blob: 1a0208c1a523f4dc4099026eca4d00e20d54f40d [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "x86tti"
18#include "X86.h"
19#include "X86TargetMachine.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000020#include "llvm/Analysis/TargetTransformInfo.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000021#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000022#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000023#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000024#include "llvm/Target/TargetLowering.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000025using namespace llvm;
26
27// Declare the pass initialization routine locally as target-specific passes
28// don't havve a target-wide initialization entry point, and so we rely on the
29// pass constructor initialization.
30namespace llvm {
31void initializeX86TTIPass(PassRegistry &);
32}
33
34namespace {
35
Craig Topper77dfe452014-03-02 08:08:51 +000036class X86TTI final : public ImmutablePass, public TargetTransformInfo {
Chandler Carruth664e3542013-01-07 01:37:14 +000037 const X86Subtarget *ST;
38 const X86TargetLowering *TLI;
39
40 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
41 /// are set if the result needs to be inserted and/or extracted from vectors.
42 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
43
44public:
Nadav Rotem02dd93e2013-06-27 17:54:10 +000045 X86TTI() : ImmutablePass(ID), ST(0), TLI(0) {
Chandler Carruth664e3542013-01-07 01:37:14 +000046 llvm_unreachable("This pass cannot be directly constructed");
47 }
48
49 X86TTI(const X86TargetMachine *TM)
Juergen Ributzka3e752e72014-01-24 18:22:59 +000050 : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
51 TLI(TM->getTargetLowering()) {
Chandler Carruth664e3542013-01-07 01:37:14 +000052 initializeX86TTIPass(*PassRegistry::getPassRegistry());
53 }
54
Craig Topper24e685f2014-03-10 05:29:18 +000055 void initializePass() override {
Chandler Carruth664e3542013-01-07 01:37:14 +000056 pushTTIStack(this);
57 }
58
Craig Topper24e685f2014-03-10 05:29:18 +000059 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chandler Carruth664e3542013-01-07 01:37:14 +000060 TargetTransformInfo::getAnalysisUsage(AU);
61 }
62
63 /// Pass identification.
64 static char ID;
65
66 /// Provide necessary pointer adjustments for the two base classes.
Craig Topper24e685f2014-03-10 05:29:18 +000067 void *getAdjustedAnalysisPointer(const void *ID) override {
Chandler Carruth664e3542013-01-07 01:37:14 +000068 if (ID == &TargetTransformInfo::ID)
69 return (TargetTransformInfo*)this;
70 return this;
71 }
72
73 /// \name Scalar TTI Implementations
74 /// @{
Craig Topper24e685f2014-03-10 05:29:18 +000075 PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
Chandler Carruth664e3542013-01-07 01:37:14 +000076
77 /// @}
78
79 /// \name Vector TTI Implementations
80 /// @{
81
Craig Topper24e685f2014-03-10 05:29:18 +000082 unsigned getNumberOfRegisters(bool Vector) const override;
83 unsigned getRegisterBitWidth(bool Vector) const override;
84 unsigned getMaximumUnrollFactor() const override;
85 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
86 OperandValueKind) const override;
87 unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
88 int Index, Type *SubTp) const override;
89 unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
90 Type *Src) const override;
91 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
92 Type *CondTy) const override;
93 unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
94 unsigned Index) const override;
95 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
96 unsigned AddressSpace) const override;
Chandler Carruth664e3542013-01-07 01:37:14 +000097
Craig Topper24e685f2014-03-10 05:29:18 +000098 unsigned getAddressComputationCost(Type *PtrTy,
99 bool IsComplex) const override;
Arnold Schwaighofer6042a262013-07-12 19:16:07 +0000100
Craig Topper24e685f2014-03-10 05:29:18 +0000101 unsigned getReductionCost(unsigned Opcode, Type *Ty,
102 bool IsPairwiseForm) const override;
Craig Topper73156022014-03-02 09:09:27 +0000103
Craig Topper24e685f2014-03-10 05:29:18 +0000104 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000105
Craig Topper24e685f2014-03-10 05:29:18 +0000106 unsigned getIntImmCost(unsigned Opcode, const APInt &Imm,
107 Type *Ty) const override;
108 unsigned getIntImmCost(Intrinsic::ID IID, const APInt &Imm,
109 Type *Ty) const override;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000110
Chandler Carruth664e3542013-01-07 01:37:14 +0000111 /// @}
112};
113
114} // end anonymous namespace
115
116INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
117 "X86 Target Transform Info", true, true, false)
118char X86TTI::ID = 0;
119
120ImmutablePass *
121llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
122 return new X86TTI(TM);
123}
124
125
126//===----------------------------------------------------------------------===//
127//
128// X86 cost model.
