1267 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +00001268 case Intrinsic::ctlz:
1269 case Intrinsic::cttz: {
1270 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001271 // If this call is undefined for 0, the result will be less than 2^n.
1272 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1273 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001274 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001275 break;
1276 }
1277 case Intrinsic::ctpop: {
1278 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001279 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001280 break;
1281 }
Chad Rosierb3628842011-05-26 23:13:19 +00001282 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001283 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001284 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001285 }
1286 }
1287 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001288 case Instruction::ExtractValue:
1289 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1290 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1291 if (EVI->getNumIndices() != 1) break;
1292 if (EVI->getIndices()[0] == 0) {
1293 switch (II->getIntrinsicID()) {
1294 default: break;
1295 case Intrinsic::uadd_with_overflow:
1296 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001297 computeKnownBitsAddSub(true, II->getArgOperand(0),
1298 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001299 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001300 break;
1301 case Intrinsic::usub_with_overflow:
1302 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001303 computeKnownBitsAddSub(false, II->getArgOperand(0),
1304 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001305 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001306 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001307 case Intrinsic::umul_with_overflow:
1308 case Intrinsic::smul_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001309 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
1310 false, KnownZero, KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +00001311 KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001312 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001313 }
1314 }
1315 }
Chris Lattner965c7692008-06-02 01:18:21 +00001316 }
Jay Foad5a29c362014-05-15 12:12:55 +00001317
1318 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001319}
1320
Sanjay Patelaee84212014-11-04 16:27:42 +00001321/// Determine whether the sign bit is known to be zero or one.
1322/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001323void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1324 const DataLayout *TD, unsigned Depth,
1325 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001326 unsigned BitWidth = getBitWidth(V->getType(), TD);
1327 if (!BitWidth) {
1328 KnownZero = false;
1329 KnownOne = false;
1330 return;
1331 }
1332 APInt ZeroBits(BitWidth, 0);
1333 APInt OneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001334 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001335 KnownOne = OneBits[BitWidth - 1];
1336 KnownZero = ZeroBits[BitWidth - 1];
1337}
1338
Sanjay Patelaee84212014-11-04 16:27:42 +00001339/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001340/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001341/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001342/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001343bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1344 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001345 if (Constant *C = dyn_cast<Constant>(V)) {
1346 if (C->isNullValue())
1347 return OrZero;
1348 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1349 return CI->getValue().isPowerOf2();
1350 // TODO: Handle vector constants.
1351 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001352
1353 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1354 // it is shifted off the end then the result is undefined.
1355 if (match(V, m_Shl(m_One(), m_Value())))
1356 return true;
1357
1358 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1359 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001360 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001361 return true;
1362
1363 // The remaining tests are all recursive, so bail out if we hit the limit.
1364 if (Depth++ == MaxDepth)
1365 return false;
1366
Craig Topper9f008862014-04-15 04:59:12 +00001367 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001368 // A shift of a power of two is a power of two or zero.
1369 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1370 match(V, m_Shr(m_Value(X), m_Value()))))
Hal Finkel60db0582014-09-07 18:57:58 +00001371 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001372
Duncan Sandsd3951082011-01-25 09:38:29 +00001373 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001374 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001375
1376 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001377 return
1378 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1379 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001380
Duncan Sandsba286d72011-10-26 20:55:21 +00001381 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1382 // A power of two and'd with anything is a power of two or zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001383 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
1384 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001385 return true;
1386 // X & (-X) is always a power of two or zero.
1387 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1388 return true;
1389 return false;
1390 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001391
David Majnemerb7d54092013-07-30 21:01:36 +00001392 // Adding a power-of-two or zero to the same power-of-two or zero yields
1393 // either the original power-of-two, a larger power-of-two or zero.
1394 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1395 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1396 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1397 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1398 match(X, m_And(m_Value(), m_Specific(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001399 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001400 return true;
1401 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1402 match(Y, m_And(m_Value(), m_Specific(X))))
Hal Finkel60db0582014-09-07 18:57:58 +00001403 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001404 return true;
1405
1406 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1407 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001408 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001409
1410 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001411 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001412 // If i8 V is a power of two or zero:
1413 // ZeroBits: 1 1 1 0 1 1 1 1
1414 // ~ZeroBits: 0 0 0 1 0 0 0 0
1415 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1416 // If OrZero isn't set, we cannot give back a zero result.
1417 // Make sure either the LHS or RHS has a bit set.
1418 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1419 return true;
1420 }
1421 }
David Majnemerbeab5672013-05-18 19:30:37 +00001422
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001423 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001424 // is a power of two only if the first operand is a power of two and not
1425 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001426 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1427 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001428 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1429 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001430 }
1431
Duncan Sandsd3951082011-01-25 09:38:29 +00001432 return false;
1433}
1434
Chandler Carruth80d3e562012-12-07 02:08:58 +00001435/// \brief Test whether a GEP's result is known to be non-null.
1436///
1437/// Uses properties inherent in a GEP to try to determine whether it is known
1438/// to be non-null.
1439///
1440/// Currently this routine does not support vector GEPs.
1441static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001442 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001443 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1444 return false;
1445
1446 // FIXME: Support vector-GEPs.
1447 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1448
1449 // If the base pointer is non-null, we cannot walk to a null address with an
1450 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001451 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001452 return true;
1453
1454 // Past this, if we don't have DataLayout, we can't do much.
1455 if (!DL)
1456 return false;
1457
1458 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1459 // If so, then the GEP cannot produce a null pointer, as doing so would
1460 // inherently violate the inbounds contract within address space zero.
