blob: 0f9a37ed0cf87379dcdcdc7dc56f762530451836 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the SystemZ target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZTargetMachine.h"
Richard Sandiford97846492013-07-09 09:46:39 +000015#include "llvm/Analysis/AliasAnalysis.h"
Ulrich Weigand5f613df2013-05-06 16:15:19 +000016#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/raw_ostream.h"
19
20using namespace llvm;
21
22namespace {
23// Used to build addressing modes.
24struct SystemZAddressingMode {
25 // The shape of the address.
26 enum AddrForm {
27 // base+displacement
28 FormBD,
29
30 // base+displacement+index for load and store operands
31 FormBDXNormal,
32
33 // base+displacement+index for load address operands
34 FormBDXLA,
35
36 // base+displacement+index+ADJDYNALLOC
37 FormBDXDynAlloc
38 };
39 AddrForm Form;
40
41 // The type of displacement. The enum names here correspond directly
42 // to the definitions in SystemZOperand.td. We could split them into
43 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
44 enum DispRange {
45 Disp12Only,
46 Disp12Pair,
47 Disp20Only,
48 Disp20Only128,
49 Disp20Pair
50 };
51 DispRange DR;
52
53 // The parts of the address. The address is equivalent to:
54 //
55 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
56 SDValue Base;
57 int64_t Disp;
58 SDValue Index;
59 bool IncludesDynAlloc;
60
61 SystemZAddressingMode(AddrForm form, DispRange dr)
62 : Form(form), DR(dr), Base(), Disp(0), Index(),
63 IncludesDynAlloc(false) {}
64
65 // True if the address can have an index register.
66 bool hasIndexField() { return Form != FormBD; }
67
68 // True if the address can (and must) include ADJDYNALLOC.
69 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
70
71 void dump() {
72 errs() << "SystemZAddressingMode " << this << '\n';
73
74 errs() << " Base ";
75 if (Base.getNode() != 0)
76 Base.getNode()->dump();
77 else
78 errs() << "null\n";
79
80 if (hasIndexField()) {
81 errs() << " Index ";
82 if (Index.getNode() != 0)
83 Index.getNode()->dump();
84 else
85 errs() << "null\n";
86 }
87
88 errs() << " Disp " << Disp;
89 if (IncludesDynAlloc)
90 errs() << " + ADJDYNALLOC";
91 errs() << '\n';
92 }
93};
94
Richard Sandiford82ec87d2013-07-16 11:02:24 +000095// Return a mask with Count low bits set.
96static uint64_t allOnes(unsigned int Count) {
97 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
98}
99
100// Represents operands 2 to 5 of a ROTATE AND ... SELECTED BITS operation.
101// The operands are: Input (R2), Start (I3), End (I4) and Rotate (I5).
102// The operand value is effectively (and (rotl Input Rotate) Mask) and
103// has BitSize bits.
Richard Sandiford5cbac962013-07-18 09:45:08 +0000104struct RxSBGOperands {
105 RxSBGOperands(SDValue N)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000106 : BitSize(N.getValueType().getSizeInBits()), Mask(allOnes(BitSize)),
107 Input(N), Start(64 - BitSize), End(63), Rotate(0) {}
108
109 unsigned BitSize;
110 uint64_t Mask;
111 SDValue Input;
112 unsigned Start;
113 unsigned End;
114 unsigned Rotate;
115};
116
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000117class SystemZDAGToDAGISel : public SelectionDAGISel {
118 const SystemZTargetLowering &Lowering;
119 const SystemZSubtarget &Subtarget;
120
121 // Used by SystemZOperands.td to create integer constants.
122 inline SDValue getImm(const SDNode *Node, uint64_t Imm) {
123 return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
124 }
125
126 // Try to fold more of the base or index of AM into AM, where IsBase
127 // selects between the base and index.
128 bool expandAddress(SystemZAddressingMode &AM, bool IsBase);
129
130 // Try to describe N in AM, returning true on success.
131 bool selectAddress(SDValue N, SystemZAddressingMode &AM);
132
133 // Extract individual target operands from matched address AM.
134 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
135 SDValue &Base, SDValue &Disp);
136 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
137 SDValue &Base, SDValue &Disp, SDValue &Index);
138
139 // Try to match Addr as a FormBD address with displacement type DR.
140 // Return true on success, storing the base and displacement in
141 // Base and Disp respectively.
142 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
143 SDValue &Base, SDValue &Disp);
144
145 // Try to match Addr as a FormBDX* address of form Form with
146 // displacement type DR. Return true on success, storing the base,
147 // displacement and index in Base, Disp and Index respectively.