129//
130//===----------------------------------------------------------------------===//
131
Chandler Carruth50a36cd2013-01-07 03:16:03 +0000132X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
Chandler Carruth664e3542013-01-07 01:37:14 +0000133 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
134 // TODO: Currently the __builtin_popcount() implementation using SSE3
135 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +0000136 // call ST->hasSSE3() instead of ST->hasPOPCNT().
137 return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +0000138}
139
140unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
Nadav Rotemb1791a72013-01-09 22:29:00 +0000141 if (Vector && !ST->hasSSE1())
142 return 0;
143
Chandler Carruth664e3542013-01-07 01:37:14 +0000144 if (ST->is64Bit())
145 return 16;
146 return 8;
147}
148
Nadav Rotemb1791a72013-01-09 22:29:00 +0000149unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
150 if (Vector) {
151 if (ST->hasAVX()) return 256;
152 if (ST->hasSSE1()) return 128;
153 return 0;
154 }
155
156 if (ST->is64Bit())
157 return 64;
158 return 32;
159
160}
161
Nadav Rotemb696c362013-01-09 01:15:42 +0000162unsigned X86TTI::getMaximumUnrollFactor() const {
163 if (ST->isAtom())
164 return 1;
165
166 // Sandybridge and Haswell have multiple execution ports and pipelined
167 // vector units.
168 if (ST->hasAVX())
169 return 4;
170
171 return 2;
172}
173
Arnold Schwaighoferb9773872013-04-04 23:26:21 +0000174unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
175 OperandValueKind Op1Info,
176 OperandValueKind Op2Info) const {
Chandler Carruth664e3542013-01-07 01:37:14 +0000177 // Legalize the type.
178 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
179
180 int ISD = TLI->InstructionOpcodeToISD(Opcode);
181 assert(ISD && "Invalid opcode");
182
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000183 static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000184 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
185 // customize them to detect the cases where shift amount is a scalar one.
186 { ISD::SHL, MVT::v4i32, 1 },
187 { ISD::SRL, MVT::v4i32, 1 },
188 { ISD::SRA, MVT::v4i32, 1 },
189 { ISD::SHL, MVT::v8i32, 1 },
190 { ISD::SRL, MVT::v8i32, 1 },
191 { ISD::SRA, MVT::v8i32, 1 },
192 { ISD::SHL, MVT::v2i64, 1 },
193 { ISD::SRL, MVT::v2i64, 1 },
194 { ISD::SHL, MVT::v4i64, 1 },
195 { ISD::SRL, MVT::v4i64, 1 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000196
197 { ISD::SHL, MVT::v32i8, 42 }, // cmpeqb sequence.
198 { ISD::SHL, MVT::v16i16, 16*10 }, // Scalarized.
199
200 { ISD::SRL, MVT::v32i8, 32*10 }, // Scalarized.
201 { ISD::SRL, MVT::v16i16, 8*10 }, // Scalarized.
202
203 { ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized.
204 { ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized.
205 { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized.
