blob: e0d543791b0bb73f31f8105f5714ab0bd7a881a6 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the SystemZ target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZTargetMachine.h"
Richard Sandiford97846492013-07-09 09:46:39 +000015#include "llvm/Analysis/AliasAnalysis.h"
Ulrich Weigand5f613df2013-05-06 16:15:19 +000016#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/raw_ostream.h"
19
20using namespace llvm;
21
22namespace {
23// Used to build addressing modes.
24struct SystemZAddressingMode {
25 // The shape of the address.
26 enum AddrForm {
27 // base+displacement
28 FormBD,
29
30 // base+displacement+index for load and store operands
31 FormBDXNormal,
32
33 // base+displacement+index for load address operands
34 FormBDXLA,
35
36 // base+displacement+index+ADJDYNALLOC
37 FormBDXDynAlloc
38 };
39 AddrForm Form;
40
41 // The type of displacement. The enum names here correspond directly
42 // to the definitions in SystemZOperand.td. We could split them into
43 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
44 enum DispRange {
45 Disp12Only,
46 Disp12Pair,
47 Disp20Only,
48 Disp20Only128,
49 Disp20Pair
50 };
51 DispRange DR;
52
53 // The parts of the address. The address is equivalent to:
54 //
55 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
56 SDValue Base;
57 int64_t Disp;
58 SDValue Index;
59 bool IncludesDynAlloc;
60
61 SystemZAddressingMode(AddrForm form, DispRange dr)
62 : Form(form), DR(dr), Base(), Disp(0), Index(),
63 IncludesDynAlloc(false) {}
64
65 // True if the address can have an index register.
66 bool hasIndexField() { return Form != FormBD; }
67
68 // True if the address can (and must) include ADJDYNALLOC.
69 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
70
71 void dump() {
72 errs() << "SystemZAddressingMode " << this << '\n';
73
74 errs() << " Base ";
75 if (Base.getNode() != 0)
76 Base.getNode()->dump();
77 else
78 errs() << "null\n";
79
80 if (hasIndexField()) {
81 errs() << " Index ";
82 if (Index.getNode() != 0)
83 Index.getNode()->dump();
84 else
85 errs() << "null\n";
86 }
87
88 errs() << " Disp " << Disp;
89 if (IncludesDynAlloc)
90 errs() << " + ADJDYNALLOC";
91 errs() << '\n';
92 }
93};
94
Richard Sandiford82ec87d2013-07-16 11:02:24 +000095// Return a mask with Count low bits set.
96static uint64_t allOnes(unsigned int Count) {
97 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
98}
99
Richard Sandiford51093212013-07-18 10:40:35 +0000100// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
101// given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
102// Rotate (I5). The combined operand value is effectively:
103//
104// (or (rotl Input, Rotate), ~Mask)
105//
106// for RNSBG and:
107//
108// (and (rotl Input, Rotate), Mask)
109//
110// otherwise. The value has BitSize bits.
Richard Sandiford5cbac962013-07-18 09:45:08 +0000111struct RxSBGOperands {
Richard Sandiford51093212013-07-18 10:40:35 +0000112 RxSBGOperands(unsigned Op, SDValue N)
113 : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
114 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
115 Rotate(0) {}
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000116
Richard Sandiford51093212013-07-18 10:40:35 +0000117 unsigned Opcode;
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000118 unsigned BitSize;
119 uint64_t Mask;
120 SDValue Input;
121 unsigned Start;
122 unsigned End;
123 unsigned Rotate;
124};
125
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000126class SystemZDAGToDAGISel : public SelectionDAGISel {
127 const SystemZTargetLowering &Lowering;
128 const SystemZSubtarget &Subtarget;
129
130 // Used by SystemZOperands.td to create integer constants.
131 inline SDValue getImm(const SDNode *Node, uint64_t Imm) {
132 return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
133 }
134
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000135 const SystemZTargetMachine &getTargetMachine() const {
136 return static_cast<const SystemZTargetMachine &>(TM);
137 }
138
139 const SystemZInstrInfo *getInstrInfo() const {
140 return getTargetMachine().getInstrInfo();
141 }
142
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000143 // Try to fold more of the base or index of AM into AM, where IsBase
144 // selects between the base and index.
145 bool expandAddress(SystemZAddressingMode &AM, bool IsBase);
146
147 // Try to describe N in AM, returning true on success.
148 bool selectAddress(SDValue N, SystemZAddressingMode &AM);
149
150 // Extract individual target operands from matched address AM.
151 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
152 SDValue &Base, SDValue &Disp);
153 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
154 SDValue &Base, SDValue &Disp, SDValue &Index);
155
156 // Try to match Addr as a FormBD address with displacement type DR.
157 // Return true on success, storing the base and displacement in
158 // Base and Disp respectively.
159 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
160 SDValue &Base, SDValue &Disp);
161
Richard Sandiforda481f582013-08-23 11:18:53 +0000162 // Try to match Addr as a FormBDX address with displacement type DR.