1461 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1462 GTI != GTE; ++GTI) {
1463 // Struct types are easy -- they must always be indexed by a constant.
1464 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1465 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1466 unsigned ElementIdx = OpC->getZExtValue();
1467 const StructLayout *SL = DL->getStructLayout(STy);
1468 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1469 if (ElementOffset > 0)
1470 return true;
1471 continue;
1472 }
1473
1474 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1475 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
1476 continue;
1477
1478 // Fast path the constant operand case both for efficiency and so we don't
1479 // increment Depth when just zipping down an all-constant GEP.
1480 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1481 if (!OpC->isZero())
1482 return true;
1483 continue;
1484 }
1485
1486 // We post-increment Depth here because while isKnownNonZero increments it
1487 // as well, when we pop back up that increment won't persist. We don't want
1488 // to recurse 10k times just because we have 10k GEP operands. We don't
1489 // bail completely out because we want to handle constant GEPs regardless
1490 // of depth.
1491 if (Depth++ >= MaxDepth)
1492 continue;
1493
Hal Finkel60db0582014-09-07 18:57:58 +00001494 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001495 return true;
1496 }
1497
1498 return false;
1499}
1500
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001501/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1502/// ensure that the value it's attached to is never Value? 'RangeType' is
1503/// is the type of the value described by the range.
1504static bool rangeMetadataExcludesValue(MDNode* Ranges,
1505 const APInt& Value) {
1506 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1507 assert(NumRanges >= 1);
1508 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001509 ConstantInt *Lower =
1510 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1511 ConstantInt *Upper =
1512 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001513 ConstantRange Range(Lower->getValue(), Upper->getValue());
1514 if (Range.contains(Value))
1515 return false;
1516 }
1517 return true;
1518}
1519
Sanjay Patelaee84212014-11-04 16:27:42 +00001520/// Return true if the given value is known to be non-zero when defined.
1521/// For vectors return true if every element is known to be non-zero when
1522/// defined. Supports values with integer or pointer type and vectors of
1523/// integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001524bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
1525 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001526 if (Constant *C = dyn_cast<Constant>(V)) {
1527 if (C->isNullValue())
1528 return false;
1529 if (isa<ConstantInt>(C))
1530 // Must be non-zero due to null test above.
1531 return true;
1532 // TODO: Handle vectors
1533 return false;
1534 }
1535
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001536 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001537 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001538 // If the possible ranges don't contain zero, then the value is
1539 // definitely non-zero.
1540 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1541 const APInt ZeroValue(Ty->getBitWidth(), 0);
1542 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1543 return true;
1544 }
1545 }
1546 }
1547
Duncan Sandsd3951082011-01-25 09:38:29 +00001548 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001549 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001550 return false;
1551
Chandler Carruth80d3e562012-12-07 02:08:58 +00001552 // Check for pointer simplifications.
1553 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001554 if (isKnownNonNull(V))
1555 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001556 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001557 if (isGEPKnownNonNull(GEP, TD, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001558 return true;
1559 }
1560
Nadav Rotemaa3e2a92012-12-14 20:43:49 +00001561 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd3951082011-01-25 09:38:29 +00001562
1563 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001564 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001565 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001566 return isKnownNonZero(X, TD, Depth, Q) ||
1567 isKnownNonZero(Y, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001568
1569 // ext X != 0 if X != 0.
1570 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001571 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001572
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001573 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001574 // if the lowest bit is shifted off the end.
1575 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001576 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001577 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001578 if (BO->hasNoUnsignedWrap())
Hal Finkel60db0582014-09-07 18:57:58 +00001579 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001580
Duncan Sandsd3951082011-01-25 09:38:29 +00001581 APInt KnownZero(BitWidth, 0);
1582 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001583 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001584 if (KnownOne[0])
1585 return true;
1586 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001587 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001588 // defined if the sign bit is shifted off the end.
1589 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001590 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001591 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001592 if (BO->isExact())
Hal Finkel60db0582014-09-07 18:57:58 +00001593 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001594
Duncan Sandsd3951082011-01-25 09:38:29 +00001595 bool XKnownNonNegative, XKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001596 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001597 if (XKnownNegative)
1598 return true;
1599 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001600 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001601 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001602 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001603 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001604 // X + Y.
1605 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1606 bool XKnownNonNegative, XKnownNegative;
1607 bool YKnownNonNegative, YKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001608 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
1609 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001610
1611 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001612 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001613 if (XKnownNonNegative && YKnownNonNegative)
Hal Finkel60db0582014-09-07 18:57:58 +00001614 if (isKnownNonZero(X, TD, Depth, Q) ||
1615 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001616 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001617
1618 // If X and Y are both negative (as signed values) then their sum is not
1619 // zero unless both X and Y equal INT_MIN.
1620 if (BitWidth && XKnownNegative && YKnownNegative) {
1621 APInt KnownZero(BitWidth, 0);
1622 APInt KnownOne(BitWidth, 0);
1623 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1624 // The sign bit of X is set. If some other bit is set then X is not equal
1625 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001626 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001627 if ((KnownOne & Mask) != 0)
1628 return true;
1629 // The sign bit of Y is set. If some other bit is set then Y is not equal
1630 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001631 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001632 if ((KnownOne & Mask) != 0)
1633 return true;
1634 }
1635
1636 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001637 if (XKnownNonNegative &&
1638 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001639 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001640 if (YKnownNonNegative &&
1641 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001642 return true;
1643 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001644 // X * Y.