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000206
207 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
208 { ISD::SDIV, MVT::v32i8, 32*20 },
209 { ISD::SDIV, MVT::v16i16, 16*20 },
210 { ISD::SDIV, MVT::v8i32, 8*20 },
211 { ISD::SDIV, MVT::v4i64, 4*20 },
212 { ISD::UDIV, MVT::v32i8, 32*20 },
213 { ISD::UDIV, MVT::v16i16, 16*20 },
214 { ISD::UDIV, MVT::v8i32, 8*20 },
215 { ISD::UDIV, MVT::v4i64, 4*20 },
Michael Liao70dd7f92013-03-20 22:01:10 +0000216 };
217
218 // Look for AVX2 lowering tricks.
219 if (ST->hasAVX2()) {
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000220 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
221 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
222 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
223 // On AVX2, a packed v16i16 shift left by a constant build_vector
224 // is lowered into a vector multiply (vpmullw).
225 return LT.first;
226
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000227 int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
Michael Liao70dd7f92013-03-20 22:01:10 +0000228 if (Idx != -1)
229 return LT.first * AVX2CostTable[Idx].Cost;
230 }
231
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000232 static const CostTblEntry<MVT::SimpleValueType>
233 SSE2UniformConstCostTable[] = {
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000234 // We don't correctly identify costs of casts because they are marked as
235 // custom.
236 // Constant splats are cheaper for the following instructions.
237 { ISD::SHL, MVT::v16i8, 1 }, // psllw.
238 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
239 { ISD::SHL, MVT::v4i32, 1 }, // pslld
240 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
241
242 { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
243 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
244 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
245 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
246
247 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
248 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
249 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
250 };
251
252 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
253 ST->hasSSE2()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000254 int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000255 if (Idx != -1)
256 return LT.first * SSE2UniformConstCostTable[Idx].Cost;
257 }
258
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000259 if (ISD == ISD::SHL &&
260 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
261 EVT VT = LT.second;
262 if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
263 (VT == MVT::v4i32 && ST->hasSSE41()))
264 // Vector shift left by non uniform constant can be lowered
265 // into vector multiply (pmullw/pmulld).
266 return LT.first;
267 if (VT == MVT::v4i32 && ST->hasSSE2())
268 // A vector shift left by non uniform constant is converted
269 // into a vector multiply; the new multiply is eventually
270 // lowered into a sequence of shuffles and 2 x pmuludq.
271 ISD = ISD::MUL;
272 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000273
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000274 static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000275 // We don't correctly identify costs of casts because they are marked as
276 // custom.
277 // For some cases, where the shift amount is a scalar we would be able
278 // to generate better code. Unfortunately, when this is the case the value
279 // (the splat) will get hoisted out of the loop, thereby making it invisible
280 // to ISel. The cost model must return worst case assumptions because it is
281 // used for vectorization and we don't want to make vectorized code worse
282 // than scalar code.
283 { ISD::SHL, MVT::v16i8, 30 }, // cmpeqb sequence.
284 { ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized.
285 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
286 { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized.
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000287 { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000288
289 { ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized.
290 { ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized.
291 { ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized.
292 { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized.
293
294 { ISD::SRA, MVT::v16i8, 16*10 }, // Scalarized.
295 { ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized.
296 { ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized.
297 { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized.
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000298
299 // It is not a good idea to vectorize division. We have to scalarize it and
300 // in the process we will often end up having to spilling regular
301 // registers. The overhead of division is going to dominate most kernels
302 // anyways so try hard to prevent vectorization of division - it is
303 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
304 // to hide "20 cycles" for each lane.