148 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
149 SystemZAddressingMode::DispRange DR, SDValue Addr,
150 SDValue &Base, SDValue &Disp, SDValue &Index);
151
152 // PC-relative address matching routines used by SystemZOperands.td.
153 bool selectPCRelAddress(SDValue Addr, SDValue &Target) {
154 if (Addr.getOpcode() == SystemZISD::PCREL_WRAPPER) {
155 Target = Addr.getOperand(0);
156 return true;
157 }
158 return false;
159 }
160
161 // BD matching routines used by SystemZOperands.td.
162 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
163 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
164 }
165 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
166 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
167 }
168 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
169 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
170 }
171 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
172 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
173 }
174
175 // BDX matching routines used by SystemZOperands.td.
176 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
177 SDValue &Index) {
178 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
179 SystemZAddressingMode::Disp12Only,
180 Addr, Base, Disp, Index);
181 }
182 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
183 SDValue &Index) {
184 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
185 SystemZAddressingMode::Disp12Pair,
186 Addr, Base, Disp, Index);
187 }
188 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
189 SDValue &Index) {
190 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
191 SystemZAddressingMode::Disp12Only,
192 Addr, Base, Disp, Index);
193 }
194 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
195 SDValue &Index) {
196 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
197 SystemZAddressingMode::Disp20Only,
198 Addr, Base, Disp, Index);
199 }
200 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
201 SDValue &Index) {
202 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
203 SystemZAddressingMode::Disp20Only128,
204 Addr, Base, Disp, Index);
205 }
206 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
207 SDValue &Index) {
208 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
209 SystemZAddressingMode::Disp20Pair,
210 Addr, Base, Disp, Index);
211 }
212 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
213 SDValue &Index) {
214 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
215 SystemZAddressingMode::Disp12Pair,
216 Addr, Base, Disp, Index);
217 }
218 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
219 SDValue &Index) {
220 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
221 SystemZAddressingMode::Disp20Pair,
222 Addr, Base, Disp, Index);
223 }
224
Richard Sandiford885140c2013-07-16 11:55:57 +0000225 // Check whether (or Op (and X InsertMask)) is effectively an insertion
226 // of X into bits InsertMask of some Y != Op. Return true if so and
227 // set Op to that Y.
228 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask);
229
Richard Sandiford5cbac962013-07-18 09:45:08 +0000230 // Try to fold some of RxSBG.Input into other fields of RxSBG.
231 // Return true on success.
232 bool expandRxSBG(RxSBGOperands &RxSBG);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000233
Richard Sandiford84f54a32013-07-11 08:59:12 +0000234 // Return an undefined i64 value.
235 SDValue getUNDEF64(SDLoc DL);
236
237 // Convert N to VT, if it isn't already.
238 SDValue convertTo(SDLoc DL, EVT VT, SDValue N);
239
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000240 // Try to implement AND or shift node N using RISBG with the zero flag set.
241 // Return the selected node on success, otherwise return null.
242 SDNode *tryRISBGZero(SDNode *N);
Richard Sandiford84f54a32013-07-11 08:59:12 +0000243
Richard Sandiford7878b852013-07-18 10:06:15 +0000244 // Try to use RISBG or Opcode to implement OR or XOR node N.
245 // Return the selected node on success, otherwise return null.
246 SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
Richard Sandiford885140c2013-07-16 11:55:57 +0000247
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000248 // If Op0 is null, then Node is a constant that can be loaded using:
249 //
250 // (Opcode UpperVal LowerVal)
251 //
252 // If Op0 is nonnull, then Node can be implemented using:
253 //
254 // (Opcode (Opcode Op0 UpperVal) LowerVal)
255 SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
256 uint64_t UpperVal, uint64_t LowerVal);
257
Richard Sandiford97846492013-07-09 09:46:39 +0000258 bool storeLoadCanUseMVC(SDNode *N) const;
259
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000260public:
261 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
262 : SelectionDAGISel(TM, OptLevel),
263 Lowering(*TM.getTargetLowering()),
264 Subtarget(*TM.getSubtargetImpl()) { }
265
266 // Override MachineFunctionPass.
267 virtual const char *getPassName() const LLVM_OVERRIDE {
268 return "SystemZ DAG->DAG Pattern Instruction Selection";
269 }
270
271 // Override SelectionDAGISel.
272 virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
273 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
274 char ConstraintCode,
275 std::vector<SDValue> &OutOps)
276 LLVM_OVERRIDE;
277
278 // Include the pieces autogenerated from the target description.
279 #include "SystemZGenDAGISel.inc"
280};
281} // end anonymous namespace
282
283FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
284 CodeGenOpt::Level OptLevel) {
285 return new SystemZDAGToDAGISel(TM, OptLevel);
286}
287
288// Return true if Val should be selected as a displacement for an address
289// with range DR. Here we're interested in the range of both the instruction
290// described by DR and of any pairing instruction.