1645 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1646 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1647 // If X and Y are non-zero then so is X * Y as long as the multiplication
1648 // does not overflow.
1649 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Hal Finkel60db0582014-09-07 18:57:58 +00001650 isKnownNonZero(X, TD, Depth, Q) &&
1651 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001652 return true;
1653 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001654 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1655 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Hal Finkel60db0582014-09-07 18:57:58 +00001656 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
1657 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001658 return true;
1659 }
1660
1661 if (!BitWidth) return false;
1662 APInt KnownZero(BitWidth, 0);
1663 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001664 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001665 return KnownOne != 0;
1666}
1667
Sanjay Patelaee84212014-11-04 16:27:42 +00001668/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1669/// simplify operations downstream. Mask is known to be zero for bits that V
1670/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001671///
1672/// This function is defined on values with integer type, values with pointer
1673/// type (but only if TD is non-null), and vectors of integers. In the case
1674/// where V is a vector, the mask, known zero, and known one values are the
1675/// same width as the vector element, and the bit is set only if it is true
1676/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +00001677bool MaskedValueIsZero(Value *V, const APInt &Mask,
1678 const DataLayout *TD, unsigned Depth,
1679 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001680 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001681 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001682 return (KnownZero & Mask) == Mask;
1683}
1684
1685
1686
Sanjay Patelaee84212014-11-04 16:27:42 +00001687/// Return the number of times the sign bit of the register is replicated into
1688/// the other bits. We know that at least 1 bit is always equal to the sign bit
1689/// (itself), but other cases can give us information. For example, immediately
1690/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1691/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001692///
1693/// 'Op' must have a scalar integer type.
1694///
Hal Finkel60db0582014-09-07 18:57:58 +00001695unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
1696 unsigned Depth, const Query &Q) {
Duncan Sands9dff9be2010-02-15 16:12:20 +00001697 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001698 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohman26366932009-06-22 22:02:32 +00001699 "on non-integer values!");
Chris Lattner229907c2011-07-18 04:54:35 +00001700 Type *Ty = V->getType();
Dan Gohman26366932009-06-22 22:02:32 +00001701 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1702 Ty->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001703 unsigned Tmp, Tmp2;
1704 unsigned FirstAnswer = 1;
1705
Jay Foada0653a32014-05-14 21:14:37 +00001706 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001707 // below.
1708
Chris Lattner965c7692008-06-02 01:18:21 +00001709 if (Depth == 6)
1710 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001711
Dan Gohman80ca01c2009-07-17 20:47:02 +00001712 Operator *U = dyn_cast<Operator>(V);
1713 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001714 default: break;
1715 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001716 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Hal Finkel60db0582014-09-07 18:57:58 +00001717 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001718
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001719 case Instruction::AShr: {
Hal Finkel60db0582014-09-07 18:57:58 +00001720 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001721 // ashr X, C -> adds C sign bits. Vectors too.
1722 const APInt *ShAmt;
1723 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1724 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001725 if (Tmp > TyBits) Tmp = TyBits;
1726 }
1727 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001728 }
1729 case Instruction::Shl: {
1730 const APInt *ShAmt;
1731 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001732 // shl destroys sign bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001733 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001734 Tmp2 = ShAmt->getZExtValue();
1735 if (Tmp2 >= TyBits || // Bad shift.
1736 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1737 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001738 }
1739 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001740 }
Chris Lattner965c7692008-06-02 01:18:21 +00001741 case Instruction::And:
1742 case Instruction::Or:
1743 case Instruction::Xor: // NOT is handled here.
1744 // Logical binary ops preserve the number of sign bits at the worst.
Hal Finkel60db0582014-09-07 18:57:58 +00001745 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001746 if (Tmp != 1) {
Hal Finkel60db0582014-09-07 18:57:58 +00001747 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001748 FirstAnswer = std::min(Tmp, Tmp2);
1749 // We computed what we know about the sign bits as our first
1750 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00001751 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00001752 }
1753 break;
1754
1755 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +00001756 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001757 if (Tmp == 1) return 1; // Early out.
Hal Finkel60db0582014-09-07 18:57:58 +00001758 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001759 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001760
Chris Lattner965c7692008-06-02 01:18:21 +00001761 case Instruction::Add:
1762 // Add can have at most one carry bit. Thus we know that the output
1763 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001764 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001765 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00001766
Chris Lattner965c7692008-06-02 01:18:21 +00001767 // Special case decrementing a value (ADD X, -1):
Dan Gohman4f356bb2009-02-24 02:00:40 +00001768 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00001769 if (CRHS->isAllOnesValue()) {
1770 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001771 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001772
Chris Lattner965c7692008-06-02 01:18:21 +00001773 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1774 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001775 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001776 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001777
Chris Lattner965c7692008-06-02 01:18:21 +00001778 // If we are subtracting one from a positive number, there is no carry
1779 // out of the result.
1780 if (KnownZero.isNegative())
1781 return Tmp;
1782 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001783
Hal Finkel60db0582014-09-07 18:57:58 +00001784 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001785 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001786 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001787
Chris Lattner965c7692008-06-02 01:18:21 +00001788 case Instruction::Sub:
Hal Finkel60db0582014-09-07 18:57:58 +00001789 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001790 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001791
Chris Lattner965c7692008-06-02 01:18:21 +00001792 // Handle NEG.
1793 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1794 if (CLHS->isNullValue()) {
1795 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001796 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001797 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1798 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001799 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001800 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001801
Chris Lattner965c7692008-06-02 01:18:21 +00001802 // If the input is known to be positive (the sign bit is known clear),
1803 // the output of the NEG has the same number of sign bits as the input.