163 // Return true on success and if the result had no index. Store the
164 // base and displacement in Base and Disp respectively.
165 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
166 SDValue &Base, SDValue &Disp);
167
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000168 // Try to match Addr as a FormBDX* address of form Form with
169 // displacement type DR. Return true on success, storing the base,
170 // displacement and index in Base, Disp and Index respectively.
171 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
172 SystemZAddressingMode::DispRange DR, SDValue Addr,
173 SDValue &Base, SDValue &Disp, SDValue &Index);
174
175 // PC-relative address matching routines used by SystemZOperands.td.
176 bool selectPCRelAddress(SDValue Addr, SDValue &Target) {
177 if (Addr.getOpcode() == SystemZISD::PCREL_WRAPPER) {
178 Target = Addr.getOperand(0);
179 return true;
180 }
181 return false;
182 }
183
184 // BD matching routines used by SystemZOperands.td.
185 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
186 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
187 }
188 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
189 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
190 }
191 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
192 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
193 }
194 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
195 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
196 }
197
Richard Sandiforda481f582013-08-23 11:18:53 +0000198 // MVI matching routines used by SystemZOperands.td.
199 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
200 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
201 }
202 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
203 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
204 }
205
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000206 // BDX matching routines used by SystemZOperands.td.
207 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
208 SDValue &Index) {
209 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
210 SystemZAddressingMode::Disp12Only,
211 Addr, Base, Disp, Index);
212 }
213 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
214 SDValue &Index) {
215 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
216 SystemZAddressingMode::Disp12Pair,
217 Addr, Base, Disp, Index);
218 }
219 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
220 SDValue &Index) {
221 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
222 SystemZAddressingMode::Disp12Only,
223 Addr, Base, Disp, Index);
224 }
225 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
226 SDValue &Index) {
227 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
228 SystemZAddressingMode::Disp20Only,
229 Addr, Base, Disp, Index);
230 }
231 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
232 SDValue &Index) {
233 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
234 SystemZAddressingMode::Disp20Only128,
235 Addr, Base, Disp, Index);
236 }
237 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
238 SDValue &Index) {
239 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
240 SystemZAddressingMode::Disp20Pair,
241 Addr, Base, Disp, Index);
242 }
243 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
244 SDValue &Index) {
245 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
246 SystemZAddressingMode::Disp12Pair,
247 Addr, Base, Disp, Index);
248 }
249 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
250 SDValue &Index) {
251 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
252 SystemZAddressingMode::Disp20Pair,
253 Addr, Base, Disp, Index);
254 }
255
Richard Sandiford885140c2013-07-16 11:55:57 +0000256 // Check whether (or Op (and X InsertMask)) is effectively an insertion
257 // of X into bits InsertMask of some Y != Op. Return true if so and
258 // set Op to that Y.
259 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask);
260
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000261 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
262 // Return true on success.
263 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask);
264
Richard Sandiford5cbac962013-07-18 09:45:08 +0000265 // Try to fold some of RxSBG.Input into other fields of RxSBG.
266 // Return true on success.
267 bool expandRxSBG(RxSBGOperands &RxSBG);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000268
Richard Sandiford84f54a32013-07-11 08:59:12 +0000269 // Return an undefined i64 value.
270 SDValue getUNDEF64(SDLoc DL);
271
272 // Convert N to VT, if it isn't already.
273 SDValue convertTo(SDLoc DL, EVT VT, SDValue N);
274
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000275 // Try to implement AND or shift node N using RISBG with the zero flag set.
276 // Return the selected node on success, otherwise return null.
277 SDNode *tryRISBGZero(SDNode *N);
Richard Sandiford84f54a32013-07-11 08:59:12 +0000278
Richard Sandiford7878b852013-07-18 10:06:15 +0000279 // Try to use RISBG or Opcode to implement OR or XOR node N.
280 // Return the selected node on success, otherwise return null.
281 SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
Richard Sandiford885140c2013-07-16 11:55:57 +0000282
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000283 // If Op0 is null, then Node is a constant that can be loaded using:
284 //
285 // (Opcode UpperVal LowerVal)
286 //
287 // If Op0 is nonnull, then Node can be implemented using:
288 //
289 // (Opcode (Opcode Op0 UpperVal) LowerVal)
290 SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
291 uint64_t UpperVal, uint64_t LowerVal);
292
Richard Sandiford97846492013-07-09 09:46:39 +0000293 bool storeLoadCanUseMVC(SDNode *N) const;
294
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000295public:
296 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
297 : SelectionDAGISel(TM, OptLevel),
298 Lowering(*TM.getTargetLowering()),
299 Subtarget(*TM.getSubtargetImpl()) { }
300
301 // Override MachineFunctionPass.
302 virtual const char *getPassName() const LLVM_OVERRIDE {
303 return "SystemZ DAG->DAG Pattern Instruction Selection";
304 }
305
306 // Override SelectionDAGISel.