291static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
292 switch (DR) {
293 case SystemZAddressingMode::Disp12Only:
294 return isUInt<12>(Val);
295
296 case SystemZAddressingMode::Disp12Pair:
297 case SystemZAddressingMode::Disp20Only:
298 case SystemZAddressingMode::Disp20Pair:
299 return isInt<20>(Val);
300
301 case SystemZAddressingMode::Disp20Only128:
302 return isInt<20>(Val) && isInt<20>(Val + 8);
303 }
304 llvm_unreachable("Unhandled displacement range");
305}
306
307// Change the base or index in AM to Value, where IsBase selects
308// between the base and index.
309static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
310 SDValue Value) {
311 if (IsBase)
312 AM.Base = Value;
313 else
314 AM.Index = Value;
315}
316
317// The base or index of AM is equivalent to Value + ADJDYNALLOC,
318// where IsBase selects between the base and index. Try to fold the
319// ADJDYNALLOC into AM.
320static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
321 SDValue Value) {
322 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
323 changeComponent(AM, IsBase, Value);
324 AM.IncludesDynAlloc = true;
325 return true;
326 }
327 return false;
328}
329
330// The base of AM is equivalent to Base + Index. Try to use Index as
331// the index register.
332static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
333 SDValue Index) {
334 if (AM.hasIndexField() && !AM.Index.getNode()) {
335 AM.Base = Base;
336 AM.Index = Index;
337 return true;
338 }
339 return false;
340}
341
342// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
343// between the base and index. Try to fold Op1 into AM's displacement.
344static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
345 SDValue Op0, ConstantSDNode *Op1) {
346 // First try adjusting the displacement.
347 int64_t TestDisp = AM.Disp + Op1->getSExtValue();
348 if (selectDisp(AM.DR, TestDisp)) {
349 changeComponent(AM, IsBase, Op0);
350 AM.Disp = TestDisp;
351 return true;
352 }
353
354 // We could consider forcing the displacement into a register and
355 // using it as an index, but it would need to be carefully tuned.
356 return false;
357}
358
359bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
360 bool IsBase) {
361 SDValue N = IsBase ? AM.Base : AM.Index;
362 unsigned Opcode = N.getOpcode();
363 if (Opcode == ISD::TRUNCATE) {
364 N = N.getOperand(0);
365 Opcode = N.getOpcode();
366 }
367 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
368 SDValue Op0 = N.getOperand(0);
369 SDValue Op1 = N.getOperand(1);
370
371 unsigned Op0Code = Op0->getOpcode();
372 unsigned Op1Code = Op1->getOpcode();
373
374 if (Op0Code == SystemZISD::ADJDYNALLOC)
375 return expandAdjDynAlloc(AM, IsBase, Op1);
376 if (Op1Code == SystemZISD::ADJDYNALLOC)
377 return expandAdjDynAlloc(AM, IsBase, Op0);
378
379 if (Op0Code == ISD::Constant)
380 return expandDisp(AM, IsBase, Op1, cast<ConstantSDNode>(Op0));
381 if (Op1Code == ISD::Constant)
382 return expandDisp(AM, IsBase, Op0, cast<ConstantSDNode>(Op1));
383
384 if (IsBase && expandIndex(AM, Op0, Op1))
385 return true;
386 }
387 return false;
388}
389
390// Return true if an instruction with displacement range DR should be
391// used for displacement value Val. selectDisp(DR, Val) must already hold.
392static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
393 assert(selectDisp(DR, Val) && "Invalid displacement");
394 switch (DR) {
395 case SystemZAddressingMode::Disp12Only:
396 case SystemZAddressingMode::Disp20Only:
397 case SystemZAddressingMode::Disp20Only128:
398 return true;
399
400 case SystemZAddressingMode::Disp12Pair:
401 // Use the other instruction if the displacement is too large.
402 return isUInt<12>(Val);
403
404 case SystemZAddressingMode::Disp20Pair:
405 // Use the other instruction if the displacement is small enough.
406 return !isUInt<12>(Val);
407 }
408 llvm_unreachable("Unhandled displacement range");
409}
410
411// Return true if Base + Disp + Index should be performed by LA(Y).
412static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
413 // Don't use LA(Y) for constants.
414 if (!Base)
415 return false;
416
417 // Always use LA(Y) for frame addresses, since we know that the destination
418 // register is almost always (perhaps always) going to be different from
419 // the frame register.
420 if (Base->getOpcode() == ISD::FrameIndex)
421 return true;
422
423 if (Disp) {
424 // Always use LA(Y) if there is a base, displacement and index.