305 { ISD::SDIV, MVT::v16i8, 16*20 },
306 { ISD::SDIV, MVT::v8i16, 8*20 },
307 { ISD::SDIV, MVT::v4i32, 4*20 },
308 { ISD::SDIV, MVT::v2i64, 2*20 },
309 { ISD::UDIV, MVT::v16i8, 16*20 },
310 { ISD::UDIV, MVT::v8i16, 8*20 },
311 { ISD::UDIV, MVT::v4i32, 4*20 },
312 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000313 };
314
315 if (ST->hasSSE2()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000316 int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000317 if (Idx != -1)
318 return LT.first * SSE2CostTable[Idx].Cost;
319 }
320
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000321 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000322 // We don't have to scalarize unsupported ops. We can issue two half-sized
323 // operations and we only need to extract the upper YMM half.
324 // Two ops + 1 extract + 1 insert = 4.
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000325 { ISD::MUL, MVT::v16i16, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000326 { ISD::MUL, MVT::v8i32, 4 },
327 { ISD::SUB, MVT::v8i32, 4 },
328 { ISD::ADD, MVT::v8i32, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000329 { ISD::SUB, MVT::v4i64, 4 },
330 { ISD::ADD, MVT::v4i64, 4 },
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000331 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
332 // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
333 // Because we believe v4i64 to be a legal type, we must also include the
334 // split factor of two in the cost table. Therefore, the cost here is 18
335 // instead of 9.
336 { ISD::MUL, MVT::v4i64, 18 },
337 };
Chandler Carruth664e3542013-01-07 01:37:14 +0000338
339 // Look for AVX1 lowering tricks.
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000340 if (ST->hasAVX() && !ST->hasAVX2()) {
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000341 EVT VT = LT.second;
342
343 // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
344 // sequence of extract + two vector multiply + insert.
345 if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
346 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
347 ISD = ISD::MUL;
348
349 int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
Renato Goline1fb0592013-01-20 20:57:20 +0000350 if (Idx != -1)
351 return LT.first * AVX1CostTable[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000352 }
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000353
354 // Custom lowering of vectors.
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000355 static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000356 // A v2i64/v4i64 and multiply is custom lowered as a series of long
357 // multiplies(3), shifts(4) and adds(2).
358 { ISD::MUL, MVT::v2i64, 9 },
359 { ISD::MUL, MVT::v4i64, 9 },
360 };
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000361 int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000362 if (Idx != -1)
363 return LT.first * CustomLowered[Idx].Cost;
364
365 // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
366 // 2x pmuludq, 2x shuffle.
367 if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
368 !ST->hasSSE41())
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000369 return LT.first * 6;
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000370
Chandler Carruth664e3542013-01-07 01:37:14 +0000371 // Fallback to the default implementation.
Arnold Schwaighoferb9773872013-04-04 23:26:21 +0000372 return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
373 Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000374}
375
376unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
377 Type *SubTp) const {
378 // We only estimate the cost of reverse shuffles.
Chandler Carruth2109f472013-01-07 03:20:02 +0000379 if (Kind != SK_Reverse)
Chandler Carruth664e3542013-01-07 01:37:14 +0000380 return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
381
382 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
383 unsigned Cost = 1;
384 if (LT.second.getSizeInBits() > 128)
385 Cost = 3; // Extract + insert + copy.
386
387 // Multiple by the number of parts.
388 return Cost * LT.first;
389}
390
391unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
392 int ISD = TLI->InstructionOpcodeToISD(Opcode);
393 assert(ISD && "Invalid opcode");
394
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000395 std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
396 std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
397
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000398 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
399 SSE2ConvTbl[] = {
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000400 // These are somewhat magic numbers justified by looking at the output of
401 // Intel's IACA, running some kernels and making sure when we take
402 // legalization into account the throughput will be overestimated.
403 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
404 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
405 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
406 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
407 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
408 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
409 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
410 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
411 // There are faster sequences for float conversions.
412 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
413 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
414 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
415 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
416 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
417 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
418 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
419 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
420 };
421
422 if (ST->hasSSE2() && !ST->hasAVX()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000423 int Idx =
424 ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000425 if (Idx != -1)
426 return LTSrc.first * SSE2ConvTbl[Idx].Cost;
427 }
428
Chandler Carruth664e3542013-01-07 01:37:14 +0000429 EVT SrcTy = TLI->getValueType(Src);
430 EVT DstTy = TLI->getValueType(Dst);
431
Arnold Schwaighoferc0c7ff42013-04-17 20:04:53 +0000432 // The function getSimpleVT only handles simple value types.