307 virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
308 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
309 char ConstraintCode,
310 std::vector<SDValue> &OutOps)
311 LLVM_OVERRIDE;
312
313 // Include the pieces autogenerated from the target description.
314 #include "SystemZGenDAGISel.inc"
315};
316} // end anonymous namespace
317
318FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
319 CodeGenOpt::Level OptLevel) {
320 return new SystemZDAGToDAGISel(TM, OptLevel);
321}
322
323// Return true if Val should be selected as a displacement for an address
324// with range DR. Here we're interested in the range of both the instruction
325// described by DR and of any pairing instruction.
326static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
327 switch (DR) {
328 case SystemZAddressingMode::Disp12Only:
329 return isUInt<12>(Val);
330
331 case SystemZAddressingMode::Disp12Pair:
332 case SystemZAddressingMode::Disp20Only:
333 case SystemZAddressingMode::Disp20Pair:
334 return isInt<20>(Val);
335
336 case SystemZAddressingMode::Disp20Only128:
337 return isInt<20>(Val) && isInt<20>(Val + 8);
338 }
339 llvm_unreachable("Unhandled displacement range");
340}
341
342// Change the base or index in AM to Value, where IsBase selects
343// between the base and index.
344static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
345 SDValue Value) {
346 if (IsBase)
347 AM.Base = Value;
348 else
349 AM.Index = Value;
350}
351
352// The base or index of AM is equivalent to Value + ADJDYNALLOC,
353// where IsBase selects between the base and index. Try to fold the
354// ADJDYNALLOC into AM.
355static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
356 SDValue Value) {
357 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
358 changeComponent(AM, IsBase, Value);
359 AM.IncludesDynAlloc = true;
360 return true;
361 }
362 return false;
363}
364
365// The base of AM is equivalent to Base + Index. Try to use Index as
366// the index register.
367static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
368 SDValue Index) {
369 if (AM.hasIndexField() && !AM.Index.getNode()) {
370 AM.Base = Base;
371 AM.Index = Index;
372 return true;
373 }
374 return false;
375}
376
377// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
378// between the base and index. Try to fold Op1 into AM's displacement.
379static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
380 SDValue Op0, ConstantSDNode *Op1) {
381 // First try adjusting the displacement.
382 int64_t TestDisp = AM.Disp + Op1->getSExtValue();
383 if (selectDisp(AM.DR, TestDisp)) {
384 changeComponent(AM, IsBase, Op0);
385 AM.Disp = TestDisp;
386 return true;
387 }
388
389 // We could consider forcing the displacement into a register and
390 // using it as an index, but it would need to be carefully tuned.
391 return false;
392}
393
394bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
395 bool IsBase) {
396 SDValue N = IsBase ? AM.Base : AM.Index;
397 unsigned Opcode = N.getOpcode();
398 if (Opcode == ISD::TRUNCATE) {
399 N = N.getOperand(0);
400 Opcode = N.getOpcode();
401 }
402 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
403 SDValue Op0 = N.getOperand(0);
404 SDValue Op1 = N.getOperand(1);
405
406 unsigned Op0Code = Op0->getOpcode();
407 unsigned Op1Code = Op1->getOpcode();
408
409 if (Op0Code == SystemZISD::ADJDYNALLOC)
410 return expandAdjDynAlloc(AM, IsBase, Op1);
411 if (Op1Code == SystemZISD::ADJDYNALLOC)
412 return expandAdjDynAlloc(AM, IsBase, Op0);
413
414 if (Op0Code == ISD::Constant)
415 return expandDisp(AM, IsBase, Op1, cast<ConstantSDNode>(Op0));
416 if (Op1Code == ISD::Constant)
417 return expandDisp(AM, IsBase, Op0, cast<ConstantSDNode>(Op1));
418
419 if (IsBase && expandIndex(AM, Op0, Op1))
420 return true;
421 }
422 return false;
423}
424
425// Return true if an instruction with displacement range DR should be
426// used for displacement value Val. selectDisp(DR, Val) must already hold.
427static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
428 assert(selectDisp(DR, Val) && "Invalid displacement");
429 switch (DR) {
430 case SystemZAddressingMode::Disp12Only:
431 case SystemZAddressingMode::Disp20Only:
432 case SystemZAddressingMode::Disp20Only128:
433 return true;
434
435 case SystemZAddressingMode::Disp12Pair:
436 // Use the other instruction if the displacement is too large.
437 return isUInt<12>(Val);
438
439 case SystemZAddressingMode::Disp20Pair:
440 // Use the other instruction if the displacement is small enough.
441 return !isUInt<12>(Val);
442 }
443 llvm_unreachable("Unhandled displacement range");
444}
445
446// Return true if Base + Disp + Index should be performed by LA(Y).
447static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
448 // Don't use LA(Y) for constants.
449 if (!Base)
450 return false;
451
452 // Always use LA(Y) for frame addresses, since we know that the destination
453 // register is almost always (perhaps always) going to be different from
454 // the frame register.