425 if (Index)
426 return true;
427
428 // Always use LA if the displacement is small enough. It should always
429 // be no worse than AGHI (and better if it avoids a move).
430 if (isUInt<12>(Disp))
431 return true;
432
433 // For similar reasons, always use LAY if the constant is too big for AGHI.
434 // LAY should be no worse than AGFI.
435 if (!isInt<16>(Disp))
436 return true;
437 } else {
438 // Don't use LA for plain registers.
439 if (!Index)
440 return false;
441
442 // Don't use LA for plain addition if the index operand is only used
443 // once. It should be a natural two-operand addition in that case.
444 if (Index->hasOneUse())
445 return false;
446
447 // Prefer addition if the second operation is sign-extended, in the
448 // hope of using AGF.
449 unsigned IndexOpcode = Index->getOpcode();
450 if (IndexOpcode == ISD::SIGN_EXTEND ||
451 IndexOpcode == ISD::SIGN_EXTEND_INREG)
452 return false;
453 }
454
455 // Don't use LA for two-operand addition if either operand is only
456 // used once. The addition instructions are better in that case.
457 if (Base->hasOneUse())
458 return false;
459
460 return true;
461}
462
463// Return true if Addr is suitable for AM, updating AM if so.
464bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
465 SystemZAddressingMode &AM) {
466 // Start out assuming that the address will need to be loaded separately,
467 // then try to extend it as much as we can.
468 AM.Base = Addr;
469
470 // First try treating the address as a constant.
471 if (Addr.getOpcode() == ISD::Constant &&
472 expandDisp(AM, true, SDValue(), cast<ConstantSDNode>(Addr)))
473 ;
474 else
475 // Otherwise try expanding each component.
476 while (expandAddress(AM, true) ||
477 (AM.Index.getNode() && expandAddress(AM, false)))
478 continue;
479
480 // Reject cases where it isn't profitable to use LA(Y).
481 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
482 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
483 return false;
484
485 // Reject cases where the other instruction in a pair should be used.
486 if (!isValidDisp(AM.DR, AM.Disp))
487 return false;
488
489 // Make sure that ADJDYNALLOC is included where necessary.
490 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
491 return false;
492
493 DEBUG(AM.dump());
494 return true;
495}
496
497// Insert a node into the DAG at least before Pos. This will reposition
498// the node as needed, and will assign it a node ID that is <= Pos's ID.
499// Note that this does *not* preserve the uniqueness of node IDs!
500// The selection DAG must no longer depend on their uniqueness when this
501// function is used.
502static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
503 if (N.getNode()->getNodeId() == -1 ||
504 N.getNode()->getNodeId() > Pos->getNodeId()) {
505 DAG->RepositionNode(Pos, N.getNode());
506 N.getNode()->setNodeId(Pos->getNodeId());
507 }
508}
509
510void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
511 EVT VT, SDValue &Base,
512 SDValue &Disp) {
513 Base = AM.Base;
514 if (!Base.getNode())
515 // Register 0 means "no base". This is mostly useful for shifts.
516 Base = CurDAG->getRegister(0, VT);
517 else if (Base.getOpcode() == ISD::FrameIndex) {
518 // Lower a FrameIndex to a TargetFrameIndex.
519 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
520 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
521 } else if (Base.getValueType() != VT) {
522 // Truncate values from i64 to i32, for shifts.
523 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
524 "Unexpected truncation");
Andrew Trickef9de2a2013-05-25 02:42:55 +0000525 SDLoc DL(Base);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000526 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
527 insertDAGNode(CurDAG, Base.getNode(), Trunc);
528 Base = Trunc;
529 }
530
531 // Lower the displacement to a TargetConstant.
532 Disp = CurDAG->getTargetConstant(AM.Disp, VT);
533}
534
535void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
536 EVT VT, SDValue &Base,
537 SDValue &Disp, SDValue &Index) {
538 getAddressOperands(AM, VT, Base, Disp);
539
540 Index = AM.Index;
541 if (!Index.getNode())
542 // Register 0 means "no index".
543 Index = CurDAG->getRegister(0, VT);
544}
545
546bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
547 SDValue Addr, SDValue &Base,
548 SDValue &Disp) {
549 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
550 if (!selectAddress(Addr, AM))
551 return false;
552
553 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
554 return true;
555}
556
557bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
558 SystemZAddressingMode::DispRange DR,
559 SDValue Addr, SDValue &Base,
560 SDValue &Disp, SDValue &Index) {
561 SystemZAddressingMode AM(Form, DR);
562 if (!selectAddress(Addr, AM))
563 return false;
564
565 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
566 return true;
567}
568
Richard Sandiford885140c2013-07-16 11:55:57 +0000569bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
570 uint64_t InsertMask) {
571 // We're only interested in cases where the insertion is into some operand
572 // of Op, rather than into Op itself. The only useful case is an AND.