433 if (!SrcTy.isSimple() || !DstTy.isSimple())
434 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
435
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000436 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
Tim Northoverf0e21612014-02-06 18:18:36 +0000437 AVX2ConversionTbl[] = {
438 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
439 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
440 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
441 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
442 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
443 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
444 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
445 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
446 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
447 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
448 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
449 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
450 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
451 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
452 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
453 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
454
455 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
456 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
457 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
458 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
459 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
460 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
461 };
462
463 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000464 AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000465 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
466 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
467 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
468 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
469 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
470 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
471 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
472 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
473 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
474 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
475 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
476 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
477 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
478 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
479 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
480 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
481
482 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
483 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
484 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
485 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
486 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
487 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
488 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000489
490 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
491 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
492 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
493 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
494 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
495 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
496 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
497 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
498 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
499 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
500 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
501 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
502
503 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
504 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
505 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
506 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
507 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
508 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
509 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
510 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
511 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
512 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
513 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
514 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
515
Renato Goline1fb0592013-01-20 20:57:20 +0000516 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 },
517 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000518 };
519
Tim Northoverf0e21612014-02-06 18:18:36 +0000520 if (ST->hasAVX2()) {
521 int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
522 DstTy.getSimpleVT(), SrcTy.getSimpleVT());
523 if (Idx != -1)
524 return AVX2ConversionTbl[Idx].Cost;
525 }
526
Chandler Carruth664e3542013-01-07 01:37:14 +0000527 if (ST->hasAVX()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000528 int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
529 SrcTy.getSimpleVT());
Renato Goline1fb0592013-01-20 20:57:20 +0000530 if (Idx != -1)
531 return AVXConversionTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000532 }
533
534 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
535}
536
537unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
538 Type *CondTy) const {
539 // Legalize the type.
540 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
541
542 MVT MTy = LT.second;
543
544 int ISD = TLI->InstructionOpcodeToISD(Opcode);
545 assert(ISD && "Invalid opcode");
546
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000547 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000548 { ISD::SETCC, MVT::v2f64, 1 },
549 { ISD::SETCC, MVT::v4f32, 1 },
550 { ISD::SETCC, MVT::v2i64, 1 },
551 { ISD::SETCC, MVT::v4i32, 1 },
552 { ISD::SETCC, MVT::v8i16, 1 },
553 { ISD::SETCC, MVT::v16i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000554 };
555
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000556 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000557 { ISD::SETCC, MVT::v4f64, 1 },
558 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000559 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +0000560 { ISD::SETCC, MVT::v4i64, 4 },
561 { ISD::SETCC, MVT::v8i32, 4 },
562 { ISD::SETCC, MVT::v16i16, 4 },
563 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000564 };
565
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000566 static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000567 { ISD::SETCC, MVT::v4i64, 1 },
568 { ISD::SETCC, MVT::v8i32, 1 },
569 { ISD::SETCC, MVT::v16i16, 1 },
570 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000571 };
572
573 if (ST->hasAVX2()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000574 int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000575 if (Idx != -1)
576 return LT.first * AVX2CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000577 }
578
579 if (ST->hasAVX()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000580 int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000581 if (Idx != -1)
582 return LT.first * AVX1CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000583 }
584
585 if (ST->hasSSE42()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000586 int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000587 if (Idx != -1)
588 return LT.first * SSE42CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000589 }
590
591 return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
592}
593
594unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
595 unsigned Index) const {
596 assert(Val->isVectorTy() && "This must be a vector type");
597
598 if (Index != -1U) {
599 // Legalize the type.
600 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
601
602 // This type is legalized to a scalar type.