455 if (Base->getOpcode() == ISD::FrameIndex)
456 return true;
457
458 if (Disp) {
459 // Always use LA(Y) if there is a base, displacement and index.
460 if (Index)
461 return true;
462
463 // Always use LA if the displacement is small enough. It should always
464 // be no worse than AGHI (and better if it avoids a move).
465 if (isUInt<12>(Disp))
466 return true;
467
468 // For similar reasons, always use LAY if the constant is too big for AGHI.
469 // LAY should be no worse than AGFI.
470 if (!isInt<16>(Disp))
471 return true;
472 } else {
473 // Don't use LA for plain registers.
474 if (!Index)
475 return false;
476
477 // Don't use LA for plain addition if the index operand is only used
478 // once. It should be a natural two-operand addition in that case.
479 if (Index->hasOneUse())
480 return false;
481
482 // Prefer addition if the second operation is sign-extended, in the
483 // hope of using AGF.
484 unsigned IndexOpcode = Index->getOpcode();
485 if (IndexOpcode == ISD::SIGN_EXTEND ||
486 IndexOpcode == ISD::SIGN_EXTEND_INREG)
487 return false;
488 }
489
490 // Don't use LA for two-operand addition if either operand is only
491 // used once. The addition instructions are better in that case.
492 if (Base->hasOneUse())
493 return false;
494
495 return true;
496}
497
498// Return true if Addr is suitable for AM, updating AM if so.
499bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
500 SystemZAddressingMode &AM) {
501 // Start out assuming that the address will need to be loaded separately,
502 // then try to extend it as much as we can.
503 AM.Base = Addr;
504
505 // First try treating the address as a constant.
506 if (Addr.getOpcode() == ISD::Constant &&
507 expandDisp(AM, true, SDValue(), cast<ConstantSDNode>(Addr)))
508 ;
509 else
510 // Otherwise try expanding each component.
511 while (expandAddress(AM, true) ||
512 (AM.Index.getNode() && expandAddress(AM, false)))
513 continue;
514
515 // Reject cases where it isn't profitable to use LA(Y).
516 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
517 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
518 return false;
519
520 // Reject cases where the other instruction in a pair should be used.
521 if (!isValidDisp(AM.DR, AM.Disp))
522 return false;
523
524 // Make sure that ADJDYNALLOC is included where necessary.
525 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
526 return false;
527
528 DEBUG(AM.dump());
529 return true;
530}
531
532// Insert a node into the DAG at least before Pos. This will reposition
533// the node as needed, and will assign it a node ID that is <= Pos's ID.
534// Note that this does *not* preserve the uniqueness of node IDs!
535// The selection DAG must no longer depend on their uniqueness when this
536// function is used.
537static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
538 if (N.getNode()->getNodeId() == -1 ||
539 N.getNode()->getNodeId() > Pos->getNodeId()) {
540 DAG->RepositionNode(Pos, N.getNode());
541 N.getNode()->setNodeId(Pos->getNodeId());
542 }
543}
544
545void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
546 EVT VT, SDValue &Base,
547 SDValue &Disp) {
548 Base = AM.Base;
549 if (!Base.getNode())
550 // Register 0 means "no base". This is mostly useful for shifts.
551 Base = CurDAG->getRegister(0, VT);
552 else if (Base.getOpcode() == ISD::FrameIndex) {
553 // Lower a FrameIndex to a TargetFrameIndex.
554 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
555 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
556 } else if (Base.getValueType() != VT) {
557 // Truncate values from i64 to i32, for shifts.
558 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
559 "Unexpected truncation");
Andrew Trickef9de2a2013-05-25 02:42:55 +0000560 SDLoc DL(Base);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000561 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
562 insertDAGNode(CurDAG, Base.getNode(), Trunc);
563 Base = Trunc;
564 }
565
566 // Lower the displacement to a TargetConstant.
567 Disp = CurDAG->getTargetConstant(AM.Disp, VT);
568}
569
570void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
571 EVT VT, SDValue &Base,
572 SDValue &Disp, SDValue &Index) {
573 getAddressOperands(AM, VT, Base, Disp);
574
575 Index = AM.Index;
576 if (!Index.getNode())
577 // Register 0 means "no index".
578 Index = CurDAG->getRegister(0, VT);
579}
580
581bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
582 SDValue Addr, SDValue &Base,
583 SDValue &Disp) {
584 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
585 if (!selectAddress(Addr, AM))
586 return false;
587
588 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
589 return true;
590}
591
Richard Sandiforda481f582013-08-23 11:18:53 +0000592bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
593 SDValue Addr, SDValue &Base,
594 SDValue &Disp) {
595 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
596 if (!selectAddress(Addr, AM) || AM.Index.getNode())
597 return false;
598
599 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
600 return true;
601}
602
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000603bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
604 SystemZAddressingMode::DispRange DR,
605 SDValue Addr, SDValue &Base,
606 SDValue &Disp, SDValue &Index) {
607 SystemZAddressingMode AM(Form, DR);
608 if (!selectAddress(Addr, AM))
609 return false;
610
611 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
612 return true;
613}
614
Richard Sandiford885140c2013-07-16 11:55:57 +0000615bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
616 uint64_t InsertMask) {
617 // We're only interested in cases where the insertion is into some operand
618 // of Op, rather than into Op itself. The only useful case is an AND.