573 if (Op.getOpcode() != ISD::AND)
574 return false;
575
576 // We need a constant mask.
577 ConstantSDNode *MaskNode =
578 dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
579 if (!MaskNode)
580 return false;
581
582 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
583 uint64_t AndMask = MaskNode->getZExtValue();
584 if (InsertMask & AndMask)
585 return false;
586
587 // It's only an insertion if all bits are covered or are known to be zero.
588 // The inner check covers all cases but is more expensive.
589 uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
590 if (Used != (AndMask | InsertMask)) {
591 APInt KnownZero, KnownOne;
592 CurDAG->ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne);
593 if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
594 return false;
595 }
596
597 Op = Op.getOperand(0);
598 return true;
599}
600
Richard Sandiford84f54a32013-07-11 08:59:12 +0000601// Return true if Mask matches the regexp 0*1+0*, given that zero masks
602// have already been filtered out. Store the first set bit in LSB and
603// the number of set bits in Length if so.
604static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
605 unsigned First = findFirstSet(Mask);
606 uint64_t Top = (Mask >> First) + 1;
Richard Sandiford5cbac962013-07-18 09:45:08 +0000607 if ((Top & -Top) == Top) {
608 LSB = First;
609 Length = findFirstSet(Top);
610 return true;
611 }
Richard Sandiford84f54a32013-07-11 08:59:12 +0000612 return false;
613}
614
Richard Sandiford5cbac962013-07-18 09:45:08 +0000615// Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000616// Return true on success.
Richard Sandiford5cbac962013-07-18 09:45:08 +0000617static bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) {
618 if (RxSBG.Rotate != 0)
619 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
620 Mask &= RxSBG.Mask;
Richard Sandiford84f54a32013-07-11 08:59:12 +0000621
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000622 // Reject trivial all-zero masks.
623 if (Mask == 0)
Richard Sandiford84f54a32013-07-11 08:59:12 +0000624 return false;
625
626 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
627 // the msb and End specifies the index of the lsb.
628 unsigned LSB, Length;
Richard Sandiford5cbac962013-07-18 09:45:08 +0000629 if (isStringOfOnes(Mask, LSB, Length)) {
630 RxSBG.Mask = Mask;
631 RxSBG.Start = 63 - (LSB + Length - 1);
632 RxSBG.End = 63 - LSB;
633 return true;
634 }
Richard Sandiford84f54a32013-07-11 08:59:12 +0000635
636 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
637 // of the low 1s and End specifies the lsb of the high 1s.
Richard Sandiford5cbac962013-07-18 09:45:08 +0000638 if (isStringOfOnes(Mask ^ allOnes(RxSBG.BitSize), LSB, Length)) {
639 assert(LSB > 0 && "Bottom bit must be set");
640 assert(LSB + Length < RxSBG.BitSize && "Top bit must be set");
641 RxSBG.Mask = Mask;
642 RxSBG.Start = 63 - (LSB - 1);
643 RxSBG.End = 63 - (LSB + Length);
644 return true;
645 }
Richard Sandiford84f54a32013-07-11 08:59:12 +0000646
647 return false;
648}
649
Richard Sandiford297f7d22013-07-18 10:14:55 +0000650// RxSBG.Input is a shift of Count bits in the direction given by IsLeft.
651// Return true if the result depends on the signs or zeros that are
652// shifted in.
653static bool shiftedInBitsMatter(RxSBGOperands &RxSBG, uint64_t Count,
654 bool IsLeft) {
655 // Work out which bits of the shift result are zeros or sign copies.
656 uint64_t ShiftedIn = allOnes(Count);
657 if (!IsLeft)
658 ShiftedIn <<= RxSBG.BitSize - Count;
659
660 // Rotate that mask in the same way as RxSBG.Input is rotated.
661 if (RxSBG.Rotate != 0)
662 ShiftedIn = ((ShiftedIn << RxSBG.Rotate) |
663 (ShiftedIn >> (64 - RxSBG.Rotate)));
664
665 // Fail if any of the zero or sign bits are used.