1804 if (KnownZero.isNegative())
1805 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00001806
Chris Lattner965c7692008-06-02 01:18:21 +00001807 // Otherwise, we treat this like a SUB.
1808 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001809
Chris Lattner965c7692008-06-02 01:18:21 +00001810 // Sub can have at most one carry bit. Thus we know that the output
1811 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001812 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001813 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001814 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001815
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001816 case Instruction::PHI: {
1817 PHINode *PN = cast<PHINode>(U);
1818 // Don't analyze large in-degree PHIs.
1819 if (PN->getNumIncomingValues() > 4) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001820
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001821 // Take the minimum of all incoming values. This can't infinitely loop
1822 // because of our depth threshold.
Hal Finkel60db0582014-09-07 18:57:58 +00001823 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001824 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1825 if (Tmp == 1) return Tmp;
1826 Tmp = std::min(Tmp,
Hal Finkel60db0582014-09-07 18:57:58 +00001827 ComputeNumSignBits(PN->getIncomingValue(i), TD,
1828 Depth+1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001829 }
1830 return Tmp;
1831 }
1832
Chris Lattner965c7692008-06-02 01:18:21 +00001833 case Instruction::Trunc:
1834 // FIXME: it's tricky to do anything useful for this, but it is an important
1835 // case for targets like X86.
1836 break;
1837 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001838
Chris Lattner965c7692008-06-02 01:18:21 +00001839 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1840 // use this information.
1841 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001842 APInt Mask;
Hal Finkel60db0582014-09-07 18:57:58 +00001843 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001844
Chris Lattner965c7692008-06-02 01:18:21 +00001845 if (KnownZero.isNegative()) { // sign bit is 0
1846 Mask = KnownZero;
1847 } else if (KnownOne.isNegative()) { // sign bit is 1;
1848 Mask = KnownOne;
1849 } else {
1850 // Nothing known.
1851 return FirstAnswer;
1852 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001853
Chris Lattner965c7692008-06-02 01:18:21 +00001854 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1855 // the number of identical bits in the top of the input value.
1856 Mask = ~Mask;
1857 Mask <<= Mask.getBitWidth()-TyBits;
1858 // Return # leading zeros. We use 'min' here in case Val was zero before
1859 // shifting. We don't want to return '64' as for an i32 "0".
1860 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1861}
Chris Lattnera12a6de2008-06-02 01:29:46 +00001862
Sanjay Patelaee84212014-11-04 16:27:42 +00001863/// This function computes the integer multiple of Base that equals V.
1864/// If successful, it returns true and returns the multiple in
1865/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00001866/// through SExt instructions only if LookThroughSExt is true.
1867bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00001868 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00001869 const unsigned MaxDepth = 6;
1870
Dan Gohman6a976bb2009-11-18 00:58:27 +00001871 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00001872 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00001873 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00001874
Chris Lattner229907c2011-07-18 04:54:35 +00001875 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00001876
Dan Gohman6a976bb2009-11-18 00:58:27 +00001877 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00001878
1879 if (Base == 0)
1880 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001881
Victor Hernandez47444882009-11-10 08:28:35 +00001882 if (Base == 1) {
1883 Multiple = V;
1884 return true;
1885 }
1886
1887 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1888 Constant *BaseVal = ConstantInt::get(T, Base);
1889 if (CO && CO == BaseVal) {
1890 // Multiple is 1.
1891 Multiple = ConstantInt::get(T, 1);
1892 return true;
1893 }
1894
1895 if (CI && CI->getZExtValue() % Base == 0) {
1896 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00001897 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00001898 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001899
Victor Hernandez47444882009-11-10 08:28:35 +00001900 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001901
Victor Hernandez47444882009-11-10 08:28:35 +00001902 Operator *I = dyn_cast<Operator>(V);
1903 if (!I) return false;
1904
1905 switch (I->getOpcode()) {
1906 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001907 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00001908 if (!LookThroughSExt) return false;
1909 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001910 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00001911 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1912 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00001913 case Instruction::Shl:
1914 case Instruction::Mul: {
1915 Value *Op0 = I->getOperand(0);
1916 Value *Op1 = I->getOperand(1);
1917
1918 if (I->getOpcode() == Instruction::Shl) {
1919 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1920 if (!Op1CI) return false;
1921 // Turn Op0 << Op1 into Op0 * 2^Op1
1922 APInt Op1Int = Op1CI->getValue();
1923 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00001924 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00001925 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00001926 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00001927 }
1928
Craig Topper9f008862014-04-15 04:59:12 +00001929 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001930 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1931 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1932 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001933 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001934 MulC->getType()->getPrimitiveSizeInBits())
1935 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001936 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001937 MulC->getType()->getPrimitiveSizeInBits())
1938 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001939
Chris Lattner72d283c2010-09-05 17:20:46 +00001940 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1941 Multiple = ConstantExpr::getMul(MulC, Op1C);
1942 return true;
1943 }
Victor Hernandez47444882009-11-10 08:28:35 +00001944
1945 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1946 if (Mul0CI->getValue() == 1) {
1947 // V == Base * Op1, so return Op1
1948 Multiple = Op1;
1949 return true;
1950 }
1951 }
1952
Craig Topper9f008862014-04-15 04:59:12 +00001953 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001954 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1955 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1956 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001957 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001958 MulC->getType()->getPrimitiveSizeInBits())
1959 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001960 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001961 MulC->getType()->getPrimitiveSizeInBits())
1962 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001963
Chris Lattner72d283c2010-09-05 17:20:46 +00001964 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1965 Multiple = ConstantExpr::getMul(MulC, Op0C);
1966 return true;
1967 }
Victor Hernandez47444882009-11-10 08:28:35 +00001968
1969 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1970 if (Mul1CI->getValue() == 1) {
1971 // V == Base * Op0, so return Op0
1972 Multiple = Op0;
1973 return true;
1974 }
1975 }
Victor Hernandez47444882009-11-10 08:28:35 +00001976 }
1977 }
1978
1979 // We could not determine if V is a multiple of Base.