619 if (Op.getOpcode() != ISD::AND)
620 return false;
621
622 // We need a constant mask.
623 ConstantSDNode *MaskNode =
624 dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
625 if (!MaskNode)
626 return false;
627
628 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
629 uint64_t AndMask = MaskNode->getZExtValue();
630 if (InsertMask & AndMask)
631 return false;
632
633 // It's only an insertion if all bits are covered or are known to be zero.
634 // The inner check covers all cases but is more expensive.
635 uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
636 if (Used != (AndMask | InsertMask)) {
637 APInt KnownZero, KnownOne;
638 CurDAG->ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne);
639 if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
640 return false;
641 }
642
643 Op = Op.getOperand(0);
644 return true;
645}
646
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000647bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) {
648 const SystemZInstrInfo *TII = getInstrInfo();
Richard Sandiford5cbac962013-07-18 09:45:08 +0000649 if (RxSBG.Rotate != 0)
650 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
651 Mask &= RxSBG.Mask;
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000652 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
Richard Sandiford5cbac962013-07-18 09:45:08 +0000653 RxSBG.Mask = Mask;
Richard Sandiford5cbac962013-07-18 09:45:08 +0000654 return true;
655 }
Richard Sandiford84f54a32013-07-11 08:59:12 +0000656 return false;
657}
658
Richard Sandiford297f7d22013-07-18 10:14:55 +0000659// RxSBG.Input is a shift of Count bits in the direction given by IsLeft.
660// Return true if the result depends on the signs or zeros that are
661// shifted in.
662static bool shiftedInBitsMatter(RxSBGOperands &RxSBG, uint64_t Count,
663 bool IsLeft) {
664 // Work out which bits of the shift result are zeros or sign copies.
665 uint64_t ShiftedIn = allOnes(Count);
666 if (!IsLeft)
667 ShiftedIn <<= RxSBG.BitSize - Count;
668
669 // Rotate that mask in the same way as RxSBG.Input is rotated.
670 if (RxSBG.Rotate != 0)
671 ShiftedIn = ((ShiftedIn << RxSBG.Rotate) |
672 (ShiftedIn >> (64 - RxSBG.Rotate)));
673
674 // Fail if any of the zero or sign bits are used.
675 return (ShiftedIn & RxSBG.Mask) != 0;
676}
677
Richard Sandiford5cbac962013-07-18 09:45:08 +0000678bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) {
679 SDValue N = RxSBG.Input;
Richard Sandiford297f7d22013-07-18 10:14:55 +0000680 unsigned Opcode = N.getOpcode();
681 switch (Opcode) {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000682 case ISD::AND: {
Richard Sandiford51093212013-07-18 10:40:35 +0000683 if (RxSBG.Opcode == SystemZ::RNSBG)
684 return false;
685
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000686 ConstantSDNode *MaskNode =
687 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
688 if (!MaskNode)
689 return false;
690
691 SDValue Input = N.getOperand(0);
692 uint64_t Mask = MaskNode->getZExtValue();
Richard Sandiford5cbac962013-07-18 09:45:08 +0000693 if (!refineRxSBGMask(RxSBG, Mask)) {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000694 // If some bits of Input are already known zeros, those bits will have
695 // been removed from the mask. See if adding them back in makes the
696 // mask suitable.
697 APInt KnownZero, KnownOne;
698 CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
699 Mask |= KnownZero.getZExtValue();
Richard Sandiford5cbac962013-07-18 09:45:08 +0000700 if (!refineRxSBGMask(RxSBG, Mask))
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000701 return false;
702 }
Richard Sandiford5cbac962013-07-18 09:45:08 +0000703 RxSBG.Input = Input;
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000704 return true;
705 }
706
Richard Sandiford51093212013-07-18 10:40:35 +0000707 case ISD::OR: {
708 if (RxSBG.Opcode != SystemZ::RNSBG)
709 return false;
710
711 ConstantSDNode *MaskNode =
712 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
713 if (!MaskNode)
714 return false;
715
716 SDValue Input = N.getOperand(0);
717 uint64_t Mask = ~MaskNode->getZExtValue();
718 if (!refineRxSBGMask(RxSBG, Mask)) {
719 // If some bits of Input are already known ones, those bits will have
720 // been removed from the mask. See if adding them back in makes the
721 // mask suitable.