666 return (ShiftedIn & RxSBG.Mask) != 0;
667}
668
Richard Sandiford5cbac962013-07-18 09:45:08 +0000669bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) {
670 SDValue N = RxSBG.Input;
Richard Sandiford297f7d22013-07-18 10:14:55 +0000671 unsigned Opcode = N.getOpcode();
672 switch (Opcode) {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000673 case ISD::AND: {
674 ConstantSDNode *MaskNode =
675 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
676 if (!MaskNode)
677 return false;
678
679 SDValue Input = N.getOperand(0);
680 uint64_t Mask = MaskNode->getZExtValue();
Richard Sandiford5cbac962013-07-18 09:45:08 +0000681 if (!refineRxSBGMask(RxSBG, Mask)) {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000682 // If some bits of Input are already known zeros, those bits will have
683 // been removed from the mask. See if adding them back in makes the
684 // mask suitable.
685 APInt KnownZero, KnownOne;
686 CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
687 Mask |= KnownZero.getZExtValue();
Richard Sandiford5cbac962013-07-18 09:45:08 +0000688 if (!refineRxSBGMask(RxSBG, Mask))
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000689 return false;
690 }
Richard Sandiford5cbac962013-07-18 09:45:08 +0000691 RxSBG.Input = Input;
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000692 return true;
693 }
694
695 case ISD::ROTL: {
Richard Sandiford5cbac962013-07-18 09:45:08 +0000696 // Any 64-bit rotate left can be merged into the RxSBG.
697 if (RxSBG.BitSize != 64)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000698 return false;
699 ConstantSDNode *CountNode
700 = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
701 if (!CountNode)
702 return false;
703
Richard Sandiford5cbac962013-07-18 09:45:08 +0000704 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
705 RxSBG.Input = N.getOperand(0);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000706 return true;
707 }
708
709 case ISD::SHL: {
710 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
711 ConstantSDNode *CountNode =
712 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
713 if (!CountNode)
714 return false;
715
716 uint64_t Count = CountNode->getZExtValue();
717 if (Count < 1 ||
Richard Sandiford5cbac962013-07-18 09:45:08 +0000718 Count >= RxSBG.BitSize ||
719 !refineRxSBGMask(RxSBG, allOnes(RxSBG.BitSize - Count) << Count))
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000720 return false;
721
Richard Sandiford5cbac962013-07-18 09:45:08 +0000722 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
723 RxSBG.Input = N.getOperand(0);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000724 return true;
725 }
726
Richard Sandiford297f7d22013-07-18 10:14:55 +0000727 case ISD::SRL:
728 case ISD::SRA: {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000729 ConstantSDNode *CountNode =
730 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
731 if (!CountNode)
732 return false;
733
734 uint64_t Count = CountNode->getZExtValue();
Richard Sandiford297f7d22013-07-18 10:14:55 +0000735 if (Count < 1 || Count >= RxSBG.BitSize)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000736 return false;
737
Richard Sandiford297f7d22013-07-18 10:14:55 +0000738 if (Opcode == ISD::SRA) {
739 // Treat (sra X, count) as (rotl X, size-count) as long as the top
740 // Count bits from RxSBG.Input are ignored.
741 if (shiftedInBitsMatter(RxSBG, Count, false))
742 return false;
743 } else {
744 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
745 // which is similar to SLL above.
746 if (!refineRxSBGMask(RxSBG, allOnes(RxSBG.BitSize - Count)))
747 return false;
748 }
749
Richard Sandiford5cbac962013-07-18 09:45:08 +0000750 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
751 RxSBG.Input = N.getOperand(0);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000752 return true;
753 }
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000754 default:
755 return false;
756 }
757}
758
Richard Sandiford84f54a32013-07-11 08:59:12 +0000759SDValue SystemZDAGToDAGISel::getUNDEF64(SDLoc DL) {
760 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64);
761 return SDValue(N, 0);
762}
763
764SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) {
765 if (N.getValueType() == MVT::i32 && VT == MVT::i64) {
766 SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
767 SDNode *Insert = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG,
768 DL, VT, getUNDEF64(DL), N, Index);
769 return SDValue(Insert, 0);
770 }
771 if (N.getValueType() == MVT::i64 && VT == MVT::i32) {
772 SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
773 SDNode *Extract = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
774 DL, VT, N, Index);
775 return SDValue(Extract, 0);
776 }
777 assert(N.getValueType() == VT && "Unexpected value types");
778 return N;
779}
780
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000781SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
Richard Sandiford5cbac962013-07-18 09:45:08 +0000782 RxSBGOperands RISBG(SDValue(N, 0));
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000783 unsigned Count = 0;
Richard Sandiford5cbac962013-07-18 09:45:08 +0000784 while (expandRxSBG(RISBG))
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000785 Count += 1;
786 // Prefer to use normal shift instructions over RISBG, since they can handle
787 // all cases and are sometimes shorter. Prefer to use RISBG for ANDs though,
788 // since it is effectively a three-operand instruction in this case,
789 // and since it can handle some masks that AND IMMEDIATE can't.