1980 return false;
1981}
1982
Sanjay Patelaee84212014-11-04 16:27:42 +00001983/// Return true if we can prove that the specified FP value is never equal to
1984/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00001985///
1986/// NOTE: this function will need to be revisited when we support non-default
1987/// rounding modes!
1988///
1989bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1990 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1991 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00001992
Chris Lattnera12a6de2008-06-02 01:29:46 +00001993 if (Depth == 6)
1994 return 1; // Limit search depth.
1995
Dan Gohman80ca01c2009-07-17 20:47:02 +00001996 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00001997 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00001998
1999 // Check if the nsz fast-math flag is set
2000 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2001 if (FPO->hasNoSignedZeros())
2002 return true;
2003
Chris Lattnera12a6de2008-06-02 01:29:46 +00002004 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002005 if (I->getOpcode() == Instruction::FAdd)
2006 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2007 if (CFP->isNullValue())
2008 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002009
Chris Lattnera12a6de2008-06-02 01:29:46 +00002010 // sitofp and uitofp turn into +0.0 for zero.
2011 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2012 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002013
Chris Lattnera12a6de2008-06-02 01:29:46 +00002014 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2015 // sqrt(-0.0) = -0.0, no other negative results are possible.
2016 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002017 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002018
Chris Lattnera12a6de2008-06-02 01:29:46 +00002019 if (const CallInst *CI = dyn_cast<CallInst>(I))
2020 if (const Function *F = CI->getCalledFunction()) {
2021 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002022 // abs(x) != -0.0
2023 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002024 // fabs[lf](x) != -0.0
2025 if (F->getName() == "fabs") return true;
2026 if (F->getName() == "fabsf") return true;
2027 if (F->getName() == "fabsl") return true;
2028 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2029 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002030 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002031 }
2032 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002033
Chris Lattnera12a6de2008-06-02 01:29:46 +00002034 return false;
2035}
2036
Sanjay Patelaee84212014-11-04 16:27:42 +00002037/// If the specified value can be set by repeating the same byte in memory,
2038/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002039/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2040/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2041/// byte store (e.g. i16 0x1234), return null.
2042Value *llvm::isBytewiseValue(Value *V) {
2043 // All byte-wide stores are splatable, even of arbitrary variables.
2044 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002045
2046 // Handle 'null' ConstantArrayZero etc.
2047 if (Constant *C = dyn_cast<Constant>(V))
2048 if (C->isNullValue())
2049 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002050
Chris Lattner9cb10352010-12-26 20:15:01 +00002051 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002052 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002053 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2054 if (CFP->getType()->isFloatTy())
2055 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2056 if (CFP->getType()->isDoubleTy())
2057 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2058 // Don't handle long double formats, which have strange constraints.
2059 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002060
2061 // We can handle constant integers that are power of two in size and a
Chris Lattner9cb10352010-12-26 20:15:01 +00002062 // multiple of 8 bits.
2063 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2064 unsigned Width = CI->getBitWidth();
2065 if (isPowerOf2_32(Width) && Width > 8) {
2066 // We can handle this value if the recursive binary decomposition is the
2067 // same at all levels.
2068 APInt Val = CI->getValue();
2069 APInt Val2;
2070 while (Val.getBitWidth() != 8) {
2071 unsigned NextWidth = Val.getBitWidth()/2;
2072 Val2 = Val.lshr(NextWidth);
2073 Val2 = Val2.trunc(Val.getBitWidth()/2);
2074 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002075
Chris Lattner9cb10352010-12-26 20:15:01 +00002076 // If the top/bottom halves aren't the same, reject it.
2077 if (Val != Val2)
Craig Topper9f008862014-04-15 04:59:12 +00002078 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002079 }
2080 return ConstantInt::get(V->getContext(), Val);
2081 }
2082 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002083
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002084 // A ConstantDataArray/Vector is splatable if all its members are equal and
2085 // also splatable.