722 APInt KnownZero, KnownOne;
723 CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
724 Mask &= ~KnownOne.getZExtValue();
725 if (!refineRxSBGMask(RxSBG, Mask))
726 return false;
727 }
728 RxSBG.Input = Input;
729 return true;
730 }
731
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000732 case ISD::ROTL: {
Richard Sandiford5cbac962013-07-18 09:45:08 +0000733 // Any 64-bit rotate left can be merged into the RxSBG.
734 if (RxSBG.BitSize != 64)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000735 return false;
736 ConstantSDNode *CountNode
737 = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
738 if (!CountNode)
739 return false;
740
Richard Sandiford5cbac962013-07-18 09:45:08 +0000741 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
742 RxSBG.Input = N.getOperand(0);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000743 return true;
744 }
745
746 case ISD::SHL: {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000747 ConstantSDNode *CountNode =
748 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
749 if (!CountNode)
750 return false;
751
752 uint64_t Count = CountNode->getZExtValue();
Richard Sandiford51093212013-07-18 10:40:35 +0000753 if (Count < 1 || Count >= RxSBG.BitSize)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000754 return false;
755
Richard Sandiford51093212013-07-18 10:40:35 +0000756 if (RxSBG.Opcode == SystemZ::RNSBG) {
757 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
758 // count bits from RxSBG.Input are ignored.
759 if (shiftedInBitsMatter(RxSBG, Count, true))
760 return false;
761 } else {
762 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
763 if (!refineRxSBGMask(RxSBG, allOnes(RxSBG.BitSize - Count) << Count))
764 return false;
765 }
766
Richard Sandiford5cbac962013-07-18 09:45:08 +0000767 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
768 RxSBG.Input = N.getOperand(0);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000769 return true;
770 }
771
Richard Sandiford297f7d22013-07-18 10:14:55 +0000772 case ISD::SRL:
773 case ISD::SRA: {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000774 ConstantSDNode *CountNode =
775 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
776 if (!CountNode)
777 return false;
778
779 uint64_t Count = CountNode->getZExtValue();
Richard Sandiford297f7d22013-07-18 10:14:55 +0000780 if (Count < 1 || Count >= RxSBG.BitSize)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000781 return false;
782
Richard Sandiford51093212013-07-18 10:40:35 +0000783 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
784 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
785 // count bits from RxSBG.Input are ignored.
Richard Sandiford297f7d22013-07-18 10:14:55 +0000786 if (shiftedInBitsMatter(RxSBG, Count, false))
787 return false;
788 } else {
789 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
790 // which is similar to SLL above.
791 if (!refineRxSBGMask(RxSBG, allOnes(RxSBG.BitSize - Count)))
792 return false;
793 }
794
Richard Sandiford5cbac962013-07-18 09:45:08 +0000795 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
796 RxSBG.Input = N.getOperand(0);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000797 return true;
798 }
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000799 default:
800 return false;
801 }
802}
803
Richard Sandiford84f54a32013-07-11 08:59:12 +0000804SDValue SystemZDAGToDAGISel::getUNDEF64(SDLoc DL) {
805 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64);
806 return SDValue(N, 0);
807}
808
809SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) {
810 if (N.getValueType() == MVT::i32 && VT == MVT::i64) {
811 SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
812 SDNode *Insert = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG,
813 DL, VT, getUNDEF64(DL), N, Index);
814 return SDValue(Insert, 0);
815 }
816 if (N.getValueType() == MVT::i64 && VT == MVT::i32) {
817 SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
818 SDNode *Extract = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
819 DL, VT, N, Index);
820 return SDValue(Extract, 0);
821 }
822 assert(N.getValueType() == VT && "Unexpected value types");
823 return N;
824}
825
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000826SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000827 EVT VT = N->getValueType(0);
Richard Sandiford51093212013-07-18 10:40:35 +0000828 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000829 unsigned Count = 0;
Richard Sandiford5cbac962013-07-18 09:45:08 +0000830 while (expandRxSBG(RISBG))
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000831 Count += 1;
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000832 if (Count == 0)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000833 return 0;
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000834 if (Count == 1) {
835 // Prefer to use normal shift instructions over RISBG, since they can handle
836 // all cases and are sometimes shorter.
837 if (N->getOpcode() != ISD::AND)
838 return 0;
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000839
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000840 // Prefer register extensions like LLC over RISBG. Also prefer to start
841 // out with normal ANDs if one instruction would be enough. We can convert
842 // these ANDs into an RISBG later if a three-address instruction is useful.
843 if (VT == MVT::i32 ||
844 RISBG.Mask == 0xff ||
845 RISBG.Mask == 0xffff ||
846 SystemZ::isImmLF(~RISBG.Mask) ||
847 SystemZ::isImmHF(~RISBG.Mask)) {
848 // Force the new mask into the DAG, since it may include known-one bits.