Aaron Ballmanfbb10452013-07-17 19:43:13 +0000790 if (Count < (N->getOpcode() == ISD::AND ? 1U : 2U))
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000791 return 0;
792
793 // Prefer register extensions like LLC over RISBG.
794 if (RISBG.Rotate == 0 &&
795 (RISBG.Start == 32 || RISBG.Start == 48 || RISBG.Start == 56) &&
796 RISBG.End == 63)
797 return 0;
798
Richard Sandiford84f54a32013-07-11 08:59:12 +0000799 EVT VT = N->getValueType(0);
Richard Sandiford84f54a32013-07-11 08:59:12 +0000800 SDValue Ops[5] = {
801 getUNDEF64(SDLoc(N)),
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000802 convertTo(SDLoc(N), MVT::i64, RISBG.Input),
803 CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
804 CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
805 CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
Richard Sandiford84f54a32013-07-11 08:59:12 +0000806 };
807 N = CurDAG->getMachineNode(SystemZ::RISBG, SDLoc(N), MVT::i64, Ops);
808 return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
809}
810
Richard Sandiford7878b852013-07-18 10:06:15 +0000811SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
812 // Try treating each operand of N as the second operand of the RxSBG
Richard Sandiford885140c2013-07-16 11:55:57 +0000813 // and see which goes deepest.
Richard Sandiford5cbac962013-07-18 09:45:08 +0000814 RxSBGOperands RxSBG[] = { N->getOperand(0), N->getOperand(1) };
Richard Sandiford885140c2013-07-16 11:55:57 +0000815 unsigned Count[] = { 0, 0 };
816 for (unsigned I = 0; I < 2; ++I)
Richard Sandiford5cbac962013-07-18 09:45:08 +0000817 while (expandRxSBG(RxSBG[I]))
Richard Sandiford885140c2013-07-16 11:55:57 +0000818 Count[I] += 1;
819
820 // Do nothing if neither operand is suitable.
821 if (Count[0] == 0 && Count[1] == 0)
822 return 0;
823
824 // Pick the deepest second operand.
825 unsigned I = Count[0] > Count[1] ? 0 : 1;
826 SDValue Op0 = N->getOperand(I ^ 1);
827
828 // Prefer IC for character insertions from memory.
Richard Sandiford7878b852013-07-18 10:06:15 +0000829 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
Richard Sandiford885140c2013-07-16 11:55:57 +0000830 if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
831 if (Load->getMemoryVT() == MVT::i8)
832 return 0;
833
834 // See whether we can avoid an AND in the first operand by converting
835 // ROSBG to RISBG.
Richard Sandiford7878b852013-07-18 10:06:15 +0000836 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
Richard Sandiford885140c2013-07-16 11:55:57 +0000837 Opcode = SystemZ::RISBG;
838
839 EVT VT = N->getValueType(0);
840 SDValue Ops[5] = {
841 convertTo(SDLoc(N), MVT::i64, Op0),
Richard Sandiford5cbac962013-07-18 09:45:08 +0000842 convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
843 CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
844 CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
845 CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
Richard Sandiford885140c2013-07-16 11:55:57 +0000846 };
847 N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
848 return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
849}
850
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000851SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
852 SDValue Op0, uint64_t UpperVal,
853 uint64_t LowerVal) {
854 EVT VT = Node->getValueType(0);
Andrew Trickef9de2a2013-05-25 02:42:55 +0000855 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000856 SDValue Upper = CurDAG->getConstant(UpperVal, VT);
857 if (Op0.getNode())
858 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
859 Upper = SDValue(Select(Upper.getNode()), 0);
860
861 SDValue Lower = CurDAG->getConstant(LowerVal, VT);
862 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
863 return Or.getNode();
864}
865
Richard Sandiford97846492013-07-09 09:46:39 +0000866// N is a (store (load ...), ...) pattern. Return true if it can use MVC.
867bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
868 StoreSDNode *Store = cast<StoreSDNode>(N);
869 LoadSDNode *Load = cast<LoadSDNode>(Store->getValue().getNode());
870
871 // MVC is logically a bytewise copy, so can't be used for volatile accesses.
872 if (Load->isVolatile() || Store->isVolatile())
873 return false;
874
875 // Prefer not to use MVC if either address can use ... RELATIVE LONG
876 // instructions.
877 assert(Load->getMemoryVT() == Store->getMemoryVT() &&
878 "Should already have checked that the types match");
879 uint64_t Size = Load->getMemoryVT().getStoreSize();
880 if (Size > 1 && Size <= 8) {
881 // Prefer LHRL, LRL and LGRL.