2086 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2087 Value *Elt = CA->getElementAsConstant(0);
2088 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002089 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002090 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002091
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002092 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2093 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002094 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002095
Chris Lattner9cb10352010-12-26 20:15:01 +00002096 return Val;
2097 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002098
Chris Lattner9cb10352010-12-26 20:15:01 +00002099 // Conceptually, we could handle things like:
2100 // %a = zext i8 %X to i16
2101 // %b = shl i16 %a, 8
2102 // %c = or i16 %a, %b
2103 // but until there is an example that actually needs this, it doesn't seem
2104 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002105 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002106}
2107
2108
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002109// This is the recursive version of BuildSubAggregate. It takes a few different
2110// arguments. Idxs is the index within the nested struct From that we are
2111// looking at now (which is of type IndexedType). IdxSkip is the number of
2112// indices from Idxs that should be left out when inserting into the resulting
2113// struct. To is the result struct built so far, new insertvalue instructions
2114// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002115static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002116 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002117 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002118 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002119 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002120 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002121 // Save the original To argument so we can modify it
2122 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002123 // General case, the type indexed by Idxs is a struct
2124 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2125 // Process each struct element recursively
2126 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002127 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002128 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002129 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002130 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002131 if (!To) {
2132 // Couldn't find any inserted value for this index? Cleanup
2133 while (PrevTo != OrigTo) {
2134 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2135 PrevTo = Del->getAggregateOperand();
2136 Del->eraseFromParent();
2137 }
2138 // Stop processing elements
2139 break;
2140 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002141 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002142 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002143 if (To)
2144 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002145 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002146 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2147 // the struct's elements had a value that was inserted directly. In the latter
2148 // case, perhaps we can't determine each of the subelements individually, but
2149 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002150
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002151 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002152 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002153
2154 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002155 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002156
2157 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002158 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002159 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002160}
2161
2162// This helper takes a nested struct and extracts a part of it (which is again a
2163// struct) into a new value. For example, given the struct:
2164// { a, { b, { c, d }, e } }
2165// and the indices "1, 1" this returns
2166// { c, d }.
2167//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002168// It does this by inserting an insertvalue for each element in the resulting
2169// struct, as opposed to just inserting a single struct. This will only work if
2170// each of the elements of the substruct are known (ie, inserted into From by an
2171// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002172//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002173// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002174static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002175 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002176 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002177 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002178 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002179 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002180 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002181 unsigned IdxSkip = Idxs.size();
2182
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002183 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002184}
2185
Sanjay Patelaee84212014-11-04 16:27:42 +00002186/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002187/// the scalar value indexed is already around as a register, for example if it
2188/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002189///
2190/// If InsertBefore is not null, this function will duplicate (modified)
2191/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002192Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2193 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002194 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002195 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002196 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002197 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002198 // We have indices, so V should have an indexable type.
2199 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2200 "Not looking at a struct or array?");
2201 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2202 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002203
Chris Lattner67058832012-01-25 06:48:06 +00002204 if (Constant *C = dyn_cast<Constant>(V)) {
2205 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002206 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002207 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2208 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002209
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002210 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002211 // Loop the indices for the insertvalue instruction in parallel with the
2212 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002213 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002214 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2215 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002216 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002217 // We can't handle this without inserting insertvalues
2218 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002219 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002220
2221 // The requested index identifies a part of a nested aggregate. Handle
2222 // this specially. For example,
2223 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2224 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2225 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2226 // This can be changed into
2227 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2228 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2229 // which allows the unused 0,0 element from the nested struct to be
2230 // removed.
2231 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2232 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002233 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002234
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002235 // This insert value inserts something else than what we are looking for.
2236 // See if the (aggregrate) value inserted into has the value we are
2237 // looking for, then.
2238 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002239 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002240 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002241 }
2242 // If we end up here, the indices of the insertvalue match with those
2243 // requested (though possibly only partially). Now we recursively look at
2244 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002245 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002246 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002247 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002248 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002249
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002250 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002251 // If we're extracting a value from an aggregrate that was extracted from
2252 // something else, we can extract from that something else directly instead.
2253 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002254
2255 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002256 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002257 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002258 SmallVector<unsigned, 5> Idxs;
2259 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002260 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002261 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002262
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002263 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002264 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002265
Craig Topper1bef2c82012-12-22 19:15:35 +00002266 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002267 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002268
Jay Foad57aa6362011-07-13 10:26:04 +00002269 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002270 }
2271 // Otherwise, we don't know (such as, extracting from a function return value
2272 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002273 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002274}
Evan Chengda3db112008-06-30 07:31:25 +00002275
Sanjay Patelaee84212014-11-04 16:27:42 +00002276/// Analyze the specified pointer to see if it can be expressed as a base
2277/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002278Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002279 const DataLayout *DL) {
Dan Gohman20a2ae92013-01-31 02:00:45 +00002280 // Without DataLayout, conservatively assume 64-bit offsets, which is
2281 // the widest we support.
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002282 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes368c4d02012-12-31 20:48:35 +00002283 APInt ByteOffset(BitWidth, 0);
2284 while (1) {
2285 if (Ptr->getType()->isVectorTy())
2286 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002287
Nuno Lopes368c4d02012-12-31 20:48:35 +00002288 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002289 if (DL) {
2290 APInt GEPOffset(BitWidth, 0);
2291 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
2292 break;
2293
2294 ByteOffset += GEPOffset;
2295 }
2296
Nuno Lopes368c4d02012-12-31 20:48:35 +00002297 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002298 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2299 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002300 Ptr = cast<Operator>(Ptr)->getOperand(0);
2301 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2302 if (GA->mayBeOverridden())
2303 break;
2304 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002305 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002306 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002307 }
2308 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002309 Offset = ByteOffset.getSExtValue();
2310 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002311}
2312
2313
Sanjay Patelaee84212014-11-04 16:27:42 +00002314/// This function computes the length of a null-terminated C string pointed to
2315/// by V. If successful, it returns true and returns the string in Str.
2316/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002317bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2318 uint64_t Offset, bool TrimAtNul) {
2319 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002320
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002321 // Look through bitcast instructions and geps.
2322 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002323
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002324 // If the value is a GEP instructionor constant expression, treat it as an
2325 // offset.