849 ConstantSDNode *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
850 if (MaskN->getZExtValue() != RISBG.Mask) {
851 SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT);
852 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
853 return SelectCode(N);
854 }
855 return 0;
856 }
857 }
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000858
Richard Sandiford84f54a32013-07-11 08:59:12 +0000859 SDValue Ops[5] = {
860 getUNDEF64(SDLoc(N)),
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000861 convertTo(SDLoc(N), MVT::i64, RISBG.Input),
862 CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
863 CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
864 CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
Richard Sandiford84f54a32013-07-11 08:59:12 +0000865 };
866 N = CurDAG->getMachineNode(SystemZ::RISBG, SDLoc(N), MVT::i64, Ops);
867 return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
868}
869
Richard Sandiford7878b852013-07-18 10:06:15 +0000870SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
871 // Try treating each operand of N as the second operand of the RxSBG
Richard Sandiford885140c2013-07-16 11:55:57 +0000872 // and see which goes deepest.
Richard Sandiford51093212013-07-18 10:40:35 +0000873 RxSBGOperands RxSBG[] = {
874 RxSBGOperands(Opcode, N->getOperand(0)),
875 RxSBGOperands(Opcode, N->getOperand(1))
876 };
Richard Sandiford885140c2013-07-16 11:55:57 +0000877 unsigned Count[] = { 0, 0 };
878 for (unsigned I = 0; I < 2; ++I)
Richard Sandiford5cbac962013-07-18 09:45:08 +0000879 while (expandRxSBG(RxSBG[I]))
Richard Sandiford885140c2013-07-16 11:55:57 +0000880 Count[I] += 1;
881
882 // Do nothing if neither operand is suitable.
883 if (Count[0] == 0 && Count[1] == 0)
884 return 0;
885
886 // Pick the deepest second operand.
887 unsigned I = Count[0] > Count[1] ? 0 : 1;
888 SDValue Op0 = N->getOperand(I ^ 1);
889
890 // Prefer IC for character insertions from memory.
Richard Sandiford7878b852013-07-18 10:06:15 +0000891 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
Richard Sandiford885140c2013-07-16 11:55:57 +0000892 if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
893 if (Load->getMemoryVT() == MVT::i8)
894 return 0;
895
896 // See whether we can avoid an AND in the first operand by converting
897 // ROSBG to RISBG.
Richard Sandiford7878b852013-07-18 10:06:15 +0000898 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
Richard Sandiford885140c2013-07-16 11:55:57 +0000899 Opcode = SystemZ::RISBG;
900
901 EVT VT = N->getValueType(0);
902 SDValue Ops[5] = {
903 convertTo(SDLoc(N), MVT::i64, Op0),
Richard Sandiford5cbac962013-07-18 09:45:08 +0000904 convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
905 CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
906 CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
907 CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
Richard Sandiford885140c2013-07-16 11:55:57 +0000908 };
909 N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
910 return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
911}
912
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000913SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
914 SDValue Op0, uint64_t UpperVal,
915 uint64_t LowerVal) {
916 EVT VT = Node->getValueType(0);
Andrew Trickef9de2a2013-05-25 02:42:55 +0000917 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000918 SDValue Upper = CurDAG->getConstant(UpperVal, VT);
919 if (Op0.getNode())
920 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
921 Upper = SDValue(Select(Upper.getNode()), 0);
922
923 SDValue Lower = CurDAG->getConstant(LowerVal, VT);
924 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
925 return Or.getNode();
926}
927
Richard Sandiford97846492013-07-09 09:46:39 +0000928// N is a (store (load ...), ...) pattern. Return true if it can use MVC.
929bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
930 StoreSDNode *Store = cast<StoreSDNode>(N);
931 LoadSDNode *Load = cast<LoadSDNode>(Store->getValue().getNode());
932
933 // MVC is logically a bytewise copy, so can't be used for volatile accesses.
934 if (Load->isVolatile() || Store->isVolatile())
935 return false;
936
937 // Prefer not to use MVC if either address can use ... RELATIVE LONG
938 // instructions.
939 assert(Load->getMemoryVT() == Store->getMemoryVT() &&
940 "Should already have checked that the types match");
941 uint64_t Size = Load->getMemoryVT().getStoreSize();
942 if (Size > 1 && Size <= 8) {
943 // Prefer LHRL, LRL and LGRL.
944 if (Load->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
945 return false;
946 // Prefer STHRL, STRL and STGRL.
947 if (Store->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
948 return false;
949 }
950
951 // There's no chance of overlap if the load is invariant.
952 if (Load->isInvariant())
953 return true;
954
955 // If both operands are aligned, they must be equal or not overlap.
956 if (Load->getAlignment() >= Size && Store->getAlignment() >= Size)
957 return true;
958
959 // Otherwise we need to check whether there's an alias.
960 const Value *V1 = Load->getSrcValue();
961 const Value *V2 = Store->getSrcValue();
962 if (!V1 || !V2)
963 return false;
964
965 int64_t End1 = Load->getSrcValueOffset() + Size;
966 int64_t End2 = Store->getSrcValueOffset() + Size;
967 return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
968 AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
969}
970
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000971SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
972 // Dump information about the Node being selected
973 DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
974
975 // If we have a custom node, we already have selected!