882 if (Load->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
883 return false;
884 // Prefer STHRL, STRL and STGRL.
885 if (Store->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
886 return false;
887 }
888
889 // There's no chance of overlap if the load is invariant.
890 if (Load->isInvariant())
891 return true;
892
893 // If both operands are aligned, they must be equal or not overlap.
894 if (Load->getAlignment() >= Size && Store->getAlignment() >= Size)
895 return true;
896
897 // Otherwise we need to check whether there's an alias.
898 const Value *V1 = Load->getSrcValue();
899 const Value *V2 = Store->getSrcValue();
900 if (!V1 || !V2)
901 return false;
902
903 int64_t End1 = Load->getSrcValueOffset() + Size;
904 int64_t End2 = Store->getSrcValueOffset() + Size;
905 return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
906 AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
907}
908
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000909SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
910 // Dump information about the Node being selected
911 DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
912
913 // If we have a custom node, we already have selected!
914 if (Node->isMachineOpcode()) {
915 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
916 return 0;
917 }
918
919 unsigned Opcode = Node->getOpcode();
Richard Sandiford84f54a32013-07-11 08:59:12 +0000920 SDNode *ResNode = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000921 switch (Opcode) {
922 case ISD::OR:
Richard Sandiford885140c2013-07-16 11:55:57 +0000923 if (Node->getOperand(1).getOpcode() != ISD::Constant)
Richard Sandiford7878b852013-07-18 10:06:15 +0000924 ResNode = tryRxSBG(Node, SystemZ::ROSBG);
925 goto or_xor;
926
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000927 case ISD::XOR:
Richard Sandiford7878b852013-07-18 10:06:15 +0000928 if (Node->getOperand(1).getOpcode() != ISD::Constant)
929 ResNode = tryRxSBG(Node, SystemZ::RXSBG);
930 // Fall through.
931 or_xor:
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000932 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
933 // split the operation into two.
Richard Sandiford885140c2013-07-16 11:55:57 +0000934 if (!ResNode && Node->getValueType(0) == MVT::i64)
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000935 if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
936 uint64_t Val = Op1->getZExtValue();
937 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
938 Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
939 Val - uint32_t(Val), uint32_t(Val));
940 }
941 break;
942
Richard Sandiford84f54a32013-07-11 08:59:12 +0000943 case ISD::AND:
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000944 case ISD::ROTL:
945 case ISD::SHL:
946 case ISD::SRL:
Richard Sandiford7878b852013-07-18 10:06:15 +0000947 if (!ResNode)
948 ResNode = tryRISBGZero(Node);
Richard Sandiford84f54a32013-07-11 08:59:12 +0000949 break;
950
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000951 case ISD::Constant:
952 // If this is a 64-bit constant that is out of the range of LLILF,
953 // LLIHF and LGFI, split it into two 32-bit pieces.
954 if (Node->getValueType(0) == MVT::i64) {
955 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
956 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
957 Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
958 Val - uint32_t(Val), uint32_t(Val));
959 }
960 break;
961
962 case ISD::ATOMIC_LOAD_SUB:
963 // Try to convert subtractions of constants to additions.
964 if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
965 uint64_t Value = -Op2->getZExtValue();
966 EVT VT = Node->getValueType(0);
967 if (VT == MVT::i32 || isInt<32>(Value)) {
968 SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
969 CurDAG->getConstant(int32_t(Value), VT) };
970 Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
971 Node->getVTList(), Ops, array_lengthof(Ops));
972 }
973 }
974 break;
975 }
976
977 // Select the default instruction
Richard Sandiford84f54a32013-07-11 08:59:12 +0000978 if (!ResNode)
979 ResNode = SelectCode(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000980
981 DEBUG(errs() << "=> ";
982 if (ResNode == NULL || ResNode == Node)
983 Node->dump(CurDAG);
984 else
985 ResNode->dump(CurDAG);
986 errs() << "\n";
987 );
988 return ResNode;
989}
990
991bool SystemZDAGToDAGISel::
992SelectInlineAsmMemoryOperand(const SDValue &Op,
993 char ConstraintCode,
994 std::vector<SDValue> &OutOps) {
995 assert(ConstraintCode == 'm' && "Unexpected constraint code");
996 // Accept addresses with short displacements, which are compatible
997 // with Q, R, S and T. But keep the index operand for future expansion.
998 SDValue Base, Disp, Index;
999 if (!selectBDXAddr(SystemZAddressingMode::FormBD,
1000 SystemZAddressingMode::Disp12Only,
1001 Op, Base, Disp, Index))
1002 return true;
1003 OutOps.push_back(Base);
1004 OutOps.push_back(Disp);
1005 OutOps.push_back(Index);
1006 return false;
1007}