603 if (!LT.second.isVector())
604 return 0;
605
606 // The type may be split. Normalize the index to the new type.
607 unsigned Width = LT.second.getVectorNumElements();
608 Index = Index % Width;
609
610 // Floating point scalars are already located in index #0.
611 if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
612 return 0;
613 }
614
615 return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
616}
617
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000618unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
619 bool Extract) const {
620 assert (Ty->isVectorTy() && "Can only scalarize vectors");
621 unsigned Cost = 0;
622
623 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
624 if (Insert)
625 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
626 if (Extract)
627 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
628 }
629
630 return Cost;
631}
632
Chandler Carruth664e3542013-01-07 01:37:14 +0000633unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
634 unsigned AddressSpace) const {
Alp Tokerf907b892013-12-05 05:44:44 +0000635 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000636 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
637 unsigned NumElem = VTy->getVectorNumElements();
638
639 // Handle a few common cases:
640 // <3 x float>
641 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
642 // Cost = 64 bit store + extract + 32 bit store.
643 return 3;
644
645 // <3 x double>
646 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
647 // Cost = 128 bit store + unpack + 64 bit store.
648 return 3;
649
Alp Tokerf907b892013-12-05 05:44:44 +0000650 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000651 if (!isPowerOf2_32(NumElem)) {
652 unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
653 VTy->getScalarType(),
654 Alignment,
655 AddressSpace);
656 unsigned SplitCost = getScalarizationOverhead(Src,
657 Opcode == Instruction::Load,
658 Opcode==Instruction::Store);
659 return NumElem * Cost + SplitCost;
660 }
661 }
662
Chandler Carruth664e3542013-01-07 01:37:14 +0000663 // Legalize the type.
664 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
665 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
666 "Invalid Opcode");
667
668 // Each load/store unit costs 1.
669 unsigned Cost = LT.first * 1;
670
671 // On Sandybridge 256bit load/stores are double pumped
672 // (but not on Haswell).
673 if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
674 Cost*=2;
675
676 return Cost;
677}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +0000678
679unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
680 // Address computations in vectorized code with non-consecutive addresses will
681 // likely result in more instructions compared to scalar code where the
682 // computation can more often be merged into the index mode. The resulting
683 // extra micro-ops can significantly decrease throughput.
684 unsigned NumVectorInstToHideOverhead = 10;
685
686 if (Ty->isVectorTy() && IsComplex)
687 return NumVectorInstToHideOverhead;
688
689 return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
690}
Yi Jiang5c343de2013-09-19 17:48:48 +0000691
692unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
693 bool IsPairwise) const {
694
695 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
696
697 MVT MTy = LT.second;
698
699 int ISD = TLI->InstructionOpcodeToISD(Opcode);
700 assert(ISD && "Invalid opcode");
701
702 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
703 // and make it as the cost.