2326 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002327 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002328 if (GEP->getNumOperands() != 3)
2329 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002330
Evan Chengda3db112008-06-30 07:31:25 +00002331 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002332 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2333 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002334 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002335 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002336
Evan Chengda3db112008-06-30 07:31:25 +00002337 // Check to make sure that the first operand of the GEP is an integer and
2338 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002339 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002340 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002341 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002342
Evan Chengda3db112008-06-30 07:31:25 +00002343 // If the second index isn't a ConstantInt, then this is a variable index
2344 // into the array. If this occurs, we can't say anything meaningful about
2345 // the string.
2346 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002347 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002348 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002349 else
2350 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002351 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Chengda3db112008-06-30 07:31:25 +00002352 }
Nick Lewycky46209882011-10-20 00:34:35 +00002353
Evan Chengda3db112008-06-30 07:31:25 +00002354 // The GEP instruction, constant or instruction, must reference a global
2355 // variable that is a constant and is initialized. The referenced constant
2356 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002357 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002358 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002359 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002360
Nick Lewycky46209882011-10-20 00:34:35 +00002361 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002362 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002363 // This is a degenerate case. The initializer is constant zero so the
2364 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002365 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002366 return true;
2367 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002368
Evan Chengda3db112008-06-30 07:31:25 +00002369 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002370 const ConstantDataArray *Array =
2371 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002372 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002373 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002374
Evan Chengda3db112008-06-30 07:31:25 +00002375 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002376 uint64_t NumElts = Array->getType()->getArrayNumElements();
2377
2378 // Start out with the entire array in the StringRef.
2379 Str = Array->getAsString();
2380
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002381 if (Offset > NumElts)
2382 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002383
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002384 // Skip over 'offset' bytes.
2385 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002386
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002387 if (TrimAtNul) {
2388 // Trim off the \0 and anything after it. If the array is not nul
2389 // terminated, we just return the whole end of string. The client may know
2390 // some other way that the string is length-bound.
2391 Str = Str.substr(0, Str.find('\0'));
2392 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002393 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002394}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002395
2396// These next two are very similar to the above, but also look through PHI
2397// nodes.
2398// TODO: See if we can integrate these two together.
2399
Sanjay Patelaee84212014-11-04 16:27:42 +00002400/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002401/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002402static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002403 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002404 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002405
2406 // If this is a PHI node, there are two cases: either we have already seen it
2407 // or we haven't.
2408 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002409 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002410 return ~0ULL; // already in the set.
2411
2412 // If it was new, see if all the input strings are the same length.
2413 uint64_t LenSoFar = ~0ULL;
2414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2415 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
2416 if (Len == 0) return 0; // Unknown length -> unknown.
2417
2418 if (Len == ~0ULL) continue;
2419
2420 if (Len != LenSoFar && LenSoFar != ~0ULL)
2421 return 0; // Disagree -> unknown.
2422 LenSoFar = Len;
2423 }
2424
2425 // Success, all agree.
2426 return LenSoFar;
2427 }
2428
2429 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2430 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2431 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2432 if (Len1 == 0) return 0;
2433 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2434 if (Len2 == 0) return 0;
2435 if (Len1 == ~0ULL) return Len2;
2436 if (Len2 == ~0ULL) return Len1;
2437 if (Len1 != Len2) return 0;
2438 return Len1;
2439 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002440
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002441 // Otherwise, see if we can read the string.
2442 StringRef StrData;
2443 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002444 return 0;
2445
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002446 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002447}
2448
Sanjay Patelaee84212014-11-04 16:27:42 +00002449/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002450/// the specified pointer, return 'len+1'. If we can't, return 0.
2451uint64_t llvm::GetStringLength(Value *V) {
2452 if (!V->getType()->isPointerTy()) return 0;
2453
2454 SmallPtrSet<PHINode*, 32> PHIs;
2455 uint64_t Len = GetStringLengthH(V, PHIs);
2456 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2457 // an empty string as a length.
2458 return Len == ~0ULL ? 1 : Len;
2459}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002460
Dan Gohman0f124e12011-01-24 18:53:32 +00002461Value *
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002462llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002463 if (!V->getType()->isPointerTy())
2464 return V;
2465 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2466 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2467 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002468 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2469 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002470 V = cast<Operator>(V)->getOperand(0);
2471 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2472 if (GA->mayBeOverridden())
2473 return V;
2474 V = GA->getAliasee();
2475 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002476 // See if InstructionSimplify knows any relevant tricks.
2477 if (Instruction *I = dyn_cast<Instruction>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00002478 // TODO: Acquire a DominatorTree and AssumptionTracker and use them.
Craig Topper9f008862014-04-15 04:59:12 +00002479 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002480 V = Simplified;
2481 continue;
2482 }
2483
Dan Gohmana4fcd242010-12-15 20:02:24 +00002484 return V;
2485 }
2486 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2487 }
2488 return V;
2489}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002490
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002491void
2492llvm::GetUnderlyingObjects(Value *V,
2493 SmallVectorImpl<Value *> &Objects,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002494 const DataLayout *TD,
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002495 unsigned MaxLookup) {
2496 SmallPtrSet<Value *, 4> Visited;
2497 SmallVector<Value *, 4> Worklist;
2498 Worklist.push_back(V);
2499 do {
2500 Value *P = Worklist.pop_back_val();
2501 P = GetUnderlyingObject(P, TD, MaxLookup);
2502
David Blaikie70573dc2014-11-19 07:49:26 +00002503 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002504 continue;
2505
2506 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2507 Worklist.push_back(SI->getTrueValue());
2508 Worklist.push_back(SI->getFalseValue());
2509 continue;
2510 }
2511
2512 if (PHINode *PN = dyn_cast<PHINode>(P)) {
2513 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2514 Worklist.push_back(PN->getIncomingValue(i));
2515 continue;
2516 }
2517
2518 Objects.push_back(P);
2519 } while (!Worklist.empty());
2520}
2521
Sanjay Patelaee84212014-11-04 16:27:42 +00002522/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002523bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002524 for (const User *U : V->users()) {
2525 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002526 if (!II) return false;
2527
2528 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2529 II->getIntrinsicID() != Intrinsic::lifetime_end)
2530 return false;
2531 }
2532 return true;
2533}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002534
Dan Gohman7ac046a2012-01-04 23:01:09 +00002535bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002536 const DataLayout *TD) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00002537 const Operator *Inst = dyn_cast<Operator>(V);
2538 if (!Inst)
2539 return false;
2540
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002541 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
2542 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
2543 if (C->canTrap())
2544 return false;
2545
2546 switch (Inst->getOpcode()) {
2547 default:
2548 return true;
2549 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00002550 case Instruction::URem: {
2551 // x / y is undefined if y == 0.