976 if (Node->isMachineOpcode()) {
977 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
978 return 0;
979 }
980
981 unsigned Opcode = Node->getOpcode();
Richard Sandiford84f54a32013-07-11 08:59:12 +0000982 SDNode *ResNode = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000983 switch (Opcode) {
984 case ISD::OR:
Richard Sandiford885140c2013-07-16 11:55:57 +0000985 if (Node->getOperand(1).getOpcode() != ISD::Constant)
Richard Sandiford7878b852013-07-18 10:06:15 +0000986 ResNode = tryRxSBG(Node, SystemZ::ROSBG);
987 goto or_xor;
988
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000989 case ISD::XOR:
Richard Sandiford7878b852013-07-18 10:06:15 +0000990 if (Node->getOperand(1).getOpcode() != ISD::Constant)
991 ResNode = tryRxSBG(Node, SystemZ::RXSBG);
992 // Fall through.
993 or_xor:
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000994 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
995 // split the operation into two.
Richard Sandiford885140c2013-07-16 11:55:57 +0000996 if (!ResNode && Node->getValueType(0) == MVT::i64)
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000997 if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
998 uint64_t Val = Op1->getZExtValue();
999 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
1000 Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1001 Val - uint32_t(Val), uint32_t(Val));
1002 }
1003 break;
1004
Richard Sandiford84f54a32013-07-11 08:59:12 +00001005 case ISD::AND:
Richard Sandiford51093212013-07-18 10:40:35 +00001006 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1007 ResNode = tryRxSBG(Node, SystemZ::RNSBG);
1008 // Fall through.
Richard Sandiford82ec87d2013-07-16 11:02:24 +00001009 case ISD::ROTL:
1010 case ISD::SHL:
1011 case ISD::SRL:
Richard Sandiford7878b852013-07-18 10:06:15 +00001012 if (!ResNode)
1013 ResNode = tryRISBGZero(Node);
Richard Sandiford84f54a32013-07-11 08:59:12 +00001014 break;
1015
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001016 case ISD::Constant:
1017 // If this is a 64-bit constant that is out of the range of LLILF,
1018 // LLIHF and LGFI, split it into two 32-bit pieces.
1019 if (Node->getValueType(0) == MVT::i64) {
1020 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1021 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
1022 Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
1023 Val - uint32_t(Val), uint32_t(Val));
1024 }
1025 break;
1026
1027 case ISD::ATOMIC_LOAD_SUB:
1028 // Try to convert subtractions of constants to additions.
1029 if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
1030 uint64_t Value = -Op2->getZExtValue();
1031 EVT VT = Node->getValueType(0);
1032 if (VT == MVT::i32 || isInt<32>(Value)) {
1033 SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
1034 CurDAG->getConstant(int32_t(Value), VT) };
1035 Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
1036 Node->getVTList(), Ops, array_lengthof(Ops));
1037 }
1038 }
1039 break;
Richard Sandifordee834382013-07-31 12:38:08 +00001040
1041 case SystemZISD::SELECT_CCMASK: {
1042 SDValue Op0 = Node->getOperand(0);
1043 SDValue Op1 = Node->getOperand(1);
1044 // Prefer to put any load first, so that it can be matched as a
1045 // conditional load.
1046 if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1047 SDValue CCValid = Node->getOperand(2);
1048 SDValue CCMask = Node->getOperand(3);
1049 uint64_t ConstCCValid =
1050 cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1051 uint64_t ConstCCMask =
1052 cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1053 // Invert the condition.
1054 CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask,
1055 CCMask.getValueType());
1056 SDValue Op4 = Node->getOperand(4);
1057 Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1058 }
1059 break;
1060 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001061 }
1062
1063 // Select the default instruction
Richard Sandiford84f54a32013-07-11 08:59:12 +00001064 if (!ResNode)
1065 ResNode = SelectCode(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001066
1067 DEBUG(errs() << "=> ";
1068 if (ResNode == NULL || ResNode == Node)
1069 Node->dump(CurDAG);
1070 else
1071 ResNode->dump(CurDAG);
1072 errs() << "\n";
1073 );
1074 return ResNode;
1075}
1076
1077bool SystemZDAGToDAGISel::
1078SelectInlineAsmMemoryOperand(const SDValue &Op,
1079 char ConstraintCode,
1080 std::vector<SDValue> &OutOps) {
1081 assert(ConstraintCode == 'm' && "Unexpected constraint code");
1082 // Accept addresses with short displacements, which are compatible
1083 // with Q, R, S and T. But keep the index operand for future expansion.
1084 SDValue Base, Disp, Index;
1085 if (!selectBDXAddr(SystemZAddressingMode::FormBD,
1086 SystemZAddressingMode::Disp12Only,
1087 Op, Base, Disp, Index))
1088 return true;
1089 OutOps.push_back(Base);
1090 OutOps.push_back(Disp);
1091 OutOps.push_back(Index);
1092 return false;
1093}