704
705 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
706 { ISD::FADD, MVT::v2f64, 2 },
707 { ISD::FADD, MVT::v4f32, 4 },
708 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
709 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
710 { ISD::ADD, MVT::v8i16, 5 },
711 };
712
713 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
714 { ISD::FADD, MVT::v4f32, 4 },
715 { ISD::FADD, MVT::v4f64, 5 },
716 { ISD::FADD, MVT::v8f32, 7 },
717 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
718 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
719 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
720 { ISD::ADD, MVT::v8i16, 5 },
721 { ISD::ADD, MVT::v8i32, 5 },
722 };
723
724 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
725 { ISD::FADD, MVT::v2f64, 2 },
726 { ISD::FADD, MVT::v4f32, 4 },
727 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
728 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
729 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
730 };
731
732 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
733 { ISD::FADD, MVT::v4f32, 3 },
734 { ISD::FADD, MVT::v4f64, 3 },
735 { ISD::FADD, MVT::v8f32, 4 },
736 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
737 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
738 { ISD::ADD, MVT::v4i64, 3 },
739 { ISD::ADD, MVT::v8i16, 4 },
740 { ISD::ADD, MVT::v8i32, 5 },
741 };
742
743 if (IsPairwise) {
744 if (ST->hasAVX()) {
745 int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
746 if (Idx != -1)
747 return LT.first * AVX1CostTblPairWise[Idx].Cost;
748 }
749
750 if (ST->hasSSE42()) {
751 int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
752 if (Idx != -1)
753 return LT.first * SSE42CostTblPairWise[Idx].Cost;
754 }
755 } else {
756 if (ST->hasAVX()) {
757 int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
758 if (Idx != -1)
759 return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
760 }
761
762 if (ST->hasSSE42()) {
763 int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
764 if (Idx != -1)
765 return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
766 }
767 }
768
769 return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise);
770}
771
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000772unsigned X86TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
773 assert(Ty->isIntegerTy());
774
775 unsigned BitSize = Ty->getPrimitiveSizeInBits();
776 if (BitSize == 0)
777 return ~0U;
778
779 if (Imm.getBitWidth() <= 64 &&
780 (isInt<32>(Imm.getSExtValue()) || isUInt<32>(Imm.getZExtValue())))
781 return TCC_Basic;
782 else
783 return 2 * TCC_Basic;
784}
785
786unsigned X86TTI::getIntImmCost(unsigned Opcode, const APInt &Imm,
787 Type *Ty) const {
788 assert(Ty->isIntegerTy());
789
790 unsigned BitSize = Ty->getPrimitiveSizeInBits();
791 if (BitSize == 0)
792 return ~0U;
793
794 switch (Opcode) {
795 case Instruction::Add:
796 case Instruction::Sub:
797 case Instruction::Mul:
798 case Instruction::UDiv:
799 case Instruction::SDiv:
800 case Instruction::URem:
801 case Instruction::SRem:
802 case Instruction::Shl:
803 case Instruction::LShr:
804 case Instruction::AShr:
805 case Instruction::And:
806 case Instruction::Or:
807 case Instruction::Xor:
808 case Instruction::ICmp:
809 if (Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
810 return TCC_Free;
811 else
812 return X86TTI::getIntImmCost(Imm, Ty);
813 case Instruction::Trunc:
814 case Instruction::ZExt:
815 case Instruction::SExt:
816 case Instruction::IntToPtr:
817 case Instruction::PtrToInt:
818 case Instruction::BitCast:
819 case Instruction::Call:
820 case Instruction::Select:
821 case Instruction::Ret:
822 case Instruction::Load:
823 case Instruction::Store:
824 return X86TTI::getIntImmCost(Imm, Ty);
825 }
826 return TargetTransformInfo::getIntImmCost(Opcode, Imm, Ty);
827}
828
829unsigned X86TTI::getIntImmCost(Intrinsic::ID IID, const APInt &Imm,
830 Type *Ty) const {
831 assert(Ty->isIntegerTy());
832
833 unsigned BitSize = Ty->getPrimitiveSizeInBits();
834 if (BitSize == 0)
835 return ~0U;
836
837 switch (IID) {
838 default: return TargetTransformInfo::getIntImmCost(IID, Imm, Ty);
839 case Intrinsic::sadd_with_overflow:
840 case Intrinsic::uadd_with_overflow:
841 case Intrinsic::ssub_with_overflow:
842 case Intrinsic::usub_with_overflow:
843 case Intrinsic::smul_with_overflow:
844 case Intrinsic::umul_with_overflow:
845 if (Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
846 return TCC_Free;
847 else
848 return X86TTI::getIntImmCost(Imm, Ty);
849 case Intrinsic::experimental_stackmap:
850 case Intrinsic::experimental_patchpoint_void:
851 case Intrinsic::experimental_patchpoint_i64:
852 if (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))
853 return TCC_Free;
854 else
855 return X86TTI::getIntImmCost(Imm, Ty);
856 }
857}