2552 const APInt *V;
2553 if (match(Inst->getOperand(1), m_APInt(V)))
2554 return *V != 0;
2555 return false;
2556 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002557 case Instruction::SDiv:
2558 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00002559 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
2560 const APInt *X, *Y;
2561 if (match(Inst->getOperand(1), m_APInt(Y))) {
2562 if (*Y != 0) {
2563 if (*Y == -1) {
2564 // The numerator can't be MinSignedValue if the denominator is -1.
2565 if (match(Inst->getOperand(0), m_APInt(X)))
2566 return !Y->isMinSignedValue();
2567 // The numerator *might* be MinSignedValue.
2568 return false;
2569 }
2570 // The denominator is not 0 or -1, it's safe to proceed.
2571 return true;
2572 }
2573 }
2574 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002575 }
2576 case Instruction::Load: {
2577 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002578 if (!LI->isUnordered() ||
2579 // Speculative load may create a race that did not exist in the source.
2580 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002581 return false;
Hal Finkel2e42c342014-07-10 05:27:53 +00002582 return LI->getPointerOperand()->isDereferenceablePointer(TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002583 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002584 case Instruction::Call: {
Michael Liao736bac62014-11-06 19:05:57 +00002585 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2586 switch (II->getIntrinsicID()) {
2587 // These synthetic intrinsics have no side-effects and just mark
2588 // information about their operands.
2589 // FIXME: There are other no-op synthetic instructions that potentially
2590 // should be considered at least *safe* to speculate...
2591 case Intrinsic::dbg_declare:
2592 case Intrinsic::dbg_value:
2593 return true;
Chandler Carruth28192c92012-04-07 19:22:18 +00002594
Michael Liao736bac62014-11-06 19:05:57 +00002595 case Intrinsic::bswap:
2596 case Intrinsic::ctlz:
2597 case Intrinsic::ctpop:
2598 case Intrinsic::cttz:
2599 case Intrinsic::objectsize:
2600 case Intrinsic::sadd_with_overflow:
2601 case Intrinsic::smul_with_overflow:
2602 case Intrinsic::ssub_with_overflow:
2603 case Intrinsic::uadd_with_overflow:
2604 case Intrinsic::umul_with_overflow:
2605 case Intrinsic::usub_with_overflow:
2606 return true;
2607 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2608 // errno like libm sqrt would.
2609 case Intrinsic::sqrt:
2610 case Intrinsic::fma:
2611 case Intrinsic::fmuladd:
2612 case Intrinsic::fabs:
2613 case Intrinsic::minnum:
2614 case Intrinsic::maxnum:
2615 return true;
2616 // TODO: some fp intrinsics are marked as having the same error handling
2617 // as libm. They're safe to speculate when they won't error.
2618 // TODO: are convert_{from,to}_fp16 safe?
2619 // TODO: can we list target-specific intrinsics here?
2620 default: break;
2621 }
2622 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002623 return false; // The called function could have undefined behavior or
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002624 // side-effects, even if marked readnone nounwind.
2625 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002626 case Instruction::VAArg:
2627 case Instruction::Alloca:
2628 case Instruction::Invoke:
2629 case Instruction::PHI:
2630 case Instruction::Store:
2631 case Instruction::Ret:
2632 case Instruction::Br:
2633 case Instruction::IndirectBr:
2634 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002635 case Instruction::Unreachable:
2636 case Instruction::Fence:
2637 case Instruction::LandingPad:
2638 case Instruction::AtomicRMW:
2639 case Instruction::AtomicCmpXchg:
2640 case Instruction::Resume:
2641 return false; // Misc instructions which have effects
2642 }
2643}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002644
Sanjay Patelaee84212014-11-04 16:27:42 +00002645/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002646bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002647 // Alloca never returns null, malloc might.
2648 if (isa<AllocaInst>(V)) return true;
2649
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002650 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002651 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002652 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002653
2654 // Global values are not null unless extern weak.
2655 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2656 return !GV->hasExternalWeakLinkage();
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002657
Philip Reamescdb72f32014-10-20 22:40:55 +00002658 // A Load tagged w/nonnull metadata is never null.
2659 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00002660 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00002661
Nick Lewyckyec373542014-05-20 05:13:21 +00002662 if (ImmutableCallSite CS = V)
Hal Finkelb0407ba2014-07-18 15:51:28 +00002663 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00002664 return true;
2665
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002666 // operator new never returns null.
2667 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2668 return true;
2669
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002670 return false;
2671}